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Abstract

Machine learning has promised to change the landscape of laboratory chem-1

istry, with impressive results in molecular property prediction and reaction retro-2

synthesis. However, chemical datasets are often inaccessible to the machine3

learning community as they tend to require cleaning, thorough understanding of the4

chemistry, or are simply not available. In this paper, we introduce a novel dataset5

for yield prediction, providing the first-ever transient flow dataset for machine6

learning benchmarking, covering over 1200 process conditions. While previous7

datasets focus on discrete parameters, our experimental set-up allow us to sample8

a large number of continuous process conditions, generating new challenges for9

machine learning models. We focus on solvent selection, a task that is particularly10

difficult to model theoretically and therefore ripe for machine learning applica-11

tions. We showcase benchmarking for regression algorithms, transfer-learning12

approaches, feature engineering, and active learning, with important applications13

towards solvent replacement and sustainable manufacturing.14

1 Introduction15

Machine learning (ML) and artificial intelligence (AI) have showcased enormous potential in em-16

powering the world of the natural sciences: from famous examples such as AlphaFold for protein17

predictions [1], to fusion reactor control [2], disease detection [3], battery design [4], and material18

discovery [5], among many more. However, we seldom see the machine learning community bench-19

mark new methods in physical science datasets, mostly due to the difficulty in cleaning real-world20

data, the need for interdisciplinary understanding to correctly benchmark, and most importantly, how21

expensive the data can be to produce, resulting in many datasets being locked behind closed doors by22

large companies.23

AIchemy (https://aichemy.ac.uk) is an interdisciplinary UK hub with the mission of transform-24

ing the chemistry-AI interface via aiding the collaboration of chemists and AI researchers, as well as25

addressing gaps in data standards, curation, and availability for AI use. In partnership with SOLVE26

Chemistry (https://www.solvechemistry.com), we present a first important step into addressing27

the dataset gap with the introduction of a new and unique open dataset for benchmarking low-data28

machine learning algorithms for chemistry.29

Solvent selection is one of the biggest challenges for chemical manufacturing, with solvents often30

being the main source of waste in the manufacturing process [6]. Increased regulation on solvents and31

a drive to making process manufacturing more sustainable led to an interest in the discovery of greener32
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Figure 1: Data was gathered on the rearrangement of allyl substituted catechol. By subjecting the
reaction mixture to high temperatures, we begin a cascade reaction forming multiple rearrangement
products. We investigate the yield of the reaction for a range of different solvents. Product 1 was not
observed and reacted immediately to form Product 2 and later 3.

solvents and for improved solvent replacement tools. However, most of the solvent replacement tools33

focus purely on learning unsupervised representations of solvents, with the hope that experimentalists34

can find solvents with similar properties to replace those with environmental concerns. A much35

stronger approach would consider the interaction of a variety of different solvents with a reaction of36

interest to directly predict reaction yields, in such a way that the best possible solvent can be selected37

according to a yield-sustainability trade-off.38

Machine learning approaches have been shown to be a powerful tool for the prediction of chemical39

reaction conditions. Success has been reported in retro-synthesis [7, 8], condition recommendations40

[9], product predictions [10, 11], among others. While yield prediction has proven to be more difficult41

due to large inconsistencies in procedure and data reporting [12], we have still seen promising yield42

prediction results for smaller and more carefully curated datasets [13–16]. However, these datasets43

lack the continuous reaction conditions, such as temperature and residence time, that are required to44

scale-up processes to practical manufacturing conditions.45

In this paper, we release the first machine-learning-ready transient flow dataset, a framework that46

allows for quick and efficient screening of continuous reaction conditions. We specifically provide47

yield data over the uni-molecular allyl substituted catechol reaction, shown in Figure 1, with dense48

measurements across the residence time, temperature, and solvent space. We answer the call for49

more flow chemistry reaction data [17], further showcase how this type of kinetic data poses new50

challenges to current machine learning methods for chemistry, and identify potential solutions.51

1.1 Related works52

Reaction datasets are common in chemistry research, but their suitability for machine learning53

benchmarking tends to be poor. This can be a result of improper formatting or documentation,54

incomplete information about reaction conditions or the experimental set-up, or the lack of machine55

readability, leading to limited usage by the ML community. However, some effort has been made56

to address this, with the biggest example being the creation of the Open Reaction Database (ORD)57

[18], a repository containing over 2M different reactions, many of which come from US patent data58

(USPTO) [19]. However, the dataset falls short in some aspects, in particular with respect to machine59

learning readiness and data inconsistencies across reactions.60

ORDerly [12] allows for easy cleaning and preparation of ORD data, showing the promise of the61

dataset for forward and retro-synthetic prediction using transformers; however, it also shows that62

yield prediction cannot be done well due to data inconsistencies. Schwaller et al. [13] drew similar63

conclusions when using the USPTO dataset, stating that reaction conditions such as temperature,64

concentrations, and duration have a significant effect on yield. The assumption that every reaction in65

the dataset is optimized for reaction parameters proved too loose, resulting in inaccurate predictive66

models for yield, and highlighting the importance of creating datasets with full (including potentially67

sub-optimal) reaction conditions.68

More relevant to our work, Perera et al. [20] introduced a dataset of 5760 Suzuki-Miyaura cross-69

coupling reactions, Ahneman et al. [21] introduced a dataset of 3956 Buchwald–Hartwig aminations,70

and Prieto Kullmer et al. [22] investigated screening additives for Ni-catalysed reactions, all for the71

purposes of yield prediction. The datasets have been used in the benchmarking of Gaussian processes72

and Bayesian neural networks [14], deep learning models [13], language-model-based embeddings73
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[16], data augmentation techniques [23], and Bayesian optimisation [15]. In each case, the datasets74

focus on discrete reaction variables, such as ligand, base, additives, or reactants at fixed temperatures75

and residence times. We are instead introducing a dataset rich in continuous reaction conditions (in76

our case temperature and residence time), as well as providing a pseudo-continuous representation of77

solvents themselves through the use of solvent mixtures.78

Perhaps the closest example to our dataset is presented in Nguyen et al. [24], who used high-79

throughput experimentation to screen 12708 catalyst informatics on the oxidative coupling of methane.80

In this case, they do provide process conditions for temperature, reactant equivalents, and flow rates;81

however, they do so in a discretized manner, as opposed to our approach that produces denser82

continuous representations of variables. The dataset has been used in the context of benchmarking83

language models for yield prediction, where the variables are used to create prompts to generate84

LLM embeddings of reactions. Introduced by Ramos et al. [25], the LLM embeddings are used for85

Bayesian optimization in reaction space. Recently, Ranković and Schwaller [16] fine tune a subset of86

1180 LLM embeddings to use as deep kernel GPs, achieving even more favorable performance.87

More detailed and dense datasets including kinetic data usually have to be searched for in the research88

papers that originally published them, which are often accompanied by kinetic model fitting and89

benchmarking [26–28]. However, the datasets are seldom ML-ready, and tend to focus on variables90

which have predictable outcomes. In this work, we collect solvent data, which has a very large impact91

on the system’s dynamics and is often very challenging to model theoretically, making it a particularly92

interesting instance for machine learning applications.93

1.2 The dataset94

The full dataset we collected for this project consists of 1227 data-points, with different reaction95

conditions, with the inputs being:96

(1) A selection of two different solvents in which the reaction was carried out, and the corre-97

sponding ratio of the solvents in the mixture.98

(2) The temperature at which the reaction was carried out.99

(3) The residence time of the reaction, i.e., how long the reactants were subject to the reaction100

conditions applied.101

The outputs consist of the yield of the starting material and the two observed products. We can further102

extract a dataset of single solvent data only. A visual summary of the data is provided in Figure 2.103

We further expand the dataset by including previous measurements on the same reaction class collected104

on a similar molecule, which was reported when developing the solvent ramping technology [29].105

The two datasets are detailed in Table 1, and can be downloaded from Kaggle 2. We further include106

sustainability details for all the solvents screened in Table 2 according to the GSK guide [30].107

Table 1: Summary of the datasets: solvent types, data sizes, output measurements, and presence of
time-series data. SM = Starting Material.

Dataset Subset Data Points Solvents Output Yields Time-Series

Allyl Substituted
Catechol

Solvent Mixtures 1227 24 SM + 2 Products ✓

Single Solvents 656 24 SM + 2 Products ✓
Allyl Phenyl

Ether Solvent Mixtures 283 11 SM + 1 Product ×

2 Dataset collection and techniques108

This section provides general descriptions of the data collection techniques, transient flow, analytical109

analysis, deconvolution, and how active learning was used for ramp selection.110

2Dataset: https://www.kaggle.com/datasets/aichemy/catechol-benchmark/.
Code: https://github.com/jpfolch/catechol_solvent_selection.
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Table 2: List of screened solvents and their classification. For more details see Henderson et al. [30].
Classification Solvents
Green Ethylene Glycol; IPA; Water; Ethanol; Cyrene; Ethyl Acetate;

DMC
Situation dependent Methanol; 2-MeTHF; Cyclohexane; Acetonitrile; Acetic Acid;

2-Butanone; t-Butanol
Needs replacement Diethyl Ether; DMA; THF; MTBE
Not on GSK guide HFIP; 2,2,2-TFE; Decanol; Methyl Propionate; Ethyl ℓ-Lactate
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(a) ACS PCA representation of the space of sol-
vents. We highlight the solvents we collected data
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(b) Three-dimensional scatter plot showing an ex-
perimental run between two solvents. We see
examples of residence time ramps, temperature
ramps, and solvent ramps.
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(c) Example of a residence time ramp under the
HFIP solvent. We see how longer reaction time
increases product yield.
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(d) Example of a solvent ramp between HFIP and
2-MeTHF, exemplifying two of the challenges of
the dataset: bias and heteroskedasticity.

Figure 2: Visual summary of the data set. (a) Showcases the solvent space covered. (b) A full 8h
experimental run between two solvents. (c) A residence time ramp, showing the starting material and
product yields. (d) A solvent ramp, showing the yields under solvent mixture conditions.

2.1 Transient flow and solvent ramping111

Flow chemistry refers to a process in which the reaction is carried out in a continuous stream112

of reactant materials confined within tubing or narrow channels [31]. This technology offers an113

alternative to the traditional batch vessels typically used in chemical manufacturing and often presents114

benefits in areas such as safety, environmental impact, and scalability predictions [32]. Advantages115

include improved heat and mass transfer, more precise process control of the reaction conditions due116

to the smaller reaction volumes, and the ease of integration of online equipment and analytics [33].117
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Figure 3: Example of a residence-time ramp in a transient flow reactor. (Left) We decrease the flow
rate of the reactor to begin the experiments. (Middle) The residence time experienced by the flow at
the point of measurement. (Right) Product yield mapped against residence time of measurements.

Transient flow chemistry is an emerging technology used for collecting large quantities of reaction data118

in a continuous system. The method differs from traditional steady-state flow chemistry techniques,119

as the reaction conditions are varied continuously during experimentation to screen a range of reaction120

conditions [34]. Due to the efficient mixing inherent to flow systems, when the reaction conditions121

are adjusted in a controlled manner, each individual part of the flow is subject to different reaction122

conditions (i.e., plug flow), resulting in the efficient collection of a series of data [35]. An example123

of a relationship that can be investigated using this technique is the effect of the reaction time (i.e.,124

the residence time of the reaction) on the yield of the reaction. This can be done by changing the125

cumulative flow rate in the reactor. The flow rates of the system are initially set to correspond to a126

specific residence time, and a step change to lower flow rates is performed. This means that the plugs127

at the end of the reactor experiences a shorter residence time in the reactor, and each subsequent128

volume of flow, or ‘plug,’ will have a longer residence time, producing a continuous data series of129

increasing residence times [36]. A visualization of this process is given in Figure 3.130

In a similar fashion, other variables can be investigated, such as temperature (varied by slowly ramping131

the reactor temperature) [37], and the equivalents of reagents in a reaction (by modifying the ratio of132

flow rates pumped from different reagent reservoirs) [38]. Reaction solvent is of particular interest133

in this dataset, following research interest in finding ‘green solvents’ as alternatives to traditional134

solvents [29, 39]. Solvent (mixtures) are treated as continuous variables, where the ratio of the two135

chosen solvents is varied using the ratio of the flow rates of the respective pumps to screen different136

solvent mixtures, and the changes in reaction yield are observed. Figure 2a shows all the solvent137

mixtures we were able to sample, as we effectively gather data between pure solvent pairs.138

2.2 Solvent selection139

In order to maximize the amount of information gathered from the data set, we used active learning.140

In particular, we trained a Gaussian process model on the Allyl Phenyl Ether dataset [29], which was141

the first published dataset that investigated solvent ramping using transient flow. We then selected a142

range of suitable available solvents [40] to create a set S and selected the solvents to query according143

to the entropy criterion:144

sA,n+1, sB,n+1 = argmax
sA,sB∈S×S

H(Y (sA, sB)|Dn), (1)

where H is the GP’s entropy, Dn = {X(sA,i, sB,i)}ni=1 the set of solvent ramps gathered up to time145

n, and Y (sA, sB) the vector of data points gathered during solvent ramping from sA to sB .146

2.3 Data acquisition and preprocessing147

Online analytical measurements were collected using high-performance liquid chromatography148

(HPLC) [41], sampled every two minutes. This allows quantitative yield measurements to be149

collected over the course of the reaction, which can then be related to the reaction conditions applied150

to each sample. These can be calculated for each variable since we know the reactor volume, the151

flow rates, the temperature, and the duration that each sample in the flow stream was subjected to152

particular reaction conditions. The residence time is calculated by considering the measurement time,153

tm, the reactor volume, V , and the cumulative flow rate function, Fc(t). We then solve the equation:154

V =

∫ tm

ti

Fc(t)dt (2)
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to find the initial time the plug entered the reactor, ti. From this we can then estimate all the reaction155

conditions, residence time, Rτ , solvent B percentage, SB%, and the average temperature, T̂ :156

Rτ = fm − fi; SB% =
FB(ti)

Fc(ti)
; T̂ =

1

tm − ti

∫ tm

ti

Tr(t)dt (3)

where FB(t) is the flow rate of the solvent B pump at time t, and Tr(t) is the temperature of the157

reactor at time t. We generally seek to make small, incremental changes in temperature and flow rates158

to obtain accurate measurements.159

3 Machine Learning Benchmarks160

In this section, we train a variety of machine learning models to investigate the performance of161

standard state-of-the-art models for this prediction task. In particular, we examine a large range of162

solvent featurization methods, and algorithms that have shown strong performance in the past.163

3.1 Solvent featurization164

Perhaps the most challenging, and most important, component of the benchmark problem we present165

is the solvent featurization process. This step asks how to represent each solvent (mixture), such that166

ML algorithms can extract suitable information for accurate predictions.167

As our goal is to predict yield surfaces on unseen solvents, a featurization that allows for transfer of168

information between solvents is required. Diorazio et al. [40] introduced a dataset of 272 solvents,169

with over 100 features for each, and further provide a 5-dimensional PCA representation of the170

solvent space. A second representation uses measurable properties of solvents [42], allowing easy171

grouping of solvents by type, e.g., as esters, ethers, and alkanes.172

Cheminformatic features of molecules [43], ‘fragments’, are created using count vectors indicating173

the number of times a specific functional group appears in the molecule (following group contribution174

theory). Rogers and Hahn [44] show that bit vectors indicating the presence of substructures in a175

molecule, coined ‘molecular fingerprints’, can be used for molecular property prediction. We test the176

concatenation of both vectors, known as ‘fragprints’ [45].177

Finally, we investigate directly featurizing the reaction itself. This can be done, e.g., using the178

difference in sets containing molecular substructures in the starting materials and products [46, 47],179

known as differential reaction fingerprints (DRFP). Additionally, a reaction fingerprint can be learnt180

from larger open-source databases by using encoder-decoder neural networks [13], known as reaction181

fingerprints (RXNFP).182

Featurizing solvent mixtures A further question of interest is that of how to represent mixtures183

of solvents. Given a pair of solvents and their respective featurizations SA and SB , we will initially184

take the naive approach of using a weighted mean: SA∪B(b) = (1 − b)SA + bSB , where b is the185

proportion of solvent B in the mixture. However, this linear transition can be an oversimplification of186

the underlying chemistry [48], so we investigate learning a non-linear mapping in Section 3.3.187

3.2 Regression188

To evaluate the available machine learning tools for analyzing the dataset, we present a set of models189

for regression. We regress on the solvent mixture and single solvent datasets described in Table 1.190

We perform leave-one-out cross validation for all the models. Further details on the methods used191

and experimental details can be found in the appendix.192

When creating the test set, we take the mean of all repeated observations to avoid over-penalizing193

models that predict these reaction conditions poorly. We also omit the reactions containing acetic194

acid due to unintended a side-reaction3; creating models that are robust to unexpected side reactions195

poses an interesting future challenge.196

3The presence of acetic acid and high temperatures resulted in an unintended side-reaction of the expected
product - possibly an esterification - as soon as it formed, showing very little yield of desired product but with
high conversion. As such, we removed the affected results from our benchmark numbers.
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Table 3: Regression performance on the full dataset. Mean squared error (MSE) and negative log
predictive density (NLPD) are averaged across all leave-one-out data splits.

Full data Single solvent
MSE (↓) NLPD (↓) MSE (↓) NLPD (↓)

Model Featurization

Baseline GP 0.011 -5.381 0.014 -5.044
GP acs 0.016 -4.161 0.017 -4.053

drfps 0.015 -4.937 0.017 -4.028
fragprints 0.013 -5.010 0.017 -4.481
spange 0.011 -5.663 0.011 -5.793

MLP acs 0.014 - 0.011 -
drfps 0.013 - 0.015 -
fragprints 0.011 - 0.010 -
spange 0.010 - 0.010 -

LLM rxnfp 0.105 - 0.055 -
chemberta 0.153 - 0.074 -

NODE spange - - 0.055 -
EODE spange - - 0.050 -3.339
LODE spange - - 0.049 -3.235

Gaussian processes (GPs) are probabilistic, nonparametric models [49]. They are characterized197

by a covariance function, or kernel, that measures the similarity between a pair of inputs. These198

models provide uncertainty quantification, and perform well in low-data settings such as Bayesian199

optimization [50].200

For our BaselineGP, we fit the data to the temperature and residence time inputs, ignoring the solvent,201

thus providing an improved proxy of one-hot encoding which has been shown to work well in low-202

data chemical regimes [51]. For the other GP methods, we transform the solvent into the featurized203

space, then use the Euclidean distance in that space as an input to an RBF kernel. In the appendix,204

we also evaluate a kernel over graphs, using pairwise shortest distances [52–54].205

Neural networks are a now-ubiquitous tool for regression. We start with a simple multi-layer206

perceptron (MLP). We also fine-tune pretrained large language models (LLMs): ChemBERTa [55], a207

model pretrained on chemistry texts, and RXNFP [13], pretrained on chemical reaction classifications.208

This follows works that have shown LLM abilities to generalize across reactions using their string209

representations [56]. In the appendix we further show results for neural process architectures which210

mimic GPs through meta-learning approaches [57].211

Latent ODE methods use neural networks to model the latent state and dynamics of an ordinary212

differential equation (ODE) [58, 59], directly representing the underlying kinetics of the reaction. We213

also include an explicit state variant (LODE) [60], and a neural ODE (NODE) with time-dependent214

dynamics.215

The regression results in Table 3 show the strength of the Spange featurization, which uses parameters216

known to be important to solvent effects. Whilst MLPs have a slight edge over GPs in their mean217

square error performance, the latter is also able to provide uncertainty quantification. Using LLM218

embeddings leads to poor performance, as reported previously, however, the same work reports strong219

performance when the embeddings are fine-tuned [16] which is left to future work.220

3.3 Gaussian process extensions221

In Section 3.2, we report the performance of a selection of off-the-shelf machine learning algorithms222

for performing regression. However, many of these models fail to outperform the baseline model,223

which does not use any solvent information. We therefore propose some further GP models that can224

improve performance. Details of these models can be found in the appendix.225

Kernel design must be performed carefully when creating GP models. A key issue with using the226

standard RBF kernel is that, for unseen solvents with featurizations very dissimilar to the solvents in227
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Figure 4: GP prediction on the yields of a solvent ramp, using Spange descriptors. We showcase a
comparison between the baseline Gaussian process and a standard one. 2-MeTHF appears in another
ramp, and so the model is confident about its predictions; as the proportion of Ether increases, so too
does the model uncertainty.

Table 4: Regression performance of GP extensions on the catechol dataset.
Full data Single solvent

MSE (↓) NLPD (↓) MSE (↓) NLPD (↓)
Model Extension

BaselineGP 0.011 -5.381 0.014 -5.044
GP 0.011 -5.663 0.011 -5.793

Decomposed kernel 0.012 -5.455 0.009 -6.091
Multitask GP 0.018 -2.885 0.011 -2.494
Input warping 0.012 -4.781 0.011 -5.902

the train set, the GP will revert to the uninformative prior. We therefore propose decomposing the228

kernel into solvent and non-solvent components in an additive manner, similarly to Ru et al. [61].229

Multitask kernels are able to learn correlations between outputs [62]. For example, the yields of230

the two products tend to be positively correlated with each other, and negatively correlated with the231

remaining starting material.232

Nonstationary approaches allow modeling of search spaces that have changing lengthscale. For233

example, the rate of reaction is fastest in the first few minutes, and the solvent mixing may be234

nonlinear in the feature space as noted in Section 3.1. We therefore learn a warping of these two235

inputs, inspired by Snoek et al. [63] and Balandat et al. [64].236

The results of these extensions are presented in Table 4. These show promising directions to improve237

regression on single solvents, but struggle to beat the simpler GP when introducing solvent ramps.238

We encourage the machine learning community to investigate further extensions, such as considering239

the heteroskedastic nature of the observation noise [65], or non-stationary kernels [66, 67].240

3.4 Transfer learning241

A key challenge in this dataset is the relatively low amount of data: where many modern ML242

approaches require large volumes of data, we only have 1227 observations of reaction conditions. To243

address this, we extend the training data by including results from the Ethyl dataset [29], which has a244

further 283 experiments. For this regression problem, we only predict the total product yield, since245

the Ethyl dataset only has one observed product.246

We test the best performing regression models, the independent GPs and the MLP. For transfer247

of information across GPs, we use a multitask kernel corresponding to each reaction. For MLPs,248

we encode the reaction through a binary input. The baseline GP only uses the residence time and249

8



Table 5: Regression performance with transfer learning from the Ethyl dataset.
Catechol Catechol + Claisen

MSE (↓) NLPD (↓) MSE (↓) NLPD (↓)
Model Featurization

BaselineGP 0.023 -1.331 0.023 -1.331
GP spange 0.030 -1.487 0.020 -1.506
MLP spange 0.027 - 0.031 -

temperature, so cannot use the additional data. The results of this experiment are given in Table 5,250

demonstrating the utility of learning across multiple datasets.251

3.5 Active learning and Bayesian optimization252

One key application for machine learning in chemistry is to optimally design experimental conditions,253

with recent interest in transient flow applications [68–70]. In this section, we showcase how the254

dataset can be used to benchmark algorithms for design of experiments. For simplicity, we focus on255

the independent GP model with descriptors from Spange et al. [42]. We first explore active learning256

ideas in transient flow: we split the dataset into ramps and use the entropy and mutual information257

criteria [71] to select transient ramps sequentially, with the goal of maximizing information across258

the dataset, which we measure by MSE. Figure 5a shows that using the entropy criterion reduces259

MSE more initially, while using mutual information gives the best long-term performance.260

We then benchmark on classical Bayesian optimization algorithms Expected Improvement [72] and261

Upper Confidence Bound [73]. We design an objective to maximize product yield and the selectivity262

of Product 2, while minimizing temperature and residence time, exemplifying conflicting objectives263

in the scale-up process. We allow the algorithms to query single points across the whole dataset, with264

the goal of identifying the optimal configuration in the fewest queries. Figure 5b shows the results. In265

this case, we observe that the algorithms are very quickly able to identify the optimum, usually after266

20 iterations, outperforming a random search by a significant margin.267

Finally we consider a multi-objective optimization benchmark, by considering a three dimensional268

objective function of trying to optimize yield, selectivity, and a green-score created from Table 2. We269

consider the solvent greenness by setting a value of 1.0 to every green solvent, -1.0 to every harmful270

solvent, and 0.0 to the remaining. For mixture solvent data-points we take a weighted average of271

their green scores. As benchmark metrics we consider three metrics of Pareto coverage: Euclidean272

generational distance (GD), inverted generational distance (IGD), and the maximum Pareto frontier273

error (MPFE) [74]. We present results in Table 6, where we benchmark Thompson Sampling with274

random scalarazations [75].275
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Figure 5: Results of benchmarking for active learning and BO. We initialize the GP with 5 random
samples, and show results over 30 initializations. We report the median, 10th and 90th quantiles.
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Table 6: Results of multi-objective optimization benchmarking over iterations. We compare Euclidean
generational distance (GD), inverted generational distance (IGD), and the maximum Pareto frontier
error (MPFE). Multi-objective optimization results in much stronger metrics that randomly sampling.

Iteration GD (↓) IGD(↓) MPFE (↓)
Random MOBO Random MOBO Random MOBO

1 0.199 0.158 0.397 0.356 0.453 0.387
25 0.107 0.043 0.177 0.146 0.421 0.225
50 0.081 0.023 0.126 0.105 0.388 0.212
75 0.069 0.017 0.106 0.084 0.385 0.200
100 0.054 0.014 0.092 0.072 0.285 0.200
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Figure 6: Visualization of empirical 3-dimensional Pareto front for the multi-objective Bayesian
optimization benchmark.

4 Conclusions and future work276

This paper introduces the first ML-ready transient flow reaction dataset, showcasing the dynamic277

nature of chemical reactions not fully considered in past datasets. We particularly focus on solvent278

selection and challenge of learning solvent effects. We benchmark a variety of regression algorithms279

and solvent featurizations, many of which have shown strong performance in chemistry applications280

before. We show that many algorithms struggle in our dynamic setting due to a variety of factors:281

non-stationarity, hetero-skedasticity, and most importantly the lack of a good solvent featurization282

method. However, we show current techniques can still lead to important improvements, and can be283

effective in active learning settings.284

We call on the machine learning community to develop improved methods for chemical dynamical285

systems. Such methods need to be ready to be infused with prior chemical knowledge, either through286

priors or data-driven learning. However, the most important step we must first address is the lack287

of data - truly effective predictive models will require large understanding of chemistry that cannot288

be obtained from single datasets. For example, some solvents may enable side reactions even when289

present only at small concentrations; as we observed in this dataset for the case of acetic acid. The290

best possible representation over mixed solvents should therefore reflect even trace amounts of these291

solvents, and then consider not only yield predictions, but the probability of the reaction actually292

happening. We hope this work enables an important next step for many ML researchers, to develop293

even more intelligent chemistry models in the near future.294

Limitations of this paper include the focus on only two reactions, and while we touch on a large295

amount of machine learning models, we only go in depth with Gaussian processes due to their296

suitability to the small data regime. Future work would include improvements and further research297

into deep learning models, more flexible Bayesian models such as Bayesian neural networks, and298

investigating further ways of encoding chemical information into models.299
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limitations that aren’t acknowledged in the paper. The authors should use their best588

judgment and recognize that individual actions in favor of transparency play an impor-589

tant role in developing norms that preserve the integrity of the community. Reviewers590

will be specifically instructed to not penalize honesty concerning limitations.591

3. Theory assumptions and proofs592

Question: For each theoretical result, does the paper provide the full set of assumptions and593

a complete (and correct) proof?594

Answer: [NA]595
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Justification: No theoretical results are in the paper.596

Guidelines:597

• The answer NA means that the paper does not include theoretical results.598

• All the theorems, formulas, and proofs in the paper should be numbered and cross-599

referenced.600

• All assumptions should be clearly stated or referenced in the statement of any theorems.601

• The proofs can either appear in the main paper or the supplemental material, but if602

they appear in the supplemental material, the authors are encouraged to provide a short603

proof sketch to provide intuition.604

• Inversely, any informal proof provided in the core of the paper should be complemented605

by formal proofs provided in appendix or supplemental material.606

• Theorems and Lemmas that the proof relies upon should be properly referenced.607

4. Experimental result reproducibility608

Question: Does the paper fully disclose all the information needed to reproduce the main ex-609

perimental results of the paper to the extent that it affects the main claims and/or conclusions610

of the paper (regardless of whether the code and data are provided or not)?611

Answer: [Yes]612

Justification: All details on the machine learning methods are provided in the appendix,613

furthermore the code to reproduce all results has been made public.614

However, it is important to note that the exact laboratory set-up for the data creation will615

not be provided due to protected proprietary IP. Nonetheless, we are confident that similar616

results could be achieved in any flow chemistry set-up.617

Guidelines:618

• The answer NA means that the paper does not include experiments.619

• If the paper includes experiments, a No answer to this question will not be perceived620

well by the reviewers: Making the paper reproducible is important, regardless of621

whether the code and data are provided or not.622

• If the contribution is a dataset and/or model, the authors should describe the steps taken623

to make their results reproducible or verifiable.624

• Depending on the contribution, reproducibility can be accomplished in various ways.625

For example, if the contribution is a novel architecture, describing the architecture fully626

might suffice, or if the contribution is a specific model and empirical evaluation, it may627

be necessary to either make it possible for others to replicate the model with the same628

dataset, or provide access to the model. In general. releasing code and data is often629

one good way to accomplish this, but reproducibility can also be provided via detailed630

instructions for how to replicate the results, access to a hosted model (e.g., in the case631

of a large language model), releasing of a model checkpoint, or other means that are632

appropriate to the research performed.633

• While NeurIPS does not require releasing code, the conference does require all submis-634

sions to provide some reasonable avenue for reproducibility, which may depend on the635

nature of the contribution. For example636

(a) If the contribution is primarily a new algorithm, the paper should make it clear how637

to reproduce that algorithm.638

(b) If the contribution is primarily a new model architecture, the paper should describe639

the architecture clearly and fully.640

(c) If the contribution is a new model (e.g., a large language model), then there should641

either be a way to access this model for reproducing the results or a way to reproduce642

the model (e.g., with an open-source dataset or instructions for how to construct643

the dataset).644

(d) We recognize that reproducibility may be tricky in some cases, in which case645

authors are welcome to describe the particular way they provide for reproducibility.646

In the case of closed-source models, it may be that access to the model is limited in647

some way (e.g., to registered users), but it should be possible for other researchers648

to have some path to reproducing or verifying the results.649
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5. Open access to data and code650

Question: Does the paper provide open access to the data and code, with sufficient instruc-651

tions to faithfully reproduce the main experimental results, as described in supplemental652

material?653

Answer: [Yes]654

Justification: This paper provides open access to the dataset, hosted on Kaggle. We also655

provide the code used to generate the experimental results.656

Guidelines:657

• The answer NA means that paper does not include experiments requiring code.658

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/659

public/guides/CodeSubmissionPolicy) for more details.660

• While we encourage the release of code and data, we understand that this might not be661

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not662

including code, unless this is central to the contribution (e.g., for a new open-source663

benchmark).664

• The instructions should contain the exact command and environment needed to run to665

reproduce the results. See the NeurIPS code and data submission guidelines (https:666

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.667

• The authors should provide instructions on data access and preparation, including how668

to access the raw data, preprocessed data, intermediate data, and generated data, etc.669

• The authors should provide scripts to reproduce all experimental results for the new670

proposed method and baselines. If only a subset of experiments are reproducible, they671

should state which ones are omitted from the script and why.672

• At submission time, to preserve anonymity, the authors should release anonymized673

versions (if applicable).674

• Providing as much information as possible in supplemental material (appended to the675

paper) is recommended, but including URLs to data and code is permitted.676

6. Experimental setting/details677

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-678

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the679

results?680

Answer: [Yes]681

Justification: In Section 3.2, we briefly describe the experimental settings, and the models682

used. In the supplemental material, we describe in further detail these settings. We also683

provide the code, which includes these parameters.684

Guidelines:685

• The answer NA means that the paper does not include experiments.686

• The experimental setting should be presented in the core of the paper to a level of detail687

that is necessary to appreciate the results and make sense of them.688

• The full details can be provided either with the code, in appendix, or as supplemental689

material.690

7. Experiment statistical significance691

Question: Does the paper report error bars suitably and correctly defined or other appropriate692

information about the statistical significance of the experiments?693

Answer: [Yes]694

Justification: In the main section we do not provide error bars, since we base our results695

on full leave-one-out cross-validation. However, on the active learning section we re-696

port interquartile ranges on the performance of the algorithms across a variety of random697

initializations.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-701

dence intervals, or statistical significance tests, at least for the experiments that support702

the main claims of the paper.703

• The factors of variability that the error bars are capturing should be clearly stated (for704

example, train/test split, initialization, random drawing of some parameter, or overall705

run with given experimental conditions).706

• The method for calculating the error bars should be explained (closed form formula,707

call to a library function, bootstrap, etc.)708

• The assumptions made should be given (e.g., Normally distributed errors).709

• It should be clear whether the error bar is the standard deviation or the standard error710

of the mean.711

• It is OK to report 1-sigma error bars, but one should state it. The authors should712

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis713

of Normality of errors is not verified.714

• For asymmetric distributions, the authors should be careful not to show in tables or715

figures symmetric error bars that would yield results that are out of range (e.g. negative716

error rates).717

• If error bars are reported in tables or plots, The authors should explain in the text how718

they were calculated and reference the corresponding figures or tables in the text.719

8. Experiments compute resources720

Question: For each experiment, does the paper provide sufficient information on the com-721

puter resources (type of compute workers, memory, time of execution) needed to reproduce722

the experiments?723

Answer: [Yes]724

Justification: The supplemental material discusses the resources required to reproduce the725

experiments.726

Guidelines:727

• The answer NA means that the paper does not include experiments.728

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,729

or cloud provider, including relevant memory and storage.730

• The paper should provide the amount of compute required for each of the individual731

experimental runs as well as estimate the total compute.732

• The paper should disclose whether the full research project required more compute733

than the experiments reported in the paper (e.g., preliminary or failed experiments that734

didn’t make it into the paper).735

9. Code of ethics736

Question: Does the research conducted in the paper conform, in every respect, with the737

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?738

Answer: [Yes]739

Justification: The research conforms entirely to the NeurIPS Code of Ethics.740

Guidelines:741

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.742

• If the authors answer No, they should explain the special circumstances that require a743

deviation from the Code of Ethics.744

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-745

eration due to laws or regulations in their jurisdiction).746

10. Broader impacts747

Question: Does the paper discuss both potential positive societal impacts and negative748

societal impacts of the work performed?749

Answer: [Yes]750
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Justification: Potential positive societal impacts are discussed in the introduction and751

conclusion: more sustainable manufacturing. Potential negative ones are not discussed, as752

they are too broad and do not relate to this publication in particular.753

Guidelines:754

• The answer NA means that there is no societal impact of the work performed.755

• If the authors answer NA or No, they should explain why their work has no societal756

impact or why the paper does not address societal impact.757

• Examples of negative societal impacts include potential malicious or unintended uses758

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations759

(e.g., deployment of technologies that could make decisions that unfairly impact specific760

groups), privacy considerations, and security considerations.761

• The conference expects that many papers will be foundational research and not tied762

to particular applications, let alone deployments. However, if there is a direct path to763

any negative applications, the authors should point it out. For example, it is legitimate764

to point out that an improvement in the quality of generative models could be used to765

generate deepfakes for disinformation. On the other hand, it is not needed to point out766

that a generic algorithm for optimizing neural networks could enable people to train767

models that generate Deepfakes faster.768

• The authors should consider possible harms that could arise when the technology is769

being used as intended and functioning correctly, harms that could arise when the770

technology is being used as intended but gives incorrect results, and harms following771

from (intentional or unintentional) misuse of the technology.772

• If there are negative societal impacts, the authors could also discuss possible mitigation773

strategies (e.g., gated release of models, providing defenses in addition to attacks,774

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from775

feedback over time, improving the efficiency and accessibility of ML).776

11. Safeguards777

Question: Does the paper describe safeguards that have been put in place for responsible778

release of data or models that have a high risk for misuse (e.g., pretrained language models,779

image generators, or scraped datasets)?780

Answer: [NA]781

Justification: The data that is released does not provide the risk for misuse, as the reaction782

described is not one with harmful uses.783

Guidelines:784

• The answer NA means that the paper poses no such risks.785

• Released models that have a high risk for misuse or dual-use should be released with786

necessary safeguards to allow for controlled use of the model, for example by requiring787

that users adhere to usage guidelines or restrictions to access the model or implementing788

safety filters.789

• Datasets that have been scraped from the Internet could pose safety risks. The authors790

should describe how they avoided releasing unsafe images.791

• We recognize that providing effective safeguards is challenging, and many papers do792

not require this, but we encourage authors to take this into account and make a best793

faith effort.794

12. Licenses for existing assets795

Question: Are the creators or original owners of assets (e.g., code, data, models), used in796

the paper, properly credited and are the license and terms of use explicitly mentioned and797

properly respected?798

Answer: [Yes]799

Justification: The paper uses the existing Ethyl dataset, which is referenced in Section 1. We800

cite the creators, who are also authors on this paper. We provide the data alongside our new801

data on Kaggle, with the creators’ permission.802

Guidelines:803
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• The answer NA means that the paper does not use existing assets.804

• The authors should cite the original paper that produced the code package or dataset.805

• The authors should state which version of the asset is used and, if possible, include a806

URL.807

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.808

• For scraped data from a particular source (e.g., website), the copyright and terms of809

service of that source should be provided.810

• If assets are released, the license, copyright information, and terms of use in the811

package should be provided. For popular datasets, paperswithcode.com/datasets812

has curated licenses for some datasets. Their licensing guide can help determine the813

license of a dataset.814

• For existing datasets that are re-packaged, both the original license and the license of815

the derived asset (if it has changed) should be provided.816

• If this information is not available online, the authors are encouraged to reach out to817

the asset’s creators.818

13. New assets819

Question: Are new assets introduced in the paper well documented and is the documentation820

provided alongside the assets?821

Answer: [Yes]822

Justification: We release a dataset, which is hosted on Kaggle. We provide detailed descrip-823

tion about the different parts of the dataset alongside the data itself. Every column in each824

table provides a description of the type and role of the data. The data was generated by the825

authors of the paper, who consent to using the asset.826

Guidelines:827

• The answer NA means that the paper does not release new assets.828

• Researchers should communicate the details of the dataset/code/model as part of their829

submissions via structured templates. This includes details about training, license,830

limitations, etc.831

• The paper should discuss whether and how consent was obtained from people whose832

asset is used.833

• At submission time, remember to anonymize your assets (if applicable). You can either834

create an anonymized URL or include an anonymized zip file.835

14. Crowdsourcing and research with human subjects836

Question: For crowdsourcing experiments and research with human subjects, does the paper837

include the full text of instructions given to participants and screenshots, if applicable, as838

well as details about compensation (if any)?839

Answer: [NA]840

Justification: The paper does not involve crowdsourcing nor research with human subjects.841

Guidelines:842

• The answer NA means that the paper does not involve crowdsourcing nor research with843

human subjects.844

• Including this information in the supplemental material is fine, but if the main contribu-845

tion of the paper involves human subjects, then as much detail as possible should be846

included in the main paper.847

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,848

or other labor should be paid at least the minimum wage in the country of the data849

collector.850

15. Institutional review board (IRB) approvals or equivalent for research with human851

subjects852

Question: Does the paper describe potential risks incurred by study participants, whether853

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)854

approvals (or an equivalent approval/review based on the requirements of your country or855

institution) were obtained?856

22

paperswithcode.com/datasets


Answer: [NA]857

Justification: The paper does not involve crowdsourcing nor research with human subjects.858

Guidelines:859

• The answer NA means that the paper does not involve crowdsourcing nor research with860

human subjects.861

• Depending on the country in which research is conducted, IRB approval (or equivalent)862

may be required for any human subjects research. If you obtained IRB approval, you863

should clearly state this in the paper.864

• We recognize that the procedures for this may vary significantly between institutions865

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the866

guidelines for their institution.867

• For initial submissions, do not include any information that would break anonymity (if868

applicable), such as the institution conducting the review.869

16. Declaration of LLM usage870

Question: Does the paper describe the usage of LLMs if it is an important, original, or871

non-standard component of the core methods in this research? Note that if the LLM is used872

only for writing, editing, or formatting purposes and does not impact the core methodology,873

scientific rigorousness, or originality of the research, declaration is not required.874

Answer: [Yes]875

Justification: Since we use LLMs for their ability to represent molecules, we briefly introduce876

them, alongside specific pre-trained models. However, since LLMs do not make up a877

significant part of our experiments, we do not include much detail. Otherwise, LLMs were878

only used to help format tables, and make other formatting edits.879

Guidelines:880

• The answer NA means that the core method development in this research does not881

involve LLMs as any important, original, or non-standard components.882

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)883

for what should or should not be described.884
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A Details on the models and benchmarks885

A.1 Benchmarking details886

A.1.1 Regression887

For regression on the dataset, we perform leave-one-out cross validation. For the single solvents,888

we leave out one solvent at a time. For the full data, we leave out one solvent ramp at a time. We889

measure the performance of the model on each leave-one-out data split, then take the mean of their890

performance across the dataset. We exclude any experiments involving acetonitrile and acetic acid,891

due to the observed side-reactions. In addition, when considering the testing in single solvent data,892

we create a set of single data-points by averaging over repeated measurements, in order to remove893

mean error weighting from the longer residence times, in order to understand if the models catch the894

time-series nature of the data.895

A.1.2 Transfer learning896

As above, we perform leave-one-out cross validation on the solvent ramps in the catechol dataset.897

However, when we train each model, we append the training data from the ethyl dataset, alongside a898

binary feature indicating which dataset each observation is from. We also replace the three outputs of899

the catechol dataset (SM, Product 2, Product 3) with a single column, Product, which is the sum of900

the two products. This allows us to compare across the two datasets, since the ethyl dataset only has901

a Product column.902

A.1.3 Active learning and Bayesian optimization903

For Bayesian optimization we optimize the weighted objective function:904

f(SA, Sb, b, τ, T ) = λ1(P2 + P3) + λ2
P2

P2 + P3
− λ3

T − 175

50
− λ4τ (4)

where SA is solvent A, SB is solvent B, b is the percentage composition of solvent B, τ is the905

residence time, T the temperature, and P2 / P3 the yields of Products 2 and 3 respectively. We set the906

weight parameter values to:907

λ1 = 5; λ2 = 1; λ3 = 3; λ4 =
1

20

For the Upper Confidence Bound acquisition function we use the standard exploration parameter908

β = 1.96.909

For locations with repeated measurements we simply consider average of all observations as the true910

product yields. All acquisition function optimizations are done through a simple exhaustive search of911

the space.912

A.2 Model details913

In this section, we provide the details necessary to reproduce the models used in the experiments. Any914

information that is not listed here can be found in our code, at https://github.com/jpfolch/915

catechol_solvent_selection.916

A.2.1 Gaussian processes917

We implement the GP models in this paper in BoTorch v0.13.0 [64]. We use the priors recommended918

by Hvarfner et al. [76], to ensure good performance across featurizations of different dimensions. We919

use an RBF kernel, with the lengthscale prior920

p(ℓ) = LN (
√
2 + log

√
D,

√
3)

All GPs were trained using the MLII likelihood (maximum a posterior), with a training timeout of 30921

seconds. For all of the GP extensions (in Table 4), we use the Spange featurization.922
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Figure 7: An example of a learned input warping, after training the GP on the full dataset.

BaselineGP. This model is a GP trained only using the residence time, and the temperature. This923

model does not factor in which solvent each experiment is from.924

DeepGP. This model first trains a BaselineGP, then uses that as a mean function for another GP. In925

this way, far away from known solvents this model will fall back to the BaselineGP as a prior.926

Decomposed kernel. We take inspiration from Ru et al. [61], and separate our kernel into two parts.927

Specifically, we consider the input to the model to be the concatenation of the solvent featurization,928

f , and the non-featurized inputs, x, which include residence time and temperature. We then use the929

following kernel,930

kdecomp([x, f ], [x
′, f ′]) = kx(x, x

′) · kf (f, f ′) + kx(x, x
′) + kf (f, f

′)

Similarly to the deep GP, this allows the features in x to still contribute to the prediction, even when931

the unseen solvent is far from the known solvents.932

Multitask GP. We use two different types of multitask GP in this paper. First, in Section 3.3, we use933

a multitask GP to represent each of the three measured yields. This kernel consists of a data kernel,934

and a task kernel,935

kMT([x, o], [x
′, o′]) = kx(x, x

′) · ko(o, o′),
where ko is an O ×O matrix (for this dataset, O = 3) that is used to learn the correlations between936

the outputs. Since all outputs are observed for each experiment, we can use a Kronecker structured937

kernel.938

In Section 3.4, we use another multitask GP with 2 tasks, where each task corresponds to one of the939

two datasets. We use the same kernel as above, however only one task is observed at each reaction940

condition.941

Input warping. In Section 3.3, we describe how the underlying chemistry is nonstationary. To942

attempt to address this, we take inspiration from Snoek et al. [63] and Balandat et al. [64], learning a943

bijective map ϕ : [0, 1] → [0, 1] that can capture the nonlinear effect of mixing solvents. This map944

has hyperparameters that can be learned,945

SA∪B(b) = (1− ϕ(b))SA + ϕ(b)SB , ϕ(b) = 1− (1− bα)β ,

where ϕ is the Kumaraswamy cumulative distribution function. We place a log normal prior on the946

parameters, α, β ∼ LN (0,
√
0.3). This prior has median value of 1, which corresponds to a linear947

mapping.948

We also use the input warping for the residence time. Since most of the reaction occurs in the first few949

minutes of the reaction, the lengthscale is far shorter compared to the later parts of the reaction. We950

find that this is indeed learned by the model, as shown in Figure 7; the mapping effectively ‘spreads951

out’ the observations early in the reaction, while compressing the later observations that tend to have952

a slower rate of change. Whilst the warping for the solvent composition learns a slight sigmoidal953

shape, we show experimentally in Section 3.3 that warping this feature does not improve regression954

performance.955

A.2.2 Neural networks956

Two types of neural network models were constructed for the regression tasks. The first was a957

standalone multilayer perceptron (MLP) model, and the second combined a large language model958

(LLM) backbone with an MLP head.959
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For the single-solvent task, the MLP model took as input the reaction time, temperature, and a feature960

vector representing the solvent. The network architecture consisted of two hidden layers with 128961

and 64 neurons, respectively, each followed by ReLU activations and dropout (dropout rate of 0.5),962

and an output layer with 3 neurons.963

For the mixed-solvent task, the MLP model used the same architecture, but the solvent input was964

computed as a sigmoid-weighted combination of the individual solvent feature vectors:965

SA∪B = (1− σθ(b))SA + σθ(b)SB ,

where SA and SB are the featurizations of solvents A and B, b is the percentage of solvent B in the966

mixture, and σθ is a sigmoid function with trainable parameters θ.967

The second model architecture used pretrained LLMs—RXNFP and ChemBERTa—to generate968

embeddings from reaction SMILES strings. For the single-solvent task, the SMILES representation969

of the reaction using the selected solvent was passed through the LLM to obtain the corresponding970

embedding. For the mixed-solvent task, the SMILES strings of the reactions carried out in solvents971

A and B, denoted RSA and RSB , were each processed independently through the LLM to produce972

embeddings EA and EB , respectively. These embeddings were then combined using a sigmoid-973

weighted sum:974

EA∪B = (1− σθ(b))EA + σθ(b)EB ,

where b is the percentage of solvent B in the mixture and σθ is a sigmoid function with trainable975

parameters θ.976

The resulting embedding was concatenated with the time and temperature, and passed through an977

MLP with the same architecture as the standalone MLP model. The LLM backbones were kept978

frozen during training, and only the MLP head was optimized.979

The ChemBERTa model and tokenizer used were seyonec/ChemBERTa-zinc-base-v1, loaded via980

the Hugging Face transformers library. Similarly, the pretrained RXNFP model and tokenizer used981

are available from the rxnfp repository.982

All models were trained using a learning rate of 0.001, a batch size of 32, for up to 400 epochs, or983

until reaching a maximum runtime of 720 minutes.984

A.2.3 ODE985

The ODE models were trained with a learning rate of 0.001, and 100 epochs. For the latent state and986

latent dynamics, we used a 32-dimensional space, and for all of the other representations we used a987

64-dimensional space. Further information can be found in the provided code.988

A.3 Additional results989

We showcase additional results for Neural Processes [57] and graph Gaussian processes [52, 53] in990

table 7.991

B Details on data collection992

B.1 Reactor details993

Here we include the reactor and detail procedures.994

The automated reactor setup used to collect the data is shown in Figure 8. Knauer Azure 4.1S pumps995

fitted with stainless steel 10 mL pump heads were used as pumps 1 and 2. All tubing used for the996

entire reactor was made of 316 stainless steel (1.5875 mm OD, 1 mm ID). An Agilent inline jet997

weaver HPLC mixer (350 µL volume) was used as an inline mixer to ensure the reactant solution was998

homogeneous before entering the reactor. An Agilent 6890 GC oven was used to heat the stainless999

steel coiled reactor (1.5875 mm OD, 1 mm ID, 7.95 mL volume) during the reaction to the desired1000

temperature. A customized cooling system made from an aluminum block and a Peltier assembly1001
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Table 7: Regression performance on the single solvent dataset. Mean squared error (MSE) and
negative log predictive density (NLPD) are averaged across all leave-one-out data splits. We include
the shortest path kernel (sp) and the exponential shortest path kernel (esp).

Single solvent
Model Featurization MSE (↓) NLPD (↓)

NP acs 0.153 -1.173
drfps 0.139 -1.587
fragprints 0.135 -1.495
spange 0.089 -1.472

GraphGP sp 0.046 2.464
esp 1.068 2.453

was then placed inline to rapidly cool the flow of solution and quench the reaction. A Vici four port-21002

position sampling valve followed the Peltier to sample small aliquots (500 nL) into the HPLC for1003

online analysis measurements of the reaction. An IDEX 1000 PSI BPR was then placed before the1004

waste tubing of the reactor to depressurize the reaction solution back to atmospheric pressure. The1005

pumps, oven and Vici valve were automated by code developed in house in Python.1006

B.1.1 Methods1007

A typical reaction run was performed as following:1008

1. The reactant solutions were made up by adding allyl phenyl ether (50 µL) and the internal1009

standard - ethyl benzene (50 µL) in to both solvent A and solvent B (250 mL) in separate1010

volumetric flasks.1011

1012

2. The reactant pumps were primed with their respective solvents and pumped through the1013

system at 1 mL min−1 for 15 minutes.1014

1015

3. The pumps were then primed with the reactant solutions and pumped through the system at1016

1 mL min−1 for 5 minutes.1017

1018

4. The HPLC was started and a sequence was created to record external sampling via the Vici1019

Valve.1020

1021

5. The python code that runs the experiments was then initialized and the experiment was1022

started.1023

1024

6. Once the reaction run was completed, the reactor is flushed with their respective solvents1025

for 10 minutes at 1 mL min−1, followed by a flush of the system with a miscible solvent1026

(usually IPA) and cleaned for the next reaction. The data was stored in a SQL database and1027

is then deconvolved offline.1028

All the data-points recorded were reported in the dataset, and the only outliers that were removed1029

were those slugs that experienced a step-up in flow-rate while in the reactor, as this has been shown1030

to add bias to the data [36].1031

B.2 Fine-tuning calibration via optimization1032

The HPLC data we obtained is uncalibrated, which means we cannot calculate yields directly from1033

the peak areas collected from online HPLC measurements. However, the yields of each product1034

follows the linear relationship with peak areas:1035

yproduct = ϵproduct ×
cIS
c0

× peak_ratio (5)
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Figure 8: Piping & instrumentation diagram of the automated continuous flow coiled reactor used to
collect the transient flow data reported in this paper.

where cIS is the internal standard concentration in mol L−1, c0 is the initial concentration of starting1036

material in mol L−1, and ϵ is the calibration constant. The peak_ratio refers to value given by1037

dividing the area of the peak of interest (starting material, product 2 or product 3) by the peak area of1038

the internal standard. This constant is calculated by performing calibrations of the HPLC detector1039

with injections of pure compounds at different concentrations, while keeping the internal standard1040

concentration constant, and therefore observing the linear relationship and obtaining the response1041

factor of the compounds. Obtaining a pure sample of Product 2 and Product 3 however, turned out1042

to be particularly difficult due to the compounds being isomers, making the separation of the pure1043

products tough. Therefore, we instead focused on using the estimates we had and then fine-tuning1044

them via an optimization procedure.1045

Our initial HPLC tests gave us the following estimates:1046

ϵ̂SM =
1

1.5
; ϵ̂P2 =

1

3
; ϵ̂P3 =

1

3

From here, we decided to fine-tune the estimates in order for the calculated yields to ensure the reaction1047

yields were mass balanced. We identified specific measurements where we expected full conversion1048

(i.e. the sum of yields should be 100), and we further allowed for experimental concentrations to vary1049

according to the error in the laboratory analytical pipettes used for making the reactant solutions.1050

This results in the following optimization problem, where we penalized deviation from our initial1051

calibration measurements, and deviation from full conversion at specified measurements K:1052

min
{ci, ϵj}

α
∑
i

(ci − 2.25)2 + β
∑
j

(ϵj − ϵ̂j)
2 + γ

∑
k∈K

∑
j

ykj − 100

2

where yij = const · peak_ratioij · ϵj · ci, ∀i = 1, ..., 1227; j ∈ {SM,P2, P3}
ci = ci′ if i, i′ are in the same experimental run

with constraints to restrict total yield under 100% and possible errors in concentrations:1053 ∑
j

yij ≤ 100, ∀i

ci ∈ [1.25, 2.5], ∀i
0.2 ≤ ϵj ≤ 0.5, ∀j

where:1054

• ci are the corrected concentration ratios,1055

• ϵj are the calibration scaling factors for each compound,1056

• peak_ratioij are the observed HPLC peak area ratios,1057

• K is the set of indices where full conversion is expected,1058

• α, β, and γ are weighting parameters.1059
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we optimized with α = β = γ = 1, optimized using scipy’s minimize function with the Sequential1060

Least Squares Programming (SLSQP) algorithm. To select the initial values, we used a 100,0001061

initial grid search. This resulted in the following parameter estimates:1062

ϵSM = 0.525; ϵP2 = 0.222; ϵP3 = 0.361

B.3 Spange descriptor interpolation1063

The descriptors from Spange et al. [42] were obtained from the supplementary material on the paper.1064

However, there are a few values missing from some rows, including for the solvents we gathered data1065

for. In order to estimate the missing values, we trained a multi-task Gaussian process model on the1066

whole table, under a Taniamoto kernel, which we then used to predict the missing values that are used1067

for all the main methods in the paper.1068
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