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Abstract

Predictive models are often designed to minimize risk for the learner, yet their
objectives do not always align with the interests of the users they affect. Thus,
as a way to contest predictive systems, users might act strategically in order to
achieve favorable outcomes. While past work has studied strategic user behavior on
learning platforms, the focus has largely been on strategic responses to the deployed
model, without considering the behavior of other users, or implications thereof for
the deployed model. In contrast, look-ahead reasoning takes into account that user
actions are coupled, and—at scale—impact future predictions. Within this frame-
work, we first formalize level-k thinking, a concept from behavioral economics,
where users aim to outsmart their peers by looking one step ahead. We show that,
while convergence to an equilibrium is accelerated, the equilibrium remains the
same, providing no benefit of higher-level reasoning for individuals in the long run.
Then, we focus on collective reasoning, where users take coordinated actions by
optimizing through their impact on the model. By contrasting collective with selfish
behavior, we characterize the benefits and limits of coordination; a new notion of
alignment between the learner’s and the users’ utilities emerges as a key concept.
We discuss connections to several related mathematical frameworks, including
strategic classification, performative prediction, and algorithmic collective action.

1 Introduction

Increasingly, digital platforms deploy learning algorithms that collect and analyze data about individu-
als to power services, personalize experiences, and allocate resources. As people come to understand
how these systems make decisions, they often adapt strategically to improve their outcomes.

Prior research has largely modeled such strategic behavior as unilateral: each agent responds
to the platform’s decision rule by optimizing their own outcome while treating that rule as fixed.
For example, a job applicant might rephrase their resume to include keywords that align with an
automated screening system’s preferences. This perspective neglects the fact that many others may
be doing the same—thereby collectively shifting the data distribution from which the platform learns
in the future.

In reality, there is ample empirical evidence that users frequently reason about one another’s
behavior. They may act in solidarity [Tassinari and Maccarrone, 2020], coordinate to amplify their
collective influence [Chen, 2018], oftentimes facilitated by labor organizations,1 or anticipate other
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people’s adaptations to gain an advantage [Kneeland, 2015]. On learning platforms in particular, such
reasoning involves anticipating the behavior of other platform participants and how those behavioral
changes will impact the learning algorithm in the future. We call this look-ahead reasoning. In the
resume-screening example, look-ahead reasoning might surface as choosing to emphasize distinct
keywords that others have abandoned, anticipating that popular buzzwords will lose predictive value
as they become widespread.

1.1 Our contributions

We study the impact of look-ahead reasoning on learning platforms—user behavior that anticipates
the actions of others in the population—by characterizing how it reshapes learning dynamics and
equilibria. We begin with selfish agents, who act independently but strategically accounting for the
other agents’ responses. We then turn to coordinated behavior through collective action, where agents
act jointly and strategize against a predictive model.

To capture agents who selfishly aim to outsmart their peers, we formalize the concept of level-k
thinking [Nagel, 1995] from behavioral economics in the context of data-driven learning. Level-k
thinking captures different depths of strategic thought: a level-k thinker acts assuming they are “one
step ahead” of all other individuals in the population, who are level-(k−1) thinkers. A level-1 thinker
acts assuming everyone in the population is non-strategic, i.e., a level-0 thinker. Higher levels k are
defined recursively. We study the dynamics of repeatedly retraining a model acting on a population
of level-k thinkers. We show that “deeper” thinking achieved for larger k accelerates the learning
dynamics, while resulting in the same equilibrium solution, no matter the depth of thinking.
Theorem 1 (Informal). For k ≥ 1, let αk ∈ (0, 1) be the fraction of level k-thinkers in the population,∑∞

k=1 αk = 1. Assume the learner minimizes a loss function that is smooth and strongly convex, and
suppose that the agent responses are sufficiently Lipschitz in the model parameters. Then, for some
constant c ∈ (0, 1), repeated retraining converges to a unique stable point at rate

O

([ ∞∑
k=1

ckαk

]t)
.

Therefore, selfish behavior, even if it relies on higher levels of reasoning, does not improve the
agents’ utility in equilibrium.

Next, we show that agents can move past this obstacle if they coordinate. Look-ahead reasoning
with coordination allows anticipating—and thus steering—model updates that result from population
behavior. We show that the gap between coordination and lack thereof in terms of agent utility is
governed by a notion of alignment between the objectives of the learning platform and the population.
Below, we use ℓ(z, θ) and u(z, θ) to denote the learner’s loss and the agent utility for deploying
model θ on instance z. Furthermore, ⟨a, b⟩M := a⊤Mb.
Theorem 2 (Informal). Let D∗ and D♯ denote the population’s data distributions at equilibrium
under selfish reasoning and under collective reasoning, respectively. Then, the benefit of coordination,
defined as the difference in population utility at the two equilibria, is bounded as

B ≤
(
⟨Ez∼D∗ [∇θu

∗] ,Ez∼D♯ [∇θℓ
∗]⟩(H⋆)−1

)2
,

where H⋆ = Ez∼D∗
[
∇2

θℓ(z, θ
∗)
]
. We use the short-hand notation ∇θu

∗ = u(z, θ∗), ∇θℓ
∗ =

ℓ(z, θ∗), where θ∗ denotes the equilibrium model under selfish reasoning.

Thus, if the average agent utility and the average loss of the learner are orthogonal, there is no
benefit to coordination. However, when there is sufficient overlap between the objectives that the
collective can exploit, coordination can lead to more favorable outcomes than selfish reasoning.

In additional results, we study heterogeneous populations comprised of selfish agents and col-
lectives of varying size. The results shed light on the benefits and limitations of coordination; for
example, bigger collectives do not always lead to a higher average utility for the collective. We also
study the impact of selfish agents opting out from the collective on the learning dynamics, showing
that broader participation in the collective implies faster convergence.

1.2 Background and related work

Strategic classification [Hardt et al., 2016, Brückner and Scheffer, 2011] introduces a model to study
strategic behavior in learning systems based on assumptions of individual rationality. It describes a
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population of agents best-responding to a decision rule by altering their features to achieve positive
predictions, given a fixed decision rule. Several variations of this basic model have been studied
[e.g., Dong et al., 2018, Chen et al., 2020, Bechavod et al., 2021, Ghalme et al., 2021, Jagadeesan
et al., 2021]; see Podimata [2025] for a recent survey of this literature. All these works focus on
studying how agents strategize against a fixed decision rule. Our work introduces a new dimension of
reasoning to strategic classification, taking into account how individual agents’ actions are coupled
and how this influences the model the agents strategize against.

Performative prediction [Perdomo et al., 2020] introduces performative stability as an equilibrium
notion that characterizes long-term outcomes in the interaction of a population with a learning
system. Performative stability is a fixed point of repeated retraining by the learner in a dynamic
environment. Prior work in performative prediction [Perdomo et al., 2020, Mendler-Dünner et al.,
2020, Drusvyatskiy and Xiao, 2023, Brown et al., 2022, Narang et al., 2023] has studied the behavior
of retraining and conditions that ensure its convergence to stability in different learning settings.
We refer to Hardt and Mendler-Dünner [2025] for a more extensive overview of the performative
prediction literature. A key concept in performative prediction is the “distribution map,” which
characterizes how different model deployments impact the population. This map is typically treated as
a fixed unknown quantity. We study how different types of strategic reasoning impact the distribution
map, thus also impacting the resulting convergence properties.

A more recent literature on algorithmic collective action [Hardt et al., 2023] studies coordinated
agent efforts with the goal of steering learning systems; see [Baumann and Mendler-Dünner, 2024,
Ben-Dov et al., 2024, Gauthier et al., 2025, Sigg et al., 2025] for recent developments in this area,
as well as related discussions of data leverage [Vincent et al., 2021]. From the perspective of our
work, collective action is a type of look-ahead reasoning: agents plan through model updates under
the assumption that they coordinate with other agents. We study the tradeoffs and implications of
coordinated reasoning to population utility. Relatedly, Hardt et al. [2022] discuss how platforms can
reduce risk by actively steering a population. Collective action reverses this perspective and shows
how the population can improve its utility by steering the learner. This perspective is related to [Zrnic
et al., 2021], who also deviate from the classical model of strategic classification and instead model
the population as the leader in the Stackelberg game against the learning platform.

Finally, at a technical level, our work leverages ideas from game theory. Balduzzi et al. [2018]
proposed the decomposition of differentiable games into the “Hamiltonian” part and the “potential”
part through the decomposition of the Hessian of the game. Our work also utilizes the Hessian to
describe the alignment of utilities between the learner and the collective.

2 Setup

We consider a population of individuals interacting with a learning platform. We assume the platform
trains a predictive model on the population’s data, and individuals strategically alter their data to
achieve favorable outcomes. We elaborate below.

Learning platform. Upon observing data about the population, the learner optimizes the parameters
θ ∈ Θ of their predictive model fθ. We work with the following optimality assumption on the learning
algorithm: given a loss function ℓ, the learner’s response A(D) to a data distribution D is given by
risk minimization, defined as

A(D) := argmin
θ∈Θ

Ez∼D [ℓ(z, θ)].

Strategic agents. We assume individuals are described by data points z ∈ Z sampled from a base
distribution D0. Typically, z = (x, y) ∈ X × Y are feature–label pairs. Individuals implement a
data modification strategy hθ : Z → Z that maps an individual’s data point z to a modified data
point hθ(z); the strategy can depend on the learning platform’s currently deployed model θ. We will
sometimes omit the subscript θ if the strategy is independent of the current model, i.e., hθ ≡ hθ′

for all θ, θ′. We use Dhθ
to denote the distribution of hθ(z) for z ∼ D0; in other words, this is the

distribution of data points after applying strategy hθ to all base data points. Following the terminology
of Perdomo et al. [2020], we call Dhθ

a distribution map. Note that different strategies hθ correspond
to different distribution maps. When the strategy is clear from the context, we will write Dhθ

≡ D(θ).
The notation Dh equally applies to model-independent strategies h.
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Equilibria and learning dynamics. We study the long-term behavior of the learner repeatedly
optimizing their model. Formally, we study the learning dynamics of repeated risk minimization:

θt+1 = A(Dhθt
). (1)

The natural equilibrium of these dynamics is called performative stability [Perdomo et al., 2020]. We
say a model θ∗ is performatively stable with respect to a strategy hθ if

θ∗ = A(Dhθ∗ ).

In words, there is no reason for the learner to deviate from the current model given the data distribution
it implies.

Population utility. Different strategies hθ lead to different equilibria. Rather than just focusing
on the learner’s loss, we evaluate equilibria in terms of the utility they imply for the population. We
denote the population’s utility after implementing strategy hθ by

U(hθ) = Ez∼Dhθ∗
[u(z, θ∗)] ,

where u(z, θ) is the utility of an individual with data point z when the deployed model is θ, and θ∗

denotes the equilibrium model under strategy hθ, i.e., the performatively stable point. Again, we will
sometimes omit the subscript when denoting the strategy if it is independent of the deployed model.

3 Level-k reasoning

Strategic classification [Hardt et al., 2016] assumes that each individual selfishly best-responds to a
deployed model θ. As explained earlier, this model does not take into account the agents’ awareness
that they as a whole determine the deployed model. To account for this dimension of reasoning, we
build on the cognitive hierarchy framework from behavioral economics [Nagel, 1995] and generalize
strategic classification to allow individuals to reason through the other individuals’ responses. In
particular, we formalize level-k thinking, which categorizes players by the “depth” of their strategic
thought. Intuitively, an individual reasoning at level k assumes a level of cognitive reasoning for the
rest of the population and tries to “outsmart” them. In other words, they are always one step ahead:
a level-k thinker best-responds to the model that would result from a population of level-(k − 1)
thinkers. The basic level-k model starts with an explicit assumption about how individuals at level 0
behave. It then defines higher levels of thinking recursively.

Suppose that agents at level 0 are non-strategic and implement h(0)
θ (z) = z in response to all θ.

Then, for every higher level of thinking k ≥ 1 we define the strategy for level-k thinkers recursively
as

h
(k)
θ (z) := argmaxz′u(z′,A(Dk−1(θ))), (2)

where Dk−1(θ) is the distribution obtained by applying the strategy h
(k−1)
θ in response to a deployed

model θ to every z ∼ D0. At level k = 1, we recover the standard microfoundation model of strategic
classification [Hardt et al., 2016], where individuals best-respond to a fixed model. For larger k, the
agents anticipate the actions of other agents and best-respond to the hypothetical model resulting
from the shifted distribution.

Different individuals in the population might implement different levels of reasoning. To reflect
this we deviate from a homogeneous population and let the population consists of level-k thinkers
at different levels k. In particular, we assume that αk-fraction of the population has cognitive level
k, for k = 1, 2, . . . and

∑∞
k=1 αk = 1. If αk = 1 for some k, then all individuals in the population

have the same level of reasoning. This model results in the distribution map:

D(θ) :=

∞∑
k=1

αkDk(θ). (3)

We characterize the learning dynamics for different levels of thinking. We use the following
Lipschitzness assumption on the induced distribution at level k = 1:

W(D1(θ),D1(θ
′)) ≤ ϵ ∥θ − θ′∥2 , ∀θ, θ′ ∈ Θ,

where W denotes the Wasserstein-1 distance. This condition is known as ϵ-sensitivity [Perdomo
et al., 2020].
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Theorem 3 (Retraining with level-k thinkers). Suppose ℓ is γ-strongly convex and β-smooth in z,
and that the distribution map D1(θ) is ϵ-sensitive. Then, as long as ϵ < γ

β , there is a unique stable
point θ∗ such that for any (αk)

∞
k=1 retraining on the mixed population (3) converges as

∥θt − θ∗∥2 ≤

( ∞∑
k=1

(
ϵβ

γ

)k

αk

)t

∥θ0 − θ∗∥2 . (4)

The core technical step in the proof is to show how the sensitivity of the distribution map
Dk(θ) changes recursively with k. In particular, the distribution map D(θ) in (3) has sensitivity∑∞

k=1 αk (ϵβ/γ)
k−1

ϵ. We refer to Appendix A for the full poof.
For the case where α1 = 1 and thus all agents reason at level k = 1, we recover the retraining

result of Perdomo et al. [2020]. There are two interesting implications of the generalization in
Theorem 3. First, we observe that for populations with higher levels of thinking k, the rate of
convergence increases (although the condition for convergence, ϵ < γ/β, remains the same). This
can be interpreted as saying that performative distribution shifts are mitigated when the population
has a deeper level of strategic thought. The second implication is that, as long as agents act selfishly,
they cannot benefit from higher levels of reasoning at stability.
Corollary 1. Under the assumptions of Theorem 3, it holds that

U(h
(1)
θ ) = U(h

(k)
θ ), ∀k ≥ 1.

Moreover, the utility at stability remains unaltered for any mixed population consisting of level-k
thinkers regardless of (αk)

∞
k=1.

This corollary follows from the observation that the stable point θ∗ is the same for any mixed
population of level-k thinkers. Another consequence of this fact is that the equilibrium strategies are
identical for every k.

In the following sections we will denote this unique optimal selfish strategy by h∗ = h
(k)
θ∗ and the

implied data distribution by D∗.

4 Collective reasoning

So far we considered individuals who make use of higher levels of thinking to reason through the
actions of others, allowing them to anticipate model changes implied by the population’s actions.
We saw that higher levels of reasoning do not improve their utility at equilibrium. The fundamental
reason is that individually they cannot steer the trajectory of the learning algorithm; they can merely
anticipate it. In the following we show how individuals can achieve more favorable outcomes by
joining forces and making decisions collectively; this gives them steering power.

We denote by h♯ the optimal collective strategy:

h♯ = argmax
h

U(h) = argmax
h

Ez∼Dh
[u(z,A(Dh))] .

Notice the difference compared to (2). In (2), the optimization variable z′ does not enter the model
training A, while above h directly determines the subsequently deployed model. The optimal
collective strategy is a Stackelberg equilibrium: the population acts as the Stackelberg leader.

To contrast the optimal collective strategy with the optimal selfish strategy, we define the benefit
of coordination.
Definition 1 (Benefit of coordination). Let h∗ be the optimal selfish strategy and h♯ the optimal
collective strategy. We define the benefit of coordination as

B = U(h♯)− U(h∗).

Since h♯ is globally optimal, it holds that B ≥ 0. How large B is depends on the goals pursued by
the learner and the population, as characterized by ℓ and u, respectively. Through coordinated data
modifications, the population can steer the model towards a common target. But to do so they have to
deviate from their individually optimal strategy. Thus, what governs the benefit of coordination is the
tradeoff between the loss experienced by taking locally suboptimal actions and the gain achieved by
steering the model.

We start with a simple case where the benefit of coordination is zero.
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Proposition 4. Suppose u = c · ℓ for some c ̸= 0. Then, it holds that B = 0.

In an adversarial setting where c > 0, the game between the learner and the collective is a
zero-sum game. In this case the benefit of coordination is zero, as the cost of steering is equal to
its return. When c < 0, the platform and the agents pursue the same goal and the game becomes
a potential game between the two. In this case selfish actions are simultaneously optimal for the
collective and B is again zero.

To further understand the benefit of coordination beyond this special case, we consider linear
distribution maps. Additional results can be found in Appendix B.
Assumption 1 (Linearity). Let each strategy h ∈ H be represented by a parameter vector η(h) ∈ Rd

through a parameterization η : H → Rd, where H denotes the strategy space. Define the induced
distribution map D̃ : Rd → ∆(Z) by composition, D̃(η(h)) := Dh, where ∆(Z) denotes the space
of probability distributions over the support Z . We say that the distribution map is linear with respect
to the parameterization if

D̃
(
αη(h) + (1− α) η(h′)

)
= α D̃

(
η(h)

)
+ (1− α) D̃

(
η(h′)

)
, ∀ α ∈ [0, 1].

Intuitively, linearity means that the population’s data distribution is the same whether agents
linearly interpolate between two strategies h and h′, or they split up in two subgroups and each
implements one of the two strategies. Under this assumption, the following result provides a bound
on the benefit of coordination.
Theorem 5 (Bound on the benefit of coordination). Let Assumption 1 hold. Let U(h) be γ-strongly
concave in the parameterisation η(h) and U(αh + (1 − α)h′) be differentiable with respect to α.
Then, we have

B ≤ 1

2γ
Φ2,

where

Φ :=
〈
Ez∼Dh∗ [∇θu(z, θ

∗)] ,Ez∼D
h♯

[∇θℓ(z, θ
∗)]
〉
(H⋆)−1

and H⋆ = Ez∈Dh∗

[
∇2

θ,θℓ(z, θ
∗)
]
.

This result shows how the benefit of coordination is governed by the alignment between the utility u
of the population and the loss ℓ of the learner, quantified by the inner product of their gradients at
equilibrium. Moreover, the inverse-Hessian weighting in Φ shows that what really matters is not a
raw gradient alignment but one filtered through the local curvature of the loss landscape. Indeed, the
directions that the learner finds “flat” (small Hessian eigenvalues) allow for more influence on the
model through small data modifications, and thus they offer more leverage. In line with Proposition 4,
when u = c · ℓ for some constant c, we have Φ = 0 because the gradients in the inner product become
zero at stability. In addition, Φ = 0 for the case where the gradients are orthogonal and the two
functions are unrelated. To show that Φ can be positive in general, we present a simple case with a
close-form expression for Φ in the following example.

p1 p2

p3

θ∗

θ♯

Example. Consider a toy setting where the learner estimates the cen-
troid θ of a distribution supported on three anchor points p1,p2,p3—the
corners of an equilateral triangle. The collective applies a strategy h
that moves the data point to one of the three anchors with probability
(w1, w2, w3), forming a distribution Dh =

∑
i wiδpi

with
∑

i wi = 1
and wi ≥ 0. Thus, the strategy is parameterized by w. The learner
minimizes the squared loss ℓ(z, θ) = ∥z − θ∥2 over the distribution Dh.
The collective, on the other hand, prefers the centroid to lie between p1

and p2, and maximizes

u(z, θ) = −∥p1 − θ∥22 − ∥p2 − θ∥22 − ∥z − θ∥22.

Here, it can be seen that A(Dh) =
∑

i wixi and hence U(w) = −∥Pw∥2 + 2(p1 + p2)
⊤Pw −∑3

i=1 wi ∥pi∥22 + const where P = [p1,p2,p3].
When the collective distributes mass uniformly, i.e., h∗ = (1/3, 1/3, 1/3), the resulting centroid

θ∗ = 1
3

∑3
i=1 pi is a performatively stable point. There is no incentive for either party to change their

strategy since they are both best-responding to the current state. However, a look-ahead collective
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would prefer h♯ = (1/2, 1/2, 0), which can be calculated by directly maximizing U(h). This leads
to a look-ahead optimal point θ♯ = 1

2 (p1 + p2), which deviates from the performative stability.

In this example, Assumption 1 is satisfied. Φ2 > 0 since Φ = −2r2 where r := ∥p3∥2. The
benefit of coordination is B = U(h♯)− U(h∗) = 3

4r
2 is strictly positive as long as the anchor points

are appropriately spaced. One can check that U is 2r2-strongly concave, and Theorem 5 can be
verified since B = 3

4r
2 ≤ Φ2

2γ = r2 which is tight up to a factor 1/4 coming from the slack in the
strong concavity assumption.

5 Heterogeneous populations

A perfectly coordinated population, or one that implements the optimal collective strategy, is unlikely
to emerge in practice. In the following we consider some plausible deviations from the idealized
collective studied in the previous section and discuss how this impacts agent utilities and outcomes.
Unless stated otherwise, we assume the collective implements any fixed strategy h (independent of
θ), which could be a simpler alternative to a potentially hard-to-implement optimal strategy h♯.

5.1 Learning dynamics in the presence of selfish agents

The learning dynamics of repeated risk minimization under idealized collective reasoning converge
in a single step, since the strategy is fixed and independent of θ. However, this changes as soon as
some agents deviate from the collective strategy. To reflect this scenario we consider the following
mixture model:

Dα(θ) = αDh + (1− α) · D(θ), (5)
where an α-fraction of the population implements the collective strategy h and the remaining (1−α)-
fraction deviates from the collective strategy. We assume this remainder of the population acts
selfishly, and their behavior can be characterized by D(θ). The actions of these agents can depend on
the deployed model, such as in level-k reasoning discussed in Section 3.

We characterize the rate of convergence of repeated risk minimization under this model.
Proposition 6. Consider the heterogeneous population model (5). Suppose ℓ is γ-strongly convex and
β-smooth in z, and that the distribution map D(θ) is ϵ-sensitive. Then, as long as ϵ < γ

β , repeated
risk minimization is guaranteed to converge to a unique stable point θ∗α at rate

∥θt − θ∗α∥2 ≤
(
ϵβ(1− α)

γ

)t

∥θ0 − θ∗α∥2 . (6)

This result shows how the sensitivity of the non-participating agents to changes in the deployed
model, together with the fraction of these agents, determines the rate of convergence to stability.
The smaller α the slower the rate of convergence. Thus, larger collectives have the advantage of
stabilizing the learning dynamics.

5.2 Limits of coordination in the presence of non-strategic agents

Next, we study conditions under which it is worth scaling up a strategy h, meaning when a larger
collective implies a higher utility for the collective. To study how the collective’s utility changes with
its size, we study the following mixture model for the population

Dα = αDh + (1− α) · D0, (7)

where the (1 − α)-fraction of agents deviating from the collective strategy are non-strategic. The
collective strategy h can be any fixed strategy, not necessarily the optimal one. In the following,
we are interested in the average utility for agents participating in the collective, denoted as Uα :=
Ez∼Dh

[u(z; θ∗α)], where θ∗α denotes the equilibrium under the mixture model (7).
Proposition 7 (Benefit of scaling up a strategy). Consider the mixture model in (7), fix a strategy h,
and denote the resulting equilibrium by θ∗α. Then, the benefit of scaling up h at size α is positive, i.e.,

∂Uα

∂α
> 0, if and only if ⟨Ez∼Dh

[∇θu(z; θ
∗
α)] ,Ez∼Dh

[∇θℓ(z; θ
∗
α)]⟩H−1 < 0,

where
H := ∇2

θ,θEz∼Dα [ℓ(z; θ∗α)] .
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The result is a direct consequence of the envelope theorem. It provides a condition for whether a
strategy is worth scaling up or not. The condition is again linked to a notion of alignment described
by the inner product between the loss and utility gradients. Note that the result holds for any fixed
strategy h. Suppose H is positive semi-definite; then, if u = ℓ, ∂U

∂α ≤ 0, and if u = −ℓ, ∂U
∂α ≥ 0.

Finally, we aim to understand what collectives can achieve if they are aware of partial participation
and optimize their strategy accordingly. We define the optimal size-aware collective strategy for size
α as:

h♯
α = argmax

h
Ez∼Dh

[u(z;A(αDh + (1− α)D0)] . (8)

The global Stackelberg solution h♯ corresponds to the case where α = 1 and the collective utility
corresponds to the population utility. In the case where α < 1, the collective optimizes the utility
of participants, rather than the full population. Agents are informed of their collective size and will
choose the best strategy h♯

α accordingly. In the following proposition, we characterize the utility of
agents participating in a collective that deploys a size-aware strategy. We use U∗

α to denote the utility
of a population of size α implementing the optimal size-aware strategy h♯

α.

Proposition 8 (Benefit of larger collectives). Consider the mixture model (7) with h = h♯
α. Then, the

utility U∗
α achieved by implementing the optimal size-aware strategy h♯

α satisifies

∂U∗
α

∂α
≥ 0 if and only if

∂Uα

∂α

∣∣∣∣
h=h♯

α

≥ 0.

Note that the derivative in the first term takes into account the dependence of the strategy on α.
Thus, the result says that reoptimizing a strategy as a function of collective size does not change
whether scaling up is worth it or not. The argument involves considering how the equilibrium changes
after reoptimizing the strategy and evaluating this change against the overall change in the population.

6 Simulations

We validate our theoretical findings empirically. We adapt the credit-scoring simulator from Perdomo
et al. [2020] that models how a lending institution classifies loan applicants by creditworthiness.2

6.1 Retraining dynamics under level-k thinking

We consider a strategic classification setup with a logistic regression classifier θ ∈ R10. Let S be the
set of the strategic features that the agents can manipulate. We choose this to be: remaining credit
card balance, open credit lines, and number of real estate loans. Given some ϵ > 0, the utility of the
agents is given by

uϵ(z, θS) = −⟨θ, z⟩ − 1

2ϵ
∥z0 − z∥22 , (9)

where z0 is their feature value under D0. Assuming the agents can only manipulate coordinates
of z corresponding to strategic features, the best response of the agents for these coordinates would
be z∗S = zS − ϵθS , corresponding to the strategy for agents thinking at level-1. It is not hard
to see that the resulting distribution map D1(θ) is ϵ-sensitive. Under this model we simulate
the repeated retraining dynamics for different populations of level-k thinkers, with (α1, α2) ∈
{(0.9, 0.1), (0.5, 0.5), (0.1, 0.9)}, where αk is the fraction of the agents who are level-k thinkers.

In Figure 1 we report the speed of convergence with ϵ = 0.5 by presenting the iterate gap
∥θt+1 − θt∥2 against the number of iterations. First, we can see that under all three mixtures the gap
tends to zero and the dynamics converge. As the fraction of higher levels of thinking increases, the
speed of convergence increases, which is in line with our theoretical finding in Theorem 3. We can
verify empirically that the dynamics converge to a unique equilibrium independent of α.

2The implementation of the simulation can be found in https://github.com/haiqingzhu543/
Look-Ahead-Reasoning-on-Learning-Platforms. The dataset is available at https://www.kaggle.
com/c/GiveMeSomeCredit/data
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Figure 1: Convergence of repeated risk minimization. The x-axis is the number of iterations
{1, · · · , 25} and the y-axis is the gap between iterations ∥θt+1 − θt∥2. The error bars indicate one
standard deviation over 10 runs.

6.2 Utility of collective participation

With the same credit-scoring data we investigate collective strategies of misreporting individual
features. we provide intuition for alignment and how it impacts the utility gain for the collective and
the effect of scaling the strategy.
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Figure 2: Simulation of the accuracy drop against
concealing each feature. The values of the bars
indicate the drop of test accuracy compared to the
baseline classifier. The error bars indicate one stan-
dard diviations over 10 different train-test splits.

To interpret the setting, we first look at the
effect individual features have on the learner’s
predictive objectives to intuitively understand
the alignment of the competing goals. To this
end, let the feature of interest for the collective
be feature i. Then, to simulate modifications to
this feature, we replace zi with a target value ẑi,
which we sample independently from a standard
normal distribution. Subsequently, we retrain a
logistic regression classifier, using data in which
the respective feature has been misreported. We
repeat this experiment for each feature individ-
ually. It is intuitive that concealing or altering a
particular feature will influence the classifier’s
performance. Figure 2 shows the resulting accu-
racy drops relative to a baseline classifier trained
without misreporting. A larger accuracy reduc-
tion indicates that the concealed feature carries
significant predictive information for determin-
ing the true labels. Intuitively, substantial accu-
racy drops imply a misalignment between the
agents’ incentive to misreport and the learner’s
objective of minimizing prediction loss. Thus, the magnitude of the performance drop serves as a
proxi for the degree of alignment Φ.

Next, we study a mixed-population setting as in (7) where an α-fraction of agents act collectively
while the remaining 1 − α report D0 truthfully. In particular, the agents consider the following
objective:

u((x, y); θ) = CE(θTx, y)− λ · ∥x− x0∥2,

where CE denotes the cross-entropy loss and x0 represents the agent’s initial feature vector. We
assume the collective implements the optimal size aware-strategy h♯

α under the constraint that the
collective can only manipulate a single feature S (defining a constraint strategy space), i.e.,

h♯
α = arg max

h∈HS

Ez∼Dh

[
u
(
z;A

(
αDh + (1− α)D0

))]
,

where HS denotes the space of strategies for changing feature S. We approximate the optimal strategy
using gradient descent with learning rate 0.01 and 250 epochs.
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(a) zero-sum case (λ = 0)
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(b) non-zero-sum case (λ = 0.5)

Figure 3: Collective utility in a mixed population. Each line indicates the manipulation of a feature,
either age or number of dependents. Figures show expected utility of the collective for varying
collective size α. All the error bars indicate one standard deviation over 10 runs.

Alignment. Since the learner performs logistic regression our setup corresponds to a zero-sum
game for λ = 0. The larger λ the more misaligned the objective are. To reflect these different
scenarios we evaluate the expected utility of the collective at equilibrium in the cases of λ = 0 and
λ = 0.5.

Figure 3 reports the results for the two cases where the feature S is either ‘age’ or ‘number of
dependents’, where the former was found to be the most important feature and the latter is the least
important feature. The figure report the gain of the agents as the collective size α increases. Both
curves are decreasing with the increase of collective size. As shown in Figure 2, age is a more
important feature than number of dependents. This means, changing the feature related to age leads to
larger return for the collective, but at the same time, they face a stronger counterforce by the learner
as the collective size increases, leading to a faster drop in the utility gain. Under the non-zero-sum
setting (right panel of Figure 3), the collective encounters a much weaker counter-force. After
accounting for the regularization term penalizing deviation from the base distribution, the overall
utilities are lower than in the zero-sum case. The utility trend becomes flatter, and in some regimes
even slightly increasing with collective size. This behavior suggests that, once penalized for large
deviations, the collective gains more effective steering power, enabling larger groups to coordinate
beneficially despite the penalty for deviating from the base distribution.

7 Conclusion

We introduce look-ahead reasoning as a new perspective on strategic reasoning on learning plat-
forms. While traditional analyses of strategic classification treat users as reacting independently
to a fixed model, look-ahead reasoning highlights that users’ incentives and actions are inherently
interdependent—each agent’s actions influence future model deployments, and thus the utility of other
agents in the population. Within this broad theme, we find that higher-order reasoning accelerates
convergence toward equilibrium but does not improve individuals’ long-run outcomes (Theorem 3),
suggesting that attempts to “outsmart” others may offer only transient advantages. In contrast,
collective reasoning—where users coordinate their behavior through their shared impact on the
model—allows the agents to steer the model towards a desirable state. The benefits of coordination,
however, may be limited (Theorem 5), and the excessive steering power that comes with larger
collectives may harm the collective utility, leading to smaller utility for larger collectives in certain
cases (Proposition 7).
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A Proofs

A.1 Auxiliary results

Lemma 9. Let W denote the Wasserstein-1 distance, and
∑n

i=1 αi ≥ 0 with αi ≥ 0, then

W

(
n∑

i=1

αiDi,

n∑
i=1

αiD′
i

)
≤

n∑
i=1

αiW(Di,D′
i).

Proof. By definition, the Wasserstein-1 distance could be rewrited as
min

µ(X,Y )
Eµ(X,Y ) [|X − Y |] ,

where µ is the joint distribution of X,Y and X ∼
∑n

i=1 αiDi, Y ∼
∑n

i=1 αiD′
i. Then, consider the

measures µi defined as
µi = min

µ(Xi,Yi)
Eµ(Xi,Yi) [|Xi − Yi|] ,

where Xi ∼ Di, Yi ∼ D′
i. Then, with µ̂ =

∑
i αiµi, we can notice that

W

(
n∑

i=1

αiDi,

n∑
i=1

αiD′
i

)
≤ Eµ̂ [|X − Y |] =

n∑
i=1

αiEµi
[|X − Y |] =

n∑
i=1

αiW(Di,D′
i),

where the first inequality follows from the minimisation property of the Wasserstein-1 distance.

A.2 Proof of Theorem 3

The key step is to prove Lemma 10 below. The claim in the theorem follows by combining Lemma 10
with Theorem 3.5 in Perdomo et al. [2020],
Lemma 10. Let αk be the portion of the population with cognitive level k. Then, suppose ℓ is
γ-strongly convex and β-smooth in z, θ, and that the distribution map D(θ) :=

∑∞
k=0 αkDk(θ), then

the sensitivity of D is
∑∞

k=1 αk

(
ϵβ
γ

)k−1

ϵ.

Proof. Denote θk := A(D1(θ
k−1)) and θ0 = θ. Similarly, ϕk := A(D1(ϕ

k−1)) and ϕ0 = ϕ. From
Equation (2), we can see that Dk(θ

0) = D1(θ
k−1). Consider the map Dk, we have the recurrence:

W(Dk(θ),Dk(ϕ)) = W(D1(θ
k−1),D1(ϕ

k−1)) ≤ ϵ
∥∥θk−1 − ϕk−1

∥∥
2
.

By Perdomo et al. [2020], Theorem 3.5, we also have∥∥θk−1 − ϕk−1
∥∥
2
≤
(
ϵβ

γ

)k−1

∥θ − ϕ∥2 .

Then, we notice that

W

( ∞∑
k=0

αkDk(θ),

∞∑
k=0

αkDk(ϕ)

)
≤

∞∑
k=0

αkW(Dk(θ),Dk(ϕ)) ≤
∞∑
k=1

αk

(
ϵβ

γ

)k−1

ϵ ∥θ − ϕ∥2 ,

where the first inequality follows from Lemma 9 and the k = 0 terms could be dropped since both
D0(θ) = D0(ϕ) = D0.

A.3 Proof of Corollary 1

We start from Theorem 3. Define the contraction factor

ρα =

( ∞∑
k=1

(
ϵβ

γ

)k

αk

)
.

It can be seen that if ρα is positive, it holds for any α such that
∑∞

k=1 αk = 1. Similarly, if it is zero,
this holds for any α. Thus, a simple contraction argument shows that the trajectory converges to the
same stable point independent of α. The same holds for the special case αk = 1. At this point, no
agent is moving and thus the equilirbium strategies h(k)

θ∗ are identical. So is the utility:

h
(k)
θ∗ = h

(k′)
θ∗ ⇒ U(h

(k)
θ∗ ) = U(h

(k′)
θ∗ )
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A.4 Proof of Proposition 4

Since (h∗, θ∗) is the performative stable point. By definition, θ∗, it is clear that
Ez∼Dh∗ [∇θℓ(z, θ

∗)] = 0.

Therefore, since u = c ·ℓ, we can conclude that Ez∼Dh∗ [∇θu(z, θ
∗)] = c ·Ez∼Dh∗ [∇θℓ(z, θ

∗)] = 0.
Then, by Theorem 11 below, we have B = 0.

A.5 Generalized version of Theorem 5

We first state a general version of Theorem 5 without the use linearity assumption 1.
Theorem 11 (Generalization of Theorem 5). Suppose U(h) is γ-strongly concave. Then, we have

0 ≤ B ≤ 1

2γ
·
∥∥Ez∼Dh∗ [∇h∇θℓ(z, θ

∗)] (H⋆)−1Ez∼D
h♯

[∇θu(z, θ
∗)]
∥∥2
2
.

where θ∗ denotes the stable point corresponding to the selfish strategy h∗ and θ♯ denotes the stable
point corresponding to the strategy h♯ = argmaxh U(h).

Proof. For the simplicity of notations, we set f(h, θ) := Ez∼Dh
[u(z; θ)] and g(h, θ) :=

Ez∼Dh
[ℓ(z; θ)]. Recall that

U(h) = f(h,A(Dh)) = Ez∼Dh
[u(z,A(Dh))] ,

where the first argument in f only applies in distribution that the distribution is taken against and
the second argument is corresponding to the second argument of u. Then, by the implicit function
theorem we have
∇hU(h) = ∇hf(h,A(Dh)) = ∇1f(h,A(Dh))−∇2

1,2g(h,A(Dh))
[
∇2

2,2g(h,A(Dh))
]−1 ∇2f(h,A(Dh)),

where ∇1 and ∇2 denote the gradient operator on the first/second argument of the function. For the
NE (h∗, θ∗), we must have ∇1f(h,A(Dh)) = 0. Hence, by the PL-inequality, we could obtain that

f
(
h♯
)
− f (h∗) ≤ 1

2γ
·
∥∥∥∇2

1,2g(h
∗,A(Dh∗))

[
∇2

2,2g(h
∗,A(Dh∗))

]−1 ∇2f(h
∗,A(Dh∗))

∥∥∥2
2
.

A.6 Proof of Theorem 5

For notional simplicity, we use h in replace of the parameterisation η(h) whenever the usage is clear.
We consider a hypothetical mixture population which is represented as αDh♯ + (1− α)Dh∗ . Note
that (h∗, θ∗) is the stable point such that

h∗ = argmax
h

Ez∼Dh
[u(z, θ∗)] ,

θ∗ = argmin
θ

Ez∼Dh∗ [ℓ(z, θ)] .

Therefore, for the mixture population, α = 0 indicates the equilibrium of selfish action. It means
that, if we fix the learner’s output is θ∗ of this case, the action hα = αh♯ + (1 − α)h∗ will
maximize the population’s expected utility only when α = 0. Formally, consider the function
ι(α) = Ez∼D

αh♯+(1−α)h∗ [u(z, θ
∗)] = Ez∼αD

h♯+(1−α)Dh∗ [u(z, θ
∗)], we must have

∂ι

∂α

∣∣∣
α=0

= Ez∼D
h♯

[u(z, θ∗)]− Ez∼Dh∗ [u(z, θ
∗)] = 0.

Also at the stable point (h∗, θ∗), we have the fact that Ez∼Dh∗ [∇θℓ(z, θ
∗)] = 0. Then, consider the

function e(α) = U
(
αh♯ + (1− α)h∗), we have

∂e

∂α

∣∣∣
α=0

= Ez∼D
h♯

[u(z, θ∗)]− Ez∼Dh∗ [u(z, θ
∗)]

−
〈
Ez∼Dh∗ [∇θu(z, θ

∗)] ,Ez∼D
h♯

[∇θℓ(z, θ
∗)]− Ez∼Dh∗ [∇θℓ(z, θ

∗)]
〉
(H⋆)−1

= −
〈
Ez∼Dh∗ [∇θu(z, θ

∗)] ,Ez∼D
h♯

[∇θℓ(z, θ
∗)]− Ez∼Dh∗ [∇θℓ(z, θ

∗)]
〉
(H⋆)−1

= −
〈
Ez∼Dh∗ [∇θu(z, θ

∗)] ,Ez∼D
h♯

[∇θℓ(z, θ
∗)]
〉
(H⋆)−1

.

Then, the result follows from the PL-inequality. In the following, we state a more general version
of Theorem 5 which does not rely on Assumption 1. One could see that PS is still governed by the
alignment between the gradient of utility and the Jacobian term Ez∼Dh∗ [∇h∇θℓ(z, θ

∗)].
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A.7 Proof of Proposition 6

By Lemma 10, the sensitivity of the mixture distribution could be computed as
∞∑
k=1

αk

(
ϵβ

γ

)k−1

ϵ = (1− α)ϵ,

where only α1 = 1− α and α0 = α. Combining this with Theorem 3.5 in Perdomo et al. [2020] will
yield the result.

A.8 Proof of Proposition 7

Consider the derivative of Uα with respect to variable α,

∂Uα

∂α
=

∂Ez∼Dh
[u(z; θ∗α)]

∂α
=

∂Ez∼Dh
[u(z; θ∗α)]

∂θ
· ∂θ

∗
α

∂α
,

Next, we notice that
∇θEz∼αDh+(1−α)D0

[ℓ(z; θ)] = 0,

where we can further write the LHS as

∇θEz∼αDh+(1−α)D0
[ℓ(z; θ)] = α · Ez∼Dh

[∇θℓ(z; θ)] + (1− α) · Ez∼D0
[∇θℓ(z; θ)] = 0. (10)

Therefore, Ez∼D0
[∇θℓ(z; θ)] = − α

1−α · Ez∼Dh
[∇θℓ(z; θ)]. Then, we consider the term ∂θ∗

α

∂α . By
implicit function theorem, with α > 0, we have

∂θ∗α
∂α

= −
(
∇2

θ,θEz∼αDh+(1−α)D0
[ℓ(z; θ)]

)−1
(Ez∼Dh

[∇θℓ(z; θ)]− Ez∼D0 [∇θℓ(z; θ)])

= − 1

1− α

(
∇2

θ,θEz∼αDh+(1−α)D0
[ℓ(z; θ)]

)−1
(Ez∼Dh

[∇θℓ(z; θ)]) .

Hence, we could finally write

∂Uα

∂α
= − 1

1− α
(Ez∼Dh

[∇θu(z; θ
∗
α)])

T (∇2
θ,θEz∼αDh+(1−α)D0

[ℓ(z; θ)]
)−1

(Ez∼Dh
[∇θℓ(z; θ)]) .

A.9 Proof of Proposition 8

Essentially, the proof is the same as the proof of Proposition 7 up to a use of an envelop theorem.
For completeness, we restate the proof here and make it clear the usage of the envelop theorem. For
notational simplicity, we abbreviate h♯

α as h. Consider the derivative of U∗
α with respect to variable α,

∂U∗
α

∂α
=

∂Ez∼Dh
[u(z; θ∗α)]

∂α
=

∂Ez∼Dh
[u(z; θ∗α)]

∂θ
· ∂θ

∗
α

∂α
,

where the second equality follows from the implicit function theorem and the envelop theorem. Next,
we notice that

∇θEz∼αDh+(1−α)D0
[ℓ(z; θ)] = 0,

where we can further write the LHS as

∇θEz∼αDh+(1−α)D0
[ℓ(z; θ)] = α · Ez∼Dh

[∇θℓ(z; θ)] + (1− α) · Ez∼D0
[∇θℓ(z; θ)] = 0. (11)

Therefore, Ez∼D0
[∇θℓ(z; θ)] = − α

1−α · Ez∼Dh
[∇θℓ(z; θ)]. Then, we consider the term ∂θ∗

α

∂α . By
implicit function theorem, with α > 0, we have

∂θ∗α
∂α

= −
(
∇2

θ,θEz∼αDh+(1−α)D0
[ℓ(z; θ)]

)−1
(Ez∼Dh

[∇θℓ(z; θ)]− Ez∼D0
[∇θℓ(z; θ)])

= − 1

1− α

(
∇2

θ,θEz∼αDh+(1−α)D0
[ℓ(z; θ)]

)−1
(Ez∼Dh

[∇θℓ(z; θ)]) .

Hence, we could finally write

∂U∗
α

∂α
= − 1

1− α
(Ez∼Dh

[∇θu(z; θ
∗
α)])

T (∇2
θ,θEz∼αDh+(1−α)D0

[ℓ(z; θ)]
)−1

(Ez∼Dh
[∇θℓ(z; θ)]) .
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B Additional results

B.1 Benefit of participation

We contrast the utility of participating agents with those that opt out, assuming the mixture model (7).
Here the base distribution D0 will play in and determine the utility of non participating agents in
comparison to those that participate.
Proposition 12 (Benefit of participation). For any α ∈ (0, 1) and fixed strategy h, and let θ∗α be the
resulting stable point. Then, the cost of participation

Ch(α) := Uα − Ez∼D0
[u(z; θ∗α)] .

changes with the collective size as follows

∂Ch(α)

∂α
=−

〈
Ez∼Dh

[∇θu(z; θ
∗
α)]− Ez∼D0 [∇θu(z; θ

∗
α)] , (12)

Ez∼Dh
[∇θℓ(z; θ

∗
α)]− Ez∼D0

[∇θℓ(z; θ
∗
α)]
〉
H−1 ,

where
H := ∇2

θ,θEz∼αDh+(1−α)D0
[ℓ(z; θ)] .

The above result indicates that the change in the benefit of participation also depends on a notion
of alignment. Once the utilities are misaligned, as the benefit of participation decreases, it is harder
to form a collective implementing some certain strategy h. Conversely, aligned utilities makes the
implementation strategy h more appealing when the collective is growing. In particular, the RHS
of Equation (12) is negative whenever the expected gradient of utility and loss change in a similar
direction when considering the distributional shift from D0 to Dh.

Finally, we uncover an interesting fact that, in the totally aligned (potential game) or misaligned
(zero-sum game) cases. The utility of the population will not change by implementing a fixed strategy.
It means that the incentive structure remains the same independent of the size of the collective.
Corollary 2. For any α ∈ (0, 1) and fixed strategy h, and let θ∗α be the resulting stable point. Assume
u = k · ℓ for some constant k ̸= 0. Then,

∂Ch

∂α
= 0, ∀α ∈ (0, 1).

Once the alignment/misalignment of the utilities goes to the extreme, the benefit of participation
degenerates to 0. Intuitively, this is caused by the fact that the alignment maximize of the sensitivity
learner. Then, the change to a fixed strategy could be fully captured by the learner.

Proof of Proposition 12. Similar to the proof of Proposition 8, we have

∂Ez∼D0
[u(hα(z); θ

∗
α)]

∂α
= − (Ez∼Dh

[∇θu(z; θ
∗
α)])

T (∇2
θ,θEz∼αDh+(1−α)D0

[ℓ(z; θ)]
)−1

(Ez∼Dh
[∇θℓ(z; θ)]− Ez∼D0

[∇θℓ(z; θ)]) .

Using the chain rule, and implicit theorem again, we also have

∂Ez∼D0 [u(z; θ
∗
α)]

∂α
= − (Ez∼D0 [∇θu(z; θ

∗
α)])

T (∇2
θ,θEz∼αDh+(1−α)D0

[ℓ(z; θ)]
)−1

(Ez∼Dh
[∇θℓ(z; θ)]− Ez∼D0

[∇θℓ(z; θ)]) .

In summary, taking the derivative through the α dependence of the strategy we have

∂Bα

∂α
= −⟨Ez∼Dh

[∇θu(z; θ
∗
α)]− Ez∼D0 [∇θu(z; θ

∗
α)] ,Ez∼Dh

[∇θℓ(z; θ)]− Ez∼D0 [∇θℓ(z; θ)]⟩H−1 ,

hence the result above holds for any strategy hα. And it is clear from the definition of hα that B0 ≥ 0.

Proof of Corollary 2. First, by Equation (12), if one have u = k · l with k > 0. It turns out that
∂Ch

∂α ≥ 0 always holds. Conversely, if one considers the mixture (1− α)Dh + αD0, and consider the
same derivative again. It is still nonnegative. Therefore, both increasing or decreasing of α will yield
increasing of Ch. Hence, the only possible case is the mixed utility remains unchanged.
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B.2 Altruistic objectives

Next, we explore the amount of shift necessary to move a model. Again, consider the mixture
model (7).

Assume the collective aims to steer the model parameters to a target state θtarget. This can for
example be an altruistic objective of optimizing the utility under D0.

The next result provides a lower bound on the amount of shift necessary to move the model. It
illustrates that smaller collectives either have smaller influence, or they need to invest more effort to
steer the learner to a target state. Note that the required shift is entirely a property of the learner’s loss
function and the suboptimality of the target state you aim to reach under D0.

Proposition 13 (Collective shift). Suppose ℓ is β-smooth and the collective aims to reach a state
θtarget with strategy h. Then, the amount of distribution shift necessary is at least

W(Dh,D0) ≥
1

α · β
· ∥Ez∼D0

[∇θℓ(z; θtarget)]∥2 .

Proof of Proposition 13 By the fact that optimizing h must induce the learner strategy θtarget.
Moreover, for any α, this observation also must hold. Analogous to Lemma 3, the optimality condition
of θtarget implies

Ez∼Dh
[∇θℓ(z; θtarget)] = −1− α

α
· Ez∼D0 [∇θℓ(z; θtarget)] .

We note that the RHS is a fixed constant for any α. Then, for any ∥v∥2 = 1, we have

(Ez∼Dh
[∇θℓ(z; θtarget)]− Ez∼D0

[∇θℓ(z; θtarget)])
T
v ≤ β · W(Dh,D0).

Combining the above, we have

− 1

α
· Ez∼D0

[∇θℓ(z; θtarget)]
T
v ≤ β · W(Dh,D0).

Take v =
− 1

α ·Ez∼D0
[∇θℓ(z;θtarget)]

∥− 1
α ·Ez∼D0

[∇θℓ(z;θtarget)]∥
2

, we have

∥Ez∼D0 [∇θℓ(z; θtarget)]∥2 ≤ α · β · W(Dh,D0).

B.3 Selfish agents meet collectives

In the following result we characterize how this hurts the collective and agents engaging in collective
reasoning only partially reach their goal if some agents act selfishly.

Theorem 14. Consider the mixed population according to (5) with D(θ) = D1(θ) and let θ∗α denote
the stable point for a fixed α. Further, suppose U(h) is γ-strongly concave in h and Assumption 1
holds. Then, the utility loss due to partial participation can be bounded as

U1 − Uα ≤ (1− α)2

2γ
·
(〈

Ez∼Dα(θ∗
α) [∇θu(z, θ

∗
α)] ,Ez∼D

h♯
[∇θℓ(z, θ

∗
α)]
〉
(H⋆)−1

)2
,

where
H∗ = ∇2

θEz∼Dα(θ∗
α) [∇θℓ(z, θ

∗
α)]

The above result explains that the utility loss is proportional to 1− α. Once there are more agents
joining the collective, the overall utility will approach optimality. With more agents joining the
collective, the expected utility across the agents in the mixture distribution will be improved. Note
that this is different to Section 5.2 where we considered the utility of participants only.

Proof of Theorem 14 First, for the function ι(β) = Ez∼βD
h♯+(1−β)Dh∗

α
[u(z; θ∗α)], by look-

ing at the derivative of β at β = 0. ι is maximised at β = 0 and hence Ez∼D
h♯

[u(z; θ∗α)] =

Ez∼Dh∗
α
[u(z; θ∗α)]. Then, consider another auxiliary function:

e(β) = Ez∼βD
h♯+(1−β)Dh∗

α

[
u(z, θ∗β)

]
,
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where θ∗β = A(βDh♯ + (1− β)Dh∗
α
). Then, we consider

∂e

∂β

∣∣∣
β=α

= −
〈
Ez∼Dα [∇θu(z, θ

∗
α)] ,Ez∼D

h♯
[∇θℓ(z, θ

∗
α)]
〉
(H⋆)−1

= −(1− α)
〈
Ez∼Dα

[∇θu(z, θ
∗
α)] ,Ez∼D

h♯
[∇θℓ(z, θ

∗
α′=1)]

〉
(H⋆)−1

,

where the last line follows from applying Lemma 15 below. Again, the result follows from the PL
inequality.
Lemma 15. For any α ∈ [0, 1], and some fixed h, we must have

∂ 1
αEz∼D0 [∇ℓ(z; θ∗α)]

∂α
= 0,

which implies that Ez∼D0 [∇ℓ(z; θ∗α)] = α · v for some v depending on h.

Proof. By direct calculation, we have

∂ 1
αEz∼D0

[∇ℓ(z; θ∗α)]

∂α

= − 1

α2
Ez∼D0

[∇ℓ(z; θ∗α)] +
1

α

∂Ez∼D0
[∇ℓ(z; θ∗α)]

∂α

= − 1

α2
Ez∼D0

[∇ℓ(z; θ∗α)]

− 1

α
Ez∼D0

[
∇2ℓ(z; θ∗α)

]
Ez∼D0

[
∇2ℓ(z; θ∗α)

]−1
(Ez∼Dh

[∇ℓ(z; θ∗α)]− Ez∼D0
[∇ℓ(z; θ∗α)])

= − 1

α2
Ez∼D0

[∇ℓ(z; θ∗α)]−
1

α

(
− 1

α
Ez∼D0

[∇ℓ(z; θ∗α)]

)
= 0,

where the third line follows from the implicit function theorem and the last line follows from the
identity eq. (11).

C Experiments

C.1 Additional simulation on the utilities of individual k-level agents

We also compare the utilities of agents with different cognitive level with the same data setup as
Section 6. The utilities are calculated following Equation (9). The simulation is run by the choice of
parameter (α0, α1, α2) = (0, 0.5, 0.5) and ϵ = 0.5. (See Section 6.1 for more detailed setups of the
experiment). We report the results in Figure 4 where the y-axis represents u1

ϵ , u
2
ϵ where we can see

that the differences are decreasing with error bars breaking across 0. Such observations align with
our theoretical finding outlined in Corollary 1, where we showed that agents with different levels
will finally converge to a stable point with the same utility level. Besides, we note that there is no
evidence of any monotonicity of the individual utilities against their cognitive levels.

C.2 Alignment metric in the simulation of Section 6.2

Under the same setup as Section 6.2, we also report the following alignment metric in the zero-sum
case: 〈

Ez∼D
h
♯
α

[∇θu(z; θ
∗
α)] ,Ez∼D

h
♯
α

[∇θℓ(z; θ
∗
α)]
〉
H−1

as defined in Proposition 7. One can observe that the alignment metric, as the indicator of the
counter-force experienced by the collective, have similar pattern as Figure 3 (a), which verifies our
theoretical observations in Proposition 7.
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Figure 4: Differences of utilities between level-1 and level-2 agents. The error bars indicate one
standard deviation over 10 different selections of individuals.
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Figure 5: The alignment metrics (as defined in Proposition 7) versus different sizes of the collective.
The error bars represent one standard deviation over 10 runs.
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only for writing, editing, or formatting purposes and does not impact the core methodology,
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