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Abstract

Machine learning has promised to change the landscape of laboratory chem-
istry, with impressive results in molecular property prediction and reaction retro-
synthesis. However, chemical datasets are often inaccessible to the machine
learning community as they tend to require cleaning, thorough understanding of the
chemistry, or are simply not available. In this paper, we introduce a novel dataset
for yield prediction, providing the first-ever transient flow dataset for machine
learning benchmarking, covering over 1200 process conditions. While previous
datasets focus on discrete parameters, our experimental set-up allow us to sample
a large number of continuous process conditions, generating new challenges for
machine learning models. We focus on solvent selection, a task that is particularly
difficult to model theoretically and therefore ripe for machine learning applica-
tions. We showcase benchmarking for regression algorithms, transfer-learning
approaches, feature engineering, and active learning, with important applications
towards solvent replacement and sustainable manufacturing.

1 Introduction

Machine learning (ML) and artificial intelligence (AI) have showcased enormous potential in em-
powering the world of the natural sciences: from famous examples such as AlphaFold for protein
predictions [1], to fusion reactor control [2], disease detection [3], battery design [4], and material
discovery [5], among many more. However, we seldom see the machine learning community bench-
mark new methods in physical science datasets, mostly due to the difficulty in cleaning real-world
data, the need for interdisciplinary understanding to correctly benchmark, and most importantly, how
expensive the data can be to produce, resulting in many datasets being locked behind closed doors by
large companies.

AIchemy (https://aichemy.ac.uk) is an interdisciplinary UK hub with the mission of transform-
ing the chemistry-AI interface via aiding the collaboration of chemists and AI researchers, as well as
addressing gaps in data standards, curation, and availability for AI use. In partnership with SOLVE
Chemistry (https://www.solvechemistry.com), we present a first important step into addressing
the dataset gap with the introduction of a new and unique open dataset for benchmarking low-data
machine learning algorithms for chemistry.

Solvent selection is one of the biggest challenges for chemical manufacturing, with solvents often
being the main source of waste in the manufacturing process [6]. Increased regulation on solvents and
a drive to making process manufacturing more sustainable led to an interest in the discovery of greener
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Figure 1: Data was gathered on the rearrangement of allyl substituted catechol. By subjecting the
reaction mixture to high temperatures, we begin a cascade reaction forming multiple rearrangement
products. We investigate the yield of the reaction for a range of different solvents. Product 1 was not
observed and reacted immediately to form Product 2 and later 3.

solvents and for improved solvent replacement tools. However, most of the solvent replacement tools
focus purely on learning unsupervised representations of solvents, with the hope that experimentalists
can find solvents with similar properties to replace those with environmental concerns. A much
stronger approach would consider the interaction of a variety of different solvents with a reaction of
interest to directly predict reaction yields, in such a way that the best possible solvent can be selected
according to a yield-sustainability trade-off.

Machine learning approaches have been shown to be a powerful tool for the prediction of chemical
reaction conditions. Success has been reported in retro-synthesis [7, 8], condition recommendations
[9], product predictions [10, 11], among others. While yield prediction has proven to be more difficult
due to large inconsistencies in procedure and data reporting [12], we have still seen promising yield
prediction results for smaller and more carefully curated datasets [13–16]. However, these datasets
lack the continuous reaction conditions, such as temperature and residence time, that are required to
scale-up processes to practical manufacturing conditions.

In this paper, we release the first machine-learning-ready transient flow dataset, a framework that
allows for quick and efficient screening of continuous reaction conditions. We specifically provide
yield data over the uni-molecular allyl substituted catechol reaction, shown in Figure 1, with dense
measurements across the residence time, temperature, and solvent space. We answer the call for
more flow chemistry reaction data [17], further showcase how this type of kinetic data poses new
challenges to current machine learning methods for chemistry, and identify potential solutions.

1.1 Related works

Reaction datasets are common in chemistry research, but their suitability for machine learning
benchmarking tends to be poor. This can be a result of improper formatting or documentation,
incomplete information about reaction conditions or the experimental set-up, or the lack of machine
readability, leading to limited usage by the ML community. However, some effort has been made
to address this, with the biggest example being the creation of the Open Reaction Database (ORD)
[18], a repository containing over 2M different reactions, many of which come from US patent data
(USPTO) [19]. However, the dataset falls short in some aspects, in particular with respect to machine
learning readiness and data inconsistencies across reactions.

ORDerly [12] allows for easy cleaning and preparation of ORD data, showing the promise of the
dataset for forward and retro-synthetic prediction using transformers; however, it also shows that
yield prediction cannot be done well due to data inconsistencies. Schwaller et al. [13] drew similar
conclusions when using the USPTO dataset, stating that reaction conditions such as temperature,
concentrations, and duration have a significant effect on yield. The assumption that every reaction in
the dataset is optimized for reaction parameters proved too loose, resulting in inaccurate predictive
models for yield, and highlighting the importance of creating datasets with full (including potentially
sub-optimal) reaction conditions.

More relevant to our work, Perera et al. [20] introduced a dataset of 5760 Suzuki-Miyaura cross-
coupling reactions, Ahneman et al. [21] introduced a dataset of 3956 Buchwald–Hartwig aminations,
and Prieto Kullmer et al. [22] investigated screening additives for Ni-catalysed reactions, all for the
purposes of yield prediction. The datasets have been used in the benchmarking of Gaussian processes
and Bayesian neural networks [14], deep learning models [13], language-model-based embeddings
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[16], data augmentation techniques [23], and Bayesian optimisation [15]. In each case, the datasets
focus on discrete reaction variables, such as ligand, base, additives, or reactants at fixed temperatures
and residence times. We are instead introducing a dataset rich in continuous reaction conditions (in
our case temperature and residence time), as well as providing a pseudo-continuous representation of
solvents themselves through the use of solvent mixtures.

Perhaps the closest example to our dataset is presented in Nguyen et al. [24], who used high-
throughput experimentation to screen 12708 catalyst informatics on the oxidative coupling of methane.
In this case, they do provide process conditions for temperature, reactant equivalents, and flow rates;
however, they do so in a discretized manner, as opposed to our approach that produces denser
continuous representations of variables. The dataset has been used in the context of benchmarking
language models for yield prediction, where the variables are used to create prompts to generate
LLM embeddings of reactions. Introduced by Ramos et al. [25], the LLM embeddings are used for
Bayesian optimization in reaction space. Recently, Ranković and Schwaller [16] fine tune a subset of
1180 LLM embeddings to use as deep kernel GPs, achieving even more favorable performance.

More detailed and dense datasets including kinetic data usually have to be searched for in the research
papers that originally published them, which are often accompanied by kinetic model fitting and
benchmarking [26–28]. However, the datasets are seldom ML-ready, and tend to focus on variables
which have predictable outcomes. In this work, we collect solvent data, which has a very large impact
on the system’s dynamics and is often very challenging to model theoretically, making it a particularly
interesting instance for machine learning applications.

1.2 The dataset

The full dataset we collected for this project consists of 1227 data-points, with different reaction
conditions, with the inputs being:

(1) A selection of two different solvents in which the reaction was carried out, and the corre-
sponding ratio of the solvents in the mixture.

(2) The temperature at which the reaction was carried out.
(3) The residence time of the reaction, i.e., how long the reactants were subject to the reaction

conditions applied.

The outputs consist of the yield of the starting material and the two observed products. We can further
extract a dataset of single solvent data only. A visual summary of the data is provided in Figure 2.

We further expand the dataset by including previous measurements on the same reaction class collected
on a similar molecule, which was reported when developing the solvent ramping technology [29].
The two datasets are detailed in Table 1, and can be downloaded from Kaggle 2. We further include
sustainability details for all the solvents screened in Table 2 according to the GSK guide [30].

Table 1: Summary of the datasets: solvent types, data sizes, output measurements, and presence of
time-series data. SM = Starting Material.

Dataset Subset Data Points Solvents Output Yields Time-Series

Allyl Substituted
Catechol

Solvent Mixtures 1227 24 SM + 2 Products ✓

Single Solvents 656 24 SM + 2 Products ✓
Allyl Phenyl

Ether Solvent Mixtures 283 11 SM + 1 Product ×

2 Dataset collection and techniques

This section provides general descriptions of the data collection techniques, transient flow, analytical
analysis, deconvolution, and how active learning was used for ramp selection.

2Dataset: https://www.kaggle.com/datasets/aichemy/catechol-benchmark/.
Code: https://github.com/jpfolch/catechol_solvent_selection.
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Table 2: List of screened solvents and their classification. For more details see Henderson et al. [30].
Classification Solvents
Green Ethylene Glycol; IPA; Water; Ethanol; Cyrene; Ethyl Acetate;

DMC
Situation dependent Methanol; 2-MeTHF; Cyclohexane; Acetonitrile; Acetic Acid;

2-Butanone; t-Butanol
Needs replacement Diethyl Ether; DMA; THF; MTBE
Not on GSK guide HFIP; 2,2,2-TFE; Decanol; Methyl Propionate; Ethyl ℓ-Lactate
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(a) ACS PCA representation of the space of sol-
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(b) Three-dimensional scatter plot showing an ex-
perimental run between two solvents. We see
examples of residence time ramps, temperature
ramps, and solvent ramps.
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(c) Example of a residence time ramp under the
HFIP solvent. We see how longer reaction time
increases product yield.
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(d) Example of a solvent ramp between HFIP and
2-MeTHF, exemplifying two of the challenges of
the dataset: bias and heteroskedasticity.

Figure 2: Visual summary of the data set. (a) Showcases the solvent space covered. (b) A full 8h
experimental run between two solvents. (c) A residence time ramp, showing the starting material and
product yields. (d) A solvent ramp, showing the yields under solvent mixture conditions.

2.1 Transient flow and solvent ramping

Flow chemistry refers to a process in which the reaction is carried out in a continuous stream
of reactant materials confined within tubing or narrow channels [31]. This technology offers an
alternative to the traditional batch vessels typically used in chemical manufacturing and often presents
benefits in areas such as safety, environmental impact, and scalability predictions [32]. Advantages
include improved heat and mass transfer, more precise process control of the reaction conditions due
to the smaller reaction volumes, and the ease of integration of online equipment and analytics [33].

4



25
Experiment Time / min

0.2

5.0

F
lo

w
 R

at
e 

/ 
m

L
/m

in

25
Experiment Time / min

1

21

R
es

id
en

ce
 T

im
e 

/ 
m

in

0 10 20
Residence Time / min

0

20

40

60

80

P
ro

d
u
ct

 Y
ie

ld
 /

 %

Figure 3: Example of a residence-time ramp in a transient flow reactor. (Left) We decrease the flow
rate of the reactor to begin the experiments. (Middle) The residence time experienced by the flow at
the point of measurement. (Right) Product yield mapped against residence time of measurements.

Transient flow chemistry is an emerging technology used for collecting large quantities of reaction data
in a continuous system. The method differs from traditional steady-state flow chemistry techniques,
as the reaction conditions are varied continuously during experimentation to screen a range of reaction
conditions [34]. Due to the efficient mixing inherent to flow systems, when the reaction conditions
are adjusted in a controlled manner, each individual part of the flow is subject to different reaction
conditions (i.e., plug flow), resulting in the efficient collection of a series of data [35]. An example
of a relationship that can be investigated using this technique is the effect of the reaction time (i.e.,
the residence time of the reaction) on the yield of the reaction. This can be done by changing the
cumulative flow rate in the reactor. The flow rates of the system are initially set to correspond to a
specific residence time, and a step change to lower flow rates is performed. This means that the plugs
at the end of the reactor experiences a shorter residence time in the reactor, and each subsequent
volume of flow, or ‘plug,’ will have a longer residence time, producing a continuous data series of
increasing residence times [36]. A visualization of this process is given in Figure 3.

In a similar fashion, other variables can be investigated, such as temperature (varied by slowly ramping
the reactor temperature) [37], and the equivalents of reagents in a reaction (by modifying the ratio of
flow rates pumped from different reagent reservoirs) [38]. Reaction solvent is of particular interest
in this dataset, following research interest in finding ‘green solvents’ as alternatives to traditional
solvents [29, 39]. Solvent (mixtures) are treated as continuous variables, where the ratio of the two
chosen solvents is varied using the ratio of the flow rates of the respective pumps to screen different
solvent mixtures, and the changes in reaction yield are observed. Figure 2a shows all the solvent
mixtures we were able to sample, as we effectively gather data between pure solvent pairs.

2.2 Solvent selection

In order to maximize the amount of information gathered from the data set, we used active learning.
In particular, we trained a Gaussian process model on the Allyl Phenyl Ether dataset [29], which was
the first published dataset that investigated solvent ramping using transient flow. We then selected a
range of suitable available solvents [40] to create a set S and selected the solvents to query according
to the entropy criterion:

sA,n+1, sB,n+1 = argmax
sA,sB∈S×S

H(Y (sA, sB)|Dn), (1)

where H is the GP’s entropy, Dn = {X(sA,i, sB,i)}ni=1 the set of solvent ramps gathered up to time
n, and Y (sA, sB) the vector of data points gathered during solvent ramping from sA to sB .

2.3 Data acquisition and preprocessing

Online analytical measurements were collected using high-performance liquid chromatography
(HPLC) [41], sampled every two minutes. This allows quantitative yield measurements to be
collected over the course of the reaction, which can then be related to the reaction conditions applied
to each sample. These can be calculated for each variable since we know the reactor volume, the
flow rates, the temperature, and the duration that each sample in the flow stream was subjected to
particular reaction conditions. The residence time is calculated by considering the measurement time,
tm, the reactor volume, V , and the cumulative flow rate function, Fc(t). We then solve the equation:

V =

∫ tm

ti

Fc(t)dt (2)
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to find the initial time the plug entered the reactor, ti. From this we can then estimate all the reaction
conditions, residence time, Rτ , solvent B percentage, SB%, and the average temperature, T̂ :

Rτ = fm − fi; SB% =
FB(ti)

Fc(ti)
; T̂ =

1

tm − ti

∫ tm

ti

Tr(t)dt (3)

where FB(t) is the flow rate of the solvent B pump at time t, and Tr(t) is the temperature of the
reactor at time t. We generally seek to make small, incremental changes in temperature and flow rates
to obtain accurate measurements.

3 Machine Learning Benchmarks

In this section, we train a variety of machine learning models to investigate the performance of
standard state-of-the-art models for this prediction task. In particular, we examine a large range of
solvent featurization methods, and algorithms that have shown strong performance in the past.

3.1 Solvent featurization

Perhaps the most challenging, and most important, component of the benchmark problem we present
is the solvent featurization process. This step asks how to represent each solvent (mixture), such that
ML algorithms can extract suitable information for accurate predictions.

As our goal is to predict yield surfaces on unseen solvents, a featurization that allows for transfer of
information between solvents is required. Diorazio et al. [40] introduced a dataset of 272 solvents,
with over 100 features for each, and further provide a 5-dimensional PCA representation of the
solvent space. A second representation uses measurable properties of solvents [42], allowing easy
grouping of solvents by type, e.g., as esters, ethers, and alkanes.

Cheminformatic features of molecules [43], ‘fragments’, are created using count vectors indicating
the number of times a specific functional group appears in the molecule (following group contribution
theory). Rogers and Hahn [44] show that bit vectors indicating the presence of substructures in a
molecule, coined ‘molecular fingerprints’, can be used for molecular property prediction. We test the
concatenation of both vectors, known as ‘fragprints’ [45].

Finally, we investigate directly featurizing the reaction itself. This can be done, e.g., using the
difference in sets containing molecular substructures in the starting materials and products [46, 47],
known as differential reaction fingerprints (DRFP). Additionally, a reaction fingerprint can be learnt
from larger open-source databases by using encoder-decoder neural networks [13], known as reaction
fingerprints (RXNFP).

Featurizing solvent mixtures A further question of interest is that of how to represent mixtures
of solvents. Given a pair of solvents and their respective featurizations SA and SB , we will initially
take the naive approach of using a weighted mean: SA∪B(b) = (1 − b)SA + bSB , where b is the
proportion of solvent B in the mixture. However, this linear transition can be an oversimplification of
the underlying chemistry [48], so we investigate learning a non-linear mapping in Section 3.3.

3.2 Regression

To evaluate the available machine learning tools for analyzing the dataset, we present a set of models
for regression. We regress on the solvent mixture and single solvent datasets described in Table 1.
We perform leave-one-out cross validation for all the models. Further details on the methods used
and experimental details can be found in the appendix.

When creating the test set, we take the mean of all repeated observations to avoid over-penalizing
models that predict these reaction conditions poorly. We also omit the reactions containing acetic
acid due to unintended a side-reaction3; creating models that are robust to unexpected side reactions
poses an interesting future challenge.

3The presence of acetic acid and high temperatures resulted in an unintended side-reaction of the expected
product - possibly an esterification - as soon as it formed, showing very little yield of desired product but with
high conversion. As such, we removed the affected results from our benchmark numbers.
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Table 3: Regression performance on the full dataset. Mean squared error (MSE) and negative log
predictive density (NLPD) are averaged across all leave-one-out data splits.

Full data Single solvent
MSE (↓) NLPD (↓) MSE (↓) NLPD (↓)

Model Featurization

Baseline GP 0.011 -5.381 0.014 -5.044
GP acs 0.016 -4.161 0.017 -4.053

drfps 0.015 -4.937 0.017 -4.028
fragprints 0.013 -5.010 0.017 -4.481
spange 0.011 -5.663 0.011 -5.793

MLP acs 0.014 - 0.011 -
drfps 0.013 - 0.015 -
fragprints 0.011 - 0.010 -
spange 0.010 - 0.010 -

LLM rxnfp 0.105 - 0.055 -
chemberta 0.153 - 0.074 -

NODE spange - - 0.055 -
EODE spange - - 0.050 -3.339
LODE spange - - 0.049 -3.235

Gaussian processes (GPs) are probabilistic, nonparametric models [49]. They are characterized
by a covariance function, or kernel, that measures the similarity between a pair of inputs. These
models provide uncertainty quantification, and perform well in low-data settings such as Bayesian
optimization [50].

For our BaselineGP, we fit the data to the temperature and residence time inputs, ignoring the solvent,
thus providing an improved proxy of one-hot encoding which has been shown to work well in low-
data chemical regimes [51]. For the other GP methods, we transform the solvent into the featurized
space, then use the Euclidean distance in that space as an input to an RBF kernel. In the appendix,
we also evaluate a kernel over graphs, using pairwise shortest distances [52–54].

Neural networks are a now-ubiquitous tool for regression. We start with a simple multi-layer
perceptron (MLP). We also fine-tune pretrained large language models (LLMs): ChemBERTa [55], a
model pretrained on chemistry texts, and RXNFP [13], pretrained on chemical reaction classifications.
This follows works that have shown LLM abilities to generalize across reactions using their string
representations [56]. In the appendix we further show results for neural process architectures which
mimic GPs through meta-learning approaches [57].

Latent ODE methods use neural networks to model the latent state and dynamics of an ordinary
differential equation (ODE) [58, 59], directly representing the underlying kinetics of the reaction. We
also include an explicit state variant (LODE) [60], and a neural ODE (NODE) with time-dependent
dynamics.

The regression results in Table 3 show the strength of the Spange featurization, which uses parameters
known to be important to solvent effects. Whilst MLPs have a slight edge over GPs in their mean
square error performance, the latter is also able to provide uncertainty quantification. Using LLM
embeddings leads to poor performance, as reported previously, however, the same work reports strong
performance when the embeddings are fine-tuned [16] which is left to future work.

3.3 Gaussian process extensions

In Section 3.2, we report the performance of a selection of off-the-shelf machine learning algorithms
for performing regression. However, many of these models fail to outperform the baseline model,
which does not use any solvent information. We therefore propose some further GP models that can
improve performance. Details of these models can be found in the appendix.

Kernel design must be performed carefully when creating GP models. A key issue with using the
standard RBF kernel is that, for unseen solvents with featurizations very dissimilar to the solvents in
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Table 4: Regression performance of GP extensions on the catechol dataset.
Full data Single solvent

MSE (↓) NLPD (↓) MSE (↓) NLPD (↓)
Model Extension

BaselineGP 0.011 -5.381 0.014 -5.044
GP 0.011 -5.663 0.011 -5.793

Decomposed kernel 0.012 -5.455 0.009 -6.091
Multitask GP 0.018 -2.885 0.011 -2.494
Input warping 0.012 -4.781 0.011 -5.902

the train set, the GP will revert to the uninformative prior. We therefore propose decomposing the
kernel into solvent and non-solvent components in an additive manner, similarly to Ru et al. [61].

Multitask kernels are able to learn correlations between outputs [62]. For example, the yields of
the two products tend to be positively correlated with each other, and negatively correlated with the
remaining starting material.

Nonstationary approaches allow modeling of search spaces that have changing lengthscale. For
example, the rate of reaction is fastest in the first few minutes, and the solvent mixing may be
nonlinear in the feature space as noted in Section 3.1. We therefore learn a warping of these two
inputs, inspired by Snoek et al. [63] and Balandat et al. [64].

The results of these extensions are presented in Table 4. These show promising directions to improve
regression on single solvents, but struggle to beat the simpler GP when introducing solvent ramps.
We encourage the machine learning community to investigate further extensions, such as considering
the heteroskedastic nature of the observation noise [65], or non-stationary kernels [66, 67].

3.4 Transfer learning

A key challenge in this dataset is the relatively low amount of data: where many modern ML
approaches require large volumes of data, we only have 1227 observations of reaction conditions. To
address this, we extend the training data by including results from the Ethyl dataset [29], which has a
further 283 experiments. For this regression problem, we only predict the total product yield, since
the Ethyl dataset only has one observed product.

We test the best performing regression models, the independent GPs and the MLP. For transfer
of information across GPs, we use a multitask kernel corresponding to each reaction. For MLPs,
we encode the reaction through a binary input. The baseline GP only uses the residence time and
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Table 5: Regression performance with transfer learning from the Ethyl dataset.
Catechol Catechol + Ethyl

MSE (↓) NLPD (↓) MSE (↓) NLPD (↓)
Model Featurization

BaselineGP 0.023 -1.331 0.023 -1.331
GP spange 0.030 -1.487 0.020 -1.506
MLP spange 0.027 - 0.031 -

temperature, so cannot use the additional data. The results of this experiment are given in Table 5,
demonstrating the utility of learning across multiple datasets.

3.5 Active learning and Bayesian optimization

One key application for machine learning in chemistry is to optimally design experimental conditions,
with recent interest in transient flow applications [68–70]. In this section, we showcase how the
dataset can be used to benchmark algorithms for design of experiments. For simplicity, we focus on
the independent GP model with descriptors from Spange et al. [42]. We first explore active learning
ideas in transient flow: we split the dataset into ramps and use the entropy and mutual information
criteria [71] to select transient ramps sequentially, with the goal of maximizing information across
the dataset, which we measure by MSE. Figure 5a shows that using the entropy criterion reduces
MSE more initially, while using mutual information gives the best long-term performance.

We then benchmark on classical Bayesian optimization algorithms Expected Improvement [72] and
Upper Confidence Bound [73]. We design an objective to maximize product yield and the selectivity
of Product 2, while minimizing temperature and residence time, exemplifying conflicting objectives
in the scale-up process. We allow the algorithms to query single points across the whole dataset, with
the goal of identifying the optimal configuration in the fewest queries. Figure 5b shows the results. In
this case, we observe that the algorithms are very quickly able to identify the optimum, usually after
20 iterations, outperforming a random search by a significant margin.

Finally we consider a multi-objective optimization benchmark, by considering a three dimensional
objective function of trying to optimize yield, selectivity, and a green-score created from Table 2. We
consider the solvent greenness by setting a value of 1.0 to every green solvent, -1.0 to every harmful
solvent, and 0.0 to the remaining. For mixture solvent data-points we take a weighted average of
their green scores. As benchmark metrics we consider three metrics of Pareto coverage: Euclidean
generational distance (GD), inverted generational distance (IGD), and the maximum Pareto frontier
error (MPFE) [74]. We present results in Table 6, where we benchmark Thompson Sampling with
random scalarazations [75].
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Figure 5: Results of benchmarking for active learning and BO. We initialize the GP with 5 random
samples, and show results over 30 initializations. We report the median, 10th and 90th quantiles.
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Table 6: Results of multi-objective optimization benchmarking over iterations. We compare Euclidean
generational distance (GD), inverted generational distance (IGD), and the maximum Pareto frontier
error (MPFE). Multi-objective optimization results in much stronger metrics that randomly sampling.

Iteration GD (↓) IGD(↓) MPFE (↓)
Random MOBO Random MOBO Random MOBO

1 0.199 0.158 0.397 0.356 0.453 0.387
25 0.107 0.043 0.177 0.146 0.421 0.225
50 0.081 0.023 0.126 0.105 0.388 0.212
75 0.069 0.017 0.106 0.084 0.385 0.200
100 0.054 0.014 0.092 0.072 0.285 0.200
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Figure 6: Visualization of empirical 3-dimensional Pareto front for the multi-objective Bayesian
optimization benchmark.

4 Conclusions and future work

This paper introduces the first ML-ready transient flow reaction dataset, showcasing the dynamic
nature of chemical reactions not fully considered in past datasets. We particularly focus on solvent
selection and challenge of learning solvent effects. We benchmark a variety of regression algorithms
and solvent featurizations, many of which have shown strong performance in chemistry applications
before. We show that many algorithms struggle in our dynamic setting due to a variety of factors:
non-stationarity, hetero-skedasticity, and most importantly the lack of a good solvent featurization
method. However, we show current techniques can still lead to important improvements, and can be
effective in active learning settings.

We call on the machine learning community to develop improved methods for chemical dynamical
systems. Such methods need to be ready to be infused with prior chemical knowledge, either through
priors or data-driven learning. However, the most important step we must first address is the lack
of data - truly effective predictive models will require large understanding of chemistry that cannot
be obtained from single datasets. For example, some solvents may enable side reactions even when
present only at small concentrations; as we observed in this dataset for the case of acetic acid. The
best possible representation over mixed solvents should therefore reflect even trace amounts of these
solvents, and then consider not only yield predictions, but the probability of the reaction actually
happening. We hope this work enables an important next step for many ML researchers, to develop
even more intelligent chemistry models in the near future.

Limitations of this paper include the focus on only two reactions, and while we touch on a large
amount of machine learning models, we only go in depth with Gaussian processes due to their
suitability to the small data regime. Future work would include improvements and further research
into deep learning models, more flexible Bayesian models such as Bayesian neural networks, and
investigating further ways of encoding chemical information into models.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Every claim in the abstract is repeated across the paper and justified, and
expanded in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results are in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details on the machine learning methods are provided in the appendix,
furthermore the code to reproduce all results has been made public.
However, it is important to note that the exact laboratory set-up for the data creation will
not be provided due to protected proprietary IP. Nonetheless, we are confident that similar
results could be achieved in any flow chemistry set-up.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to the dataset, hosted on Kaggle. We also
provide the code used to generate the experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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A Details on the models and benchmarks

A.1 Benchmarking details

A.1.1 Regression

For regression on the dataset, we perform leave-one-out cross validation. For the single solvents,
we leave out one solvent at a time. For the full data, we leave out one solvent ramp at a time. We
measure the performance of the model on each leave-one-out data split, then take the mean of their
performance across the dataset. We exclude any experiments involving acetonitrile and acetic acid,
due to the observed side-reactions. In addition, when considering the testing in single solvent data,
we create a set of single data-points by averaging over repeated measurements, in order to remove
mean error weighting from the longer residence times, in order to understand if the models catch the
time-series nature of the data.

A.1.2 Transfer learning

As above, we perform leave-one-out cross validation on the solvent ramps in the catechol dataset.
However, when we train each model, we append the training data from the ethyl dataset, alongside a
binary feature indicating which dataset each observation is from. We also replace the three outputs of
the catechol dataset (SM, Product 2, Product 3) with a single column, Product, which is the sum of
the two products. This allows us to compare across the two datasets, since the ethyl dataset only has
a Product column.

A.1.3 Active learning and Bayesian optimization

For Bayesian optimization we optimize the weighted objective function:

f(SA, Sb, b, τ, T ) = λ1(P2 + P3) + λ2
P2

P2 + P3
− λ3

T − 175

50
− λ4τ (4)

where SA is solvent A, SB is solvent B, b is the percentage composition of solvent B, τ is the
residence time, T the temperature, and P2 / P3 the yields of Products 2 and 3 respectively. We set the
weight parameter values to:

λ1 = 5; λ2 = 1; λ3 = 3; λ4 =
1
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For the Upper Confidence Bound acquisition function we use the standard exploration parameter
β = 1.96.

For locations with repeated measurements we simply consider average of all observations as the true
product yields. All acquisition function optimizations are done through a simple exhaustive search of
the space.

A.2 Model details

In this section, we provide the details necessary to reproduce the models used in the experiments. Any
information that is not listed here can be found in our code, at https://github.com/jpfolch/
catechol_solvent_selection.

A.2.1 Gaussian processes

We implement the GP models in this paper in BoTorch v0.13.0 [64]. We use the priors recommended
by Hvarfner et al. [76], to ensure good performance across featurizations of different dimensions. We
use an RBF kernel, with the lengthscale prior

p(ℓ) = LN (
√
2 + log

√
D,

√
3)

All GPs were trained using the MLII likelihood (maximum a posterior), with a training timeout of 30
seconds. For all of the GP extensions (in Table 4), we use the Spange featurization.
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Figure 7: An example of a learned input warping, after training the GP on the full dataset.

BaselineGP. This model is a GP trained only using the residence time, and the temperature. This
model does not factor in which solvent each experiment is from.

DeepGP. This model first trains a BaselineGP, then uses that as a mean function for another GP. In
this way, far away from known solvents this model will fall back to the BaselineGP as a prior.

Decomposed kernel. We take inspiration from Ru et al. [61], and separate our kernel into two parts.
Specifically, we consider the input to the model to be the concatenation of the solvent featurization,
f , and the non-featurized inputs, x, which include residence time and temperature. We then use the
following kernel,

kdecomp([x, f ], [x
′, f ′]) = kx(x, x

′) · kf (f, f ′) + kx(x, x
′) + kf (f, f

′)

Similarly to the deep GP, this allows the features in x to still contribute to the prediction, even when
the unseen solvent is far from the known solvents.

Multitask GP. We use two different types of multitask GP in this paper. First, in Section 3.3, we use
a multitask GP to represent each of the three measured yields. This kernel consists of a data kernel,
and a task kernel,

kMT([x, o], [x
′, o′]) = kx(x, x

′) · ko(o, o′),
where ko is an O ×O matrix (for this dataset, O = 3) that is used to learn the correlations between
the outputs. Since all outputs are observed for each experiment, we can use a Kronecker structured
kernel.

In Section 3.4, we use another multitask GP with 2 tasks, where each task corresponds to one of the
two datasets. We use the same kernel as above, however only one task is observed at each reaction
condition.

Input warping. In Section 3.3, we describe how the underlying chemistry is nonstationary. To
attempt to address this, we take inspiration from Snoek et al. [63] and Balandat et al. [64], learning a
bijective map ϕ : [0, 1] → [0, 1] that can capture the nonlinear effect of mixing solvents. This map
has hyperparameters that can be learned,

SA∪B(b) = (1− ϕ(b))SA + ϕ(b)SB , ϕ(b) = 1− (1− bα)β ,

where ϕ is the Kumaraswamy cumulative distribution function. We place a log normal prior on the
parameters, α, β ∼ LN (0,

√
0.3). This prior has median value of 1, which corresponds to a linear

mapping.

We also use the input warping for the residence time. Since most of the reaction occurs in the first few
minutes of the reaction, the lengthscale is far shorter compared to the later parts of the reaction. We
find that this is indeed learned by the model, as shown in Figure 7; the mapping effectively ‘spreads
out’ the observations early in the reaction, while compressing the later observations that tend to have
a slower rate of change. Whilst the warping for the solvent composition learns a slight sigmoidal
shape, we show experimentally in Section 3.3 that warping this feature does not improve regression
performance.

A.2.2 Neural networks

Two types of neural network models were constructed for the regression tasks. The first was a
standalone multilayer perceptron (MLP) model, and the second combined a large language model
(LLM) backbone with an MLP head.
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For the single-solvent task, the MLP model took as input the reaction time, temperature, and a feature
vector representing the solvent. The network architecture consisted of two hidden layers with 128
and 64 neurons, respectively, each followed by ReLU activations and dropout (dropout rate of 0.5),
and an output layer with 3 neurons.

For the mixed-solvent task, the MLP model used the same architecture, but the solvent input was
computed as a sigmoid-weighted combination of the individual solvent feature vectors:

SA∪B = (1− σθ(b))SA + σθ(b)SB ,

where SA and SB are the featurizations of solvents A and B, b is the percentage of solvent B in the
mixture, and σθ is a sigmoid function with trainable parameters θ.

The second model architecture used pretrained LLMs—RXNFP and ChemBERTa—to generate
embeddings from reaction SMILES strings. For the single-solvent task, the SMILES representation
of the reaction using the selected solvent was passed through the LLM to obtain the corresponding
embedding. For the mixed-solvent task, the SMILES strings of the reactions carried out in solvents
A and B, denoted RSA and RSB , were each processed independently through the LLM to produce
embeddings EA and EB , respectively. These embeddings were then combined using a sigmoid-
weighted sum:

EA∪B = (1− σθ(b))EA + σθ(b)EB ,

where b is the percentage of solvent B in the mixture and σθ is a sigmoid function with trainable
parameters θ.

The resulting embedding was concatenated with the time and temperature, and passed through an
MLP with the same architecture as the standalone MLP model. The LLM backbones were kept
frozen during training, and only the MLP head was optimized.

The ChemBERTa model and tokenizer used were seyonec/ChemBERTa-zinc-base-v1, loaded via
the Hugging Face transformers library. Similarly, the pretrained RXNFP model and tokenizer used
are available from the rxnfp repository.

All models were trained using a learning rate of 0.001, a batch size of 32, for up to 400 epochs, or
until reaching a maximum runtime of 720 minutes.

A.2.3 ODE

The ODE models were trained with a learning rate of 0.001, and 100 epochs. For the latent state and
latent dynamics, we used a 32-dimensional space, and for all of the other representations we used a
64-dimensional space. Further information can be found in the provided code.

A.3 Additional results

We showcase additional results for Neural Processes [57] and graph Gaussian processes [52, 53] in
table 7.

B Details on data collection

B.1 Reactor details

Here we include the reactor and detail procedures.

The automated reactor setup used to collect the data is shown in Figure 8. Knauer Azure 4.1S pumps
fitted with stainless steel 10 mL pump heads were used as pumps 1 and 2. All tubing used for the
entire reactor was made of 316 stainless steel (1.5875 mm OD, 1 mm ID). An Agilent inline jet
weaver HPLC mixer (350 µL volume) was used as an inline mixer to ensure the reactant solution was
homogeneous before entering the reactor. An Agilent 6890 GC oven was used to heat the stainless
steel coiled reactor (1.5875 mm OD, 1 mm ID, 7.95 mL volume) during the reaction to the desired
temperature. A customized cooling system made from an aluminum block and a Peltier assembly
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Table 7: Regression performance on the single solvent dataset. Mean squared error (MSE) and
negative log predictive density (NLPD) are averaged across all leave-one-out data splits. We include
the shortest path kernel (sp) and the exponential shortest path kernel (esp).

Single solvent
Model Featurization MSE (↓) NLPD (↓)

NP acs 0.153 -1.173
drfps 0.139 -1.587
fragprints 0.135 -1.495
spange 0.089 -1.472

GraphGP sp 0.046 2.464
esp 1.068 2.453

was then placed inline to rapidly cool the flow of solution and quench the reaction. A Vici four port-2
position sampling valve followed the Peltier to sample small aliquots (500 nL) into the HPLC for
online analysis measurements of the reaction. An IDEX 1000 PSI BPR was then placed before the
waste tubing of the reactor to depressurize the reaction solution back to atmospheric pressure. The
pumps, oven and Vici valve were automated by code developed in house in Python.

B.1.1 Methods

A typical reaction run was performed as following:

1. The reactant solutions were made up by adding allyl phenyl ether (50 µL) and the internal
standard - ethyl benzene (50 µL) in to both solvent A and solvent B (250 mL) in separate
volumetric flasks.

2. The reactant pumps were primed with their respective solvents and pumped through the
system at 1 mL min−1 for 15 minutes.

3. The pumps were then primed with the reactant solutions and pumped through the system at
1 mL min−1 for 5 minutes.

4. The HPLC was started and a sequence was created to record external sampling via the Vici
Valve.

5. The python code that runs the experiments was then initialized and the experiment was
started.

6. Once the reaction run was completed, the reactor is flushed with their respective solvents
for 10 minutes at 1 mL min−1, followed by a flush of the system with a miscible solvent
(usually IPA) and cleaned for the next reaction. The data was stored in a SQL database and
is then deconvolved offline.

All the data-points recorded were reported in the dataset, and the only outliers that were removed
were those slugs that experienced a step-up in flow-rate while in the reactor, as this has been shown
to add bias to the data [36].

B.2 Fine-tuning calibration via optimization

The HPLC data we obtained is uncalibrated, which means we cannot calculate yields directly from
the peak areas collected from online HPLC measurements. However, the yields of each product
follows the linear relationship with peak areas:

yproduct = ϵproduct ×
cIS
c0

× peak_ratio (5)
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Figure 8: Piping & instrumentation diagram of the automated continuous flow coiled reactor used to
collect the transient flow data reported in this paper.

where cIS is the internal standard concentration in mol L−1, c0 is the initial concentration of starting
material in mol L−1, and ϵ is the calibration constant. The peak_ratio refers to value given by
dividing the area of the peak of interest (starting material, product 2 or product 3) by the peak area of
the internal standard. This constant is calculated by performing calibrations of the HPLC detector
with injections of pure compounds at different concentrations, while keeping the internal standard
concentration constant, and therefore observing the linear relationship and obtaining the response
factor of the compounds. Obtaining a pure sample of Product 2 and Product 3 however, turned out
to be particularly difficult due to the compounds being isomers, making the separation of the pure
products tough. Therefore, we instead focused on using the estimates we had and then fine-tuning
them via an optimization procedure.

Our initial HPLC tests gave us the following estimates:

ϵ̂SM =
1

1.5
; ϵ̂P2 =

1

3
; ϵ̂P3 =

1

3

From here, we decided to fine-tune the estimates in order for the calculated yields to ensure the reaction
yields were mass balanced. We identified specific measurements where we expected full conversion
(i.e. the sum of yields should be 100), and we further allowed for experimental concentrations to vary
according to the error in the laboratory analytical pipettes used for making the reactant solutions.
This results in the following optimization problem, where we penalized deviation from our initial
calibration measurements, and deviation from full conversion at specified measurements K:

min
{ci, ϵj}

α
∑
i

(ci − 2.25)2 + β
∑
j

(ϵj − ϵ̂j)
2 + γ

∑
k∈K

∑
j

ykj − 100

2

where yij = const · peak_ratioij · ϵj · ci, ∀i = 1, ..., 1227; j ∈ {SM,P2, P3}
ci = ci′ if i, i′ are in the same experimental run

with constraints to restrict total yield under 100% and possible errors in concentrations:∑
j

yij ≤ 100, ∀i

ci ∈ [1.25, 2.5], ∀i
0.2 ≤ ϵj ≤ 0.5, ∀j

where:

• ci are the corrected concentration ratios,

• ϵj are the calibration scaling factors for each compound,

• peak_ratioij are the observed HPLC peak area ratios,

• K is the set of indices where full conversion is expected,

• α, β, and γ are weighting parameters.
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we optimized with α = β = γ = 1, optimized using scipy’s minimize function with the Sequential
Least Squares Programming (SLSQP) algorithm. To select the initial values, we used a 100,000
initial grid search. This resulted in the following parameter estimates:

ϵSM = 0.525; ϵP2 = 0.222; ϵP3 = 0.361

B.3 Spange descriptor interpolation

The descriptors from Spange et al. [42] were obtained from the supplementary material on the paper.
However, there are a few values missing from some rows, including for the solvents we gathered data
for. In order to estimate the missing values, we trained a multi-task Gaussian process model on the
whole table, under a Taniamoto kernel, which we then used to predict the missing values that are used
for all the main methods in the paper.
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