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Abstract

Efficient encoding and representation of large 3D molecular structures with
high fidelity is critical for biomolecular design applications. Despite this,
many representation learning approaches restrict themselves to modeling
smaller systems or use coarse-grained approximations of the systems, for
example modeling proteins at the resolution of amino acid residues rather
than at the level of individual atoms. To address this, we develop quan-
tized auto-encoders that learn atom-level tokenizations of complete pro-
teins, RNA and small molecule structures with reconstruction accuracies
well below 1 Angstrom. We demonstrate that a simple Mamba state space
model architecture is efficient compared to an SE(3)-invariant IPA architec-
ture, reaches competitive accuracies and can scale to systems with almost
100,000 atoms. The learned structure tokens of bio2token may serve as the
input for all-atom generative models in the future.

1 Introduction

Background. Biomolecular structures can be represented as 3D point clouds, where each
point corresponds to a chemical entity such as an atom, a functional group, or a set of atoms
that make up larger molecular entities like side-chains and nucleotide bases. Generative
modeling of these structures, especially for large biomolecules, often employs coarse-grained
representations to manage complexity. Popular machine learning methods include denois-
ing diffusion probabilistic models (DDPMs) and language models. Diffusion approaches
generate 3D structures and features at varying levels of detail, from individual atoms
to residues. Notably, DDPMs have been used to generate atomistic conformers of small
molecules (Hoogeboom et al., 2022) and design ligands for protein pockets (Schneuing et al.,
2022). Applying denoising diffusion at atomistic resolution to large structures like proteins
is computationally challenging. Recent models like RFDiffusion- All-atom mitigate this by
diffusing only the four-atom protein backbone and reconstructing side-chains with a sepa-
rate inverse folding model (Krishna et al., 2024; Dauparas et al., 2022). Similarly, language
model approaches such as ESM-3 (Hayes et al., 2024) rely on coarse-grained representations
at the residue level for their core modules. Despite this coarse-graining, the capacity of
these models to process large proteins and protein-ligand complexes is still limited.

An effective atomic-resolution representation model for large molecules would have to be
able to reason over long-range data inputs. This is because many atoms can have critical
interactions with atoms that are distal in linear sequence. However, scaling traditional
“workhorse” architectures such as transformers and graph-based models to accommodate
such long sequences has been challenging. Here, we leverage Mamba (Gu & Dao, 2023), a
selective structured state space model, to replace transformer modules in structure tokenizer
models and increase the resolution to all atoms. Mamba has been developed for long-context
modeling and has been demonstrated to efficiently model tasks with thousands to millions
of tokens on conventional GPU hardware.

3D structure tokenization for generative modeling. Turning 3D structures into
discrete 1D sequences for generative language modeling, discrete diffusion or other
downstream task has become a popular approach to biomolecular modeling. FoldSeek
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introduced the ”3Di” structural interaction alphabet to convert three-dimensional pro-
tein backbone structures into one-dimensional sequences, facilitating faster structural
alignment (van Kempen et al., 2022). Neural network-based quantized auto-encoders
(QAEs) (Van Den Oord et al., 2017) have since been employed to learn 3D structure
tokenizers. ESM-3 utilizes a transformer-based QAE that encodes residue-level backbones
and decodes to all-atom structures, with training limited to proteins with fewer than 512
residues and using a 600M parameters transformer model. FoldToken (Gao et al., 2024)
and InstaDeep (Gaujac et al., 2024) also use QAEs with transformer and graph neural
network architectures, respectively, focusing on residue-level tokenization but limited to
backbone reconstruction. Alphafold-3 (AF-3) (Abramson et al., 2024) generates all-atom
structures using a token-guided diffusion network. For small molecules, approaches include
one-hot encoding of coordinate digit strings (Flam-Shepherd & Aspuru-Guzik, 2023; Zholus
et al., 2024) and SE(3)-invariant QAEs like Geo2Seq (Li et al., 2024) and MolStructTok
(Anonymous, 2024). Prior work predominantly relies on QAEs with various architectures
and features, incorporating symmetries through structural features or invariant point
attention. In contrast, our method uses neither engineered SE(3)-invariant features nor
does it employ invariant network architectures.

What if we could efficiently encode and decode any biomolecule at the all-atom
level?
In this work we present:

(i) A Mamba based quantized auto-encoder for all-atom biomolecular structures that
tokenizes 3D point clouds into 1D discrete tokens. We train small molecule-only,
protein-only, and RNA-only vocabularies mol2token, protein2token and rna2token.
We also train a unified tokenizer bio2token that encodes any of those biomolecules,
ranging from tens to tens of thousands of atoms, that would be challenging for
transformer-based methods to scale too.

(ii) A simple and compute efficient approach towards all-atom structure tokenization
that does not use SE(3) invariances. Our tokenizer models are lightweight in size
(1.2M parameters), with fast training and inference.

1.1 Background: Transformers, State space models, and Mamba

Transformer. Transformers (Vaswani, 2017) use the attention mechanism to capture
long-range dependencies in sequences. Intuitively, the attention mechanism can be thought
of as a fully-connected graph neural network, with the update rule:

y = M(x)x, (1)

where x is the input sequence, y is the latent representation, and M(x) =
softmax

(
Q(x)K(x)T

)
is the attention matrix, or analogously adjacency matrix. The

matrix multiplication formulation of attention makes it ideal for GPU processing, and has
thus made transformers the workhorse of sequence modeling. However, due to the fully
connected graph structure, transformers suffer from O(N2) compute and memory costs
with respect to sequence length N .

Mamba. Recent alternatives such as deep structured state space models (SSM) (Gu
et al., 2021; Gu & Dao, 2023; Dao & Gu, 2024) have gained traction in the field of
sequence modeling thanks to their ability to overcome the quadratic bottleneck and scale
to extremely long context lengths. The basic linear time-invariant (LTI) SSM is a linear
recurrent neural network (RNN) with the update rule:

ht = Aht−1 +Bxt, yt = Cht, (2)

where x and y are the input and output sequences, respectively, h is the RNN state, and
A,B,C are learnable parameters. This linear recurrence can be unrolled across time and
computed equivalently as a convolution y = K ∗ x, where K =

(
CB,CAB, ..., CAN−1B

)
.

This makes SSMs parallelizable over sequence positions, incurring cost O(N logN).
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Figure 1: [A] Biomolecular system of interest with many thousands of atoms, with a mag-
nified section with annotations for specific points in the point cloud. [B] Illustration of our
tokenizer model, transforming point clouds into tokens and then back to point clouds. [C]
Implementation details of the bidirectional Mamba layer. The first branch processes the
original input using a Mamba block, while the second branch handles the flipped version
of the input, reversing the output back to its original orientation afterward. The final step
involves adding the results of both branches together. Notably, the two Mamba blocks in
the branches share the same weights.

2 Methods

Our structure tokenizer model is a QAE and Fig. 1 provides an overview of the process.
The steps can be broken down into:

(i) Representation of biomolecular systems as 3D point clouds

(ii) Encoding atom positions into latent vectors

(iii) Quantizing these latent vectors into tokens

(iv) Decoding these tokens back into a 3D point cloud

Tokenization of 3D point clouds. A biomolecular structure X of N heavy atoms is rep-
resented as a X ∈ RN×3 point cloud. This point cloud is atom identity agnostic and carries
no information about residue or atom type. In general, AEs compress the input to a down-
sampled latent space representation Z, where Z ∈ Rn×d , with n < N , and reconstruct the
original input according to a loss function L(X, X̃). The first module of the AE is the encoder

network encθ(X) = Z, the second module is a decoder network decψ(Z) = X̃. In this work,
we want to maintain the all-atom resolution, and encθ(X) does not compress the input:
n = N . It can be regarded as a transformation of the input into a lossless latent space. The
compression in our QAE happens in the subsequent quantization of Z into discrete values Q
as the purpose of a tokenizer is to map continuous data to discrete unique IDs, defined by a
vocabulary. The latent space of a ”perfect” lossless auto-encoder (L(X, X̃) = 0) is a perfect
tokenizer if that latent space was discrete. This is usually achieved through a quantization
network quantϕ(Z̃), otherwise known as a tokenizer model. This tokenizer model can be op-

timized with the same reconstruction loss L(X, X̃). This tokenizer model keeps a one-to-one
correspondence between the positions of input atoms, tokens and reconstructed atoms.

Quantization. Quantization networks learn discrete codebooks, in other words a vo-
cabulary, of the training data. A common approach is vector-quantization (VQ) (Gray,
1984), e.g. ESM-3’s tokenizer is VQ-based. VQ is notoriously hard to optimize and tends
to suffer from codebook collapse. In this paper, we use a recently proposed simplified
alternative, Finite-Scalar Quantization (FSQ), which produces a more efficient coverage
of the codebook (Mentzer et al., 2023). FSQ has been shown to be easier to train, whilst
maintaining similar levels of expressiveness as VQ-VAEs. FSQ projects the input into a
hypercube of integer length L and dimensions D (where D < 8 usually). The projected
input point in the hypercube is then rounded to the nearest integer set {0, 1, ..., L}. The
final code/token is the product of all integer coordinates in the hypercube.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Losses. The ground truth and the decoded point clouds X and X̃ are aligned via
Umeyama-Kabsch algorithm (Lawrence et al., 2019) and use the total structure RMSE loss:

LRMSE(X, X̃) =

√√√√ 1

n

n∑
i=1

∥xi − x̃i∥2

Additionally we use an inter-atomic distance loss, that calculates the difference between the
ground truth and reconstructed pairwise distances between each atom within a residue r:

Lossatom−dist =

√√√√∑
r

∑
i∈Rr

∑
j∈Rr
j ̸=i

(∥xi − xj∥ − ∥x̃i − x̃j∥)2 (3)

where Rr is the set of atom indices in r. In the case of small molecules, this is calculated
over the entire molecule. The total loss for optimization is equally weighted between total
structure RMSE and inter-atomic distance loss.

3 Experimental Details

3.1 Datasets

An overview of all training and test data is provided in the Appendix table 3. In a pre-
processing step all point clouds of the biomolecular structures are translated to be centered
at the zero-origin.

Small molecules: Small molecules, typically organic molecules below a 500 Dalton weight,
are not static. At standard temperatures and pressures they take on various 3D structural
conformations, each having a specific conformational energy. We used the ∇2DFT dataset
(Khrabrov et al., 2024) of 1.9M small molecules with a total of 16M simulated structural
conformations as a source of data. This dataset provides train and test splits for multiple
levels of generalizability: a test-conformer split of unseen conformations of molecules, a
test-structure split of unseen molecules and all their conformations, and a test-scaffold split
of unseen scaffold classes of molecules and their conformations. The minimum number of
heavy atoms in this dataset is 8 and the maximum is 27.

Proteins: We prototype and run various hyperparameter studies on the CATH 4.2 dataset
of 18k protein structures from the PDB, with train-test splits on the CATH topology classi-
fications as defined by Ingraham et al. (2019). This dataset comprises proteins of 40 to 500
amino acids in length, for a minimum and a maximum of 282 and 4,173 heavy atoms. We also
tested on the CASP14 and CASP15 datasets, to compare to the values reported by ESM-3.
CASP14 and 15 structures were published after CATH4.2 and are thus not contained in 4.2.
CASP14 and 15 contain proteins up to 2,265 residues in length with the biggest structure
having 18,042 heavy atoms. To train the large bio2token model we leverage the Alphafold
database (AFDB). We use a random sub-set of 100k clusters from FoldSeek’s sequence-
structure clusters (Barrio-Hernandez et al., 2023), and collect one structure per cluster.

RNA: We train on RNA3DB, which splits the RNA structures in the PDB into sequence-
based and structural homology classes (Szikszai et al., 2024). The structures span a range
of 2 to 4,450 nucleic acids in lengths with 42 to 95,518 heavy atoms. For training efficiency,
we limit the training dataset to structures with maximum 10, 000 sequence length, but run
inference on all lengths of the test set.

Generalisation to complexes: We test bio2token at inference time on multi-chain com-
plexes and protein-RNA complexes. Note that neither multi-chain nor mixed complexes
were included in the training.
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3.2 Architecture and Training details

Figure 1B and C gives an overview of each layer composition and full architecture. Each
layer of our encoder and decoder is a bi-directional implementation of the original Mamba
block1. Between consecutive Mamba blocks we apply a layer norm.

3.2.1 Architecture studies

We ran various hyperparameter studies on a protein2token training with the CATH 4.2
protein dataset. We tested the effects of varying encoder and decoder layers on the model
performances in terms of RMSE and found that, given limited compute, 4 encoder layers and
6 decoder layers to work best as a trade-off between model size and batch size. Additional
details on the effect of the number of encoder layers is provided in Appendix A.2. We
find the RMSE versus codebook size relationship to approximately follow a power law, see
Fig. 6 in the Appendix A.2. Ultimately, the choice of codebook size will be a trade-off
between accuracy and downstream modeling. A tokenizer with increasing vocabulary will
make downstream generation models harder. We decided, for all of our models to stick with
a codebook of 4096, which is in line with other published structure tokenizers, and allows
for a fair comparison.

Compressibility of tokens To test the compressibility of the token sequences we train
the tokenizer with an additional 1D convolutional layer before and after the quantizer net-
work (pooling after the encoder and up-sampling before the decoder). We compress with
k ∈ [1, 2, 4], to shorten the all-atom sequence of length N to N/k. Results are in Appendix
table 4. RMSE increases by a factor of 1.7 and 2.6 for the compression factors of 2 and 4 re-
spectively. This is similar to previously reported compressibilities for residue-level structure
tokenizers (Gaujac et al., 2024)

Computational efficiency: Mamba versus Invariant Point Attention IPA is the
most popular choice for structural modeling due to its SE(3) invariant properties. To com-
pare Mamba versus IPA, we train a QAE with an encoder of 2 transformer layers, and a
decoder with one IPA block with 4 recurrences (recycles). Although it is common in the
literature to use 8 recurrences for the IPA block, it would restrict all-atom training to short
proteins below approximately 100 residues given our GPU memory limit. With 4 recur-
rences we are able to fit one batch size of proteins of a maximum length of 2192 atoms
(approximately 220 residues) on the GPU. With an equivalent Mamba-based architecture
of 2 encoder and 4 decoder layers we can fit a batch size of 32 with maximum sequence
length 2192. For a fair comparison we train both; a Mamba-based version with a batch size
of 1 and a batch size of 32. Accuracies and run times are listed in Appendix A.2 table 5.
We find that training protein2token with an IPA-decoder takes 3 times per step compared
to the Mamba QAE. For a fixed compute budget of 24 hours the IPA-decoder reaches an
RMSE of 2.2Å , compared to 0.8Å for the Mamba QAE with a batch size of 1, and 0.6Å
for the Mamba QAE with batch size of 32. Although the Mamba-based QAE does not
incorporate any rotational invariances in the architecture, it’s learning efficiency is enough
to make up for this lack of implicit bias. From a practical standpoint we conclude that an
all-atom QAE tokenizer for large biomolecules is computationally intractable with standard
IPA and conventional GPU hardware.

Codebook efficiency: learned tokenizer versus spatial tesselation To test if and
by what factor the QAE approach to learning spatial vocabulary is indeed more efficient
than assigning ”spatial addresses” in a Voronoi tesselation (Voronoi, 1908; Aurenhammer &
Klein, 2000) we compare our tokenizer errors to the error of a naive uniform voxelation of the
space. The theoretical analysis is in the Appendix A.3. We find that a typical ribosomal
RNA of spatial extent of 100Å requires 110k voxels to guarantee a 1Å accuracy. For a

1The Mamba block contains two branches; the selective SSM branch with a linear projection,
followed by a one-dimensional convolutional layer and a nonlinear activation; and the skip connec-
tion branch that is a linear projection followed by a non-linear activation. This is directly imported
from the implementation of (Gu & Dao, 2023)
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desired RMSE of 0.2Å and a small molecule of spatial extent of 30Å tesselation of 191k
voxels is necessary. This is more than a magnitude beyond the codebook sizes we employ.

3.2.2 Final model and training

We train four models, all with the same number of 4 encoder and 6 decoder layers, and
a codebook size of 4096 for a total of 1.2M parameters (see section below for architecture
study details). We use the Adam optimizer (Kingma, 2014), with polynomial learning
rate scheduler and a starting learning rate of 3e−4. Depending on the model, we use 1 or
8 NVIDIA A10 GPUs (24GB / 184GB GPU RAM). We train three biomolecule specific
models, mol2token, protein2token, and rna2token, respectivily trained on the ∇2DFT
dataset, CATH4.2 dataset, and RNA3DB, and an harmonized bio2token model, trained on
all three dataset and a subset of the AFDB dataset. Additionally, we use random rotation
for data augmentation. Model specific parameters are:
mol2token: batch size=16, max seq length=64, 216k steps (44 hours), single GPU.
protein2token: batch size=16, max seq length=4160, 195k steps (68 hours), single GPU.
rna2token: effective batch size=32, max seq length=10000, 149k steps (38 hours),8 GPUs.
bio2token: effective batch size=32, max seq length= 10000, 257k steps (73 hours),8 GPUs.

Model + sequential modification RMSE (CI ±95%) Improvement (↓)

Mamba small [2 encoder / 4 decoder layers] 0.72 ± 0.01 -

+ Data augmentation [Rotation] 0.70 ± 0.01 -1.91%

+ Bi-directionality 0.61 ± 0.01 -12.89%

+ Deeper [4 encoder / 6 decoder layers] 0.55 ± 0.01 -11.13%

+ Inter-atomic distance loss 0.52 ± 0.01 -4.53%

Table 1: Ablation study of final model and training choices. Ablation
is run on protein2token training with the CATH 4.2 dataset.

We conduct an
ablation study to
evaluate the impact
of additive architec-
tural and training
modifications on
the performance of
the Mamba QAE.
All models are
trained with iden-
tical quantization
hyperparameters.
We start with a

baseline model consisting of 2 encoder and 4 decoder layers, and sequentially add data
augmentation through random rotation, bi-directionality, deeper encoder and decoder,
and finally the inter-atomic distance loss. The results are presented in Table 3.2.2.
Modifying the original encoder/decoder layer to incorporate bi-directionality and increasing
the number of layers resulted in a significant improvement, yielding a 22% reduction
in reconstruction RMSE. Further enhancing the training strategy with random rotation
augmentation and integrating an inter-atomic distance loss (as defined in Eq. 3), we
observe a total RMSE reduction of 28% compared to the baseline.

3.3 Evaluation

To assess chemical or biochemical validity of the reconstructed structures, we benchmark
our model on additional test metrics as outlined below.

Small molecule validity test We convert the heavy atom point clouds into molecules
by inferring covalent bonds using atom type and inter-atomic distances with OpenBabel
(O’Boyle et al., 2011). We first evaluate whether the recovered molecular system is equiv-
alent to the encoded structure and then evaluate bond lengths, angles, and torsion angles
using the methods described by Buttenschoen et al. (2024). We use RDKit to compute the
energy of the conformer and compare to the average energy of 25 RDKit generated con-
formers (Landrum, 2013). We compute these statistics for test set ground-truth conformers
and the reconstruction to evaluate any change. A reconstruction is said to pass all tests if
it passes the tests from PoseBusters as well as produces the same molecular graph as the
input.

Proteins and RNA: We report the template modeling score (TM-Score) between ground
truth and reconstructed point clouds. It captures local and global structural alignment and
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is designed to be size independent. The protein TM-score TMprot is calculated on the Cα
of the amino acid back-bone (Zhang & Skolnick, 2004). The RNA TM-score TMRNA is
calculated on the C3’ of the nucleic acid back-bone (Gong et al., 2019). TM=0 means no
structural similarity at all; TM=1.0 means structurally identical.

4 Results

Table 2 summarizes the results of bio2token on all test sets. A more detailed version
with separate analysis on back-bones and side-chains as well as the numeric results for
the domain-specific tokenizers mol2token, protein2token, and rna2token, and their out-of-
domain performance are provided in the Appendix tables 6, 7 and 8. Fig. 3 visualizes
all reconstruction RMSEs on all biomolecular test sets with in-domain, out-of-domain and
all-domain (bio2token) tokenizers.

Best Model Test-set RMSE ± std (95% CI) [Å] Validity Test

Mol2Token on
small molecules

test-conformers
test-structure
test-scaffolds

0.2±0.04 (0.01)
0.2± 0.04 (0.01)
0.2± 0.04 (0.01)

41.7%

Bio2token on
proteins

CATH4.2 test
CASP14
CASP15

0.56±0.06 (0.01)
0.58±0.10 (0.02)
0.59± 0.11 (0.02)

TMprot: 0.98±0.01
TMprot: 0.99±0.01
TMprot: 0.98±0.02

Bio2token on RNA RNA3DB-test 0.66± 0.21 (0.01) TMRNA-score: 0.96 ± 0.12

ESM-3 Tokenizer on
proteins

CASP14
CASP15

1.3 ± 0.2
1.7 ±0.4

–

InstaDeep on proteins PDB sub-set back-bone: 1.89 TMprot: 0.94

Table 2: Summary of the best tokenizer models: Atom-wise RMSE between the ground
truth structure point cloud and the reconstructed point cloud from the tokens. Validity
tests for small molecules are the chemical validity metrics as described in the main text
and for proteins and RNA we provide the TM-scores as a measure of tertiary structural
similarity.

Small molecules: mol2token reconstructs small molecule conformers of unseen molecules
and unseen scaffold families with an average RMSE of 0.2Å versus 0.36Å for the combined
model bio2token. Fig. 2A shows a valid reconstructed conformer. from the test set on top
of the ground truth conformer. We found that 41.7% of all reconstructed molecules with
mol2token passed all of our validity metrics and are similarly chemically valid as the ground-
truth structures. We conclude that the mol2token vocabulary is sufficiently expressive to
capture most molecular geometries in a manner that maintains their chemical structural
properties in almost half the cases.

Proteins: bio2token outperforms protein2token on CASP14 and CASP15 test hold-outs
with RMSE values around 0.58Å and 0.59Å versus 0.61Å and 0.8Å . This is significantly
lower than ESM-3’s decoder reconstruction on CASP14 (1.3Å ) and 15 (1.7Å ) that infers
all-atom structure from the residue-level only encodings. InstaDeep’s back-bone tokenizer
compares with a back-bone RMSE of 1.89Å to bio2token’s back-bone RMSEs of 0.52-0.55Å
across the different protein test sets. Generally back-bone atoms have higher reconstruction
accuracy than side-chain atoms for most test sets and tokenizers. protein2token was only
trained on CATH4.2 proteins, which have sizes less than 500 residues and are smaller than
several test set structures in CASP14 and 15, explaining why bio2token achieves much better
results on these test sets. Generally the TMprot are all above 0.99, indicating that structural
homology in terms of tertiary structure is highly preserved.

RNAs: bio2token reconstructs the RNA3DB test dataset with the lowest RMSE average
of 0.66Å on all atoms, compared to 0.73Å for rna2token. Likely, bio2token is superior
because it learned point cloud densities from magnitudes more data. The largest RNA
chain in the RNA3DB test data is 8toc.R with 4,269 nucleic acids and a total of 90,441
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Figure 2: 3D renderings of ground truth molecules in green and reconstructions from de-
coded coordinates in blue. Ground truth molecules are made transparent in the ball and
stick panels to make it easier to see the auto reconstructed models. Visuals prepared with
Mol* (Sehnal et al., 2021) (A) Example from ∇2DFT scaffold split test set + mol2token re-
constructed result. (B) RNA-Protein complex, PDB = 3WBM reconstruction by bio2token
(C) Multi chain RNA complex, PDB = 7PTL. Reconstruction by bio2token (D) neighbor-
hood of residue on loop of 3WBM found near center of coordinate space (E) close up of
RNA helix of 3WBM (F) Example of errors found near edge of coordinate space.

Figure 3: reconstruction results on all test data. Numeric values are provided in Appendix
tables 6 - 8. For small molecules, only the domain-specific tokenizer mol2token and the
combined bio2token achieve reasonable accuracy of 0.25-0.35 Å. For proteins (CATH4.2
test, CASP14/15) protein2token and bio2token achieve the best results. For the RNA3DB
test set rna2token and bio2token have comparable results with reconstructions around 0.6Å.
Macromolecules cannot be reconstructed from the small molecule mol2token vocabulary.

atoms. rna2token achieves a reconstruction RMSE of 1.53Å on this structure, compared to
bio2token with 1.82Å.

Complexes: None of the tokenizers has ever seen a complex during training. Here, we
tested to what degree we can encode and reconstruct RNA-protein and multi-chain com-
plexes with the QAE. Fig. 2B shows a protein-RNA complex (pdb: 3wbm) with a combined
residue count of 396 amino and nucleic acids with 3714 atoms, with an RMSE of 0.77Å .
Figures 2 D,E, and F show close-ups of the complex. D and E are loop and helix regions
with good reconstructions. F is a close up on the periphery of the coordinate space, where
errors increase. Fig. 2C shows a multi-chain RNA complex (pdb:7ptl) reconstructed with
bio2token at an average RMSE of 0.82Å. This complex comprises 720 nucleic acids with a
total of 15,337 atoms.
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180° 
180°

A) B)

C) D)

Figure 4: Token circularity with rotations. A and B visualise a π rotation of the protein
around the z- and x-axis. The zoom into the GLN amino acid shows how the individual
atoms are changing orientations with respect to the centre. The respective token ids of each
atom on the highlighted GLNare plotted in C) and D) as a function of rotation angle. The
green and red dotted lines correspond to the tokens at the positions in A) and B).

4.1 Insights into what bio2token learns

The tokenizer models learn to efficiently encode and decode point clouds of variable sizes,
centered at the origin. Appendix A.5-Fig. 8 shows scatter plots for a sample of 10k points
across all structure point clouds with their absolute distance to the centre and their RMSE.
RMSE increases once the point’s distance to centre increases past the common size range
of the training structures. This can also be seen in Fig. 2F, where reconstructions deviate
at the periphery of the coordinate space for a structure of about 16,000 atoms). Small
molecules only span a few Angstroms and mol2token not surprisingly fails at reconstructing
macromolecules (see Appendix table 8, a mol2token reconstructed protein looks like a dense
point potato, not shown). protein2token and rna2token can tokenize RNAs and proteins as
they share similar point cloud sizes and densities. This motivates the combined tokenizer
training of bio2token, which performs best for proteins, RNA and protein-RNA complexes
as it has seen the most diverse point configurations during training.

Rotational Variance bio2token does not exploit rotational invariance in it’s architecture.
Here, we show that sub-Angstrom accuracies are achievable without those inductive biases.
The bio2token tokens are varying periodically with respect to rotations. To visualise the
effect we show the individual amino acid GLN and its back-bone and side-chain atoms under
a set of full 2π rotations around the z- and the x-axis. Fig. 4 shows how the atom token ids
shift with respect to changes in orientation. Reconstruction errors are not biased towards
any orientation, see Appendix A.5.2 Fig. 9.

5 Discussion

In this study, we explored the potential of Mamba to encode high-resolution structures for
diverse biomolecules. Specifically, opting for a simple Mamba-based architecture, instead
of rotationally invariant IPA, allows us to scale trainings to large biomolecules that cannot
be trained on with the latter approach with conventional GPU hardware. In fact, we show
that reconstruction accuracies around 0.5 − 0.6Å from a vocabulary of 4096 is achievable
without any SE(3) invariance in either features, or network architecture. Our combined
tokenizer, bio2token, demonstrates that encodings can be learned across different classes of

9
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macromolecules once encoded on the common atomistic resolution. The comparable small
amount of data (127,000 macromolecules in total) used in our trainings signals that all-atom
encoding might substantially enhance training efficiency, compared to more coarse-grained
encoding that lack atomistic detail, and leverages more information from the structures
sampled. Atomistic detail is important for many biomolecular design applications – the
precise positioning of individual atoms within a protein or RNA molecule can significantly
impact its function and interactions with other molecules. Furthermore, the reliance on
separate models for different components of a molecule, (e.g., back-bones versus side-chains),
can introduce additional complexity and potential sources of error. Our work highlights
the potential of leveraging models like bio2token to improve the design and modeling of
biomolecules and biomolecular complexes.

5.1 Limitations and future directions

Although our model achieves low RMSE values, having low RMSE is not necessarily suffi-
cient to guarantee that the reconstructed molecule is chemically valid. Even small deviations
in decoded atom coordinates can result in structures with steric clashes, improper covalent
bonds, or improperly strained geometries. For example, as seen in Fig. 2F, our reconstructed
structures can deviate from valid molecular geometries, for example implying covalent bonds
where there should not be and vice-versa missing bonds where there should be. One po-
tential solution could be to train the model on additional data which may further lower
RMSEs to a level that produces more chemically valid biomolecules without having to hard
code constraints into the losses of our models. Alternatively, we could employ heuristic and
physics based post-processing protocols like those used in Abramson et al. to help translate
generated point clouds into valid molecules.
Nonetheless, our work points towards Mamba-based architectures as a viable and promis-
ing alternative to transformer-based methods for modeling atomic-resolution biomolecular
structures. In the quantized QAE form as presented here, our models could facilitate com-
patibility with language models and we leave the joint representation of atom identity and
coordinates to future work. The continuous embedding (no quantizer), combined with com-
pression, could provide useful latent spaces for methods like flow matching or diffusion. As
such, we anticipate that our work could connect to many potential downstream modeling
applications in chemistry and biology.

6 Code Availability

Code and model weights are available for all trained tokenizers. Inference scripts are pro-
vided for pdb formated files at https://anonymous.4open.science/r/bio2token-72F2
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Václav Bazgier, Sameer Velankar, Stephen K Burley, Jaroslav Koča, and Alexander S
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A Appendix

A.1 Datasets

Dataset Dataset size and splits Structure size Used in

∇2DFT

train: 8.9M conformers (0.5M molecules)
test-conformer: 1.5M conformers
(1.5M molecules)
test-structure: 1.2M conformers
(176k molecules)
test-scaffold: 1.1M conformers
(177 molecules)

atoms min: 8
atoms max: 27

Mol2Token,
Bio2Token

CATH4.2

CASP14

CASP15

train: 17k structures
test + val: 1.6k structures
test: 88 structures

test: 155 structures

res/atoms min: 40/282
res/atoms max: 500/4.2k
res/atoms min: 49/401
res/atoms max: 2.2k/18k
res/atoms min: 46/341
res/atoms max: 10k/7.9k

Protein2Token,
Bio2Token

RNA3DB train: 10k structures
test: 1.4k structures

res/atoms min: 2/42
res/atoms max: 4.5k/96k

RNA2Token,
Bio2Token

AFDB
sample

train: 100k structures res/atoms min: 21/174
res/atoms max: 2.7k/22k

Bio2Token

Table 3: Summary of training and test datasets, including minimum and maximum number
of residues and atoms.

A.2 Architecture studies

Effect of number of encoder blocks The encoder mixes the atom coordinates and the
degree of mixing, or ”spread” across atom positions is determined by the number of encoder
Mamba blocks and hidden state size. To quantify the spread of local information we define
the mixing radius as the number of positions that change their token id when the atom
at position i is deleted. Here, we fix the hidden state size of 128 and train QAEs with
increasing numbers of encoder blocks nenc = [2, 4, 5, 6] and find the mixing radius to be
almost linear with a best fit for a second order polynomial, see Figure 5. This relationship
is similar to what is expected from a convolution. For example 2 blocks result in a mixing
of ±2.7 positions to the left and right; and 6 blocks mix ±5.3 positions.

Figure 5: Average mixing radius of per-atom position information with increasing number
of Mamba blocks in the encoder.

Codebook size We train protein2token on the CATH4.2 dataset, with a fixed model
size. We vary codebook sizes by increasing quantization dimensions D ∈ [4, 5, 6, 7, 8] with a
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fixed level of L = 4, for total codebook sizes of [256, 1024, 4096, 16348, 65536]. We find the
accuracy versus codebook size relationship to approximately follow a power law, see Fig. 6.
Ultimately, the choice of codebook size will be a trade-off between accuracy and downstream
modeling. A tokenizer with increasing vocabulary will make downstream LLM generation
harder. For the final training of bio2token we chose 4096 as our codebook size, which is in
line with other published structure tokenizers, and allows for a fair comparison.

Figure 6: Protein2token (CATH dataset) reconstruction accuracy as a function of codebook
size.

Compressibility of tokens We train protein2token (CATH dataset) with compression
factors of [1, 2, 4] using 1D convolutional layers. Table 4 below shows the the relationship
between test set reconstruction RMSD and compressibility factor with a codebook size of
4096. We also tested if increasing the SSM’s hidden size could increase compressibility,
which we found to not be the case.

Compression D model hidden size RMSE [Å] factor of RMSE increase

1 128 0.86 —

2 128 1.49 1.7

4 128 2.22 2.6

1 1280 0.84 —

2 1280 1.45 1.7

4 1280 2.15 2.6

Table 4: Effect of compression on accuracy RMSE. Interestingly, increasing the hidden state
size does not help noticeably to recover accuracy.

A.3 Model efficiency comparisons

Computational efficiency and performance: Mamba versus IPA We train a pro-
tein2token tokenizer with a 2-layer transformer encoder and an IPA decoder with 4 re-
cyclings. Due to GPU memory constraints, training is limited to protein structures of a
maximum length of 2192 atoms, at a batch size of 1. We train an equivalent Mamba-based
protein2token with 2 encoder Mamba-blocks and 4 decoder Mamba-blocks, with a batch
size of 1 and the maximum batch size before GPU memory is exhausted, which is 32. We
find that the IPA-based QAE requires 1 sec/step, compared to 0.3sec/step for an equivalent
Mamba-based QAE. In terms of achieved validation accuracy IPA-based architecture is sig-
nificantly worse than the Mamba-based QAE with an RMSE of 2.18 versus 0.81. Likely this
is due to the ”small” number of IPA-block recycles, often 8 (instead of 4) are cited in the
literature. But this becomes prohibitive for sequences lengths of 2192. To compare at the
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full capacity of the GPU hardware, we find that training for 24 hours with the Mamba-based
QAE with a maximum batch size of 32 has superior accuracy with 0.62Å.

Architecture Time [sec/step] Validation accuracy
after 24h run time [Å]

Validation accuracy
after 70k steps [Å]

Transformer encoder, IPA
decoder, batch size = 1

1.0 2.18 2.18

Mamba, batch size = 1 0.3 0.81 0.91

Mamba, batch size = 32 0.7 0.62 0.65

Table 5: Effect of compression on accuracy RMSD. Increasing the hidden state size does
not recover accuracy.

Codebook efficiency: learned versus spatial tesselation We explore how well the
trained QAEs perform relative to idealized voxel partitions and learned voronoi tesselations.
For a desired tesselation resolution a (the side length of a voxel), and a total cubic volume
of side length A (the maximum spatial extent of biomolecular structures) results in a total
number of voxels Nv = (A/a)3. To calculate the average reconstruction accuracy of a point
(atom) in a voxel, we calculate the average rmsdv to the voxel centre:

rmsdv =
8

a3

∫ a/2

0

∫ a/2

0

∫ a/2

0

√
x2 + y2 + z2dxdydz

With Monte-Carlo integration (not shown) this is approximately 0.48 × a. To tesselate a
biomolecular structure of cubic volume with a side length A and a desired average accuracy
rmsdv, a total voxel count of

Nv =

(
0.48×A

rmsdv

)3

Figure 7 plots the number of total Voronoi voxels needed to encode the 3D space of three
exemplar cubes of side length a = [10, 60, 80]Å , representative for small molecules, proteins
and RNA respectively . We center structures at zero, sample rotations and use k-means
clustering to find 4096 cluster centers that are used as the centroids of Voronoi tessela-
tions. Upon comparing these approaches we see that for the tested codebook size, the
QAE approach achieves lower rmsdv , suggesting that it learns beyond the atom coordinate
aaddress.

Figure 7: Comparing the reconstruction error between learned tokenizers, trained with 4096
codebook size, a naive tesselation of increasing number of voxels and a k-means Voronoi
tesselation approach.
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A.4 Tokenizer results

Model Test-set RMSE ± std (95% CI) [Å] Validity Test

Bio2Token on
small molecules

test-conformers
test-structure
test-scaffolds

0.36±0.07 (0)
0.37± 0.07 (0)
0.36± 0.07 (0)

< 1%

Bio2Token on
proteins

CATH4.2 test

CASP14

CASP15

bb: 0.52± 0.07 (0.01)
sc: 0.59± 0.06 (0.01)
all: 0.56±0.06 (0.01)
bb: 0.54±0.10 (0.02)
sc: 0.62±0.09 (0.02)
all: 0.58±0.10 (0.02)
bb:0.55±0.12 (0.02)
sc:0.63± 0.12 (0.02)
all: 0.59± 0.11 (0.02)

TMprot: 0.98±0.01

TMprot: 0.99±0.01

TMprot: 0.98±0.02

Bio2Token on
RNA RNA3DB-test

bb: 0.66± 0.21 (0.01)
sc: 0.65 ± 0.22 (0.01)
all: 0.66± 0.21 (0.01)

TMRNA-score: 0.88 ±
0.12

ESM-3 tokenizer on
proteins

CASP14

CASP15

back-bone:0.61 ± 0.1
all: 1.3 ± 0.2
back-bone: 1.0 ± 0.3
all: 1.7 ±0.4

InstaDeep tokenizer
on proteins

self-defined test set
from the PDB

back-bone: 1.89
side-chains not modeled

TMprot: 0.94

Table 6: Bio2token results: Atom-wise RMSE between the ground truth structure point
cloud and the reconstructed point cloud from the tokens. ”bb” and ”sc” are the respec-
tive RMSEs over the back-bone and side-chain atoms in the case of proteins and RNAs.
Bio2token is unable to preserve chemical validity of small molecules and mol2token should
be used for these structures. For proteins and RNA we provide the TM-scores as a measure
of tertiary structural similarity.
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A.4.1 In-domain tokenizing

In-domain
tokenizing

Test-set rmse ± std, (95% CI) [Å] Validity Test

mol2token on
small molecules

test-conformers
test-structure
test-scaffolds

0.20± 0.04(0.01)
0.20± 0.04 (0.01)
0.20± 0.04 (0.01)

41.7% passed all
chemical validity
metrics

protein2token on
proteins

CATH4.2 test

CASP14

CASP15

bb: 0.49±0.12 (0.01)
sc:0.56±0.11 (0.01)
all: 0.53±0.12 (0.01)
bb: 0.57±0.21 (0.04)
sc: 0.65±0.21 (0.04)
all: 0.61±0.21(0.04)
bb:0.76±1.21 (0.19)
sc:0.85±1.25 (0.20)
all: 0.80±1.23 (0.19)

TMprot: 0.99±0.01

TMprot: 0.99±0.01

TMprot: 0.99±0.03

RNA2token on
RNAs

RNA3DB-test bb: 0.73±0.34 (0.02)
sc: 0.72 ±0.40 (0.02)
all: 0.73±0.39 (0.02)

TMRNA-score: 0.86 ±
0.13

ESM-3 Tokenizer on
proteins

CASP14

CASP15

back-bone:0.61 ± 0.1
all: 1.3 ± 0.2
back-bone: 1.3 ± 0.3
all: 1.7 ±0.4

InstaDeep self-defined test set
from the PDB

back-bone: 1.89
side-chains not modeled

TMprot: 0.94

Table 7: In-domain tokenizing: The reconstruction error is the atom-wise rmse between
the ground truth structure point cloud and the reconstructed point cloud from the tokens.
”bb” and ”sc” are the respective rmses over the back-bone and side-chain atoms in the case
of proteins and RNAs. Validity tests for small molecules are the chemical validity metrics
as described in the main text and for proteins and RNA we provide the TM-scores as a
measure of tertiary structural similarity
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A.4.2 Out-of-domain tokenizing

Out-of-domain
tokenizing

Test-set rmse ± std (95% CI) [Å] Validity Test

mol2token on
proteins

CATH4.2 test
CASP14
CASP15

all: 16.40± 4.07 (0.24)
all: 21.37± 10.44 (2.18)
all: 23.23± 13.95 (2.20)

TMprot: 0.13±0.04
TMprot: 0.13±0.05
TMprot: 0.13±0.06

mol2token on
RNA

RNA3DB-test all: 25.88±12.22 (0.65) TMRNA: 0.02 ±0.01

protein2token on
RNAs

RNA3DB-test all: 1.16±0.79 (0.04) TMRNA: 0.81 ±0.16

RNA2token on
proteins

CATH4.2 test
CASP14
CASP15

all: 1.09±0.07 (0.01)
all: 1.27±0.36 (0.08)
all: 1.30±0.39 (0.06)

TMprot: 0.96±0.03
TMprot: 0.96±0.04
TMprot: 0.96±0.04

Table 8: Applying tokenizers on out-of-domain molecules. Only all-atom rmses are shown
here for simplicity. mol2token to proteins and RNAs: The rmse values show the insufficiency
of learning larger biomolecular structures just from small molecules. protein2token on RNAs:
The rmse if higher than the rna2token reconstruction error (reported in the main text), but is
in close proximity. rna2token on proteins: the rmse is slightly worse than the protein2token
errors reported in the main text on CATH4.2 and CASP14, but better on CASP15.
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A.5 Insights into bio2token

A.5.1 RMSE per atom as a function of distance to centre

Figure 8 shows scatter plots for a sample of 10k points across all structure point clouds with
their absolute distance to the centre and their RMSE

Figure 8: Reconstruction RMSE per point as a function of its distance to the centre. Each
subplot is a random sample of 10.000 points across all point clouds of the respective dataset.

A.5.2 Reconstruction errors are independent of rotations of the
structure

Figure 9 shows the RMSD for an exemplar proteins, rotated around the x-, y- and z-axes.

Figure 9: The reconstruction error of an exemplar protein under a full set of 2π rotations
around all major axes. The reconstruction error shows no orientation bias.
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