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ABSTRACT

Learning compact state representations from high dimensional and noisy obser-
vations is the cornerstone of reinforcement learning (RL). However, these rep-
resentations are often biased toward the current goal context and overfitted to
goal-irrelevant features, making it hard to generalize to other tasks. Inspired by the
human analogy-making process, we propose a novel representation learning frame-
work called hypothetical analogy-making (HAM) for learning robust goal space
and generalizable policy for RL. It consists of encoding goal-relevant and other
task-related features, hypothetical observation generation with different feature
combination, and analogy-making between the original and hypothetical observa-
tions using discriminators. Our model introduces an analogy-making objective that
maximizes the mutual information between the generated hypothetical observation
and the original observation to enhance disentangled representation. Experiments
on various challenging RL environments showed that our model helps the RL
agent’s learned policy generalize by revealing a robust goal space.

1 INTRODUCTION

Learning policies directly from observations is a gateway to successful real-life applications such as
auto-driving and robotics. However, current deep reinforcement learning (RL) algorithms trained
from raw pixels have several issues undermining their applicability to real-world problems. First,
they are vulnerable to common noises such as background changes (Gamrian & Goldberg, 2019;
Zhang et al., 2021). They also often fail to adapt to small semantic changes, e.g., the height of the
platform or the position of stars in the Climber environment in the OpenAI ProcGen benchmark suite
(Cobbe et al., 2020; Kirk et al., 2021). Both are because their representations are strongly biased
toward the current goal context, distracted by task-relevant easy-to-learn features (Scimeca et al.,
2022), and eventually fail to learn the robust goal space (see Figure 1(a)). In fact, there exists a
substantial discrepancy between the train and test performance of the vanilla PPO agent (Cobbe et al.,
2020). Although a large amount of training data (≥ 10k samples) could reduce the generalization gap
(Cobbe et al., 2019), many practical applications cannot meet this condition for various reasons, such
as cost and safety issues for data acquisition (Levine et al., 2020).

Unlike machine learning algorithms, humans have an outstanding ability to learn with a limited
amount of experience (Lake et al., 2016; Kaiser et al., 2020). This ability is often ascribed to
abstraction and analogy-making. Analogy-making is a central mechanism for revealing meaning
and core concept from perception (Anderson, 1980; Bartha, 2019). We learn compact abstractions
from noisy perception through numerous comparisons with other perceptions or imaginations by
making analogies (Lakoff, 2009; Mitchell, 2021). In this paper, we hypothesize that applying the
analogy-making process to learning the goal space can help RL models learn generalizable policy.
Figure 1(b) shows the example case when analogy-making can find proper goal space to improve
generalization.

Inspired by human analogy-making, we propose a novel representation learning framework for
learning robust goal space in RL. To establish broadly generalizable policies in RL, we aim to
separate the goal context from task feature by performing analogy-making between experienced and
hypothetical observations. Our framework called hypothetical analogy-making (HAM) consists of
three phases: encoding goal-relevant and other task-related features, hybrid observation generation,
and analogy-making with discriminators. (i) HAM decomposes an observation into two independent
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(a) Task feature-correlated goal space (b) Robust goal space with analogy-making

Figure 1: The analogy-making process can help learn the proper goal space: when the training dataset
is small, as in (a), the learned goal space is easily biased toward task feature space. In (a), there are
three training data points (white-colored), and we try to encode visual features that determines the
control of the vehicle associated with the current goal of safe driving. We can find an undesirable
correlation between the learned goal space and the task feature space (i.e., the weather condition)
resulting in the wrong goal context encoding of the unseen observation (green-colored). By adopting
the analogy-making process, we can relieve this problem. By generating hypothetical observations
(yellow-colored) using learned goal and task feature space and making analogies with the original
observations (white-colored) such as ”Do A and B share the same control of the vehicle?” or ”Are A
and B in the same weather condition?”, we can find the proper goal space and task feature space and
we can map the unseen observation correctly as in (b).

components: a goal-related code and other task-related code. (ii) By combining the codes from
different tasks, HAM generates a hybrid observation, a hypothetical but realistic observation. In
doing so, (iii) HAM maximizes the mutual information between the hypothetical observation and
the original labels, enforcing the goal-related and other task-related information being embedded in
each code. Our model learns robust goal context across varying task features by making analogies
between the original and hypothetical observations generated with different task feature codes. The
key contributions of our work are as follows:

• Motivated by human analogy-making, we propose a novel representation learning framework
for learning robust goal context in RL. For this, we combine goal and task feature relevant
encoding, hypothetical observation generation, and analogy-making between the original
and hypothetical observations.

• We conducted several experiments in the Jumping Task (des Combes et al., 2018) as a
proof of concept, where the observation space has relatively simple generative factors.
Furthermore, we empirically show that our model outperforms prior baselines on several
environments in the OpenAI ProcGen benchmark suite (Cobbe et al., 2020), which was
designed to evaluate the generalization performance of RL algorithms.

• We show that our model successfully reveals a robust goal space, which is invariant to other
task feature changes, using both quantitative metrics and qualitative visual results. The
learned RL policy built on this robust goal space can generalize more broadly to the unseen
observations.

2 PROBLEM FORMULATION

2.1 PRELIMINARIES

We use a Markov decision process (MDP) setting, in which the MDP is denoted as M =
(X ,A, R, P, γ) with an observation space X , an action space A, a reward function R, transition
dynamics P , and a discount factor γ ∈ [0, 1). A policy π(·|x) represents a probability distribution
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over actions given observation x ∈ X . The RL agent aims to learn an optimal policy that maximizes
the expected cumulative discounted rewards Eat∼π(·|xt)[

∑
t γ

tR(xt, at)] at timestep t starting from
an initial state x0. We define a goal of a task as an inherent rule of a task related to reward acquisition.

To formalize this, we consider a distribution of tasks which share the same goal, each defined as an
MDP Mi ∈ M, where i ∈ I and |I| defines the size of the task distribution. Those MDPs share an
action space A, a reward function R, and transition dynamics P but are with disjoint observation
spaces, X i ∩ X j = ∅. Note that the domain of transition dynamics and reward function is a state
space, not an observation space X . A state refers to an embedding of an observation encoded only
with the goal-related part of the observation. For instance, different MDPs correspond to tasks with
different levels in the same environment in the OpenAI ProcGen benchmark suite (Cobbe et al.,
2020) (see Appendix A.1.2). We define an union observation space U of all possible observation
spaces, where U =

⋃
i∈I X i. We assume the RL agent has access to a collection of N training MDPs

{Mi}Ni=1 and the index i of each. After training, the RL agent applies its policy π over the entire
observation space U including unseen MDPs. Note that we evaluate the learned policy’s zero-shot
performance without any meta-learning phase.

2.2 BROADLY GENERALIZABLE POLICY

Broadly generalizable policy refers to a policy that is consistent across different environments with
the same goal regardless of their visual discrepancy. It can be learned based on the ideal goal space
z∗g . The visual information necessary for reconstructing an observation x can be divided into the
goal-dependent I(g, x) and other goal-independent information term H(x|g), where g indicates
the goal context of x, and I and H refer to mutual information and entropy, respectively. The
goal-independent information reflect the intrinsic nature of the task (i.e., task structures associated
with the task index i). For any x ∈ X i, the latent feature group z∗g and z∗t are said to be key generative
factors of the state space X i when

H(x) = I(g, x) +H(x|g) = I(g, x) + I(t, x) = H(z∗g) +H(z∗t ), (1)

where g and t indicate goal context labels (e.g., optimal action) and task-dependent features (e.g.,
task index), respectively. By combining these two mutually exclusive variables, the goal feature
z∗g ideally reflecting the goal context information and the task feature z∗t ideally reflecting all other
task-dependent information, one can reconstruct the current observation x.

The goal of learning representations for broadly generalizable policy is to glean goal context in-
formation from the noisy observation. This is formulated as maximizing I(g, z) while minimizing
I(t, z) with respect to z, so that a policy built upon the representation z becomes robust against goal-
irrelevant changes (i.e., changes in the task background space in Figure 1(b)). The optimal solution
is z∗g in our setting. By using our hypothetical analogy-making module, which makes imaginary
hypothetical observations with different combinations of the generative factors of inputs and performs
analogy-making using discriminators, RL agent can achieve the broadly generalizable policy. Our
module enhances the independence of two generative factors by swapping the two features when
generating hypothetical observations. We provide the details in the next section.

3 HYPOTHETICAL ANALOGY-MAKING

We implemented the hypothetical analogy-making (HAM) process with mutual information (MI)
regularized generative adversarial networks (GAN) (Goodfellow et al., 2014) structure. In addition to
the original GAN objective aimed at making images as realistic as possible, we train our encoder E,
generator G, and discriminator D to maintain a large amount of MI between the hypothetical images
G([zig, z

j
t ]) and the original labels: goal context label g and task feature label t.

The MI regularized GAN objective is as follows. For any xi ∈ X i and xj ∈ X j ,

min
E,G

max
D

LI(D,G,E) = L(D,G,E)− λ1I(gi, G([zig, z
j
t ]))− λ2I(tj , G([zig, z

j
t ])), (2)

where [zig, z
i
t] = E(xi), [zjg, z

j
t ] = E(xj), and L(D,G,E) is an encoder-added version of the origi-

nal GAN loss (Chen et al., 2016), which is Ex∼Pdata
[logD(x)] + Ex∼Pdata

[log(1−D(G(E(x))))].
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The encoder part of the objective corresponds to the first step of HAM: decomposing the original
observation into the goal context-relevant part and the others. It is followed by the generation
of hypothetical observation G([zig, z

j
t ]) as a second step: imagining a hypothetical situation by

replacing the background part with what we have experienced before while maintaining the original
context. The MI terms, I(gi, G([zig, z

j
t ])) and I(tj , G([zig, z

j
t ])), correspond to the last step: keeping

the context and background information the same with the original observations where each code
came from. We hypothesize that the RL agent mimicking the human analogy-making process with
hypothetical observations can learn a broadly generalizable policy.

Suppose we generated a new image with goal context code zig from an image xi and the task feature
code zjt from another image xj . We claim that by maximizing the mutual information between the
generated image and the goal context label from which its goal context code came, I(gi, G([zig, z

j
t ])),

and the task feature label of which its task feature code came from, I(tj , G([zig, z
j
t ])) with regard to

the encoder E and generator G, we can find the optimal solution z∗g by maximizing the lower bound
of I(g, zg) while minimizing I(t, zg).

3.1 MODEL ARCHITECTURE

The proposed HAM architecture is illustrated in Figure 2. All the components are trained jointly
during the RL policy learning process. The following sections describe each component.

Figure 2: Architecture of Hypothetical Analogy Making model

Image Generation with Disentangled Features. Given an input pair (xi, xj) ∼ (X i,X j), we apply
our encoder E to each input. Then the encoder outputs the goal context code and background code
for each input, E(xi) = [zig, z

i
t] and E(xj) = [zjg, z

j
t ], respectively. Then we apply the generator

G to the hybrid pair [zig, z
j
t ]. The generated image G([zig, z

j
t ]) is fed into the basic discriminator D,

which evaluates how realistic the generated image is. Furthermore, we train our encoder, generator,
and discriminator to generate a realistic image while learning independent goal and task-relevant
features that can be combined to create a new hybrid image. The loss is calculated as follows using
the non-saturating adversarial loss (Mirza & Osindero, 2014):

JGAN,hybrid(E,G,D) = Exi∼X i,xj∼X j ,xi ̸=xj [−log(D(G([zig, z
j
t ])))]. (3)

The detailed structures of our encoder, generator and discriminator are provided in Appendix A.1.1
and Appendix A.1.2.

Analogy-Making. The goal context and task discriminators in the green shaded area of Figure 2
makes predictions about the hypothetical observations and uses the labels of the original images for
calculating the prediction loss. Note that this is the core component of our hypothetical analogy-
making process. The generated images G([zig, z

j
t ])) are fed into the three modules: the basic

discriminator D, task discriminator Dt, and goal context discriminator Dg. The task discriminator
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Dt outputs how realistic the given generated image is compared to the reference image xj , where the
task feature code of the generated image was from xj . The loss is given by:

Jtask(E,G,Dt) = Exi∼X i,xj∼X j [−log(Dt(crop(G([zig, z
j
t ]))),crops(x

j))], (4)

where [zjt , z
j
c ] = E(xj) and crop randomly selects a fixed-sized patch of the full image and crops

is a collection of multiple patches. We use the crop function to wipe the goal context out and
preserve the task features from images in ProcGen benchmark. Note that in experiments with
Jumping task, we use the full images as inputs for Dt without using the crop function because the
task features of Jumping task (i.e., the height of the floor and the position of the obstacle) are lost in
the cropping process.

The goal context discriminator Dg outputs whether the hybrid image shares the same action context
with the original image xi (the generated image got its goal context code from xi) or not. In
experiments with ProcGen benchmark, we utilize the action output of the RL part’s policy network
Qπ instead of using a separate action discriminator (gray shaded area in Figure 2). We took the action
output of the policy network and trained the model in the direction of minimizing Jensen-Shannon
divergence DJS between the action probabilities of the original and hypothetical observations. The
loss is given by:

Jgoal(E,G,Qπ) = Exi∼X i,xj∼X j [DJS(Qπ(G([zig, z
j
t ]))∥Qπ(x

i)))]. (5)

By using the above losses, our encoder E and generator G learn to generate a hybrid image G([zig, z
j
t ]),

which contains the original goal context of xi and the task background of xj . The goal context
of xi is highlighted with red dotted circles in Figure 2. Note that Dg and Dt compete over visual
information in the observation. However, as the information in the observation can be divided into
the goal context-relevant parts and the others and ideally the two groups do not overlap, both Dg and
Dt can minimize their own loss without compromise.

Policy Learning. The RL agent learns its policy with the goal context code zg. In experiments
with the ProcGen benchmark, the RL agent also utilizes hybrid images to facilitate learning task
background-invariant context features. In ProcGen, we use a standard Proximal Policy Optimization
(PPO) (Schulman et al., 2017) algorithm for training the RL agent; note that our framework can
exploit any model-free RL algorithm. PPO algorithm utilizes action-advantages At = Aπ(at, xt) =
Qπ(at, xt)− V π(xt), and minimizes a clipped probability loss as follows:

Jπ(θ) = −Eτ∼π[min(ρt(θ)At, clip(ρt(θ), 1− ϵ, 1 + ϵ)At)]. (6)
We use hypothetical observations when calculating the clipped-ratio ρt(θ) over the recent experience
collected with πθold and updating a state-value estimator Vϕ(x). We replace a certain ratio λmix ∈
(0, 1] of the original observation x with hypothetical observation generated by performing task feature
interpolation G([zig, (α · zit + (1− α) · zjt )]) using a random rate α ∈ [0, 1). See Appendix A.3.2 for
the quality of task interpolated hypothetical observations.

4 EXPERIMENTAL RESULTS

We ran simulations to show that our model improves generalization performance in challenging
scenarios by separating goal context-relevant visual features from task background-relevant ones. As
a proof of concept, we conducted several experiments, including an ablation study in the Jumping
task (des Combes et al., 2018), where the observation space has relatively simple generative factors.
Then we conducted evaluations in more challenging tasks in ProcGen benchmark suite (Cobbe et al.,
2020), where goal-related visual features are intertwined with other task-relevant ones. We carried
out evaluations in three different ways: (i) generalization performance with a small size of the training
dataset, (ii) qualitative results of generated hypothetical observations showing the separation of GAN
features into the goal and task-related group, and (iii) further evaluation to show the robustness of our
learned goal context space. The details for each experiment are provided in Appendix A.1 and the
code for replicating our experiments is available in the supplementary material.

4.1 JUMPING TASK

In the Jumping task, a white agent has to jump over a gray obstacle without touching it. The evaluation
measures test performance for 286 tasks of 26 different obstacle locations and 11 floor heights while
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the training proceeds with only 18 of them. Depending on the distribution of training samples in the
evaluation grid, the training type is classified into Wide, Narrow, and Random. Each grid measures
different types of generalization (See Appendix A.1.1 for the details). Experiments in the Jumping
task are intended to confirm whether our model can separate relatively simple goal context-relevant
visual features from task background-relevant ones. In the Jumping task, the distance between the
agent and the obstacle is the goal context-relevant visual feature. The height of the floor and the
location of the obstacle are the task background-relevant visual features.

Generalization test. The following are the generalization results compared with other baseline
methods and ablated models. In Table 1, we present the ratio of how many of the total 286 tasks
the learned policy succeeded. The policy is trained using only 18 tasks of them. We found that
our model shows the highest performance in Wide and Narrow grid configurations, notably with
highly significant performance improvement in the Narrow training setting. Results in Random show
relatively low performance, presumably the case where our model has difficulty finding the visual
feature that determines whether the two images share the same action context or not in input data
with irregular intervals. The lower performance of ablated models implies that the two losses; goal
context discriminator loss and task discriminator loss have synergistic effects.

Method
Success ratio (%)

Wide Narrow Random

L2 reg. 20.0 (1.6) 15.7 (2.8) 8.7 (2.0)
PSEs 32.4 (8.2) 9.7 (5.2) 34.1 (9.4)
GAN 22.9 (2.2) 16.5 (3.0) 9.9 (2.1)
HAM (ours) 34.9 (3.5) 37.5 (7.1) 19.3 (2.8)
HAM w/o GD 25.6 (4.9) 32.9 (6.0) 13.3 (2.9)
HAM w/o TD 26.7 (4.2) 31.1 (6.4) 15.2 (4.7)

Table 1: Generalization results on Jumping
task: we present the generalization results of
baseline methods, our model, and ablated mod-
els with three types of evaluation grid configu-
ration. We measure the test performances after
20k timesteps training with an imitation agent
as in PSEs (Agarwal et al., 2021). The results
show the mean success ratio (%) among 286
tasks over 20 runs with different seeds and the
standard deviations are in parentheses.

(a) HAM (b) HAM w/o GD (c) HAM w/o TD

Figure 3: We show the role of each discriminator in our model by visualizing the generated hypo-
thetical observations G([zig, z

j
t ]) (green-bordered images) in ablated models. We can find that HAM

without goal context discriminator cannot separate context information (highlighted with red arrows)
from xi, and HAM without task discriminator cannot separate task information (highlighted with
blue arrows) from xj while our model separates both information successfully.

Disentanglement of visual features. To show the disentanglement quality of the learned features, we
visualize hypothetical observations generated at the end of the training in Figure 3. Green-bordered
images are generated by using goal context code zig and task feature code zjt from the ith observation
xi and jth observation xj respectively. We can find that task-relevant visual features; the floor
height and the location of the obstacle (highlighted with blue arrows) of generated hypothetical
observation are similar to its first row xj in Figure 3. We can also see that goal context-relevant
feature; the distance between the agent and the obstacle (highlighted with red arrows) that determines
whether to jump is identical to its first column xi. In other words, our model can effectively separate
goal context-relevant visual features from others, which is in line with the significant performance
improvement in the Narrow configuration which measures the extrapolation ability.

Robustness of learned goal context space. To evaluate how robust our learned goal context code is
against task changes, we measure the normalized Euclidean distance (Tensmeyer & Martinez, 2017)
in the representation space.
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dist(zg, z
∗
g) =

∥zg − z∗g∥2
∥z∗g∥2

(7)

, where z∗ is the left top sample in the training grid. Figure 4 shows the qualitative result that how
similar our learned context space with training tasks (cells marked with ⊤) and the one with test tasks
(other cells in the entire grid) are so that learned policy can be deployed to unseen test data without
errors. We observe that the color distributions of training and test task cells are much similar in our
model compared to other baselines.

(a) GAN (b) L2 reg. (c) HAM (Ours)

Figure 4: Invariance grid of learned goal context on task changes: Grid cells marked with ⊤ indicate
training tasks, and a cell with a red rectangle is a standard data point for normalization. The color of
each cell shows the normalized Euclidean distance between the goal context code of the current cell
and the standard cell when the optimal action is to jump.

We also show how the learned context space connects to the generalization performance in Figure 5.

(a) GAN (b) L2 reg. (c) HAM

Figure 5: Visualization of generalization performance of HAM and baseline methods in Narrow
training grid configuration. Red letter ⊤ indicates the training tasks. Yellow tiles are solved tasks and
violet tiles are tasks each method couldn’t solve.

To quantitatively measure the distribution shift of the goal context code between training and test tasks,
we first assume that dist(zg, z∗g) measured in each task set follows normal distribution N(µ, σ2). We
then measure the area under the curve (AUC) of probability density function of test context distribution
overlapped with train context distribution with the range of [µtrain − 3σtrain, µtrain + 3σtrain].
A higher value implies the test context distribution is mostly covered by the policy learned from
the train context distribution. Table 2 shows that our model has the highest AUC in all three grid
configurations and learns the most robust goal context space against varying task features.

Method
Area under the curve (AUC)

Wide Narrow Random

L2 reg. 0.02 (0.06) 0.01 (0.02) 0.03 (0.14)
GAN 0.15 (0.09) 0.33 (0.26) 0.11 (0.07)
HAM 0.72 (0.15) 0.60 (0.19) 0.33 (0.29)

Table 2: Quantitative measure for the robust-
ness of learned context space: we measure the
area under the curve of the probability distri-
bution of test context space covered by train
context space. The measured area can range
between [0, 1]. The results show the mean
and standard deviation averaged over 10 runs.

4.2 PROCGEN BENCHMARK

ProcGen (Cobbe et al., 2020) is a collection of unique environments designed to measure both sample
efficiency and generalization in RL. In ProcGen, the train and test environments differ broadly in
visual appearance and structure. We follow the environment setup in ProcGen, and we use Proximal
Policy Optimization (PPO) (Schulman et al., 2017) algorithm for training our policy network.

Generalization test. We conduct the generalization test with 9 different models, including PPO,
PPO with L2 regularization, HAM (ours), HAM w/o GD (goal context discriminator ablated version),
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HAM w/o TD (task discriminator ablated version), and RAD (Laskin et al., 2020) with different
augmentations. We choose the four representative and best-performing data augmentation techniques;
gray, random crop, cutout, and color-jitter in (Laskin et al., 2020). We excluded models based on
other representation learning techniques (e.g., contrastive learning (Srinivas et al., 2020), deepMDP
(Gelada et al., 2019)), and IDAAC (Raileanu & Fergus, 2021) for the fair comparison because
those models are based on different RL algorithms; SAC (Haarnoja et al., 2018), Distributional
Q-learning (Bellemare et al., 2017), and DAAC (Raileanu & Fergus, 2021), respectively. We use
three OpenAI ProcGen environments: Fruitbot, Jumper, and Climber. For more information about
each environment, refer to Appendix A.1.2. We found that our model significantly outperforms all
the baselines when the training dataset is small in Table 3. Notably, our model beats all the baselines
trained on two times the number of training levels in Fruitbot and Jumper environments when the
training dataset is the smallest; this is the most challenging scenario. We also plot the generalization
gap over training level and timestep in Appendix A.3.2.

Table 3: We measure the test performances on 1000 test levels after training 20M timesteps using 50,
100 and 200 training levels. The results show the mean and standard deviation (the value after ±)
averaged over three runs with different seeds.

# of
levels PPO PPO

+L2 reg. HAM HAM
-GD

HAM
-TD

RAD
(gray)

RAD
(crop)

RAD
(cutout)

RAD
(color-jitter)

Fruitbot
50 6.6

± 1.1
10.4
±2.5

17.3
± 0.4

16.4
± 1.6

9.7
± 4.9

4.6
±2.7

4.4
±2.5

8.1
±0.3

-1.4
±0.9

100 14.5
±2.9

16.6
±2.3

19.6
±2.1

18.4
±1.5

18.0
±0.9

7.6
±2.0

11.2
±3.8

14.7
±0.4

5.3
±4.5

200 19.4
±1.9

20.3
±0.6

21.3
±0.6

20.5
±1.4

19.9
±0.6

14.1
±0.6

16.1
±4.7

18.5
±2.6

19.4
±2.9

Jumper
50 4.8

±0.2
5.3
±0.3

6.0
±0.1

5.6
±0.3

5.4
±0.3

5.0
±0.2

4.0
±0.2

5.2
±0.2

5.6
±0.2

100 5.2
±0.5

5.8
±0.2

6.2
±0.3

6.0
±0.1

6.1
±0.2

5.2
±0.1

5.1
±0.2

5.6
±0.1

6.1
±0.2

200 6.0
±0.2

6.3
±0.1

6.4
±0.1

6.4
±0.1

6.3
±0.2

5.6
±0.1

5.2
±0.7

5.4
±0.1

5.9
±0.1

Climber
50 3.4

±0.2
3.6
±0.2

3.7
±0.1

2.8
±0.2

2.7
±0.3

3.3
±0.1

2.7
±0.6

3.3
±0.2

3.4
±0.1

100 4.2
±0.3

4.4
±0.2

4.1
±0.2

3.3
±0.2

3.2
±0.2

3.6
±0.1

2.8
±0.1

4.1
±0.3

4.0
±0.4

200 4.5
±0.1

4.9
±0.3

4.5
±0.7

3.8
±0.2

3.7
±0.2

4.4
±0.3

3.2
±0.2

4.6
±0.4

4.2
±0.5

(a) Fruitbot (b) Jumper (c) Climber

Figure 6: Generated hypothetical observations G([zig, z
j
t ]) (green-bordered) with the goal context

code of xi and task feature code of xj . Goal-relevant visual features are highlighted with red-dotted
circles.

Disentanglement of visual features. We present the generated observations from HAM around the
end of the training process in Figure 6. The results imply that our model successfully separate goal
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context-relevant latent features from xi and the task task-relevant ones from xj . The task code reflects
to which task level the generated observation belongs (e.g., the background image and the platform
color). The goal context code reflects to visual features that influence the action selection (e.g., the
structure of walls and the placement of fruits in the Fruitbot environment, the direction of the compass
needle that points to the location of the carrot in the Jumper environment, and the arrangement
of stairs and stars in the Climber environment). One intriguing aspect of our findings is that our
model can disentangle not only style-relevant visual features but also important action-relevant visual
features in Figure 6. More visual results are in Appendix A.3.2.

5 RELATED WORK

Representation learning. Many RL algorithms incorporated a representation learning process to im-
prove generalization performance. This approach obtains robust policies by learning compact vector
representations from images (Finn et al., 2015; Dwibedi et al., 2018; Lee et al., 2020; Mazoure et al.,
2020). DBC (Zhang et al., 2021) measures behavioral similarity between observations using reward
signal and state transition probability, and PSE (Agarwal et al., 2021) compares optimal behaviors
of an agent for learning robust representations. CURL (Srinivas et al., 2020) adopts a contrastive
auxiliary task that leverages different views of an augmented image. In this paper, we obtain robust
representations for generalizable policy by decomposing the latent space of observation space into
goal context and task space. Our model presents a new perspective on representation learning in RL.
Moreover, the learned hypothetical observation generative model has further possibilities for various
applications, such as virtual observation generation in the metaverse.

Regularization and data augmentation. Regularization techniques, known to be effective in
supervised learning contexts such as L2 regularization and dropout (Srivastava et al., 2014), also help
RL agents generalize to unseen contexts (Cobbe et al., 2019; Igl et al., 2019). As another attempt, data
augmentation techniques in RL such as RAD (Laskin et al., 2020) improve generalization to unseen
tasks or levels by simply training on more diversely augmented samples. RAD utilizes different views
of the same input and maximizes the MI between features taken from them. While these methods are
simple and effective, the task invariance of the learned policy is due to several predetermined factors
such as translation, rotation, and color. This limits the applicability of these methods to situations
that deal with a specific type of invariance; for example, the color of an object affects the probability
of reward acquisition. On the other hand, our model learns task code itself and makes analogies with
hypothetical observations generated with different task codes.

Task background modeling. A similar attempt for task background modeling was made in model-
based learning. TIA (Fu et al., 2021) learns a distractor model using reward disassociation with
negative gradient flow (Ganin & Lempitsky, 2015). TIA acquires reward-related code using the
model and utilizes it for planning. On the other hand, our model obtains goal context representation
by dividing the latent space learned through mutual-information regularized GAN into goal-related
and task-related ones using an additional analogy-making objective.

6 CONCLUSION

Motivated by the human analogy-making process, this paper presents a novel auxiliary process called
hypothetical analogy making (HAM), which enables RL agents to learn compact and explainable
goal-relevant features that can generalize to unseen tasks. HAM consists of three parts: goal context
and other task-relevant encoding, hypothetical observation generation, and analogy-making. In
simulations with the Jumping task and the OpenAI ProcGen benchmark, we show that our model
can learn a generalizable behavioral policy by revealing the robust goal context space. Our model
outperforms other state-of-the-arts in challenging settings with less training data. In subsequent
analyses, we show that HAM learns the proper goal-relevant visual features by visualizing generated
hypothetical observations. We also analyze how robust our learned goal context space is by comparing
training and test samples’ goal context code distribution. Our approach opens up a new possibility
of learning generalizable inductive bias by mimicking human cognition. Furthermore, the intuitive
design of HAM enables several variants, such as leveraging the sequence of action distributions or
incorporating the state value together when measuring goal context similarity.
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A APPENDIX

A.1 EXPERIMENT DETAIL

A.1.1 JUMPING TASK

We provide information about Jumping task (des Combes et al., 2018) and show our architecture
designs and additional training details.

ENVIRONMENT DESCRIPTION

Figure 7: Example MDPs from Jumping task: In Jump-
ing task, the agent (white block) should jump over the
obstacle (gray block) without touching it. The shaded
trajectory shows the optimal trajectory in training MDPs.
The train and test MDPs differ in their observation space
which is generated with different floor heights and ob-
stacle positions of various ranges.

In the Jumping task, a white agent has to jump over a gray obstacle without touching it. The agent
can choose between two actions: right and jump. The environment is deterministic, with the agent
observing a reward of +1 at each time step. If the agent successfully reaches the rightmost side of the
screen, it receives a reward of +100; if the agent touches the obstacle, the episode terminates with a
negative reward of −1. The observation space is the 60x60 pixel representation of the environment,
as depicted in Figure 7.

(a) Wide (b) Narrow (c) Random

Figure 8: Evaluation grids of Wide, Narrow, and Random grid configurations.

The evaluation measures test performance for 286 tasks of 26 different obstacle locations and 11
floor heights. The training proceeds with only 18 of them. Depending on the distribution of training
samples on the evaluation grid, the training type is classified into Wide, Narrow, and Random. The
Wide type measures generalization through ”interpolation.” The Narrow type measures generalization
outside the distribution through ”extrapolation.” Random type assumes a situation in which training
and test data are sampled independently in the same distribution. Evaluation grid for each grid
configuration is in Figure 8.

ARCHITECTURE OF HAM MODULE

The encoder separates the input observation into goal context and task codes, as shown in Figure 9
(left). For the context and task code, the network consists of 3 downsampling convolution layers and
1 convolution layer with kernel sizes 8x8, 4x4, 1x1, and 1x1 and strides 4, 2, 1, and 1. The code with
64 channels is divided into the task and context codes with 32 channels each. The divided context
code is fed into a linear layer which computes the policy that outputs the probability of the jump and
right actions. For the design of convolution layers, we referred to Agarwal et al. (2021).

The generator maps the codes to an hypothetical observation, as shown in Figure 9 (right). The
network consists of 1 convolution layer and 3 upsampling convolution layers. The kernel sizes and
strides are symmetric to the encoder’s downsampling convolution layers.

The discriminator is designed to determine if the observation is realistic or not. Each observation is
first encoded with3 downsampling convolution layers and 1 convolution layer with kernel sizes 8x8,
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Figure 9: Architecture of encoder and generator

4x4, 1x1, and 1x1 and strides 4, 2, 1, and 1. the final prediction applies 3 dense layers to the flattened
representation (see Figure 10). The goal context discriminator and task discriminator follow
the identical architecture with the basic discriminator. Except that the goal context discriminator
and task discriminator take an observation subtracted by the reference observation as an input to
determine if the observation has the same task or context as the reference observation. They output
logits with length 2 at the last dense layer.

Figure 10: Architecture of discrim-
inator: basic discriminator architec-
ture consists of the feature extractor,
which applies 3 downsampling convo-
lution layers and 1 convolution layer
with kernel sizes 8x8, 4x4, 1x1, and
1x1 and strides 4, 2, 1, and 1. And
then we apply 3 dense layers to the
flattened features and outputs the fi-
nal prediction. The goal context dis-
criminator and task discriminator
shares the identical architecture with
the basic discriminator except their
final output is logits with length 2.

TRAINING DETAILS

At each iteration, we conduct learning on the entire limitation data and train the limitation agent and
the HAM module alternately in units of batches of size 256. Most hyperparameters for imitation agents
with baseline methods are from Agarwal et al. (2021), such as 256 batch size (with random split),
0.003 learning rate, 0.999 decay rate, and 256 hidden dimensions. We adjusted a few hyperparameters
for imitation agent with HAM module as 0.001 learning rate (imitation agent), 0.0003 learning rate
(HAM module), and 0.9999 decay rate.

A.1.2 PROCGEN BENCHMARK

We provide information about environments we used in ProcGen benchmark (Cobbe et al., 2020),
show our architecture designs, and share additional training details.

ENVIRONMENT DESCRIPTIONS

A detailed description of Fruitbot, Jumper, Climber environments that we used in ProcGen benchmark
(Cobbe et al., 2020) is as follows. Example MDPs of each environment are in Figure 11.
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Fruitbot. A simple scrolling game where the player must navigate between gaps in walls and collect
fruit along the way. The player receives a positive reward for collecting a piece of fruit and a more
significant negative reward for mistakenly collecting a non-fruit object.

Jumper. An open world environment where the player, a bunny, should find the carrot which is
randomly located in the map. The screen includes a compass with a needle that displays direction
and distance to the carrot. Style of background, map structure, and location of enemy depending on
the level.

Climber. A simple platformer where the player must climb a sequence of platforms, collecting stars
along the way. Collecting a star gives a small reward, and a larger reward is given for collecting all
the stars in a level. If all stars are collected, the episode ends.

(a) Fruitbot (b) Jumper

(c) Climber

Figure 11: Example MDPs from Fruitbot, Jumper, and Climber environments:

ARCHITECTURE OF HAM MODULE

Figure 12: Architecture of encoder and generator

The encoder separates the input observation into goal context and task codes, as shown in Figure 12
(left). For the context code, the network consists of 4 downsampling residual blocks (He et al., 2016).
For the task code, the network branches off after 3 downsampling residual blocks followed by a
convolution layer and an average pooling, and a dense layer. The design of the code shape is from
Swap Autoencoder (Park et al., 2020) to impose an inductive bias that task information in ProcGen
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benchmark is agnostic to positional information like style features. The spatial dimension in the task
code is removed using average pooling and no padding in the convolution layer.

The generator maps the codes to an hypothetical observation, as shown in Figure 12 (right). The
network uses the context code in the main branch, followed by 2 residual blocks and 4 upsampling
residual blocks. The task code is injected using the weight modulation layer from StyleGAN2 (Karras
et al., 2020). We generate the hypothetical observation by applying a convolutional layer at the end
of the residual blocks as in Swap Autoencoder.

The discriminator architecture is identical to Swap Autoencoder, except we omitted a few residual
blocks as the observation size in ProcGen is 64x64, relatively smaller than the image dataset (e.g.,
512x512) in Swap Autoencoder. The architecture of task discriminator is in Figure 13. The design
is to determine whether an input patch has realistic task features compared to the reference patch.

Figure 13: The architecture of task discriminator: the architecture consists of the feature extractor,
which applies 3 downsampling residual blocks, 1 residual block, and the classifier with 3 dense layers.
When fed into the classifier, we concatenate the flattened feature of the input patch with that of the
reference patch in the channel dimension. The classifier outputs logit representing the task similarity
between the input and reference images. For the reference patches, we average the extracted features
of 4 patches over the batch dimension as in Park et al. (2020).
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TRAINING DETAILS

Basically, the entire HAM architecture is jointly learned in an end-to-end manner. We also used
gradient flow control. For example, when updating the encoder and generator with loss function
in Equation (3), the gradient flow to the goal context discriminator and task discriminator was
blocked. On the contrary, the gradient flow to the encoder and generator was blocked when updating
discriminators using Equation (4) and Equation (5).

For each ProcGen environment hyperparameters, we follow the environment setup in ProcGen
(Cobbe et al., 2020), and hyperparameters in PPO (Schulman et al., 2017). We show a full list of
hyperparameters for ProcGen experiments in Table 4 and Table 5. The hyperparameters values are
unchanged across environments. We also sampled every batch randomly.

Table 4: Hyperparameters used for PPO algo-
rithm and ProcGen environments

Hyperparameter Value

PPO learning rate (αppo) 0.0003
RMSprop optimizer epsilon 0.00001
RMSprop optimizer alpha 0.99
Discount factor for rewards 0.999
GAE coefficient 0.95
Entropy coefficient 0.01
Value loss coefficient 0.5
Max norm of gradients 0.5
Use unnormalized returns FALSE
# of training CPU processes 32
# of forward steps in A2C 256
# of PPO epochs 3
# of batches for PPO 8
PPO clip parameter 0.2
# of environment steps to train 20M
distribution of environments easy
Paint velocity vector FALSE
Start level id 0

Table 5: Hyperparameters used for HAM mod-
ule

Hyperparameter Value

Encoder learning rate (αenc) 0.0003
Discriminator learning rate (αdisc) 0.0001
# of batches for HAM 8
Goal context code dimension 256
GAN loss coefficient (λgan) 0.5
Task loss coefficient (λstyle) 1.0
Goal loss coefficient (λaction) 1.0
# of crop 8
reference # of crop 4
R1 coefficient 10
Task R1 coefficient 1.0
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A.2 ROBUSTNESS OF LEARNED GOAL CONTEXT SPACE

A.2.1 PROCGEN BENCHMARK

To further evaluate the robustness of the learned goal context space, we visualized the goal context
code zg of observations in 2d space using t-SNE in Figure 14. Because there was no optimal
trajectory data in the ProcGen environment, we could not sample the training and test observations
with the same goal context, as in the Jumping task. A sufficiently trained models can serve as
an agent with the optimal policy, however, observations can be asynchronously sampled because
the training performance differs by each baseline method. Instead, we plot the goal context code
zg of observations in various tasks using two color codes representing their task index and value
respectively. We observe that our goal context codes are clustered based on their value similarity
showing their robustness against task changes, while the vanilla PPO’s context codes are clustered
based more on the task index labels.

(a) PPO

(b) HAM

Figure 14: T-SNE visualization of goal context code: visualization of zg trained with vanilla PPO
and PPO + HAM module using 50 training levels in the Fruitbot environment. 100 observations from
randomly sampled 5 different tasks. The figure on the left is color-coded with task label and the right
figure is color-coded with value label. We can find that the learned context space with our HAM
module is more task-invariant compared to the vanilla PPO model.
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A.3 ADDITIONAL RESULTS

A.3.1 JUMPING TASK

GENERALIZATION CURVES

We plot generalization performance on the entire grid including unseen floor heights and obstacle
positions over training timestep. We observe HAM outperforms other baseline methods including
ablated versions of HAM.

(a) Wide (b) Narrow (c) Random

Figure 15: Generalization performance over training timestep: We plot the average success ratio
(# of successful tasks over # of entire tasks in the grid), and the shaded region shows the standard
deviation.

A.3.2 PROCGEN BENCHMARK

GENERALIZATION GAPS

We plot the generalization gap over training level in the Fruitbot environment in Figure 16. Vanilla
PPO shows a significant gap with a small amount of training data, and the gap gradually reduces as
the number of training data increases. On the other hand, our model maintains a small gap from the
most challenging training condition. Furthermore, we found that the generalization gap of HAM
on 50 training levels is compatible with that of PPO using four times more training data. PPO
with L2 regularization also shows a relatively small gap but not as small as HAM. In summary, the
results show that the RL agent with HAM learns task-invariant goal context features by virtue of the
hypothetical analogy-making process.

(a) PPO (b) PPO + L2 reg. (c) HAM

Figure 16: Generalization gap over training level in the Fruitbot environment.
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We also plot the generalization gap over timestep in Figure 17. We found HAM shows the smaller
gap during the whole training process compared to vanilla PPO agent when the training dataset is
small.

Figure 17: Generalization gap over timestep on Fruitbot, Jumper and Climber.
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GENERATED HYPOTHETICAL OBSERVATIONS

We show additional results of hypothetical observation generation on Fruitbot, Jumper and Climber
environments in Figure 18. We also show the hypothetical observation generated by performing
task interpolation G([zig, (α · zit + (1− α) · zjb)]) using a random rate α ∈ [0, 1) in Figure 19. We
can find that the context-relevant features (highlighted with red-dotted circles) are preserved as its
task-relevant features vary during the interpolation process.

(a) Fruitbot (b) Jumper (c) Climber

Figure 18: Generated hypothetical observations G([zig, z
j
t ]) (green-bordered) with the goal context

code of xi and task code of xj . The goal context features are highlighted with red-dotted circles.

(a) Fruitbot

(b) Jumper

(c) Climber

Figure 19: Generated hypothetical observations with task interpolation G([zig, (α · zit +(1−α) · zjb)])
on Fruitbot, Jumper and Climber environments.
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