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Figure 1: Extrapolating from one image. Strongly augmented patches from a single image are
used to train a student (S) to distinguish semantic classes, such as those in ImageNet. The student
neural network is initialized randomly and learns from a pretrained teacher (T) via KL-divergence.
Although almost none of target categories are present in the image, we find student performances of
>69% for classifying ImageNet’s 1000 classes. In this paper, we develop this single datum learning
framework and investigate it across datasets and domains.

ABSTRACT

What can neural networks learn about the visual world when provided with only
a single image as input? While any image obviously cannot contain the multi-
tudes of all existing objects, scenes and lighting conditions – within the space of
all 2563·224·224 possible 224-sized square images, it might still provide a strong
prior for natural images. To analyze this “augmented image prior” hypothesis,
we develop a simple framework for training neural networks from scratch using
a single image and augmentations using knowledge distillation from a supervised
pretrained teacher. With this, we find the answer to the above question to be:
‘surprisingly, a lot’. In quantitative terms, we find accuracies of 94%/74% on
CIFAR-10/100, 69% on ImageNet, and by extending this method to video and
audio, 51% on Kinetics-400 and 84% on SpeechCommands. In extensive anal-
yses spanning 13 datasets, we disentangle the effect of augmentations, choice of
data and network architectures and also provide qualitative evaluations that in-
clude lucid “panda neurons” in networks that have never even seen one. Code:
https://single-image-distill.github.io/

1 INTRODUCTION

Deep learning has both relied and improved significantly with the increase in dataset sizes. In turn,
there are many works that show the benefits of dataset scale in terms of data points and modalities
used. Within computer vision, these models trained on ever larger datasets, such as Instagram-
1B (Mahajan et al., 2018) or JFT-3B (Dosovitskiy et al., 2021), have been shown to successfully
distinguish between semantic categories at high accuracies. In stark contrast to this, there is little
research on understanding neural networks trained on very small datasets. Why would this be of any
interest? While smaller dataset sizes allow for better understanding and control of what the model is
being trained with, we are most interested in its ability to provide insights into fundamental aspects
of learning: For example, it is an open question as to what exactly is required for arriving at semantic
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visual representations from random weights, and also of how well neural networks can extrapolate
from their training distribution.

While for visual models it has been established that few or no real images are required for arriving
at basic features, like edges and color-contrasts (Asano et al., 2020; Kataoka et al., 2020; Bruna &
Mallat, 2013; Olshausen & Field, 1996), we go far beyond these and instead ask what the minimal
data requirements are for neural networks to learn semantic categories, such as those of ImageNet.
This approach is also motivated by studies that investigate the early visual development in infants,
which have shown how little visual diversity babies are exposed to in the first few months whilst de-
veloping generalizeable visual systems (Orhan et al., 2020; Bambach et al., 2018). In this paper, we
study this question in its purest form, by analyzing whether neural networks can learn to extrapolate
from a single datum.

However, addressing this question naı̈vely runs into the difficulties of i) current deep learning meth-
ods, such as SGD or BatchNorm being tailored to large datasets and not working with a single datum
and ii) extrapolating to semantic categories requiring information about the space of natural images
beyond the single datum. In this paper, we address these issues by developing a simple framework
that recombines augmentations and knowledge distillation.

First, augmentations can be used to generate a large number of variations from a single image. This
can effectively address issue i) and allow for evaluating the research question on standard architec-
tures and datasets. This use of data augmentations to generate variety is drastically different to their
usual use-case in which transformations are generated to implicitly encode desirable invariances
during training.

Second, to tackle the difficulty of providing information about semantic categories in the single
datum setting, we opt to use the outputs of a supervisedly trained model in a knowledge distillation
(KD) fashion. While KD (Hinton et al., 2015) is originally proposed for improving small models’
performance by leveraging what larger models have learned, we re-purpose this as a simple way to
provide a supervisory signal about semantic classes into the training process.

We combine the above two ideas and provide both student and teacher only with augmented versions
of a single datum, and train the student to match the teacher’s imagined class-predictions of classes
– almost all of which are not contained in the single datum, see Fig. 1. While practical applications
do result from our method – for example we provide results on single image dataset based model
compression in the Appendix – our goal in this paper is analyzing the fundamental question of how
well neural networks trained from a single datum can extrapolate to semantic classes, like those of
CIFAR, SpeechCommands, ImageNet or even Kinetics.

What we find is that despite the fact that the resulting model has only seen a single datum plus
augmentations, surprisingly high quantitative performances are achieved: e.g. 74% on CIFAR-100,
84% on SpeechCommands and 69% top-1, single-crop accuracy on ImageNet-12. We further make
the novel observations that our method benefits from high-capacity student and low-capacity teacher
models, and that the source datum’s characteristics matter – random noise or less dense images yield
much lower performances than dense pictures like the one shown in Figure 1.

In summary, in this paper we make these four main contributions:

1. A minimal framework for training neural networks with a single datum using distillation.
2. Extensive ablations of the proposed method, such as the dependency on the source image,

augmentations and network architectures.
3. Large scale empirical evidence of neural networks’ ability to extrapolate on > 12 vision

and audio datasets.
4. Qualitative insights on what and how neural networks trained with a single image learn.

2 RELATED WORK

The work presented builds on top of insights from the topics of knowledge distillation and single-
and no-image training of visual representations and yields insights into neural networks’ ability to
extrapolate.
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Distillation. In the original formulation of knowledge distillation (KD), the goal is to train a typ-
ically lower capacity (“student”) model from a pretrained (“teacher”) model in order to surpass the
performance of solely training with a label-supervised objective. KD has also been explored exten-
sively to train more performant and, or compressed student models from the soft-target predictions
of teacher models (Ba & Caruana, 2014; Hinton et al., 2015; Gou et al., 2021; Furlanello et al., 2018;
Czarnecki et al., 2017). Similarly, other approaches have also been developed to improve transfer
from teacher to student, including sharing intermediate layers’ features (Romero et al., 2014), spatial
attention transfer (Zagoruyko & Komodakis, 2016b), similarity preservation between activations of
the networks (Tung & Mori, 2019), contrastive distillation (Tian et al., 2020a) or few-shot distilla-
tion (Li et al., 2020). KD has also been shown to be an effective approach for learning from noisy
labels (Li et al., 2017). More recently, Beyer et al. (2022) conducted a comprehensive empirical
investigation to identify important design choices for successful distillation from large-scale vision
models. In particular, they show that long training schedules, paired with consistent augmentations
(including MixUp) for both student and teacher, result in better performances.

Without the training data. Distilling knowledge without access to the original training dataset
was originally proposed in 2017 (Lopes et al., 2017) and first experiments of leaving out single
MNIST classes from the training data were shown in (Hinton et al., 2015). Yet, this paradigm
is gaining importance as many recent advancements have been made possible due to extremely
large proprietary datasets that are kept private. This has lead to either the sole release of trained
models (Radford et al., 2021; Ghadiyaram et al., 2019; Mahajan et al., 2018) or even more restricted
access to only the model outputs via APIs (Brown et al., 2020). While the original work (Lopes
et al., 2017), still required activation statistics from the training dataset of the network, more recent
works do not require this “meta-data”. These approaches are typically generation based (Chen et al.,
2019; Ye et al., 2020; Micaelli & Storkey, 2019; Yin et al., 2020) and e.g. yield datasets of synthetic
images that maximally activate neurons in the final layer of teacher. Related to this, there are works
which conduct “dataset” distillation, where the objective is to distill large-scale datasets into much
smaller ones, such that models trained on it reach similar levels of performance as on the original
data. These methods generate synthetic images (Wang et al., 2018; Radosavovic et al., 2018; Liu
et al., 2019; Zhao & Bilen, 2021; Cai et al., 2020), labels (Bohdal et al., 2020), or both (Nguyen
et al., 2021), but due to their meta-learning nature have only been successfully applied to small-
scale datasets. In contrast to GAN- and inversion-based methods, as well as to dataset distillation,
our approach does not require the knowledge of the weights and architecture of the teacher model,
and instead works with black-box “API”-style teacher models and much smaller “datasets” of just a
single datum plus augmentations. This paper follows a radically different goal: We are interested in
analysing the potential of extrapolating from a single image to the manifold of natural images, for
which we choose KD as a well-suited and simple tool.

Prior knowledge in deep learning. Finally, this work is related to several works which have
analysed the infusion of prior knowledge to the training process. For example the prior knowledge
contained in neural network architectures (Jarrett et al., 2009; Zhou et al., 2019; Sreenivasan et al.,
2021; Kim et al., 2021; Baek et al., 2021; Ulyanov et al., 2018) or image augmentations (Xiao et al.,
2020). In this work, we instead view a single image as a “prior” for all other natural images, which
to the best of our knowledge has not been explored.

3 METHOD

We believe that simplicity is the key to demonstrating and analysing the question of how far a single
image can take us. We are inspired by recent work of Asano et al. (2020), which “patchifies” a
single-image using augmentations, and the knowledge distillation method presented by Beyer et al.
(2022) and our technical contribution lies in unifying them to a single-image distillation framework.

i. Dataset generation. In (Asano et al., 2020), a single “source” image is augmented many times
to generate a static dataset of fixed size. This is done by applying the following augmentations
in sequence: cropping, rotation and shearing, and color jittering. For this, we follow their official
implementation Asano et al. (2020), and do not change any hyperparameters. We do however ana-
lyze the choice of source images more thoroughly by additionally including a random noise, and a
Hubble-telescope image to our analysis. In addition, we also conduct experiments on audio classifi-
cation. For generating a dataset of augmented audio-clips, we apply the set of audio-augmentations
from (Bitton & Papakipos, 2021), which consist of operations, such as random volume increasing,
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Table 1: Distilling dataset. 1 image + augmentations ≈
almost 50K in-domain CIFAR-10/100 images. Here, both
teacher and student are WideR40-4 networks.

Distillation dataset Accuracy

Name # Images # Pixels Size (MB) C10 C100

CIFAR-10 50K 51M 145 95.26 76.29
CIFAR-100 50K 51M 145 94.51 78.06
CIFAR-10 10K 10M 29 94.58 72.95
Ours 1 2.8M 0.27 94.14 73.80

Table 2: Comparison to other
datasets. Teacher model is WideR40-
2 and student is WideR40-1 as in (Mi-
caelli & Storkey, 2019).

Data C10

CIFAR-10 92.61
Fractals 33.26
StyleGAN 83.42
ZeroSKD 86.60
Ours 89.27

background noise addition and pitch shifting to yield log-Mel spectrograms from raw waveforms
(see Appendix for complete details).

ii. Knowledge distillation. The knowledge distillation objective is proposed in (Hinton et al.,
2015) to transfer the knowledge of a pretrained teacher to a lower capacity student model. In this
case, the optimization objective for the student network is a weighted combination of dual losses: a
standard supervised cross-entropy loss and a “distribution-matching” objective that aims to mimic
the teacher’s output. However, in our case there are no class-labels for the patches generated from
a single image, so we solely use the second objective formulated as a Kullback–Leibler (KL) diver-
gence between the student output ps and the teacher’s output pt:

LKL =
∑
c ∈ C

−ptc log psc + ptc log p
t
c (1)

where c are the teachers’ classes and the outputs of both student and teacher are temperature τ
flattened probabilities, p = softmax(l/τ), that are generated from logits l.

For training, we follow (Beyer et al., 2022) in employing a function matching strategy, where the
teacher and student models are fed consistently augmented instances, that include heavy augmen-
tations, such as MixUp (Zhang et al., 2018) or CutMix (Yun et al., 2019). However, in contrast
to (Beyer et al., 2022), we neither have access to TPUs nor can train 10K epochs on ImageNet-sized
datasets. While both of these would likely improve the quantitative results, we believe that this
handicap is actually blessing in disguise: This means that the results we show in this paper are not
specific to heavy-compute, or extremely large batch-sizes, but instead are fundamental.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Source data. For the source data, we utilize the single images of (Asano et al., 2020), except for
one image, which we replace by a similar one as we could not retrieve its licence. These images are
of sizes up to 2,560x1,920 (the “City” image of Fig. 1). For the audio experiments, we use two short
audio-clips from Youtube, a 5mins BBC newsclip, as well as a 5mins clip showing 11 Germanic
languages. Images and audio visualizations, sources and licences are provided in Appendix A.

Tasks. For simplicity, we focus on classification tasks here and provide results on a sample appli-
cation of single-image based model compression in Appendix B.10. For our ablations and small-
scale experiments we focus on CIFAR-10/100 (Krizhevsky et al., 2009). For larger-scale experi-
ments using 224×224 sized images, we evaluate our method on datasets with varying number of
classes (see Table 7) and additionally conduct experiments in the audio domain (see Table 5) and
video (see Table 6). Further implementation details are provided in Appendix C.

4.2 ABLATIONS

1-image vs full training set. We first examine the capability to extrapolate from one image to
small-scale datasets, such as CIFAR-10 and CIFAR-100. In Table 1, we compare various datasets
for distilling a teacher model into a student. We find that while distillation using the source dataset
always works best (95.26% and 78.06%) on CIFAR-10/100, using a single image can yield models
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Table 3: Ablations of single image distillation. We analyze key components in our experimental
setup. We report top-1 accuracies for CIFAR-10/100. For the teacher we use WideR40-4 and for the
student a WideR16-4 and train for 1K epochs.

Distillation dataset Accuracy
Image # Pixels C10 C100

“Noise” 4.9M 69.30 19.50
“Universe” 4.8M 88.18 39.68
“Bridge” 1.1M 92.24 57.87
“City” 4.9M 93.13 64.85
“Animals” 2.8M 93.28 66.12
(a) Distilling image. Content of
source image matters.

Accuracy
Signal C10 C100

Full 93.32 68.69
Top-5 92.98 64.72
Argmax 91.89 60.75

(b) Teacher signal. Even
with only top-5, or hard
distillation, performance
only slightly degrades.

Augmentations Accuracy
Hflip. RCrop. MixUp CutMix C10 C100

3 3 89.34 55.05
3 3 91.03 58.24
3 3 92.86 64.26
3 3 3 92.41 63.50
3 3 3 93.32 68.69

(c) Varying Augmentation. More helps,
CutMix is important.

Figure 2: Varying source images for CIFAR-100 distillation. Setting as in 3a.

which almost reach this upper bar (94.1% and 73.8%). Moreover, we find that one image distillation
even outperforms using 10K images of CIFAR-10 when teaching CIFAR-100 classes even though
these two datasets are remarkably similar. To better understand why using a single image works, we
next disentangle the various components used in the training procedure: (a) the source image, (b)
the generated image dataset size and (c) the augmentations used during distillation, corresponding
to Tables 3a and 3c.

Choice of single image. From Table 3a, we find that the choice of source image content is cru-
cial: Random noise or sparser images perform significantly worse compared to the denser “City”
and “Animals” pictures. We compare 23 further images in Fig. 2 and find that distillation quality
roughly correlates with the density in images and JPEG sizes. This is in contrast to self-supervised
pretraining of (Asano et al., 2020), suggesting that the underlying mechanisms are different.

Varying loss functions. In Table 3b, we show that the student can learn even with much degraded
learning signals. For example even if it receives only the top-5 predictions or solely the argmax
prediction (i.e. a hard label) of the teacher without any confidence value, the student is still able
to extrapolate at a significant level (> 91%/60% for CIFAR-10/100). Even at ImageNet scale, the
performance remains at a high 43.8% top-1 accuracy (see Table 7 row (m)). This also suggests that
copying models solely from API outputs is possible, similar to (Orekondy et al., 2019). We also
evaluated L1 and L2 distillation functions (see Table 9 for details) and found that these perform
slightly worse. This echoes the finding of (Tian et al., 2020a) that standard KD loss of Eq. (1) is
actually a strong baseline, hence we use this in the rest of our experimental analysis.

Augmentations. In Table 3c, we ablate the augmentations we use during knowledge distillation.
Besides observing the general trend of “more augmentations are better”, we find that CutMix per-
forms better than MixUp on our single-image distillation task. This might be because in our case the
model is tasked with learning how to extrapolate towards real datapoints, while MixUp is derived
and therefore might be more useful for interpolating between (real) data samples (Zhang et al., 2018;
Beyer et al., 2022).

Comparison to synthetic datasets. In Table 2, we find that there is something unique about using
a single image, as our method outperforms several synthetic datasets, such as FractalDB Kataoka
et al. (2020), randomly initialized StyleGAN Baradad et al. (2021), as well as the GAN-based ap-
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Table 4: Distilling various architectures on CIFAR-10/100. We compare student accuracy when
distilling with full training set vs our 1-image dataset

Distillation
Teacher Acc. Student Acc. Full Ours ∆ < 5%

C
IF

A
R

10

VGG-19 93.28 VGG-16 92.42 92.84 92.14 3
ResNet-56 93.77 ResNet-20 92.52 92.29 90.70 3
WideR40-4 95.42 WideR16-4 95.20 95.00 93.32 3
WideR40-4 95.42 WideR40-4 95.42 94.36 94.14 3
WideR16-4 95.20 WideR40-4 95.42 94.30 94.02 3

C
IF

A
R

10
0 VGG-19 70.79 VGG-16 73.26 71.19 58.66 7

ResNet-56 70.99 ResNet-20 65.74 67.04 52.43 7
WideR40-4 78.14 WideR16-4 75.56 76.26 68.69 7
WideR40-4 78.14 WideR40-4 78.14 75.54 73.80 3
WideR16-4 78.14 WideR40-4 75.56 76.29 74.08 3

Table 5: Distilling audio representations. 1 audio clip + augmentations provide stronger supervi-
sory signal for the student to distill teacher’s knowledge.

Distillation

Dataset Categories (#Classes) Teacher Full OursA OursB

MUSAN (Snyder et al., 2015) Generic sounds (3) 98.76 96.78 89.85 96.28
Voxforge (MacLean, 2018) Languages (6) 91.13 89.04 72.85 78.47
Speech Commands (Warden, 2018) Keywords (12) 95.15 94.86 82.90 84.19
LibriSpeech (Panayotov et al., 2015) Speakers (100) 99.89 99.54 78.67 84.12

proach of (Micaelli & Storkey, 2019). This is despite the fact that these synthetic datasets contain
∼ 50K images. We provide insights on the characteristics of this 1-image dataset in Section 4.4.
Next, using the insights gained in this section, we scale the experiments towards other network
architectures, dataset domains and dataset sizes.

4.3 GENERALISATION

Architectures In Table 4, we experiment with different common architectures on CIFAR-10 and
CIFAR-100. On CIFAR-10, we find that almost all architectures perform similarly well, except
for the case of ResNet-56 to ResNet-20 which could be attributed to the lower capacity of the stu-
dent model. We find that the distillation performance of WideR40-4 to WideR40-4 on CIFAR-10
is very close to distilling from original source data; achieving accuracy of 94.14% and only around
one-percentage point lower than supervised training. This analysis shows that our method gener-
alizes to other architectures hints that larger capacity student models might be important for high
performances.

Extension to audio. So far, our proposed approach has shown success in distilling useful knowl-
edge for images. To further test the generalizability of our approach on other modalities, we conduct
experiments on several audio recognition tasks of varying difficulty. We perform distillation via
50K randomly generated short audio clips from two (i.e. OursA and OursB), 5mins YouTube videos
(see Appendix A for more details). In Table 5, we compare the results against the performance of
the teacher model and distilling directly using source dataset. We find that even for audio, distill-
ing with merely a single audio clip’s data provides enough supervisory signal to train the student
model to reach above 80% accuracy in the majority of the cases. In particular, we see significant
improvement in distillation performance when a single audio has a wide variety of sounds to boost
accuracy on challenging Voxforge dataset from 72.8% to 78.4%. Our results on audio recognition
tasks demonstrate the modality agnostic nature of our approach and further highlight the capability
to perform knowledge distillation in the absence of large amount of data.

Extension to video. We conduct further experiments on video action recognition tasks. As dis-
tillation data, we generate simple pseudo-videos of 12 frames that show a linear interpolation of
two crop locations at taken at the beginning and end for the City image and use X3D video archi-
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Table 6: Scaling to video. Student
models are trained from scratch.
Top-1 accuracy is shown with 10-
temporal center-cropped clips per
video. Details in Appendix B.1

Dataset Teacher Distill

UCF-101 90.4 75.2
K400 67.8 51.8

Training

Evaluation

Figure 3: Output confidence scores. Temperature-
scaled softmax scores of the predicted classes for 5K
patches and the 5K CIFAR-10 validation set images.

Table 7: Larger scale datasets. Teacher is ResNet-18 and student is varied between ResNet-50 and
ResNet-50x2. Students are trained from scratch. Gap to teacher in brackets for ResNet-50x2.

1-Image-Distill
Dataset Categories (#Classes) Teacher (R18) →R18 →R50x2

STL-10 (Coates et al., 2011) Generic objects (10) 96.3 93.9 95.0 (-1.3)
ImageNet-100 (Tian et al., 2020b) Objects (100) 89.6 84.4 88.5 (-1.1)
Flowers (Nilsback & Zisserman, 2006) Flower types (102) 87.9 81.5 83.8 (-4.1)
Places (Zhou et al., 2017) Scenes (365) 54.0 50.3 53.1 (-0.9)
ImageNet (Deng et al., 2009) Objects (1000) 69.5 66.2 69.0 (-0.5)

tectures (Feichtenhofer, 2020) as teachers and students, see Appendix B.1 for further details. In
Table 6, we find that our approach indeed generalizes well to distilling video models with perfor-
mances of 75.2% and 51.8% on UCF-101 (Soomro et al., 2012) and K400 (Carreira & Zisserman,
2017)–despite the fact that the source data is not even a real video.

4.4 SCALABILITY TO LARGE-SCALE DATASETS AND MODELS

From this section on, we scale our experiments to larger models utilizing 224×224-sized images,
and evaluate these on various vision datasets.

Varying datasets. In Table 7 we find that, overall, a single image is not enough to fully recover the
performance on more difficult datasets. This might be because of the fine-grained nature of these
datasets, e.g. ImageNet includes more than 120 kinds of dogs and Flowers contains 102 types of
flowers. Nevertheless, we find a surprisingly high accuracy of 69% on ImageNet’s validation set,
even though this dataset comprises 1000 classes, and the student only having seen heavily augmented
crops of a single image. In Table 8, we conduct further analyses on distilling ImageNet models.

Patchification vs more data. At the top part of the Table 8, we analyse the effect of using original
vs patchified (p) random images from the training set of ImageNet. We find that while for 10
and 100 source images, patchification improves performance, this is not the case when a larger
number of images is used. This indicates that increased diversity is especially a crucial component
for the small data regime, while capturing larger parts of objects becomes important only beyond
this stage. We also make the surprising observation that patches from a single high-quality image
(“City”) obtain better performances than patches generated from 1000 ImageNet training images.
To understand why this might be the case, we note that the high coherency of training patches from
a single image strikingly resembles what babies see during their early visual development, e.g.,
looking at only few toys and people but from many angles (Bambach et al., 2018; Orhan et al.,
2020). It is hypothesized that this unique combination of coherence and variability is ideal for
learning to recognize objects (Orhan et al., 2020).

Teacher/student architectures. In Fig. 4, we analyze the performances of varying ResNet models
by depth or width. We find that overall varying the width is a more parameter-efficient way to
obtain higher performances, almost reaching the teacher’s 69.5% performance with a ResNet-50x2
at 69.0%.
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Table 8: IN-1k distillations. We vary distillation dataset
and teacher/student configurations. ‘-’ refers to experiments
not continued due to compute cost outweighing insights. (p)
means images are patchified. ‘†’ refers to models trained
with half the batch size due to memory constraints. ‘AM’
refers to only using the argmax as teaching signal.

Setting Epochs
Images Teacher Student 10 20 30 50 200

(a) 10 R50 → R50 7.6 13.3 - - -
(b) 10 (p) R50 → R50 17.2 27.3 - - -

(c) 100 R50 → R50 14.7 25.1 32.3
(d) 100 (p) R50 → R50 23.6 36.1 42.8 - -

(e) 1000 R50 → R50 38.0 52.4 57.4 62.5 -
(f) 1000 (p) R50 → R50 27.1 39.4 45.2 50.9 -

(g) Noise (p) R18 → R50 0.1 0.1 0.1 - -
(h) Bridge (p) R18 → R50 21.2 34.8 40.0 - -
(i) City (p) R18 → R50 34.5 47.0 52.2 56.8 66.2

(j) City (p) R101 →† R101 22.4 31.4 - - -
(k) City (p) R50? → R50 4.6 6.6 - - -
(l) City (p) R50 → R50 18.0 34.0 39.8 45.6 55.5
(m) City (p) R18 (AM) →† R50x2 12.5 20.7 24.4 30.2 43.8
(n) City (p) R18 →† R50x2 46.1 55.6 59.7 63.1 69.0
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Figure 4: Effect of student archi-
tecture. We vary the architecture
of the student by depth and width.
Teacher is a ResNet-18, settings as
in Table 7 with half batch size.

In addition, in the bottom half of Table 8 (rows g-n), we find surprising results: First, in contrast
to normal KD, we find that the teacher’s performance is not directly related to the final student
performance, e.g. a ResNet-50 is less well-suited for distilling than a ResNet-18 (rows i vs l).

Second, we find that the choice of source image is even more important for ImageNet classification
(see rows g-i), as switching from the “City” even to the “Bridge” one decreases performance con-
siderably and the Noise image does not train at all. Third, we find that the best settings are those
in which the student’s capacity is higher than that of the teacher (rows i,n and Fig. 4). In fact this
R18→R50x2 setup (row n) obtains a performance on ImageNet-12 of 69.0% which matches the
teacher’s performance within 0.5%. In Appendix B.3, we further compare distillations to ViT archi-
tectures (Dosovitskiy et al., 2021), but generally find lower performances (up to 64%), showing that
the inductive biases of CNNs might positively aid in learning.

4.5 ANALYSIS

To better understand how our method is achieving these performances, we analyse the models.

Output confidence scores. In Fig. 3, we visualize the distribution of the confidence scores of the
predicted classes for student and teacher models for the training and evaluation data. We observe
that the student indeed learns to mimic the teacher’s predictions well for the patch training data.
However, during evaluation on CIFAR images, the student model exhibits a much broader distribu-
tion of values, some with extremely high confidence scores. This might indicate that the student has
learned to identify many discriminative features of object classes from the training data, which are
all triggered when shown real examples, leading to much higher confidence values.
Feature space analysis. Next, we analyse the network’s embedding of training patches when
compared to validation-set inputs. For this, we fit a t-SNE (Van der Maaten & Hinton, 2008) using
the features of 5K training patches and 5K test set images in Fig. 5. We find that, as expected, the
training patches mapped to individual CIFAR classes do not resemble real counter parts. Moreover,
we observe that all the training patches are embedded close to each other in the center, while CIFAR
images are clustered towards the outside. This shows that the network is indeed learning features
that are well suited for effective extrapolation.

Neuron visualizations. We next analyze a single-image distilled model trained to predict IN-1k
classes. In Fig. 6, we visualize four final-layer neurons using the Lucid (Olah et al., 2017) library.
When we compare neurons of the standard ImageNet supervised and our distilled model, we find
that the neurons activate for very similar looking inputs. The clear neuron visualizations for “panda”

8
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Figure 5: Feature space visualization. t-SNE of
jointly embedding random patches (·) and CIFAR-10
test set (×) instances with our model distilled to clas-
sify semantic classes. We also show example im-
ages from patches and actual validation set images
(enclosed in a box). Note how most training images
are contained within a small region while the network
needs to extrapolate for the real images which occupy
the outer regions in this plot. Best viewed zoomed-in.

Figure 6: Visualizing neurons via
activation maximisation of final layer
neurons. We compare an ImageNet su-
pervisedly trained model against our
model which has been trained with sin-
gle image distillation. Best viewed
zoomed-in. We provide further exam-
ples in Appendix B.6.

or “lifeboat” (and more are provided in Appendix B.6) are especially surprising since this network
was trained using only patches from the City Image, and has never seen any of these objects during
its learning phase.

5 DISCUSSION

The augmented image prior for extrapolation. The results in this paper suggest a summary
formulation as follows: Within the space of all possible images I, a single real image x ∈ I and its
augmentations A(x) can provide sufficient diversity for extrapolating to semantic categories in real
images.

Limitations. In this paper, we were mainly concerned with showing that extrapolating from a
single image works, empirically. Due to the limited nature of our compute resources, we have
not exhaustively analyzed the choice of initial image or patchification augmentations, and longer
training (as shown in (Beyer et al., 2022)) would further improve performances.

Potential negative societal impact. While our research question is of fundamental nature, one
possible negative impact could be that the method is used to steal models and thus intellectual
property from API providers – although in practice the performance varies especially for large-scale
datasets (see Table 7).

Conclusion and outlook. In this work, we have analyzed whether it is possible to train neural net-
works to extrapolate to unseen semantic classes with the help of a supervisory signal provided by a
pretrained teacher. Our quantitative and qualitative results demonstrate that our novel single-image
knowledge distillation framework can indeed enable training networks from scratch to achieve high
accuracies on several architectures, datasets and domains. This demonstrates that knowledge dis-
tillation can be done with just a single image plus augmentations, and also raises several further
research questions, such as the dependency of the source image and the target semantic classes; how
networks combine features for extrapolation; and the role and informational content of augmenta-
tions; all of which we hope inspires further research

9
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The augmented image prior: Distilling 1000 classes
by extrapolating from a single image
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A ADDITIONAL VISUALIZATIONS

A.1 INPUT IMAGES

Image sources and licences. From top to bottom, the images in Fig. 7 have the following licences
and sources: (a): CC-BY (we created it), (b)* public domain (NASA) (c)† CC BY-SA 3.0 (by David
Ball), (d)‡ pixabay licence (personal and commercial use allowed), (e)§ personal use licence.

Images (b), (d) and (e) are identical to the ones in the repo of (Asano et al., 2020), while (a) we have
recreated on our own and (c) is a replacement for a similar one whose licence we could not retrieve.

*https://commons.wikimedia.org/wiki/File:Hubble_ultra_deep_field_high_rez_edit1.jpg
†https://commons.wikimedia.org/wiki/File:GG-ftpoint-bridge-2.jpg
‡https://pixabay.com/photos/japan-ueno-japanese-street-sign-217883/
§https://www.teahub.io/viewwp/wJmboJ_jungle-animal-wallpaper-wallpapersafari-jungle-animal/
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(a) The “Noise” Image. From uniform noise [0,255].
Size: 2,560x1,920, PNG: 16.3MB.

(b) The “Universe” Image. Size: 2,300x2,100, JPEG:
7.2MB.

(c) The “Bridge” Image. Size: 1,280x853,
JPEG: 288KB.

(d) The “City” Image. Size: 2,560x1,920, JPEG:
1.9MB.

(e) The “Animals” Image. Size: 1,300x600, JPEG:
267KB.

Figure 7: Single Images analysed. Here we show the images analysed in Table 1.
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Audio source. For the experiment on audio representation distillation, we use a 5.5mins English
news-clip taken from BBC about how can Europe tackle climate change¶ and a 5mins clip about 11
Germanic languages||.

A.2 TRAINING PATCHES AND PREDICTIONS

Figure 8: ImageNet training data. Here we visualize the augmented training data used for training
along with the temperature-scaled Top-5 predictions of the ImageNet pretrained ResNet-50 teacher.

In Fig. 8, we show several training patches as they are being used during training along-side the
teacher-network’s temperature-adjusted predictions. Only very few training samples can be inter-
preted (e.g. 3rd row: “nail” or “slide rule”), while for most other patches, the teacher is being very
“creative”.

¶https://www.youtube.com/watch?v=nZgD4iPapVo
||https://www.youtube.com/watch?v=iq2_gTETBXM
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Figure 9: CIFAR-10 training data. We visualize temperature scaled predictions of WideResNet-
40-4 teacher on random patches generated from the Animal image (see Figure 7).

4
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In Fig. 9, we show a similar plot for the training patches used in CIFAR-10 training. Here we show
the whole teaching signal, and highlight the top-5 predictions of the teacher for visualization.

Figure 10: Audio spectrograms. We visualize spectrograms generated from a one second segment
of the augmented audio. We generate 50K audio clips from a 5 minutes audio recording by randomly
taking a cropped audio segment of 2 seconds and augmenting via one of the transformation functions
mentioned in Section C.1. During model training, we use 1 second segment and apply MixUp
augmentation that varies across batch.

Finally, in Fig. 10, we show some some augmented training samples for the audio classification
experiment. This figure shows how various spectrograms can be generated from a single clip by
utilizing many augmentations.

(a) Source image. (b) Patches.

Figure 11: Satellite image patches. We visualize random patches of size 32 × 32 generated from
a single satellite image of Yogyakarta Airport, Indonesia. The image is of size 3846 × 4087 and
17MB large as a JPEG.

B ADDITIONAL EXPERIMENTS

B.1 VIDEO ACTION RECOGNITION

We conduct further experiments on video action recognition tasks. For this we use the common
UCF-101 (Soomro et al., 2012) dataset, more specifically the first split. As distillation data, we

5
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generate simple source videos of 12 frames that show a linear interpolation between two crops of
the City image. We generate 200K of these videos and apply AugMix (Hendrycks et al., 2019) and
CutMix (Yun et al., 2019) during the distillation for additional augmentations. For the architectures
we use the recent, state-of-the-art X3D architectures (Feichtenhofer, 2020) as they obtain strong
performances and allow for flexible scaling of network architectures. We use a X3D-XS model as
the teacher, which is trained with inputs of 160×160 and 4 frames and a temporal subsampling factor
of 12. For the student model we scale this X3D-XS model in terms of width and depth by increasing
the depth factor and width factor from 2.2 to 3 and 4 respectively, yielding a network with 18.1M
parameters compared to 3.2M. For UCF-101 we finetune the teacher model starting from supervised
Kinetics-400 (Carreira & Zisserman, 2017) pretraining, which achieves a 90.4% performance. We
use a batch size of 128 per GPU on two GPUs, a learning rate of 10−3, a temperature of 5, cosine
learning rate schedule with a warmup of 5 epochs, with no weight decay and no dropout. As this
experiment takes even longer than the image ones, we have not conducted systematic ablations on
these parameters. Instead, we merely picked ones which looked promising after a few epochs but
believe that even this small experimental evidence is enough to investigate to what extent these
1-image “fake-videos” can be used for learning to extrapolate.

The results are given in Table 6. We observe a performance of over 72% on UCF-101 using just
a single fake-video as the training data along with the pretrained teacher. While this number is far
below the state of the art or the teacher’s performance, it for example outperforms CLIP’s 69.8%
zero-shot performance with a ViT-B16 model and shows that the student is able to extrapolate to the
action classes of UCF from just one datum.

B.2 VARYING DISTILLATION LOSS FUNCTIONS

In Table 9 we compare the standard KD loss against L1 and L2 losses (using scaled logits as in the
KD loss) for training the student. We find that while for CIFAR-10 the choice of the distillation
method does not impact the performance, on the more difficult ImageNet dataset, there is a small
difference of around −0.4% and −0.5% for L1 and L2 losses as compared to the KD loss at epoch
30. This shows firstly that our method is not dependend on a specific loss for distilling knowledge
from a teacher to a student. Secondly, it shows that the standard KD loss is actually a strong baseline,
as was also reported in (Tian et al., 2020a).

Table 9: Distillation Loss Function Comparison. We compare the distillation performance with
different loss functions along with teacher and student supervised training. Results are shown for
CIFAR-10 with a WideRNet40-4→WiderRNet16-4 setting and for ImageNet with R18→R50. For
ImageNet we show the performance progression after 10/20/30 epochs

Data Teacher Student L1 L2 KD

C10 95.4 95.2 93.3 93.4 93.4
IN-1k 69.8 76.1 36.2/45.1/51.8 25.1/45.9/51.7 34.5/47.0/52.2

B.3 IMAGENET VISION TRANSFORMER DISTILLATIONS

In Table 10 we compare the best results from the main paper of distilling to ResNets to distilling to
the ViT (Dosovitskiy et al., 2021) and CaiT (Touvron et al., 2021) architectures. We observe that
while convolutional networks learn significantly faster, with e.g. differences of more than 30% at
the tenth epoch. While the ViT architecture almost catches up at epoch 200 with a final performance
of 63.9%, the CaiT model remains fairly low at 58.5%. Nevertheless, this experiments shows that
distilling across architecture types works and that even less constrained Vision Transformers can be
trained with our method simply.

B.4 TRAINING WITH VARIOUS RANDOM NOISES

In Table 11, we experiment with adding various types of noise structures as inputs to the teacher and
student instead of augmented patches from the images. Notably, we either input random uniform
noise between [0,1] (row (w)), random normal noise with a mean of 0 and standard deviation of 1
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Table 10: Training Vision Transformer student models. Setting as in Table 7 (from which first
row is copied for comparison).

Setting Epochs
Image Teacher Student 10 20 30 50 200

1x City R18 →† R50x2 46.1 55.6 59.7 63.1 69.0
1x City R18 →† CaiT-S24 9.2 25.9 34.0 42.5 58.5
1x City R18 →† ViT-B 15.7 31.9 39.3 47.2 63.9

(row (x)) and convex combinations of the augmented input patches with the normal noise. We find
that just like the augmented patches from a random noise image (row (g)), random noise as input also
does not work for distilling semantic classes. While generating new random noise at every iteration
does create more variability, in practice, a random noise image with augmentations likely already
achieve a high amount of variance, showing that this is not the crucial component for learning, but
instead having structures from a real image. This is further confirmed by the steady increases in
performance when moving from row (x) to (z).

Table 11: Training with various random noise. Setting as in Table 7 (from which first 3 rows are
copied for comparison).

Setting Epochs
Input Teacher Student 10 20 30 50 200

(g) Noise Image (p) R18 → R50 0.1 0.1 0.1 - -
(h) Bridge Image (p) R18 → R50 21.2 34.8 40.0 - -
(i) City Image (p) R18 → R50 34.5 47.0 52.2 56.8 66.2

(v) StyleGAN Baradad et al. (2021) R18 → R50 15.4 30.1 37.8 44.4 60.4
(w) Random Uniform [0,1] Noise R18 → R50 0.1 0.1 0.1 0.1 -
(x) Random Normal (0,1) Noise R18 → R50 0.1 0.1 0.2 0.2 -
(y) 0.8x Random Normal (0,1) + 0.2x City (p) R18 → R50 0.2 0.3 0.4 0.7 -
(z) 0.5x Random Normal (0,1) + 0.5x City (p) R18 → R50 7.6 13.1 17.1 22.3 -

B.5 STANDARD DEVIATIONS IN PERFORMANCE

In Table 12, we report the performance of five independent runs on CIFAR-10 dataset to further
highlight the robustness of our experimental results. We notice consistent accuracy scores across
different training runs with minor changes of ≈ ±0.2.

Table 12: Model training with different random seeds. We compare the performance of five inde-
pendent runs on CIFAR-10 dataset. We use WRN40-4 as teacher and WRN16-4 as student. “Full”
shows the accuracy distilling using CIFAR-10 data, and “Ours” represents distillation using random
patches generated from “Animals” image.

Teacher Student Full Ours
95.38 ± 0.09 94.76 ± 0.22 93.26 ± 0.17 93.38 ± 0.07

B.6 NEURON ACTIVATION MAXIMIZATIONS

In Fig. 12, we show further class-neuron activation maximization visualizations for the R50→R50
distillation experiment and compare them to the corresponding ones of the supervised teacher model.
Similar to the examples in the main paper, we find that the neurons visualizations are remarkably
similar.

In Fig. 13, we show further visualizations of the trained student model from the R50→R50 distilla-
tion experiment. We show five randomly chosen neurons for every layer in the ResNet.
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Figure 12: Visualizing neurons via activation maximisation of final layer neurons. We compare an
ImageNet supervisedly trained model against our model which has been trained with single image
distillation.
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Figure 13: Visualizing intermediate neurons via activation maximisation. We visualize five ran-
domly picked neurons for each layer and show their maximally responding input images.
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B.7 T-SNE OF FEATURE SPACE

Figure 14: t-SNE embeddings of CIFAR-10. We visualize t-SNE embeddings of a WideR16-4
model distilled from WideR40-4 with random patches generated from an ‘Animal’ image.

We visualize representations of distilled student model on CIFAR-10 validation set in order to high-
light semantic relevance of the features in Fig. 14. We extract the feature from penultimate layer
of WideR16-4 model for computing 2-D t-SNE embeddings. The visualization clearly highlights
that distilled features contain substantial amount of semantic information to correctly differentiate
between different object categories.

B.8 CENTERED KERNEL ALIGNMENT COMPARISON

In Fig. 15, we visualize similarity between different layers of the models trained in a general super-
vised manner and with distillation using patches of 1-image for CIFAR-10 and ImageNet datasets.
We use centered kernel alignment (Kornblith et al., 2019) method to identify the resemblance of
features learned with these different training approaches. We notice high similarity in representa-
tions, which reinforce our empirical evaluation that the student models indeed learn useful features
required for differentiating between semantic categories.

B.9 SINGLE-IMAGE TRAINING DATA VS TODDLER DATA

In Fig. 16a, we compute the distances of GIST features (Oliva & Torralba, 2001) of 10K training
images of the “City” image at resolution 256×256 in Fig. 16a. Following (Bambach et al., 2018), we
L2 normalize these GIST features before computing pair-wise distances and plotting the histogram
of the values. To make the comparison of our training data with the visual inputs of toddlers more
concrete, we compare low-level GIST (Oliva & Torralba, 2001) features of our 1-image dataset
against those computed from visual inputs of a toddler in (Bambach et al., 2018). As we do not have
access to the dataset of (Bambach et al., 2018), we copy their Figure 3b for reference in Fig. 16b.
While the GIST distances for ImageNet are very different with a mean around 0.75 (Bambach et al.,
2018), we find that our single image dataset’s distribution in Fig. 16a closely resembles that of the
visual inputs of a toddler. While this is one possible explanation for why this type of data might
work well for developing visual representations, further research is still required.
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(a) WideR16− 4 via CIFAR-10 supervised training vs 1-image distilled.
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Figure 15: Representation similarity with CKA Kornblith et al. (2019). We visualize the simi-
larity between supervised representations and those distilled using random patches of 1−image. As
in Nguyen et al. (2020), we compute CKA for all the layers in a model using CIFAR-10 testset. The
layers in the same block group shows high similarity though both models are trained in different
ways, indicating that distilled features are highly similar to those learned in a supervised way.

B.10 DATA-FREE PRUNING AND QUANTIZATION OF PRE-TRAINED MODELS

Neural network compression has been studied extensively in the literature to produce light-weight
models with the objective of improving computational efficiency. In addition to knowledge distilla-
tion, network pruning and quantization are other well-known approaches. In the former, the goal is
to remove or sparsify (zeroing-out) the network’s weights based on a specific criteria, such as subset
of weights with the lowest magnitude. The later is concerned with reducing precision from 32-bits
floating numbers to 8-bits and even single bit as binary neural networks. In general, from practical
standpoint post-training compression is largely employed in conjunction with fine-tuning to avoid
accuracy drop.

Here, we study utilize our proposed single-image distillation framework for post-training model
compression without using any real data. Specifically, we ask the question, whether a pre-trained
model can be compressed when no in-domain data is available? To this end, we utilize Tensorflow
Model Optimization Toolkit** to prune and quantize various pre-trained model on CIFAR-10 and

**https://www.tensorflow.org/model_optimization
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(a) Our 1-image dataset.
(b) Toddler data. Figure from (Bambach et al.,
2018).

Figure 16: Pair-wise distances of L2-normalized GIST features for 10K images from our 1-image
training dataset used for our ImageNet experiments

Dataset Model Standard Quantization
(source)

Ours - Quantization
(single-image)

Pruning
(source)

Ours - Pruning
(single-image)

CIFAR-10

ResNet56 93.77 93.64 93.45 93.38 93.18
VGG11 91.57 91.22 90.97 91.14 90.86
VGG19 93.28 92.94 93.00 92.84 92.96
WideRNet16-4 94.81 94.40 94.59 94.76 94.43
WideRNet40-4 95.42 95.09 94.90 95.29 94.82

CIFAR-100

ResNet56 70.99 70.89 69.85 70.74 70.42
VGG11 69.65 69.92 68.86 69.77 69.13
VGG19 70.79 70.60 70.21 70.89 70.56
WideRNet16-4 75.81 75.45 74.71 75.68 75.51
WideRNet40-4 78.14 78.27 77.60 77.94 77.78

Table 13: Self-distillation with a single-image for efficient deep models. We perform model com-
pression via self-distillation using source data and 50k random patches generated from ‘Animals’
image for 50% sparsity (in case of pruning) and 8-bits quantization without any noticeable loss in
performance.
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CIFAR-100 datasets. We use self-distillation, where a pre-trained model acts as teacher and student
clone of it is compressed during fine-tuning phase. In Table 13, we report accuracy scores for the
pruned and quantized models in comparison with the standard models and those compressed using
real in-domain data. In all the cases, we can notice that there is negligible loss in accuracy, i.e., <=
1%, while using random patches.

Sparsity ResNet56 VGG11 WideRNet16-4

C10 C100 C10 C100 C10 C100

0% 93.77 70.99 91.57 69.65 94.81 75.81
25% 93.55 70.85 91.03 69.37 94.55 75.40
50% 93.18 70.74 90.86 69.13 94.43 75.51
75% 92.68 67.87 90.54 67.81 94.10 74.05
85% 91.50 61.22 89.12 65.23 93.05 71.46

Table 14: Varying Sparsity. Pruning results achieved on CIFAR-10/100 for different sparsity rates
using self-distillation with random patches generated from the ‘Animal’ image.
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Figure 17: Representation similarity with CKA of a pruned and standard WideR16-4 models
trained on CIFAR-100.

Further, in Table 14, we vary sparsity ratio and can observe that a model can be pruned up to 75%
sparsity with three-points drop in accuracy but with 25% pruning ratio the loss is merely notice-
able. In Figure 17, we analyze representational similarity of pruned WideRNet16-4 model with the
original trained on CIFAR-100, the diagonal entries highlight that even after 50% sparsity the rep-
resentations are very similar. To summarize, with model compression use case, we barely scratched
the surface of what is possible with our single-image distillation framework and we hope it will
inspire further studies and applications in other domains.

B.11 TRANSFER LEARNING EXPERIMENTS

In this section, we compare the performances on downstream tasks of our teacher network (ResNet-
18), our single-image distilled network (ResNet-50) and another ResNet-50, purely trained in a self-
supervised manner on our augmented single-image dataset. For this, we pretrain using the official
code of MoCo-v2 (He et al., 2020) in the standard 200 epoch setting, while applying their default
“v2” augmentations during training.

Evaluation. We follow standard linear evaluation procedure from the MoCo-v2 repo. which uses
a batch size of 256, learning rate of 30 which is multiplied by 0.1 at epochs 60 and 80 for a total of
90 epochs. For the data-efficient full-fine tuning, we utilize the implementation from SwAV (Caron
et al., 2019), which trains for 20 epochs using a cosine decay learning rate schedule and a batch size
of 256. For the data-efficient SVM classification experiments, we follow the implementation of (Li
et al., 2021) and report average results from 5 trials and keep the SVM’s cost parameter fixed at a
value of 0.5. For the COCO object detection experiments we use the detectron2 repo (Wu et al.,
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Table 15: Representation learning performance. We compare our distillation approach
(R18→R50) against pretraining via MoCo-v2 on the same data. We report: linear eval. accu-
racy on IN-1k and Places; accuracy when finetuning and using 1% of ImageNet with labels; SVM
classification mAP on PVOC07 and accuracy on Places with varying numbers of images per class;
mAP for COCO-detection with FPN.

IN-1k Places IN-1k (1%) PVOC Places COCO
imgs / class ∼1K ∼10K ∼13 4 16 4 16 NA

IN-1k teacher [69.8] 44.1 [69.8] 65.7 77.1 21.4 30.4 -
IN-1k R50 [76.2] 51.5 [76.2] 73.8 82.3 27.0 35.4 38.9
1-image MoCo-v2 28.5 28.8 14.4 17.2 26.6 4.5 9.7 35.6
1-image Distill 68.8 47.2 64.1 58.9 73.5 21.0 31.3 35.4

Noise Blur Weather Digital
Network Error mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

IN-1k R18 30.2 84.7 87 88 91 84 91 87 89 86 84 78 69 78 90 80 85
students
1-image R50x2 31.0 85.9 88 89 91 85 92 88 89 88 86 82 71 80 91 82 87
1-image R50 33.8 89.8 93 93 96 87 94 90 92 91 90 84 77 83 96 87 93

Table 16: IMAGENET-C evaluations. Clean Error, mCE, and Corruption Error values of different
corruptions and architectures. The mCE value is the mean Corruption Error of the corruptions in
Noise, Blur, Weather, and Digital columns.

2019) and the 1x schedule using a FPN (Lin et al., 2017) as in (He et al., 2020). We additionally
vary the learning rates from 1x and 4x as the models are trained with very different losses compared
to the supervised variant for which the learning schedule is made. The results are shown in the last
row of Table 15 and show that our models benefit from a higher initial learning rate, which also does
not have any negative effect on training longer e.g. with the 2x schedule, while the MoCo pretrained
model works best with the 1x learning rate.

We find that freezing the backbone and only training a linear layer on top of it, can achieve per-
formances of 68.7% and 47.2% for ImageNet and Places, respectively, vastly outperforming the
self-supervised variant. A similar trend is observed for data-efficient classification reaching close
but lower performances to the teacher model.

B.12 ROBUSTNESS EXPERIMENTS

In Table 16, we report results on ImageNet-C (Hendrycks & Dietterich, 2019).

B.13 ANALYSIS OF PER-CLASS ACCURACIES

Worst underperforming 10 classes. The 10 classes that have the highest top-1 accuracy
difference compared to the teacher model (for the R18→R50 setting) are: ‘Tibetan terrier,
Lakeland terrier, golden retriever, dhole, Border terrier, cocker
spaniel, Welsh springer spaniel, Brabancon griffon, collie,
mountain bike‘, with accuracies differences ranging from -34% to -20%. From the un-
derperforming classes, we find that 9/10 of these are dog breeds. This illustrates how out
single-image trained model lacks behind in very fine-grained classification compared to the
ImageNet trained model. This is likely because the single-image lacks the necessary structures and
patterns for disambiguating these classes despite the help of augmentations.

In Fig. 18, we plot the validation performance against the frequency of how often the class appears as
a top-1 prediction of the teacher during 1 epoch of training and find that it is unrelated, showing the
student is profiting heavily from the knowledge contained in the soft-predictions, echoing findings
from (Hinton et al., 2015; Furlanello et al., 2018). We further compare these per-class performances

14



Published as a conference paper at ICLR 2023

10
1

10
2

10
3

10
4

Teacher training argmax frequency

0

20

40

60

80

100

S
tu

de
nt

 IN
-1

k 
va

l a
cc

ur
ac

y 
(%

)

R2=0.076

Figure 18: Comparison of per-class accu-
racy. Per-class student performance vs fre-
quency of the class being the top-1 prediction
of the teacher.
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Figure 19: Comparison of per-class rela-
tive accuracy. Per-class performance rela-
tive to the teacher is plotted vs frequency of
the class being the top-1 prediction of the
teacher.

against the teacher’s performance in Fig. 19 and find that there is no relationship between when the
student under or overperforms the teacher vs how often a particular likeness of a class appears.

C IMPLEMENTATION DETAILS

All code will be released open-source and is attached as supplementary information to this submis-
sion.

C.1 INITIAL PATCH GENERATION

We do not tune the individual patch generation and instead adapt the procedure directly from (Asano
et al., 2020)††. The augmentations applied to the input image of size H ×W to arrive at individual
patches of size P × P is (in order) as follows:

1) RC(size=0.5*min(H,W))

2) RRC(size=(1.42*P), scale=(2e-3, 1))

3) RandomAffine(degrees=30, shear=30)

4) RandomVFlip(p=0.5)

5) RandomHFlip(p=0.5)

6) CenterCrop(size=(P,P))

7) ColorJitter(0.4,0.4,0.4,0.1, p=0.5)

All transformations are standard operations in PyTorch: RC stands for RandomCrop, i.e. taking a
random crop in the image with a specific size; RRC for RandomResizedCrop, i.e. taking a random
sized crop withing the size specified in the scale tuple (relative to the input); RandomAffine for
random affine transformations (rotation and shear); RandomVFlip and RandomHFlip for random
flipping operations in the vertical and horizontal direction, and CenterCrop crops the image in the
center to a square image of size P × P . Finally, ColorJitter computes photometric jittering, where
the parameters for the strengths are given in the order of brightness, contrast, saturation and hue and
applied with a certain probability.

††https://github.com/yukimasano/single_img_pretraining
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Similarly, for audio clips generation given a single audio, we use augmentation operations from (Bit-
ton & Papakipos, 2021) with default settings. Specifically, to create a single example we apply the
following procedure: we randomly crop a segment of 2-seconds, and use randomly sample an aug-
mentation function to create transformed instances and save them in mono format. In our work, we
use these augmentations, all with their default settings:

1) add-background-noise

2) change-volume

3) clicks

4) clip

5) harmonic

6) high-pass-filter

7) low-pass-filter

8) normalize

9) peaking-equalizer

10) percussive

11) pitch-shift

12) reverb

13) speed

14) time-stretch

C.2 COMPUTING LOG-MEL SPECTROGRAMS

The log-Mel spectrograms are generated on-the-fly during training from a randomly selected 1-
second crop of an audio waveform as the model’s input. We compute it by applying a short-time
Fourier transform with a window size of 25ms and a hop size equal to 10ms to extract 64 Mel-
spaced frequency bins for each window. During evaluation, we average over the predictions of
non-overlapping segments of an entire audio clip.

C.3 AUDIO NEURAL NETWORK ARCHITECTURE

Our audio convolutional neural network is inspired by (Tagliasacchi et al., 2019) and it consists of
four blocks. We perform separate convolutions in each block with a kernel size of 4. One on the
temporal and another on the frequency dimension, we concatenate their outputs afterward to perform
a joint 1× 1 convolution. It allows model to capture fine-grained features from each dimension and
discover high-level features from shared output. We apply L2 regularization with a rate of 0.0001
in each convolution layer and also use group normalization (Wu & He, 2018). Between the blocks,
we utilize max-pooling to reduce the time-frequency dimensions by a factor of 2 and use a spatial
dropout rate with a rate of 0.2 to avoid over-fitting. We apply ReLU as a non-linear activation
function and feature maps in the convolutions blocks are 24, 32, 64, and 128. Finally, we aggregate
the feature with a global max pooling layer which are fed into a fully-connected layer with number
of units equivalent to the number of classes.

C.4 TRAINING

C.4.1 OPTIMIZATION.

For each of these datasets, we first train a teacher network in a usual supervised manner, that is
then used for the distillation. For the distillation to the student model, we use a temperature τ = 8
motivated by findings in (Beyer et al., 2022). We keep this temperature fixed throughout the whole
of the paper due to limited compute. For optimization, we use AdamW (Loshchilov & Hutter, 2018).
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C.4.2 SMALL-SCALE EXPERIMENTS

For experiments on CIFAR-10, CIFAR-100, and other smaller datasets, we use Tensorflow for run-
ning experiments on a single T4 GPU with a batch size of 512 using an Adam (Kingma & Ba,
2015) optimizer with a fixed learning rate of 0.001. We use standard augmentations including,
random left right flip, and random crop. The supervised models also uses cutout augmentations
with a cutout size of 16 × 16. For Mix-up, we sample α uniformly at random between zero and
one. In Cut-Mix, we use a fixed value of 0.25 for α and β. With the following setup, each of the
single image distillation experiment of 1K epochs took around 2 − 3 days. The supervised and
standard (using source data) distillation models are trained for 100 epochs (per epoch 2000 steps)
with a batch size of 128 using SGD for optimization. For VGG (Simonyan & Zisserman, 2014) and
ResNet (He et al., 2016) models, we use a learning rate schedule of 0.01, 0.1, 0.01, 0.001 decayed
at following steps 400, 32000, 48000, 64000 with momentum of 0.9. For WideResNet (Zagoruyko
& Komodakis, 2016a), we use a learning rate schedule of 0.1, 0.02, 0.004, 0.0008 that is decayed at
following steps 24000, 48000, 64000, 80000 with Nesterov enabled.

In audio experiments, we use an Adam (Kingma & Ba, 2015) optimizer with a fixed learning rate of
0.001 and use batch size of 128 and 512 for standard models and single-clip distillation, respectively.
Furthermore, we also utilize Mix-Up augmentation during our knowledge distillation experiments.

C.4.3 LARGE-SCALE EXPERIMENTS

We use PyTorch’s DistributedDataParallel engine for running experiments on 2 A6000
GPUs in parallel with batch-sizes of 512 each. For optimization we use AdamW (Loshchilov &
Hutter, 2018) with a learning rate of 0.01 and a weight-decay of 10−4. These values were determined
by eyeballing the results from (Beyer et al., 2022) to find a setting that might generalize across
datasets, as we do not have enough compute to run hyper-parameter sweeps. With this setup, each
200 epoch experiment took around 5 days. We have also found that halving the batch-size performs
equally well, and is more amenable to lower-memory GPUs. For the distillation experiments, we
use Cut-Mix (Yun et al., 2019) with its default parameters of α = β = 1.0.

C.5 GIST FEATURES COMPARISON

In Fig. 16a, we compute the distances of GIST features (Oliva & Torralba, 2001) of 10K training
images of the “City” image at resolution 256×256 in Fig. 16a. Following (Bambach et al., 2018), we
L2 normalize these GIST features before computing pair-wise distances and plotting the histogram
of the values.
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