WhisperKit: On-device Real-time ASR
with Billion-Scale Transformers

Berkin Durmus ' 2 Arda Okan’ Eduardo Pacheco’? Zach Nagengast? Atila Orhon?

Abstract

Real-time Automatic Speech Recognition (ASR)
is a fundamental building block for many com-
mercial applications of ML, including live cap-
tioning, dictation, meeting transcriptions, and
medical scribes. Accuracy and latency are the
most important factors when companies select
a system to deploy. We present WhisperKit, an
optimized on-device inference system for real-
time ASR that significantly outperforms leading
cloud-based systems. We benchmark against
server-side systems that deploy a diverse set
of models, including a frontier model (Ope-
nAl gpt-4o-transcribe), a proprietary
model (Deepgram nova-3), and an open-source
model (Fireworks 1arge-v3—-turbo).Our re-
sults show that WhisperKit matches the lowest
latency at 0.46s while achieving the highest ac-
curacy 2.2% WER. The optimizations behind the
WhisperKit system are described in detail in this

paper.

1. Introduction

Frontier models have been scaled to trillions of parame-
ters to serve virtually all applications across all modalities
with a single model, narrowing down deployment options
to the cloud due to unprecedented memory requirements.
At the same time, task-focused models, whether distilled
or trained from scratch, match or exceed the accuracy of
frontier models at a fraction of the inference cost for most
applications, making on-device deployment of best-in-class
models scalable and economical, even for real-time stream-
ing inference. Given this dichotomy, frontier models have
become the choice for fast prototyping and time-to-market
with a cloud-based inference API while task-focused mod-

"University of California, Los Angeles, USA 2Argmax
Inc., Palo Alto, USA. Correspondence to: Atila Orhon
<a@argmaxinc.com>>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

els with an on-device inference API become the steady-state
solution as the industry matures.

For Automatic Speech Recognition (ASR), Whisper Large
v3 Turbo (Radford et al., 2022), a 1-billion parameter
Encoder-Decoder Transformer model, matches or exceeds
many frontier models, such as gpt-4o-transcribe
(OpenAl, 2025), in ASR accuracy while being sufficiently
compact for on-device deployment. WhisperKit is an opti-
mized on-device inference system designed to deploy Whis-
per models for real-time streaming transcription on Apple

devices. 1.

In specific, WhisperKit makes the following contributions:

* We modified Whisper’s system architecture such that
the Audio Encoder model natively supports streaming
inference and the Text Decoder model yields accurate
output text streams even when running on partial audio.

* We reimplemented Whisper for native acceleration on
the Apple Neural Engine (ANE) to achieve near-peak
hardware utilization while retaining the required en-
ergy efficiency for on-device deployment.

* We compress Whisper with a new technique that retains
the Word Error Rate (WER) within 1% of the original
uncompressed model while reducing the model file
size from 1.6 GB to 0.6 GB.

2. Method
2.1. Architecture

Real-time streaming transcription is a challenging ASR task
with major commercial applications such as live caption-
ing, dictation, meeting transcriptions, medical scribes, etc.
The challenges are twofold: Achieving high accuracy with
partial audio context due to the streaming nature of the in-
put while maintaining low latency in real-time processing,
where delays compound over time. The latency challenge is
exacerbated for model architectures such as Whisper that do
not natively support streaming inference. Whisper consists

lcode available at:https://github.com/
argmaxinc/WhisperKit

https://github.com/argmaxinc/WhisperKit
https://github.com/argmaxinc/WhisperKit

WhisperKit

of an Audio Encoder and a Text Decoder. Both components
introduce distinct challenges.

2.1.1. Aubpio ENCODER

Whisper Audio Encoder can only process 30-second au-
dio chunks. The naive streaming implementation with a
1-second target latency involves zero-padding the audio in-
put to 30 seconds and running an audio encoder forward
pass at most every 1 second as the audio buffer gets updated.
For 1 minute of streaming inference, this implementation
leads to at least 60 audio encoder forward passes, the equiv-
alent of up to 30 minutes of processed audio, compared to
offline inference which requires only a single forward pass.

Moonshine (Jeffries et al., 2024) is a rearchitected version of
Whisper that removes the need to pad the input to 30-second
buffers. Although Moonshine significantly improves the
streaming efficiency, it suffers accuracy loss for long-form
transcription. Furthermore, the published models were not
scaled beyond the t iny and base variants leading to an
accuracy gap with larger state-of-the-art models.

(Liu et al., 2020) fine-tunes their audio encoder Transformer
model with a lower-triangular attention mask such that its
self-attention layers become causal. This technique removes
the ”look-ahead” conditioning caused by the original bidi-
rectional self-attention and enables key-value (KV) caching
for incremental encoding of input audio streams.

We apply self-distillation to Whisper Large V3 Turbo using
the Common Voice 17 (Ardila et al., 2020) training split
following the core ideas from (Liu et al., 2020). In our exper-
iments, we found that the lower-triangular causal attention
mask is too strict and led to an accuracy drop. Instead, we
relax the attention mask to be block-diagonal where the
blocks represent 15-second audio chunks, depicted as d750
in Figure 1(c).

After self-distillation of the audio encoder, the text decoder
still needs to attend over 30-second audio buffers. However,
streaming inference severely underutilizes this buffer length
and most of the input buffer needs to be zero-padded, lead-
ing to unnecessary compute and latency. Block-diagonal
masking enables silence caching where the audio encoder’s
output for an entire 15-second zero-padded block of audio
can be computed at compile time and reused instead of
running inference on zero-padded inputs.

English Accuracy. Table 1 shows the impact of self-
distillation using these self-attention masks on the audio
encoder latency and WER for short-form and long-form and
multilingual transcription. d750 retains WER within 1% of
the original model while reducing latency by 65% (602 ms
—218 ms). Shorter blocks such as d250 and d500 yield
an undesirable trade-off between latency and accuracy.

A"

(b) c250 (c) d750 (d) d500 (e) d250

(a) original

Figure 1. Block-diagonal (d*) and block-causal (¢*) masks for
Whisper Audio Encoder 1500x1500 (30 seconds) Self-attention
Matrix.

Audio Encoder librispeech-test.clean earnings22”
Mask TFLOPs "y cney (ms) " (WER) (WEgR)
original 227 612 1.93 11.55
¢250 2.34 117 %6 =702 2.32 (+0.39) 12.89 (+1.34)
d750 1.04 218 2.25 (+0.32) 12.85 (+1.30)
ds00 0.68 125 3.39 (+1.46) 13.86 (+2.31)
d250 0.33 50 25.58 (+23.65) 39.75 (+28.20)

Table 1. Latency and WER benchmarks for Whisper Audio
Encoders self-distilled with various attention masks. Latency
is measured on a MacBook Pro with M3 Max chip on the Neural
Engine. ¢250 latency is multipled by 6 because block-causal
masking does not allow for silence caching and requires 6 forward
passes of 5-second audio segments to fill the 30-second audio
buffer.

On the other hand, block-causal masking, depicted as c250
in Figure 1(b), retains the same accuracy as d750 for
3x shorter audio blocks. However, unlike block-diagonal,
block-causal conditioning requires key-value caching for
previous blocks in the same 30-second window and does
not allow silence caching as future blocks within the same
30-second window depend on earlier blocks that change as
input audio streams.

Multilingual Accuracy. Figure 2 shows the WER/CER
of the d750 variant on a subset of the Common Voice 17
(Ardila et al., 2020) test split. Whisper Large v3 Turbo
(original) was initially trained to recognize and transcribe in
100 languages. However, the model does not demonstrate
useful quality on many of these languages. In order to
focus on a useful subset, we focus our benchmarks on the
20 languages where the original model achieves the lowest
WER/CER, plus Japanese and Chinese.

The d750 variant was obtained by fine-tuning the original
model while applying the self-attention mask from Figure
1(c) on a subset of Common Voice 17 training split cover-
ing the following 5 languages: English, German, Japanese,
Chinese, and French. We hypothesized that the fine-tuned
model would achieve even lower WER than the original
model for the languages where it was fine-tuned because
this strategy allows the model to forget the other languages
and recycle its limited parameter count towards fewer lan-
guages.

Figure 2 shows that the model either retains WER within 1%
(English and Japanese) or improves WER (French and Ger-

WhisperKit

d750

Spanish|(6.10 .55 [original

Dutch(8.91 9.76
Indonesian|11.11 11.78
Romanian|11.41 1.23
Polish[12.12 | [13.78
English|12.13
German'[12.26 11]os
ltalian{12.83
Czech(12.85 | 14.73
Swedish[12.97 | J4a
Russian(13.28] |14.69
Portuguese|14.93
Galician[15.00 1}.30
Hungarian[15.30 14.80
Finnish[15.42 13.13
French'[15.51 13.5)
Vietnamese|(16.92
Danish|17.63
Greek|17.73 17.69
Catalan|18.27
Japanese'[21.97 [22.17
Chinese'(25.34] 27.40

0 5 10 15 20 25 30
WER or CER (%)

Figure 2. Multilingual WER (Word Error Rate) and CER
(Character Error Rate) before (original) and after (4750) self-
distillation of Whisper Large v3 Turbo. Metrics are reported
for the 20 languages with the lowest WER/CER in the original
model, plus Japanese and Chinese, on a subset of the Common
Voice 17 test set. *. Languages marked with 1 were used during
self-distillation.

man) when compared to the original model for languages
where it was fine-tuned. The exception was Chinese which
regressed by 2% WER, presumably due to small training
dataset size.

These results demonstrate that fine-tuning Whisper Large v3
Turbo using this strategy is a scalable approach to improving
multilingual accuracy while optimizing inference efficiency.

2.1.2. TEXT DECODER

Unlike the Audio Encoder, the Whisper Text Decoder is
capable of streaming individual output tokens while attend-
ing over a fixed input audio buffer. However, the naive
streaming implementation for the text decoder is also prob-
lematic. The output transcript buffer is filled with temporary
text tokens, and the buffer is repeatedly flushed and re-
filled after each audio encoder forward pass until the text
decoder can confirm a full transcript buffer by predicting
the <endoftranscript> special token. Until this event
occurs, all text token predictions are subject to change and
the audio cursor can not be moved forward, leading to com-
pounding latency. We call these temporary results iypothe-
Sis text.

(Liu et al., 2020) proposed the LocalAgreement stream-
ing policy that frequently confirms the hypothesis text by
searching for the longest common prefix across two con-
secutive hypothesis text buffers and moves the audio cursor
to the end of the last token in this common prefix. Whis-
perKit and concurrent work (Machacek et al., 2023) applied

the LocalAgreement policy to Whisper, leading to dual
output text streams:

* Confirmed text stream can be leveraged in the user
experience to build trust in stable and accurate results.

* Hypothesis text preserves low latency and responsive-
ness with occasional corrections as more audio context
becomes available.

Hypothesis text helps real-time transcription systems
achieve sub-second latency while retaining the flexibility
for retroactive corrections to match offline transcription ac-
curacy. However, if the number of corrections is high, it
may also hurt the user experience and reduce trust in the
accuracy of these systems.

large-v3 large-v3-turbo

2.83x

2.94x

2.44x
2.35x
2.24x

Speed-up

1.25x

Theoretical Practical Practical Theoretical Practical Practical
(tokens/step) (Verification (Verification + (tokens/step) (Verification (Verification +
overhead) Drafter overhead) overhead) Drafter overhead)

Figure 3. Speedup factors for Whisper Text Decoder with Spec-
ulative Decoding. Theoretical speedup (tokens/step) is the token
acceptance rate of the verification step and signifies the speedup for
an idealized hardware with infinite compute and limited memory
bandwidth. The practical slowdowns are due to the verification
overhead (processing multiple tokens in parallel) and drafter over-
head (forward pass latency of the drafter model).

Speculative Decoding. (Cheng et al., 2024) introduced
Recurrent Drafter, alossless speculative decoding algorithm
that uses a lightweight RNN drafter to propose multiple
future tokens conditioned on the original model’s hidden
states, which are then verified in parallel by the original
model.

We trained a draft model that achieves a 2.94x and 2.83x
theoretical speedup (accepted tokens per step) for Whisper
Large v3 and Large v3 Turbo respectively. This theoretical
speedup is mostly retained even after accounting for the
verification overhead (2.94x —2.41x and 2.83x —2.35x).
The verification overhead is the slowdown of running the
text decoder on 16 tokens (beam width multiplied by beam
length, 4 x4 = 16) in parallel instead of 1 token per forward
pass.

(Cheng et al., 2024) observed that Apple Silicon GPUs
achieved significantly lower practical speedups than Nvidia
GPUs with identical drafter models due to increased par-
allel verification overhead which pushes the workload to

WhisperKit

be compute-bound, especially for large models (7-billion
parameters or higher). We show that WhisperKit’s Apple
Neural Engine implementation unlocks a much higher com-
pute throughput than was available in (Cheng et al., 2024)’s
Apple Silicon GPU experiments, minimizing the verification
overhead to levels comparable to Nvidia GPUs.

However, we choose not to employ speculative decoding
in our final WhisperKit implementation for Whisper Large
v3 Turbo due to the drafter overhead, the slowdown that
is attributed to running the drafter model 4 times (beam
length) in addition to running the original text decoder once.
For Whisper Large v3, this overhead is minimal due to the
original model’s high latency and the practical speedup ends
up being 2.24x. For Whisper Large v3 Turbo, this overhead
is significant due to the original model’s low latency and the
practical speedup ends up being 1.25x.

2.2. On-device Constraints

There are two challenges to overcome before billion-scale
Transformers can be ubiquitously deployed on edge devices:
Energy and peak memory consumption.

2.2.1. ENERGY

Energy consumption directly impacts battery life and ther-
mal sustainability of using an edge device and on-device
inference must be extremely energy efficient in order to
avoid disruptive patterns such as degraded battery life and
too-hot-to-hold devices that throttle themselves to a halt in
order to cool down.

In 2018, Apple introduced the Neural Engine (ANE) with
the A12 chip for iPhone XS, an inference accelerator that
optimized performance per watt under 10 watts. In 2020,
the Neural Engine was introduced to Mac and iPad with the
M1 chip (Orhon et al., 2022). In 2023, all devices supported
by iOS 17 had a Neural Engine. In 2025, iOS 17 is the
oldest supported operating system for most commercial
applications, making the Neural Engine ubiquitous for all
Apple users.

In the Android market, Qualcomm, Mediatek, and others
have driven a similar hardware transformation by introduc-
ing the Neural Processing Unit (NPU) in mobile chipsets
such as Snapdragon 8 and Dimensity. In 2024, the Qual-
comm Snapdragon X Elite chip was adopted by Microsoft
in Copilot PCs, kickstarting the adoption of NPUs by Win-
dows.

However, ANE and NPUs in general remain underutilized
due to lack of public documentation and tooling. They
have been primarily utilized by the device makers at the
firmware level to power inference for operating system
features such as computational photography (Orhon et al.,
2021) and speech recognition (Xu et al., 2024). In 2022,

Apple published “Deploying Transformers on the Apple
Neural Engine” and open-sourced ane-transformers
(Orhon et al., 2022) to demonstrate how a 0.1 billion param-
eter Transformer Encoder model could be deployed on the
iPhone while being faster than server-side inference (Orhon
et al., 2022). In 2024, Apple unveiled Apple Intelligence
(Apple, 2024a) which is a 3-billion parameter Transformer
language model running on the Neural Engine. The perfor-
mance achieved by Apple Intelligence is not easily accessi-
ble to any third-party model due to lack of documentation.
However, the necessary tooling is available with Core ML
(Apple, 2017).

WhisperKit builds on the ane-transformers reference
implementation of the Transformer architecture and applies
additional optimizations to reach Apple Intelligence-level
performance for a third-party Transformer model using the
Core ML framework. In specific, Stateful Models (Apple,
2024b) feature is leveraged to ensure that the key-value
cache of the Whisper Text Decoder is read and updated
in-place, persisting across forward passes. This leads to a
45% latency reduction (8.4 ms —4.6 ms on M3 ANE) for
the Whisper Large v3 Turbo Text Decoder forward pass
compared to our previous implementation that passed the
key-value cache as input tensors to the model.

Most importantly, the energy consumption for one forward
pass of the same model is reduced by 75% (1.5W —0.3W),
mitigating the battery degradation and heating problem.

|
. |
palettize, :
> Q(Wiier) | |
! |
] | !
Wintier ! |
(o) | ‘
|
|
0@o0 00 . |
00000 sparsify |
w 200G Lyl S(Wouttier) | 1
o) I \
|
I
/
V[/oulher 77777777
Wob-msp

Figure 4. Compile time with OD-MBP. The original weight ten-
sor W is decomposed into a dense inlier block Wiyjier (green) and
a sparse outlier block W ougier (red). Outliers are defined as weight
values that are more than 3 standard deviations away from the
mean. Inliers are palettized and stored as a low-bit lookup table
(LUT) as Q(Winiier), while outliers are kept in float16 precision
and stored in a bit-packed sparse representation as S(Wuier) -

2.2.2. MEMORY

The model size introduces different bottlenecks throughout
the lifecycle of on-device deployment. First, the model
file must be distributed to the end-user device over the air
(OTA) after the app is installed to keep the app size small
and decouple model updates from software updates. The
only increase in the app size must be tied to the on-device
inference SDK which is generally less than 5 MB. Once

WhisperKit

S(Woutiier)

Figure 5. Inference with OD-MBP. The floatl6 input activa-
tion X is dispatched to two parallel operators: (i) Dense path.
A Linear layer retrieves the low-bit palettized inlier weights
Q(Wintier), dequantizes them on the fly, and performs a dense
matrix—vector product in floatl6 precision. (ii) Sparse path. A
SparseLinear layer retrieves the float16 precision sparse out-
lier weights S (Woutier) and performs a sparse matrix—vector prod-
uct in float16 precision.

distributed, the model files take up storage space even when
not being used, so models larger than 2 GB are not end-user
friendly.

Peak memory consumption during active use is dominated
by the model weights and models optimized for on-device
deployment must require less than 2 GB of RAM in order to
retain virtually universal device support. This size roughly
corresponds to a 1-billion parameter model in float16 pre-
cision or 4-billion parameter model in 4-bit precision after
weight compression. Whisper Large v3 Turbo requires 1.6
GB in floatl6 precision. Naive compression of Whisper
models lead to increased Word Error Rate (WER) along
with hallucination and repetitive patterns in the predicted
transcription.

WhisperKit leverages a new compression technique called
Outlier-Decomposed Mixed-Bit Palletization (OD-MBP) to
retain WER within 1% of the original uncompressed model
while staying below 1 GB in size. Mixed-Bit Palettization
(MBP) was first proposed in (Cuenca & Orhon, 2023) to
compress Stable Diffusion XL with the natively accelerated
compression format called palettization (Apple, 2023). Sub-
sequently, MBP was adopted and improved upon by others
such as (Sui et al., 2024) to achieve low-bit high-accuracy
weight compression for edge deployment.

Outlier Decomposition (OD) was first proposed in (Dettmers
et al., 2022) where the forward pass of a linear layer is de-
composed into a low-bit precision inlier branch and a float16
precision outlier branch to minimize the errors caused by
low-bit compression. Outliers are determined based on the
channel-wise magnitude statistics. By definition, they repre-
sent less than 1% of the data. However, this technique does
not accelerate inference because the latency gains from low-
bit compressed weights requiring less memory bandwidth
are offset by the additional compute from the float16 branch.
Furthermore, this technique is restricted to feature-wise

structured decomposition and does not admit unstructured
outlier decomposition.

OD-MBP builds on top of OD and MBP by decomposing
the weight tensors as shown in Figure 4 such that the low-bit
precision inlier branch is implemented using the natively-
accelerated palettization format and the float16 precision
outlier branch is implemented using the natively-accelerated
sparse weight format (Apple, 2023) that is capable of ac-
celerating almost fully unstructured sparsity (Apple, 2023).
Figure 5 shows changes to the forward pass of a Linear
layer when its weights are compressed with OD-MBP.

When applied to Whisper Large v3 Turbo, OD-MBP pre-
serves the WER of the original model to within 1% across
various short- and long-form datasets as shown in Table
Table 2.

librispeech-test.clean earnings22-12hours ~ CommonVoicel7-en
(WER) (WER)

FP16 original 1.6 1.93 11.55 12.13

OD-MBP original 0.6 1.96 (+0.03) 12.35 (+0.80) 13.03 (+0.90)
FP16 d750 L6 2.25(+0.32) 12.85 (+1.30) 12.87 (+0.74)
OD-MBP d750 0.6 2.30 (+0.37) 1272 (+1.17) 14.21 (+2.08)

Compression State ~ Mask ~ Size [GB]

Table 2. Impact of OD-MBP on WER. OD-MBP, even when
combined with the d750 optimization, retains WER within 1%
of the original uncompressed model while compressing Whisper
Large v3 Turbo from 1.6 GB to 0.6 GB

3. Results

In this section, WhisperKit is benchmarked to diverse
and competitive cloud-based inference APIs for real-time
transcription.OpenAl gpt-4o-transcribe (OpenAl,
2025) sets the frontier model baseline. This particular ver-
sion of gpt—4o is fine-tuned for transcription and sets an
even stronger baseline than the base gpt—-40. Deepgram
nova-3 (Deepgram, 2025b) (Deepgram, 2025b) sets the
baseline for proprietary ASR-focused models. Fireworks
large-v3-turbo (Fireworks, 2025b) sets the baseline
for ASR-focused models using the same open-source model
as WhisperKit (Whisper Large v3 Turbo), serving it on the
cloud instead of on device.

3.1. Latency

Real-time transcription latency > is measured as the differ-
ence between the audio cursor and the transcript cursor fol-
lowing Deepgram’s methodology (Deepgram, 2025a) with
one improvement: In order to remove the impact of pre-
dicted word-level timestamps when setting the transcript
cursor, we run our benchmarks on the TIMIT dataset (Garo-
folo, John S. et al., 1993) and adopt its ground-truth word-
level timestamps for this purpose.

This improvement was also necessary because Fireworks
(Fireworks, 2025b) and OpenAlI (OpenAl, 2025) APIs do

SSDBench is used for measurements. Code available at:
https://github.com/argmaxinc/SDBench

https://github.com/argmaxinc/SDBench

WhisperKit

not return predicted word-level timestamps. We verified that
our latency results in Figure 6 for Deepgram and Fireworks
approximately match their offically reported API latency
in (Fireworks, 2025a) and (Deepgram, 2025a) despite our
metric improvement.

Figure 6 shows the per-word latency for the hypothesis text
stream. WhisperKit and Fireworks are the fastest, achieving
a roughly equal mean latency of 0.45 seconds. Deepgram
achieves 0.83 seconds and becomes the third fastest sys-
tem. Note that OpenAl does not support hypothesis text
streams so the results represent the latency of the confirmed
text stream, which is expectedly much slower than all other
systems. Figure 7 shows the per-word latency for the con-
firmed text stream. All systems achieve a similar latency of
1.7 seconds. Fireworks is not shown on this figure because
their API does not confirm the transcription in contiguous
segments.

0.14

[OpenAl (gpt-4o-transcribe)
[DeepGram (nova-3)

[Fireworks (large-v3-turbo)
3 whisperkit (large-v3-turbo)

1: 0.46

0.12 {

o °
o =
@ °

e
=]
=)

Frequency

e
=1
E

14
o
5

e
=]
=]

14
o

0.5 L0 15 2.0 2.5 3.0 35
Latency (s)

Figure 6. Per-word Latency Histogram for Hypothesis Text. Hy-
pothesis text is also referred to as Interim Result in Deepgram’s
documentation (Deepgram, 2025a). Vertical dashed lines indicate
the mean latency for each system.

0.07

[OpenAl (gpt-4o-transcribe)
[DeepGram (nova-3)
3 whisperkit (large-v3-turbo)

0.06

e =3 e
o =) o
w & @
Mean: 1.78

Frequency

o
o
R

0.0 05 10 15 2.0 2.5 3.0 35
Latency (s)

Figure 7. Per-word Latency Histogram for Confirmed Text.
When hypothesis text results are not considered, all benchmarked
systems achieve a similarly high latency of 1.7 seconds. Fireworks
API does not support partial resul confirmations for any result and
is excluded from this plot.

3.2. Accuracy

Evaluating the accuracy of real-time transcription systems is
challenging due to the presence of retrospective corrections

throughout real-time streaming inference. For comprehen-
sive evaluation with and without retrospective corrections,
we designed the following evaluation framework:

* Confirmed text accuracy is evaluated once the stream-
ing session (per file) is complete. We leverage the
standard Word Error Rate (WER) metric for evaluating
this text stream (lower is better). Systems are allowed
to correct past mistakes while a result is still marked as
hypothesis text. Systems are not allowed to retrospec-
tively change confirmed text.

* Hypothesis text accuracy is measured by the number
of corrections made by the system before confirmation.
If number of corrections is zero, then hypothesis text
accuracy achieves its upper bound and matches the
accuracy of confirmed text. If the number of correc-
tions is too high, then the reduced latency afforded by
hypothesis text is not useful and the user experience is
degraded due to unstable results.

Figure 8 shows that OpenAl’s confirmed text accuracy is
lowest (highest WER). WhisperKit and Deepgram achieve
the highest accuracy (lowest WER) of 2% WER while
Fireworks trails behind at 4.72% WER. Notably, OpenAl
demonstrates zero corrections because the API does not
support hypothesis text. On the other hand, Fireworks issues
an order of magnitude more corrections than WhisperKit
and Deepgram. Despite tying with WhisperKit as the low-
est latency system in Figure 6, Fireworks’ extremely high
number of corrections makes it undesirable for real-time
applications. High number of corrections may be associated
with small and less accurate models predicting ahead of
large and more accurate models. WhisperKit latency is mea-
sured on a MacBook Pro with M3 Max chip on the Neural
Engine.

0.5

OpenAl (gpt-do-transcribe) 22>

DeepGram (nova-3)
Fireworks (large-v3-turbo)
0.4 =l WhisperKit (large-v3-turbo)
Mean

2000

1500

WER
Count

1000

\ 500
0.1 IS

~N ~
0.0

Figure 8. Streaming Real-time Transcription Accuracy. On the
left, confirmed text accuracy is shown as WER plots (lower is
better). On the right, hypothesis text accuracy is shown as the total
number of corrections (lower is better) stratified across deletions,
substitutions, and insertions.

(44

07

316 326
154
os| [ozl m o

Deletion Insertion Substitution

oz'z

o

WhisperKit

References

Apple, I. Core ml, 2017. URL https://developer.
apple.com/documentation/coreml.

Apple, I. Use core ml tools for machine learning model com-
pression, 2023. URL https://developer.apple.
com/videos/play/wwdc2023/10047/.

Apple, I. Apple intelligence foundation language mod-
els, 2024a. URL https://arxiv.org/abs/2407.
21075.

Apple, 1. Stateful models, 2024b. URL https://apple.
github.io/coremltools/docs—guides/
source/stateful-models.html.

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler,
M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M.,
and Weber, G. Common voice: A massively-multilingual
speech corpus. In Proceedings of the 12th Conference on
Language Resources and Evaluation (LREC 2020), pp.
4211-4215, 2020.

Cheng, Y., Zhang, A., Zhang, X., Wang, C., and Wang, Y.
Recurrent drafter for fast speculative decoding in large
language models, 2024. URL https://arxiv.org/
abs/2403.099109.

Cuenca, P. and Orhon, A. Stable diffusion x1 on
mac with advanced core ml quantization, 2023.
URL https://huggingface.co/blog/
stable-diffusion—-xl—-coreml#.

Deepgram. Deepgram latency measurement, 2025a. URL
https://developers.deepgram.com/docs/
measuring-streaming-latency.

Deepgram. Nova 3, 2025b.
https://deepgram.com/learn/
introducing—-nova-3-speech-to-text-api.

URL

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers
at scale, 2022. URL https://arxiv.org/abs/
2208.073309.

Fireworks. Fireworks streaming latency, 2025a.
URL https://fireworks.ai/blog/
streaming-audio-launch.

Fireworks. Whisper-large-v3-turbo, 2025b.
URL https://fireworks.ai/models/

fireworks/whisper-v3-turbo.

Garofolo, John S., Lamel, Lori F., Fisher, William
M., Fiscus, Jonathan G., Pallett, David S., and
Dahlgren, Nancy L. Timit acoustic-phonetic continuous
speech corpus. https://catalog.ldc.upenn.

edu/LDC93S1, 1993.
LDC93S1.

Linguistic Data Consortium,

Jeffries, N., King, E., Kudlur, M., Nicholson, G., Wang, J.,
and Warden, P. Moonshine: Speech recognition for live
transcription and voice commands, 2024. URL https:
//arxiv.org/abs/2410.15608.

Liu, D., Spanakis, G., and Niehues, J. Low-latency
sequence-to-sequence speech recognition and translation
by partial hypothesis selection, 2020. URL https:
//arxiv.org/abs/2005.11185.

Machécek, D., Dabre, R., and Bojar, O. Turning whisper
into real-time transcription system, 2023. URL https:
//arxiv.org/abs/2307.14743.

OpenAl. Gpt-4o transcribe, 2025. URL https:
//platform.openai.com/docs/models/
gpt—-4o-transcribe.

Orhon, A., Joergensen, M., Lillethorup, M., Vester-
gaard, J., and Jagadeesh, V. Deploying trans-
formers on the apple neural engine, 2021. URL
https://machinelearning.apple.com/
research/panoptic-segmentation.

Orhon, A., Wadhwa, A., Kim, Y., Rossi, F., and Ja-
gadeesh, V. Apple neural engine transformers, 2022.
URL https://machinelearning.apple.com/
research/neural-engine-transformers.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. Robust speech recognition via large-
scale weak supervision, 2022. URL https://arxiv.
org/abs/2212.04356.

Rio, M. D., Ha, P., McNamara, Q., Miller, C., and Chandra,
S. “earnings-22: A practical benchmark for accents in
the wild”, 2022.

Sui, Y., Li, Y., Kag, A., Idelbayeyv, Y., Cao, J., Hu, J., Sagar,
D., Yuan, B., Tulyakov, S., and Ren, J. Bitsfusion: 1.99
bits weight quantization of diffusion model, 2024. URL
https://arxiv.org/abs/2406.04333.

Xu, M., Jin, A., Wang, S., Su, M., Ng, T., Mason, H., Han,
M., Lei, Z., Deng, Y., Huang, Z., and Krishnamoorthy, M.
Conformer-based speech recognition on extreme edge-
computing devices. In NAACL, 2024. URL https:
//arxiv.org/abs/2312.10359.

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/videos/play/wwdc2023/10047/
https://developer.apple.com/videos/play/wwdc2023/10047/
https://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2407.21075
https://apple.github.io/coremltools/docs-guides/source/stateful-models.html
https://apple.github.io/coremltools/docs-guides/source/stateful-models.html
https://apple.github.io/coremltools/docs-guides/source/stateful-models.html
https://arxiv.org/abs/2403.09919
https://arxiv.org/abs/2403.09919
https://huggingface.co/blog/stable-diffusion-xl-coreml#
https://huggingface.co/blog/stable-diffusion-xl-coreml#
https://developers.deepgram.com/docs/measuring-streaming-latency
https://developers.deepgram.com/docs/measuring-streaming-latency
https://deepgram.com/learn/introducing-nova-3-speech-to-text-api
https://deepgram.com/learn/introducing-nova-3-speech-to-text-api
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://fireworks.ai/blog/streaming-audio-launch
https://fireworks.ai/blog/streaming-audio-launch
https://fireworks.ai/models/fireworks/whisper-v3-turbo
https://fireworks.ai/models/fireworks/whisper-v3-turbo
https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1
https://arxiv.org/abs/2410.15608
https://arxiv.org/abs/2410.15608
https://arxiv.org/abs/2005.11185
https://arxiv.org/abs/2005.11185
https://arxiv.org/abs/2307.14743
https://arxiv.org/abs/2307.14743
https://platform.openai.com/docs/models/gpt-4o-transcribe
https://platform.openai.com/docs/models/gpt-4o-transcribe
https://platform.openai.com/docs/models/gpt-4o-transcribe
https://machinelearning.apple.com/research/panoptic-segmentation
https://machinelearning.apple.com/research/panoptic-segmentation
https://machinelearning.apple.com/research/neural-engine-transformers
https://machinelearning.apple.com/research/neural-engine-transformers
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2406.04333
https://arxiv.org/abs/2312.10359
https://arxiv.org/abs/2312.10359

