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Abstract

On many learning platforms, the optimization criteria guiding model training
reflect the priorities of the designer rather than those of the individuals they affect.
Consequently, users may act strategically to obtain more favorable outcomes.
While past work has studied strategic user behavior on learning platforms, the
focus has largely been on individual strategic responses to a deployed model,
without considering the behavior of other users. In contrast, look-ahead reasoning
takes into account that user actions are coupled, and—at scale—impact future
predictions. Within this framework, we first formalize level-% thinking, a concept
from behavioral economics, where users aim to outsmart their peers by looking
one step ahead. We show that, while convergence to an equilibrium is accelerated,
the equilibrium remains the same, providing no benefit of higher-level reasoning
for individuals in the long run. Then, we focus on collective reasoning, where users
take coordinated actions by optimizing through their joint impact on the model. By
contrasting collective with selfish behavior, we characterize the benefits and limits
of coordination; a new notion of alignment between the learner’s and the users’
utilities emerges as a key concept. Look-ahead reasoning can be seen as a general-
ization of algorithmic collective action; we thus offer the first results characterizing
the utility trade-offs of coordination when contesting algorithmic systems.

1 Introduction

Digital platforms deploy learning algorithms that collect and analyze data about individuals to power
services, personalize experiences, and allocate resources. As people come to understand how these
systems make decisions, they often adapt strategically to improve their outcomes. Prior research has
largely modeled such strategic behavior as unilateral: each agent responds to the platform’s decision
rule by optimizing their own outcome while treating that rule as fixed. For example, a job applicant
might rephrase their resume to include keywords that align with an automated screening system’s
preferences. This perspective neglects the fact that many others may be doing the same—thereby
collectively shifting the data distribution from which the platform learns in the future.

In reality, there is ample empirical evidence that users frequently reason about one another’s
behavior. They may act in solidarity [Tassinari and Maccarrone} [2020]], anticipate other people’s
adaptations to gain an advantage [Kneeland, [2015]], or coordinate to amplify their collective influ-
ence [Chenl [2018]], in the latter case oftentimes facilitated by labor organizations [e.g., Rideshare
Drivers United]. On learning platforms in particular, such reasoning involves not only anticipating
the behavior of other platform participants but also how those behavioral changes will impact the
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learning algorithm in the future. We call this look-ahead reasoning. In the resume-screening example,
look-ahead reasoning might surface as choosing to emphasize distinct keywords that others have
abandoned, anticipating that popular buzzwords will lose predictive value as they become widespread.

1.1 Our contributions

We characterize how look-ahead reasoning—user behavior that anticipates the actions of others in the
population—reshapes learning dynamics and equilibria on learning platforms. We begin with selfish
agents, who strategically account for the other agents’ responses to the deployment of a predictive
model and act independently. We then turn to coordinated behavior, where agents strategize together
and account for their joint influence on the learner. Finally, contrasting the two settings allows us to
characterize the benefits and limitations of coordination when contesting learning platforms.

To capture agents who selfishly aim to outsmart their peers, we formalize the concept of level-k
thinking [Nagel, [1995]] from behavioral economics in the context of learning systems. Level-k
thinking captures different depths of strategic thought: a level-k thinker acts assuming they are
“one step ahead” of everyone else, who is a level-(k — 1) thinker. A level-0 thinker is non-strategic.
Higher levels k are defined recursively. In our setup, actions are determined by hallucinating the data
distribution resulting from the assumed behavior of other agents and best-responding to the predictive
model it induces. We study the dynamics of repeatedly retraining a model acting on a population
of level-k thinkers. We show that “deeper” thinking achieved for larger k accelerates the learning
dynamics, while resulting in the same equilibrium solution, no matter the depth of thinking.

Theorem 1 (Informal). For k > 1, let i, € (0, 1) be the fraction of level k-thinkers in the population,
Y hey Ok = 1. Assume the learner minimizes a loss function that is smooth and strongly convex, and
suppose that the agent responses are sufficiently Lipschitz in the model parameters. Then, for some
constant ¢ € (0, 1), repeated retraining converges to a unique stable point at rate

0(@})

Therefore, even if it relies on deeper reasoning, selfish behavior does not improve the agents’ utility.

Next, we investigate whether agents can move past this obstacle if they coordinate. Look-ahead
reasoning with coordination allows steering model updates by systematically taking into account that
the learner learns from the data agents report. We show that the gap between coordination and lack
thereof in terms of agent utility is governed by a notion of alignment between the objectives of the
learning platform and the population. Below, we use £(z, #) and u(z, ) to denote the learner’s loss
and the agent utility for deploying model 6 on instance z. Furthermore, (a, b) s := a ' Mb.

Theorem 2 (Informal). Let D* and D* denote the population’s data distributions at equilibrium
under selfish reasoning and under collective reasoning, respectively. Then, assuming regularity
conditions, the benefit of coordination B, defined as the difference in population utility at the two
equilibria, is bounded as

2
B < (<Ez~D* Vou*] ,E, .ps [VGE*D(H*)*I) ;

where H* = E, p+ [Vgﬁ(z, 9*)] and 0% denotes the equilibrium model under selfish reasoning. We
use the short-hand notation Vou™ = Vou(z, 0%), Vol* = Vgl(z,0%).

If the average agent utility and the average loss of the learner are orthogonal, there is no benefit
to coordination. Similarly, when u = ¢ - £ for either ¢ > 0 or ¢ < 0, the benefit of coordination is
zero. However, when there is the right amount of overlap between the objectives that the collective
can exploit, coordination can lead to more favorable outcomes than selfish reasoning. For example,
think of instance z as a feature-label pair (z, y) and consider a learner and a collective who both care
about predictions fp(x): the learner cares about making them accurate, and the collective cares about
them having certain favorable values. Then, modifying the labels y can be an effective strategy for
the collective to steer the predictive model 6, something that individuals reasoning selfishly cannot
achieve, enabling a large benefit of coordination. We elaborate on this example later on.

In additional results, we study heterogeneous populations and collectives of varying size. The
results explain why larger collectives, despite more leverage, do not always lead to a higher utility for
participating agents. They also show how broader participation in the collective stabilizes learning
dynamics.



1.2 Background and related work

Strategic classification [Hardt et al., [2016| Briickner and Scheffer,2011]] introduces a model to study
strategic behavior in learning systems based on assumptions of individual rationality. It describes a
population of agents best-responding to a decision rule by altering their features to achieve positive
predictions, given a fixed decision rule. Several variations of this basic model have been studied
[e.g.,[Dong et al., 2018, |Chen et al.| 2020} Bechavod et al., 2022, |(Ghalme et al., [2021] |Jagadeesan
et al., 2021} |ILevanon and Rosenfeld, |[2022]; see [Podimatal [2025]] for a recent survey of this literature.
All these works focus on studying how agents strategize against a fixed decision rule. Our work
introduces a new dimension of reasoning to strategic classification, taking into account how individual
agents’ actions are coupled and how this influences the predictive model the agents strategize against.

Performative prediction [Perdomo et al.l|2020] introduces performative stability as an equilibrium
notion that characterizes long-term outcomes in the interaction of a population with a learning system.
Performative stability is a fixed point of repeated retraining by the learner in a dynamic environment.
Prior work in performative prediction [e.g., Perdomo et al.| 2020, Mendler-Diinner et al., 2020,
Drusvyatskiy and Xiao, [2023} [Brown et al., 2022| [Narang et al.,|2023] has studied the behavior of
retraining and conditions that ensure its convergence to stability in different learning settings. We
refer to Hardt and Mendler-Diinner [2025]] for an overview of the performative prediction literature.
A key concept in performative prediction is the “distribution map,” which characterizes how different
model deployments impact the population. In convergence analyses this map is typically treated
as a fixed and unknown quantity. We study how different types of strategic reasoning impact the
distribution map, thus also impacting the resulting convergence properties and equilibria.

A more recent literature on algorithmic collective action [Hardt et al., 2023 studies coordinated
agent efforts with the goal of steering learning systems; see [Baumann and Mendler-Diinner} 2024,
Ben-Dov et al.| 2024 |Gauthier et al., 2025} |Sigg et al.| 2025]] for recent developments in this area,
as well as related discussions of data leverage [[Vincent et al., 2021]] and protective optimization
technologies [Kulynych et al.,|2020]. From the perspective of our work, collective action is a type of
look-ahead reasoning: agents plan through model updates under the assumption that they coordinate
with other agents. In this work we study the tradeoffs and implications of coordination on the utility of
agents participating in the collective. Relatedly, Hardt et al.|[2022] discuss how platforms can reduce
risk by actively steering a population. Collective action reverses this perspective and investigates how
the population can improve its utility by steering the learner. This perspective is related to [Zrnic
et al.| 2021]], who also deviate from the classical model of strategic classification and instead model
the population as the leader in the Stackelberg game against the learning platform. Our framework
aims to bridge strategic classification and algorithmic collective action to illuminate the benefits and
limits of coordination.

2  Setup

We consider a population of individuals interacting with a learning platform. We assume the platform
trains a predictive model on the population’s data, and individuals strategically alter their data to
achieve favorable outcomes. We elaborate below.

Learning platform. Upon observing data about the population, the learner optimizes the parameters
0 € O of their predictive model fy. We work with the following optimality assumption on the
learning algorithm: given a loss function /, the learner’s response .A(D) to a data distribution D is
given by risk minimization, defined as

A(D) := argmin E,.p [((z,0)].

0co

Strategic agents. We assume individuals are described by data points z € Z sampled from a base
distribution Dy. Typically, z = (z,y) € X x ) are feature-label pairs. Individuals implement a
data modification strategy hg : Z — Z that maps an individual’s data point z to a modified data
point hy(z2); the strategy can depend on the learning platform’s currently deployed model 6. We will
sometimes omit the subscript  if the strategy is independent of the current model, i.e., hy = hy
for all 0, 6’. We use Dy, to denote the distribution of hgy(z) for z ~ Dy; in other words, this is the
distribution of data points after applying strategy hg to all base data points. Following the terminology
of |Perdomo et al.| [2020]], we call Dy, a distribution map. Note that different strategies hy correspond
to different distribution maps. When the strategy is clear from the context, we will write Dy, = D(0).
The notation D}, equally applies to model-independent strategies h.



Equilibria and learning dynamics. We study the long-term behavior of the learner repeatedly
optimizing their model and the population strategically adapting to it. Formally, we study the learning
dynamics of repeated risk minimization:

9,5_;,.1 == A(Dhet )
The model 6 is repeatedly updated based on observed data from the previous time step. The natural

equilibrium of these dynamics is called performative stability [Perdomo et al.,2020]]. We say a model
0* is performatively stable with respect to a strategy hyg if

0" = A(Dp,,. ).
In words, there is no reason for the learner to deviate from the current model, given observations of
the strategic response of the population.

Population utility. Different strategies hy lead to different equilibria. Rather than just focusing on
the learner’s loss, we evaluate equilibria in terms of the utility they imply for the population. Let 6*
denote the equilibrium under strategy hy, i.e., the performatively stable point. Then, Dy, denotes
the equilibrium distribution. We denote the population’s utility after implementing strategy hg by

Uhg) = Banp,,, [u(.07)].

where u(z, 6) is the utility of an individual with data point z when the deployed model is . Note
that the stable point satisfies §* = A(Dj,. ) and thus the utility is evaluated against the data that
determines the predictive model. Again, we will sometimes omit the subscript when denoting the
strategy if it is independent of the deployed model.

3 Level-k reasoning

Strategic classification [Hardt et al.| 2016] assumes that each individual selfishly best-responds to
a deployed model 6. As explained earlier, this model does not account for the agents’ awareness
that they, as a whole, determine the deployed model. To account for this dimension of reasoning, we
build on the cognitive hierarchy framework from behavioral economics [Nagel, [1995]] and generalize
strategic classification to allow individuals to reason through the other individuals’ responses. In
particular, we formalize level-k thinking, which categorizes players by the “depth” of their strategic
thought. Intuitively, an individual reasoning at level k assumes a level of cognitive reasoning for the
rest of the population and tries to “outsmart” them. In other words, they are always one step ahead:
a level-k thinker best-responds to the model that would result from a population of level-(k — 1)
thinkers. The basic level-k model starts with an explicit assumption about how individuals at level 0
behave. It then defines higher levels of thinking recursively.

Suppose that agents at level 0 are non-strategic and implement héo) (z) = z in response to all 6.
Then, for every higher level of thinking & > 1 we define the strategy for level-£ thinkers recursively:

B (2) = argmax., u (2, A(Dx-1(9)), ()

where Dy_1(0) is the distribution obtained by applying the model-dependent strategy hék_l) to
every z ~ Dy. Atlevel k = 1, we recover the standard microfoundation model of strategic
classification [Hardt et al.| 2016], where individuals best-respond to a fixed model. For larger k, the
agents anticipate the actions of other agents and best-respond to the hypothetical model resulting
from the shifted distribution. The hypothetical model being 8’ = A(Dy_1(6)).

Different individuals in the population might implement different levels of reasoning. To reflect
this we deviate from a homogeneous population and let the population consists of level-£ thinkers at
different levels k. In particular, we assume that an ay-fraction of the population has cognitive level
k,fork=1,2,... and Z;ozl ag = 1. If o = 1 for some k, then all individuals in the population
have the same level of reasoning. This model results in the distribution map:

D(0) =Y arDy(0). 2)
k=1

We characterize the learning dynamics for different levels of thinking. We use the following
Lipschitzness assumption on the induced distribution at level k = 1:

W(D1(0), D1(0)) < ell6 = 0'[l,, Vv6,6" €O,

where W denotes the Wasserstein-1 distance. In performative prediction this condition is known as
e-sensitivity [Perdomo et al., 2020].



Theorem 3 (Retraining with level-k thinkers). Suppose the loss of the learner ¢ is ~-strongly convex
in 6 and B-smooth in z, and that the distribution map D1 (0) is e-sensitive. Then, as long as € < %,

there is a unique stable point 0* such that for any (ay,)52 , retraining on the mixed population @)

converges as
oo ﬁ k t
* € *
16 — 0%, < (Z <7> ak) 160 — 67|, -

k=1

The core technical step in the proof is to derive how the sensitivity of the distribution map
Dy (0) changes recursively with k. In particular, the distribution map D(6) in (2)) has sensitivity

S ope ak (eﬂ/’y)kil €. We refer to Appendixfor the full poof.

For the case where oy = 1 and thus all agents reason at level £ = 1, we recover the retraining
result of [Perdomo et al.| [2020]. There are two interesting implications of the generalization in
Theorem [3] First, we observe that for populations with higher levels of thinking &, the rate of
convergence increases (although the condition for convergence, € < +/f3, remains the same). This
can be interpreted as saying that performative distribution shifts are mitigated when the population
has a deeper level of strategic thought. The second implication is that, as long as the agents act
selfishly, they cannot benefit from higher levels of reasoning at stability.

Corollary 1. Under the assumptions of Theorem it holds that U (hél)) =U (h(gk))7 vk > 1.
Moreover, the utility at stability remains unaltered for any mixed population consisting of level-k
thinkers regardless of (o).

This corollary follows from the observation that the stable point 6* is the same for any mixed
population of level-k thinkers. Another consequence of this fact is that the equilibrium strategies hé]f),
and hence the induced distributions Dy, (6*), are identical for every k. We will denote this unique

optimal selfish strategy by h* = " and the implied data distribution by D*.

4 Collective reasoning

Level-k£ thinkers anticipate model changes implied by the population’s actions. We saw that higher
levels of selfish reasoning do not improve the agents’ utility at equilibrium. The fundamental reason is
that individually they cannot steer the trajectory of the learning algorithm; they can merely anticipate
it. In the following we show how individuals can achieve more favorable outcomes by joining forces
and making decisions collectively; this gives them steering power.

We denote by h* the optimal collective strategy:

h¥ = argmax U(h) = argmax E._p, [u(z, A(Dy))].
h h

Notice the difference compared to (I). In (T), the optimization variable 2z’ does not enter the model
training A, while above h directly determines the subsequently deployed model. The optimal
collective strategy is a Stackelberg equilibrium: the population acts as the Stackelberg leader.

To contrast the optimal collective and selfish strategies, we define the benefit of coordination.

Definition 1 (Benefit of coordination). Let h* be the optimal selfish strategy and h¥ the optimal
collective strategy. We define the benefit of coordination as B = U (h*) — U (h*).

Since h! is the globally optimal strategy for the population, it holds that B > 0. How large
B is depends on the goals pursued by the learner and the population, as characterized by ¢ and w,
respectively. Through coordinated data modifications, the population can steer the model towards a
common target. But to do so, they may have to deviate from the individually optimal strategy. Thus,
what governs the benefit of coordination is the tradeoff between the return of steering the model to a
better equilibrium and the cost of being evaluated against the modified data.

We start with a simple case where the benefit of coordination is zero.
Proposition 4. Suppose u = c - £ for some ¢ # 0. Then, it holds that B = 0.

There are two different mechanisms at play, depending on the sign of c. In an adversarial setting
where ¢ > 0, the game between the learner and the collective is a zero-sum game. In this case the



benefit of coordination is zero, as the cost of steering is equal to its return. When ¢ < 0, the platform
and the agents pursue the same goal and the game becomes a potential game between the two. In this
case the benefit of coordination is zero as selfish actions are simultaneously optimal for the collective
and there is no benefit to steering the model away from the selfish equilibrium. In general, however,
the benefit of coordination can be arbitrarily large. Consider the following example.

Example 1 (Label modifications as an effective collective lever.). Consider a learner who aims to
accurately predict labels from features and a collective that prefers these predictions to follow a
target function g. We assume that agents can easily manipulate their labels, while their features
cannot be changed. The population and the learner have the following utility and loss, respectively:

u(z,0) = —(fo(z) — g(@))*,  Uz0) = (fo(z) —y)*.

In this setting, the collective has a powerful lever to steer the model through label modifications.
The optimal collective strategy is clearly h*(z) = (x,g(x)). In contrast, selfish agents have no
leverage over the learner and would simply report h*(z) = (x,y). Assuming there exists 0 such
that fo(x) = Ely|x], this gives a benefit of coordination equal fo the suboptimality of the labeling
function B = E,p, (E[y|x] — g(x))? which can be arbitrarily large, depending on Dy and g.

To characterize when the benefit of coordination is large, we consider linear distribution maps. A
generalized version of the result can be found in Appendix [A.6]

Assumption 1 (Linearity). Let each strategy h(n) be represented by a parameter vector nn € RY. We
say that the induced distribution is linear with respect to the parameterization if, for all « € [0, 1],

Dh(an+(1—ayy) = @Dhn) + (1 = a)Dpy).-

Intuitively, linearity means that the population’s data distribution is the same whether agents
linearly interpolate between two strategies n and 7', or they split up in two subgroups and each
implements one of the two strategies. Under this assumption, the following result provides a bound
on the benefit of coordination. The proof can be found in Appendix [A]

Theorem 5 (Benefit of coordination). Let Assumption[l|hold. Let U(h(n)) be ~-strongly concave
innand U(ah + (1 — a)h’) be differentiable with respect to o.. Then, we have B < %@2, where
@ i= (Bonp,. [Vou(z 07)], Bap,, [Vol(2,6%)]) . 1 and  H = Eocp,. [V3,0(2,67)] .

This result shows how the benefit of coordination is governed by the alignment between the utility
u of the population and the loss ¢ of the learner, quantified by the inner product of their gradients at
the selfish equilibrium 6*. We refer to ® as the alignment term.

We have ® = 0 in the case where the gradients are orthogonal and the two functions « and ¢
are unrelated; in this case agents can optimize their utility independent of the model and there is
no benefit to being able to steer the model. Further, in line with Proposition 4] when v = ¢ - ¢ for
some constant ¢, we have ® = 0 because selfish actions are simultaneously collectively optimal and
shifting the model away from 6* would not benefit the collective. In particular, 6* is a local optimum
of the loss under Dy« and thus the first term in the inner product becomes zero.

To see cases where ®2 can be large, we look at the individual terms in its definition. The first term
in the inner product that defines ® describes the suboptimality of 6* for the agents under Dy,. It is
non-zero if the collective’s utility on Dy« can be improved by moving the model away from 6*. The
second term in the inner product captures the response of the learner to the collective strategy. For this
term to be non-zero the data modification Dj,; must make 6* suboptimal. Consequently, ® is large if
both terms in the inner product are non-zero, and there is overlap in the direction of improvement for
the learner and the collective. Moreover, what really matters is not just the raw gradient alignment
but one filtered through the local curvature of the loss landscape. The directions that the learner
finds “flat” (small Hessian eigenvalues) allow for more influence on the model through small data
modifications, and thus they offer more leverage for the collective. We provide an example satisfying
the assumptions of Theorem [5| with a non-trivial closed-form expression for ® in Appendix B}

Let us revisit Example[I] Although the example does not satisfy the assumptions in Theorem 3]
the alignment term provides the right intuition for why B is large: since the learner aims to accurately
predict labels, any systematic label modification induces a model change. The collective can fully
control the direction of these changes, i.e., the gradient of the loss, and align it with their objectives.
The label modification strategy leverages this to increase the agents’ utility, providing non-zero
return as long as 6* is suboptimal for the collective under Dp,«.



5 Heterogeneous populations

A perfectly coordinated population where every agent participates, or one that implements the optimal
collective strategy, is unlikely to emerge in practice. In the following we consider some plausible
deviations from the idealized collective studied in the previous section. Unless stated otherwise, we
assume the collective implements any fixed strategy h (independent of #), which could be a simpler
alternative to a potentially hard-to-implement optimal strategy hF.

5.1 Scaling strategies in the presence of non-strategic agents

First, we consider a setting where only a fraction of the population participates in the collective and
study conditions under which it is worth scaling up a strategy h, meaning a larger collective implies a
higher utility for the collective. To study how the collective’s utility changes with its size, we consider
the following mixture model for the population as proposed in [Hardt et al., 2023]]:

D* = aDy + (1 —a) - Do 3)

where an o-fraction of the population implements the collective strategy h and the remaining (1 — «)-
fraction is non-strategic. Here, the collective strategy h can be any fixed strategy, not necessarily the
optimal one. We are interested in the average utility for agents participating in the collective, denoted
as Uy := E,p, [u(z;0%)], where 8% is the equilibrium under the mixture model (3).

Proposition 6 (Benefit of scaling up a strategy). Consider the mixture model in (3), fix a strat-

egy h, and denote the resulting equilibrium by 07,. Then, the benefit of scaling up the strat-

egy h for a collective of size « is positive, i.e., 83[{; > 0, ifandonlyif ¥ < 0, where

U = (E.op, [Vou(z:03)], Bz, [Vol(2;05)]) -1 and H := VZE. po [((2;67)].

Whether a strategy is worth scaling up or not is again linked to a notion of alignment described
by W. To provide intuition for the result we consider some special cases. Suppose H is positive
semidefinite, which happens when /£ is convex; then, if u = ¢, ¥ > 0, and if u = —¢, ¥ < 0. This
means that, under convex losses, when considering the utility of participating agents, scaling up a
fixed strategy is always harmful in a zero-sum game, and it is always beneficial when the learner
and the population optimize the same target. Note that the result holds for any fixed strategy h. We
provide additional intuition and empirical insights into how U, and ¥ change with « in Section[6]

Optimal size-aware strategy. Next, we aim to understand what collectives can achieve if they
are aware of partial participation and optimize their strategy accordingly. We define the optimal
size-aware collective strategy for size o as: hf, = argmax,, E..up, [u(z; A(aDy, + (1 — a)Dy)] .

The global Stackelberg solution h* corresponds to the case where o = 1 and the collective utility
corresponds to the population utility. In the case where o < 1, the collective optimizes the utility
of participants, rather than the full population. Agents are informed of their collective size and will
choose the best strategy hf, accordingly. In the following proposition, we characterize the utility of
agents participating in a collective that deploys a size-aware strategy. We use U to denote the utility
of a population of size o implementing the optimal size-aware strategy h’}l.

Proposition 7 (Benefit of larger collectives). Consider the mixture model (3) with a collective of
size o implementing the optimal size-aware strategy h = h¥,. Then, the average collective utility U

h=n, = 0-

achieved by implementing h¥, satisfies % > 0 ifand only if %

Note that the derivative takes into account the dependence of the strategy on «.. Thus, the result
implies that reoptimizing the strategy as a function of collective size does not change whether scaling
up is worth it or not. All that matters is the alignment of the pursued goals.

5.2 Learning dynamics in the presence of selfish agents

Finally, we study how partial participation impacts learning dynamics of repeated risk minimization.
For a = 1 and a fixed strategy h that is independent of € the learning dynamics converge in a single
step. This also holds for a@ < 1 in the presence of non-strategic agents. However, this changes as
soon as agents deviating from the collective strategy act selfishly. To reflect this scenario we consider
the following alternative mixture model:

DY0) = oDy + (1 — ) - D(6), “4)
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Figure 1: Convergence of repeated risk minimization on a mixture population of level-k thinkers.
The curves show how the gap between iterates ||6; 1 — 6;||, evolves across iterations ¢ for different
mixture weights. Error bars indicate one standard deviation over 10 runs.

where an a-fraction of the population implements the collective strategy and an (1 — «) fraction
deviates from it. We assume these latter act selfishly and their behavior can be characterized by
D(0). In particular, the actions of these agents can depend on the deployed model, such as in level-k
reasoning discussed in Section 3]

We characterize the rate of convergence of repeated risk minimization under this model and show
that larger collectives have the advantage of stabilizing the learning dynamics.

Proposition 8. Consider the heterogeneous population model {@). Suppose { is y-strongly convex
in 6 and 3-smooth in z, and that the distribution map D(0) is e-sensitive. Then, as long as ¢ < %,

repeated risk minimization is guaranteed to converge to a unique stable point 97, at rate

. eB(l — a K N
16— 821, < (S’) 180 — 62,

This result explains how the sensitivity of the non-participating agents to changes in the deployed
model, together with the fraction of these agents, determines the rate of convergence to stability. For
a = 0 we recover the result of Perdomo et al.| [2020]. The smaller « the slower the convergence.

6 Simulations

We validate our theoretical findings empirically. We adapt the credit-scoring simulator from [Perdomo
et al.,[2020] that models how a lending institution classifies loan applicants by creditworthiness We
first focus on the results related to level-£ reasoning from Section [3|and then offer empirical insights
into the trade-offs of collective reasoning from Section[]and Section 3]

6.1 Retraining dynamics under level-% thinking

Assume the learner fits a logistic regression classifier 6 using cross-entropy loss. The data has 10
features and we assume agents can manipulate the subset S = { ‘remaining credit card balance’,‘open
credit lines’, ‘number of real estate loans’}. Given some € > 0, the utility of the agents is given

by uc((z,y),0) = — (0,2) — & ||z — x||§ , where ¢ is their feature value under Dy. The best
response of the agents is given by ¢ = xg — eflg, where S indexes the strategic features. Note
that this corresponds to the strategy for agents reasoning at level-1; indeed, assuming other agents
are non-strategic implies strategizing against a fixed model. It is not hard to see that the resulting
distribution map D1 () is e-sensitive. Under this model we simulate the repeated retraining dynamics
for mixed populations of level-1 and level-2 thinkers of varying proportion.

In Figure (1| we report the speed of convergence by presenting the iterate gap ||6;1 — 0¢||, against
the number of iterations. We choose € = 0.5. First, we can see that under all three mixture weights
the gap tends to zero and the dynamics converge. As the fraction of higher levels of thinking increases,
the speed of convergence increases, which confirms our theoretical finding in Theorem 3] We also
verified empirically that the dynamics converge to a unique equilibrium independent of a.

'For the implementation of the simulation, see https://github.com/haiqingzhu543/Look-Ahead-Reasoning-
on-Learning-Platforms; for the dataset, see https://www.kaggle.com/c/GiveMeSomeCredit.
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Figure 3: Collective utility decreases with col-
lective size in the zero-sum case. The collective
implements the optimal size-aware strategy for
A = 0 in a mixed population with non-strategic
agents. Small collectives can realize large gains,
but the response by the learner impedes gains at
larger sizes a.

Figure 2: Alignment serves as a good proxy for
the benefit of coordination. We consider the utility
instantiation in (3 and evaluate alignment ® and
the benefit of coordination B for different values
of \. We show them for two strategies that modify
the feature ‘age’, and ‘#dependents’, respectively.

6.2 Trade-offs in collective reasoning

With the same credit-scoring data, we study the benefit of coordination and illustrate agent utility
for different strategies and collective size. We again consider a learner that trains a logistic regres-
sion classifier using cross-entropy loss. For the population, we consider strategies that consist of
misreporting a single feature. We choose this to be either ‘age’ or ‘number of dependents’; ‘age’ is
the most important feature for the classification problem, and ‘number of dependents’ is the least
important one (see Figure[5]in the Appendix). Contrasting the two strategies allows us to vary the
impact of a strategy on the learner in an isolated and systematic way.

Alignment as a proxy for the benefit of coordination. We investigate empirically how the alignment
metric ¢ in Theorem 5| relates to the benefit of coordination. We instantiate the agents’ utility as

u((xvy)va) :g((xvy)aa)_A H9||27 (5)

where ¢ is the loss of the learner and the regularization term A € [0, 1] controls the alignment
between the learner’s and the agents’ objectives. For A = 0 we get a zero-sum game. The larger
A the more different the learner’s and the agents’ objectives are.

Note that, in this setting, the linearity and the strong concavity of our theory are not satisfied.
We are still interested in investigating to what extent the alignment metric serves as a useful proxy
for the benefit of coordination. In Figure [2)use A to vary alignment and plot ¢ against the benefit
of coordination B. We find that B < ®, which is in line with our theory. Furthermore, alignment
correlates with the benefit of coordination and accurately predicts that one strategy is more effective
than the other. Recall that we restrict the strategy space to the modification of a single feature; the
solid and the dashed line compare two different settings.

Cost of steering and why larger collectives can be worse off. Next, we illustrate the challenges
that come with large collectives in a misaligned setup. For this purpose we consider the zero-sum
setting with A = 0 and a mixed-population composed of a collective and non-strategic agents. The
collective implements the optimal size-aware strategy hEX for modifying each of the two features. We
approximate this optimal strategy using gradient descent with learning rate 0.01 and 250 epochs.

In Figure[3| we visualize the collective utility as a function of the collective size o. We see that the
collective utility is maximized as o — 0 and decreases with size. The gap at « = 0 shows the benefit
of strategic data reporting against a fixed model. Small « is an advantage in the zero-sum case as
agents have diminishing influence on the learner and they can move almost independently of 6. For
larger collectives it becomes increasingly hard to realize a benefit because the model responds to the
agents’ actions and an equivalent change to the feature has a larger effect on the learner’s loss. This
counter-force in the case of conflicting utilities is the reason why the collective utility may decrease
with the collective size.

Scaling up a fixed strategy. Finally, we verify Proposition[6|empirically. For simplicity, we assume
the learner performs binary classification to predict whether a person experienced 90 days past due
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Figure 4: Change in alignment metric (left) and utility (right) with collective size, for three fixed
strategies. The utility is non-monotonic in size, and the sign of the alignment metric ¥ accurately
predicts whether it is worth scaling up a strategy or not. We consider the setting in (6)) and evaluate
three different strategies, corresponding to the optimal size-aware strategy hf, at o € {0.3,0.5,0.8}.

delinquency or worse. The collective is uniformly sampled from the data with label 1 and aims to
maximize their utility

ui((zi,9i),0) = — (|0 — elarget”g ) (6)
where faree a fixed target model that the collective would like to achieve (see Appendixfor details).
We again assume the collective can modify individual features and consider three strategies hﬁazo_ 35

hi:o. 5. and hizolg, where each strategy is optimal for a given collective size o € {0.3,0.5,0.8}.
We refer to Appendix [C.2]for details on how the strategies are computed.

In Figure[d] we illustrate the collective utility and the alignment metric ¥ as defined in Proposition[6]
for different collective sizes «. We observe that, in accordance with our theory, when the alignment
metric is positive, the average utilities of the collective decrease as the sizes of the collective increase.
Analogously, when the alignment is negative, the average utilities of the collective increase with
collective size. Notably, as « approaches the assumed sizes 0.3, 0.5 and 0.8, the utility converges
toward 0, indicating that the model closely matches the target e Beyond this point, however, the
collective “over-pushes” the model, leading to a decrease in utility and a positive V.

7 Conclusion

We study look-ahead reasoning as a new aspect of strategic reasoning on learning platforms. While
traditional analyses of strategic classification treat users as reacting independently to a fixed model,
look-ahead reasoning highlights that users’ incentives and actions are inherently interdependent—
each agent’s actions influence future model deployments, and thus the utility of other agents in the
population. Within this broad theme, we find that higher-order reasoning accelerates convergence
toward equilibrium but does not improve individuals’ long-run outcomes, suggesting that attempts
to “outsmart” others may offer only transient advantages. In contrast, collective reasoning—where
users coordinate their behavior through their shared impact on the model—allows the agents to steer
the model towards a desirable state. Our results show that this can be a very effective lever for the
collective when the loss of the learner and the utility of the population are appropriately aligned.
However, for conflicting objectives, we find that the excessive steering power that comes with larger
collectives can prevent large utility gains.

A central goal of our work was to provide a unifying framework to contrast selfish reasoning
with collective reasoning when contesting machine learning predictions. There are several natural
extensions of our work. One is investigating look-ahead reasoning under imperfect information. As
common in economic models, we assumed agents determine their actions under perfect information.
In our case, this concerns knowledge about the learner’s loss function and the population’s data
distribution. However, in practice this information needs to be estimated from finite data which raises
questions of statistical complexity. A related question would be to study how model misspecifications,
estimation errors, or imperfect coordination impact outcomes in look-ahead reasoning.

More broadly, we hope our work can support recent discussions concerning data poisoning and
multi-party adversarial attacks [e.g., Nestaas et al [2025]], and open up new pathways to transfer
insights from strategic classification to algorithmic collective action, and vice versa.
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A  Proofs

A.1 Auxiliary results

Lemma 9. Let W denote the Wasserstein-1 distance, and Z?_l a; > 0 with a; > 0, then

<ZaDl,Zal ) <Za W(D;, D).

i=1

Proof. By definition, the Wasserstein-1 distance can be written as

E X-Y
gl(m) ux,v) [l I,

where 4 is the joint distribution of X,Y and X ~ > "  a;D;, Y ~ > | o;D}. Consider the
measures u,; defined as

Wi = (glfllril/)Eu(xl,Y)[||X Yillls

where X; ~ D;,Y; ~ D,. Then, with i = E «; 1;, we can notice that

w (Z aiDi,Zaﬂ)g) JIX =Y = Zaz LIX =Y = Zaz (D;, D)),
i=1 i=1
where the first inequality follows from the minimization property of the Wassersteln—l distance. [

Below we state a bound on the benefit of coordination that does not assume linearity (Assump-
tion[T).
Theorem . Let each strategy h(n) be represented by a parameter vector n € R%. Suppose U (h(n))
is y-strongly concave on 1. Then, we have

1
0<B< > IV, VoE . [6(z,07)] (H*) "o, [Vou(z,09)]||2.

with H* := E,cp, . [Vgﬁé(z, 9*)} and 0* denoting the stable point corresponding to the selfish
strategy h*.

A.2 Proof of Theorem

The key step is to prove Lemma[T0|below. The claim in the theorem follows by combining Lemma|[T0|
with Theorem 3.5 in[Perdomo et al.|[2020].

Lemma 10. Let oy, be the portion of the population with cognitive level k. Suppose D1(0) is
e-sensitive and the loss { is y-strongly convex and B-smooth in z,0. Then the distribution map
D(9) := >3, arDy(0) is e-sensitive with

~ o (6,8>k_1
€= ap | — €.
k=1 v

Proof. Denote 0* := A(D1(0%71)) and #° = 6. Similarly, ¢* := A(D;(¢* 1)) and ¢° = ¢.
From Equation , we can see that Dy (6°) = D;(#*~1). Consider the map Dy,; then, we have the
recursion:

W(Dy(0), Di(¢)) = W(D1(0°71), Di (¢ ")) < €[0! — o1,
By |Perdomo et al.|[2020]], Theorem 3.5, we also have

b1 ke B\
ot =1, < () ool

Finally, we notice that

(eS) 00 e} k—1
W <Z aDy(6), ) rDi(¢ ) < Zakw Dy (6 Z ( ) ello =l
k=1 k=1

k=1 =1
where the first inequality follows from Lemma 9] O
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A.3 Proof of Corollary/[l]

We start from Theorem[3] Define the contraction factor

[eS) 65 k
o - (z () ak> |
=1\
It can be seen that if p, is positive for some «, it holds that the dynamics will converge to the
equilibrium for any o with ) 7~ ; o = 1. Similarly, if it is zero, this holds so for any «.. Thus, a

simple contraction argument shows that the trajectory converges to the same stable point independent

of a. The same holds for the special case o, = 1. At this point, no agent is moving and thus the

equilibrium strategies hgf) are identical, and so are the utilities:

h =n = Ty =umd)).
A4 Proof of Proposition ]
Since (h*,0*) is the performatively stable point, by definition, it is clear that
E.~p,. [Vol(z,07)] =0.

Therefore, since u = c¢- £, we can conclude that E.p, . [Vou(z,0%)] = c¢-E,up,. [Vol(z,0%)] = 0.
Then, by Theorem[3]] we have B = 0.

A.5 Proof of Theorem

We use the parameterization in Assumption |l| The optimal strategy is defined as hf := h(n?) where
nt = arg max, U(h(n)) . The performatively stable point (h*,6*) = (h(n*),¢") is the point such
that

n* =argmaxE..p,  [u(z,07)],
"

0" =argminE.p, ., [((2,0)].
0

We consider a hypothetical mixture population which is represented as oDy + (1 — @)Dy« =
D (ant+(1—a)n=)- For this mixture population, & = 0 indicates the equilibrium of selfish actions.

This means that, if we fix the learner’s action to be #*, the action h,, = h(an® + (1 — a)n*) will
maximize the population’s expected utility only when o = 0. Formally, consider the function

L(a) = ]EzN’Dah,ﬁJr(l—a)h,* [U(Z;G*)] = EzNIDh,(anﬁ+(17Q)n*) [U(Z79*)] By ASSumption we must
have

o . )

ey = Eenyy [0(2,07)] = Eenn,. [u(2,07)] = 0.

At the stable point (h*,8*), we also have that E,.p,. [Vgl(z,0*)] = 0. Consider the function
e(a) =U (ahf + (1 — a)h*) = U (h(an* + (1 — a)n*)); we have

Oe . )
ey = Eanpyy [0(2,07)] = B, [u(z,67)]

a <EZNDh* [VQ’U,(Z, 9*)] ’EZNDM [V@E(z, 9*)] - EZNDh* [VQK(Z, 6*)]>(H*)*1

= = (Eznp,. [Vou(z, 0%)], Eznp,, [Vol(2,07)] = Eonp,. [Vol(2,07)]) 4. s

= — (Eeop,.. [Vou(z,0")], Eeup,, [Vol(z09)]) gqu, -

Finally, the result follows from the PL-inequality.
A.6  Proof of Theorem [5f]

For notational simplicity, we set f(n,0) := E..p, ,, [u(z;0)] and g(n,0) := E..p,,, [((2;0)].
Recall that

U(h(n)) = f(nv A(Dh(n))) = ]EZN'D;L(n) [U(Z, A(Dh(n)))] ,
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where the first argument in f only applies in distribution that is taken against and the second argument
is corresponding to the second argument of u. Then, by the implicit function theorem we have

V,U(h(n) = Vo f(n, A(Dhm)) = Vif(1, A(Duiy)))— V1290, ADny)) [V3.29(0, A(Duiy))] - Vaf(n, A(Duey))),

where V1 and V3 denote the gradient operator on the first/second argument of the function. For
the equilibrium of the selfish strategy (h(n*),6*), we must have V1 f(n, A(Dy)) = 0. Let n* :=
arg max, U(h(n)), by the PL-inequality, we obtain that

U () =U (1) < 5|V 290" AlDhrr) [T 000" APry))] " Vot (17, ADw )

A.7 Proof of Proposition 6]

Consider the derivative of U, with respect to variable a,

OV OB, [0(2:03)] OB, [u(=:02)] 002
da O - o0 Oa

Next, we notice that
VBEZNQ'Dh+(1—a)Do [E(Zv 9)] = 07
where we can further write the left-hand side as

VoE.naDy+(1—a)Do U(2:0)] = a-E.op, [Vol(2;0)] + (1 — ) - E.op, [Vel(2;0)] = 0.

Therefore, E.p, [Vol(2;0)] = —7% - E.<p, [Vol(2;0)]. Then, we consider the term %. By
the implicit function theorem, with a > 0, we have
00%

= — (V2 Eemamt(1-aypo L(2:0)]) " (Banp, [Vol(2:60)] — oo, [Vol(2:6)])

1

1
=1 a (V3 .0Ezmapy+(1-a)po U(2:0)]) " (Eonp, [Vol(2;6)]) .

Therefore, we can finally write

oU,, 1 . -1
e - 1-a (Eznp, [Vou(z02)])" (V5 6 mapy+(1—a)po U(2:0)])  (Eznp, [Vol(2:0))) .

oo

A.8 Proof of Proposition[7]

The proof is the same as the proof of Proposition [6] up to a use of the envelope theorem. For
completeness, we restate the proof here and highlight the use of the envelope theorem. For notational
simplicity, we abbreviate h¥, as h. Consider the derivative of U with respect to a,

OU;  OE..p, [u(2:62)] _ OF.op, [u(z65)] 965

da da B a0 da’

where the second equality follows from the implicit function theorem and the envelope theorem.
Next, we notice that

veEzwaD;L+(1—a)Do [E(Zv 0)} =0,
where we can further write the left-hand side as

VoE.naDn+(1—a)Do U(2:0)] = a-E.op, [Vol(2;0)] + (1 — ) - E.op, [Vel(2;0)] = 0.

Therefore, E.p, [Vol(z;0)] = — 12 - E.up, [Vel(2;0)]. Consider the term %. By the implicit
function theorem, with o > 0, we have

007, -1

50 = (Vo,0EzmaDpt(1-a)p, [((2:0)])  (Eznp, [Vol(2:0)] — Eoup, [Vol(2:0)])

1 -1
=1 a (V3 0BzmaDy +(1-a)po [(2:0)]) " (Eonp, [Vol(2:6))) .

We finally write
ou; 1 . -1
% 1-a (Eznp, [Vou(z02)])" (V3 6Esmady+(1-a)po [L(2:0)])  (Eznp, [Vol(2:0))) .
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A.9 Proof of Proposition

By Lemma[I0] the sensitivity of the mixture distribution can be computed as

iak <€5>k_1 e=(1-a),

k=1

where a; = 1 — a and o9 = a. Combining this with Theorem 3.5 in|[Perdomo et al.| [2020] yields
the result.

B Example to illustrate Theorem

Consider a toy setting to derive a closed-form expression for the
benefit of coordination. Assume the learner estimates the centroid Ps
6 of a distribution supported on three anchor points p1, p2, ps—the
corners of an equilateral triangle. The collective applies a strategy
h that moves their data point z to one of the three anchors with
probability (w1, we,ws), respectively, >, w; = 1 and w; > 0. This
implies a distribution D}, = ), w;0p, where the strategy determines
w. The learner minimizes the squared loss; the solution is A(D},) =

>_; wiz;. The collective, on the other hand, prefers the centroid to P1 ot P2
lie between p; and p2, and maximizes
u(z,0) = —[lp1 = 0lI3 — [[p2 — 013 — |2 — 0]3-

When the collective distributes mass uniformly, i.e., h* = (1/3,1/3,1/3), the centroid 8* =

% Ef’zl p: is a performatively stable point. There is no incentive for either party to change their
strategy since they are both best-responding to the current state. However, a look-ahead collective
would prefer h* = (1/2,1/2,0), as they are aware that they could collectively shift the model 6
away from this stable state further down in the triangle. This leads to a look-ahead optimal point
0* = 1(p1 + p2), which deviates from 6*.

In this example, Assumption|l]is satisfied. Moreover, 2 > 0 since ® = —272 where r := ||p3||2.
The benefit of coordination B = U (h*) — U(h*) = 2r? is strictly positive as long as the anchor
points are appropriately spaced. One can check that U is 2r2-strongly concave, and Theoremcan
be verified since B < %j = 12 which is tight up to a factor 1/4 coming from the slack in the strong
concavity assumption.

C Simulations

C.1 Feature importance

In Figure [5| we show the importance of different features in the credit-scoring simulator. We simulate
modifications to feature ¢ by replacing z; with a value z;, which we sample independently from a
standard normal distribution. Subsequently we train a logistic regression classifier on the modified
data. The values of the bars indicate the drop of test accuracy compared to the baseline classifier
trained without misreporting. The error bars indicate one standard deviations over 10 different
train-test splits.

C.2 Binary prediction setup

Consider the case in which the collective wants to implement a fixed strategy, which modifies their
strategic features “age” and “number of dependents” as

hay (i, 9:)) = (xi,5 + 10 po,s, Vi)

where p g is the mean of the strategic features when the label equals 0. Since the features are all
centered across the whole dataset, this transformation can be interpreted geometrically as translating
the samples with label 1 along the direction of 1, moving them toward the center of the distribution
with label 0 in feature space.
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Effect of each feature

Accuracy drop relative to baseline

e
-
,_|_.
,_l_.

,_I_.
-
,.\_.

RO R SR R A R
¥ ST T §FES
N (4 oM

&£ S9 ¥ ¢ &S

Figure 5: Accuracy drop against modifying individual features.

We run simulations with three strategies hﬁa:u 30 hﬁa:u 5. and hi:O. - Where each strategy opti-
mally chooses 7 for a given collective size o € {0.3,0.5,0.8}. The target model ;5,4 We used in
the simulation was fixed to be the model produced by the strategy with parameters (n = 0.5, « = 0.3).
For each a € {0.3,0.5,0.8}, we can solve for an optimal 7,, such that the resulting model coincides
with Ogarget. In other words, for all three collective sizes, there exists a manipulation strength 7, that
enables the collective to attain maximum utility (equal to 0). This ensures that comparisons across
different values of « are well-defined.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction accurately reflect the scope and contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed where necessary.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proofs are complete. They are either in the main text or the supplementary
material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The source code of the experiments are included in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Data is available publicly/randomly generated (in the source code). The code
is in the supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The setup is discussed in the simulation section. The implementation is in the
supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars and other setup info are discussed in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All simulations in this paper are executable with a standard personal laptop.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper mainly focuses on the theoretical contributions. The societal
implications/explanations of the results are discussed in the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The data used in the experimental section is open for public and research use.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No experiments involving human participants are conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No experiments involving human participants are conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for wording and grammar checking.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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