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ABSTRACT

Computational models are critical to advance our understanding of how neu-
ral, biomechanical, and physical systems interact to orchestrate animal behav-
iors. Despite the availability of near-complete reconstructions of the Drosophila
melanogaster central nervous system, musculature, and exoskeleton, anatomically
and physically grounded models of fly leg muscles are still missing. These models
provide an indispensable bridge between motor neuron activity and joint move-
ments. Here, we introduce the first 3D, data-driven musculoskeletal model of
Drosophila legs, implemented in both OpenSim and MuJoCo simulation environ-
ments. Our model incorporates a Hill-type muscle representation based on high-
resolution X-ray scans from multiple fixed specimens. We present a pipeline for
constructing muscle models using morphological imaging data and for optimizing
unknown muscle parameters specific to the fly. We then combine our muscu-
loskeletal models with detailed 3D pose estimation data from behaving flies to
achieve muscle-actuated behavioral replay in OpenSim. Simulations of muscle
activity across diverse walking and grooming behaviors predict coordinated mus-
cle synergies that can be tested experimentally. Furthermore, by training imitation
learning policies in MuJoCo, we test the effect of different passive joint properties
on learning speed and find that damping and stiffness facilitate learning. Overall,
our model enables the investigation of motor control in an experimentally tractable
model organism, providing insights into how biomechanics contribute to genera-
tion of complex limb movements. Moreover, our model can be used to control
embodied artificial agents to generate naturalistic and compliant locomotion in
simulated environments.

1 INTRODUCTION

Understanding how to coordinate multiple limbs with many degrees of freedom (DoFs) to accom-
plish diverse motor tasks is a long-standing challenge in both motor control neuroscience and
robotics. Performing such systems-level investigations hinges upon detailed knowledge of mus-
culoskeletal structures and their mechanical properties. Neuromechanical models, therefore, serve
as a crucial tool enabling rapid experimentation and hypothesis testing under controlled conditions
(Edwards, 2010; Ausborn et al., 2021; Kim et al., 2022; Delp et al., 2007; Ramdya and Ijspeert,
2023).

Muscle-driven systems are characterized by intrinsic compliance and redundancy which can sim-
plify the control problems faced by artificial agents as they do for animals in the real world (Gei-
jtenbeek et al., 2013; Lee et al., 2018a; Wang et al., 2012). However, many existing models abstract
away key elements of musculature and passive biomechanics (Aldarondo et al., 2024; Wang-Chen
et al., 2024) limiting their ability to capture the richness of neuromuscular coordination. This, in
turn, limits their utility for understanding how the nervous system generates robust, adaptive be-
haviors. Overcoming this gap will require modeling a system that generates sufficiently complex
limb-dependent movements using a tractably small neuromuscular controller.

The fruit fly, Drosophila melanogaster, represents an ideal organism for this reverse-engineering
challenge. Flies generate complex behaviors using a compact, well-characterized, and genetically
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Figure 1: Pipeline to develop Drosophila leg musculoskeletal models. (Left) Anatomical data
from multiple flies were used to determine muscle attachment points and fiber paths, providing
constraints for constructing the muscle model in OpenSim. (Right) 3D pose estimation data from
behaving animals were then used to train the muscle-actuated agent to recapitulate detailed kinemat-
ics in OpenSim and MuJoCo. (Middle) The resulting muscle model informed by both leg anatomy
and joint kinematics.

accessible nervous system (Bellen et al., 2010; Rubin and Spradling, 1982). Despite substantial
progress in anatomical (e.g., connectomic (Dorkenwald et al., 2024; Phelps et al., 2021)), neural
(Aimon et al., 2019; Simpson, 2024; Chen et al., 2018), and behavioral characterization (Aranha and
Vasconcelos, 2018; Özdil et al., 2024a), recently published biomechanical models of Drosophila legs
(Vaxenburg et al., 2025; Wang-Chen et al., 2024; Lobato-Rios et al., 2022) lack the anatomical and
physiological accuracy required to model and investigate how motor networks coordinate muscles,
limb kinematics, and behavior.

Here, we present the first biologically detailed musculoskeletal model of Drosophila legs across two
widely used physics engines, OpenSim and MuJoCo. Our model extends NeuroMechFly (Wang-
Chen et al., 2024; Lobato-Rios et al., 2022), a whole-body biomechanical simulation of the adult fly,
by incorporating anatomically detailed muscle representations and physiological properties. Specif-
ically, we implement a Hill-type muscle model informed by anatomical data (Azevedo et al., 2024;
Lesser et al., 2024; Dinges et al., 2021) to actuate seven DoFs in three leg joints. Using this model,
we predict the relative contributions of individual muscles to joint movements generated by real
behaving flies. Furthermore, we study the influence of passive joint properties on the successful im-
itation of animal behavior. Our work integrates anatomical, physiological, and behavioral data into a
unified modeling framework, providing a critical foundation for future investigations of Drosophila
neuromuscular coordination and behavioral control. This modeling framework (Figure 1) can also
accelerate the development of musculoskeletal models for other species, inform machine learning-
based algorithms for embodied agents, and facilitate the control of bioinspired robots.

2 RELATED WORK

2.1 MUSCULOSKELETAL MODELS OF ANIMALS

Musculoskeletal models have emerged as powerful tools for investigating animal biomechanics.
Open-source simulation platforms such as OpenSim (Delp et al., 2007), MyoSuite (Caggiano et al.,
2022), and DART (Lee et al., 2018b), as well as commercial frameworks like HyFyDy (Geijten-
beek, 2021), have made it possible to test state-of-the-art learning algorithms on complex, high-
dimensional systems. Use cases include the control of human arms for manipulation and legs for
locomotion (Song et al., 2021; Caggiano et al., 2024). Although primarily developed to simulate
human bodies (Sylvester et al., 2021; Seth et al., 2018), these tools have enabled the creation of
musculoskeletal models for a wide range of species, including rodents (Charles et al., 2018; Tata Ra-
malingasetty et al., 2021; Gilmer et al., 2025; DeWolf et al., 2024), primates (Ogihara et al., 2009;
Chan and Moran, 2006), horses (van Bijlert et al., 2024), and birds like ostriches (Rankin et al.,
2016; La Barbera et al., 2021). Researchers have also developed custom tools to study the interplay
between neural circuits and biomechanics in worms (Zhao et al., 2024), insects (Guo et al., 2018),
and other animals (Arreguit et al., 2023).
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Recently, the fruit fly, Drosophila melanogaster, has become an increasingly prominent animal
model for musculoskeletal simulations. The first anatomically realistic fly body model, NeuroMech-
Fly, used micro-computed tomography (micro-CT) scans to construct a morphologically accurate
3D fly simulation. In its earliest incarnation, simplified antagonistic spring-damper muscles were
used in the legs of NeuroMechFly to simulate locomotor dynamics (Lobato-Rios et al., 2022). More
recent efforts in this (Wang-Chen et al., 2024) and other (Vaxenburg et al., 2025) fly body models
have enhanced simulations by adding, for example, multimodal sensorimotor transformations to ac-
complish a wider range of behavioral tasks. However, these models still rely on abstract —position-
or torque-based— joint controllers and lack realistic muscle actuation. We address this gap in bi-
ological fidelity in our work by explicitly modeling individual fly leg muscles based on detailed
anatomical data.

2.2 MOTOR CONTROL AND MUSCLE SYNERGIES

Coordinating the activities of many muscles is a fundamental challenge in motor control. It has
been proposed that the nervous system simplifies this complex problem by using muscle synergies—
groups of muscles that are co-active, acting as functional units (Bizzi and Cheung, 2013; Ting and
McKay, 2007). By combining a limited number of these synergies, the brain can more efficiently
produce diverse movements without needing to control each muscle independently (Bizzi and Che-
ung, 2013; Saito et al., 2018). Muscle synergies have been identified and analyzed in real exper-
imental data (Tresch et al., 2006; Sponberg et al., 2015; Al Borno et al., 2020), and inspired the
development of controllers that operate within reduced-dimension muscle activation spaces (Berg
et al., 2024). These synergy-based approaches facilitate robust coordinated movements while sig-
nificantly reducing control complexity. For instance, human walking can be performed across a
range of speeds and directions using just a few lower-limb synergies (Saito et al., 2018).

Muscle synergies have also been studied extensively in insects with respect to how sensory feedback
reinforces coordinated muscle activation (Bidaye et al., 2018; Zill et al., 2018). By leveraging the
complete wiring diagram of the Drosophila nervous system—known as the connectome—recent
studies have identified specific neural circuits that may coordinate fly limb movements (Syed et al.,
2024; Lesser et al., 2024). Nevertheless, because of the anatomical and functional complexity of
Drosophila leg muscles, we cannot predict muscle activity patterns for a given behavior based on
neural connectivity or neural recordings alone. In this work, we address this gap by (i) developing an
anatomically detailed muscle model of Drosophila legs and (ii) simulating this model to reproduce
measured joint kinematics across behaviors, allowing us to predict underlying active muscle synergy
groupings.

2.3 Drosophila LEG MUSCULATURE

Each fly leg is a multi-jointed appendage with at least seven DoFs across five joints (Lobato-Rios
et al., 2022; Haustein et al., 2024). These joints are actuated by approximately 19 muscles, which
in turn are controlled by approximately 69 motor neurons (Azevedo et al., 2024; Lesser et al., 2024;
Soler et al., 2004). Notably, the muscle structure across legs is nearly identical, with a few exceptions
including tergal depressor of the trochanter (TDT) muscles in the middle legs that facilitate jump
escape (Swank, 2012). Leg biomechanics are further complicated by biarticular muscles that span
multiple joints to coordinate movements across body segments (Lesser et al., 2024). Additionally,
the passive properties of joints, including their elasticity and damping, can either resist, or assist
motion depending on the direction of movement (Ache and Matheson, 2013).

3 METHODS

3.1 ACQUISITION OF ANATOMICAL DATA

To reconstruct the front leg muscles, we used two publicly available datasets (Kuan et al., 2020;
Dinges et al., 2021) and one custom dataset collected for this study. The custom dataset was acquired
using using synchrotron radiation µCT. Each of the three datasets captured different foreleg postures,
allowing us to better understand how muscle attachment points vary across joint configurations. We
focused on annotating muscle fibers that span the thorax–coxa, coxa–trochanter, and femur–tibia
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joints (Figure 2A) and grouped them by function as described in (Azevedo et al., 2024; Soler et al.,
2004). For muscles located in the thorax, we used data from (Dinges et al., 2021); for the remaining
leg muscles, we relied on (Kuan et al., 2020). Muscle attachment points were then cross-validated
using our custom scan. Together, these datasets provided the anatomical basis for our muscle model.

Figure 2: Front leg muscle reconstructions. (A) Muscles of the thorax, coxa, and femur were
segmented from high-resolution X-ray scans (Kuan et al., 2020; Dinges et al., 2021) and visualized
within a 3D mesh of the foreleg in Blender. Colors denote anatomically grouped muscles, includ-
ing biarticular and joint-specific actuators. (B) Corresponding muscle-tendon units implemented in
OpenSim preserve anatomical attachment points and fiber routing. Color coding is the same as in
panel A.

3.2 MUSCLE MODEL CONSTRUCTION AND OPTIMIZATION

We modeled 15 muscle-tendon units (MTUs) per foreleg—7 in the thorax, 6 in the coxa, and 2 in
the femur—capturing 12 of the 19 muscle groups in our anatomical datasets (Figure 2B). Muscles
housed in the tibia were excluded because the tibia segment was partially captured in the X-ray data.
In the femur, we modeled the fast tibia flexor and extensor which dominate force generation at the
femur–tibia joint (Azevedo et al., 2020). Trochanter muscles were omitted because their function
remains unclear (Soler et al., 2004).

Each muscle group was modeled using one or two MTUs, based on a Hill-type formulation (Hill,
1938). This formulation includes a contractile element, a passive parallel elastic component, and
a series elastic component, assuming rigid tendons (Millard et al., 2013) (Figure 3A). To keep the
model computationally manageable in OpenSim (Delp et al., 2007), we selected up to two represen-
tative MTUs per muscle group to capture the main muscle fiber functions (see Supplementary Ma-
terial for more details). Muscle-tendon lengths and initial attachment points were initialized using
anatomical data (Figure 3A, right). We estimated maximum isometric forces from the physiological
cross-sectional areas (PCSAs) of the muscles, scaling them with a specific tension of 28mN/mm

2.
This value falls between those reported for Drosophila jump muscles (37mN/mm

2) (Eldred et al.,
2010) and indirect flight muscles (9mN/mm

2) (Swank, 2012). We estimated max contraction ve-
locity using a recorded X-ray video of muscle contraction during leg movements.

Because experimental data are limited, initial parameters may not faithfully reflect biological reality.
Therefore, we refined parameters through optimization in OpenSim. For each candidate parameter
set proposed by the optimizer, static optimization (SO) inferred muscle activations from reference
joint angles, and forward dynamics (FD) simulated joint trajectories based on those activations. We
used NSGA-II to identify parameter sets that produced kinematics best matching the experimental
data (Figure 3B). To avoid overfitting, we optimized parameters across two behaviors—antennal
grooming and locomotion—retaining solutions that performed well for both behaviors (Figure 3C).
Each joint (1 or 3 DoFs) was optimized independently. For a 3-DoF joint, optimization took ap-
proximately 8 h with 200 individuals over 40 generations. The full foreleg optimization (7 DoFs, 15
MTUs) would require ∼ 20 hours if each optimization were run sequentially using an Intel i9-14900
processor with 64 GB of RAM.

To assess the biological plausibility of our resulting muscle models, we analyzed muscle moment
arms relative to joint motion. Our model correctly reproduced opposing signs for flexor and extensor
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moment arms, and predicted the dominant contributors to joint movements (thorax-coxa, and coxa-
trochanter yaw, pitch, and roll, and femur-tibia pitch) in agreement with their known functional roles
(Figure 3D) (Azevedo et al., 2024; Soler et al., 2004).

Figure 3: Optimization and assessment of muscle model parameters. (A) Schematic repre-
sentation of a Hill-type muscle model. The contractile element (CE) produces active force, the
parallel elastic element (PE) provides passive stiffness, and the series elastic element (SE) repre-
sents tendon elasticity. lm is the fiber length, α the pennation angle, and lt the tendon length. The
total muscle-tendon length is lmt = lm cos(α) + lt. Anatomical parameters (fiber length, attach-
ment points, pennation angle) are initialized from X-ray data; physiological parameters (maximum
isometric force, activation dynamics) from experiments and literature. Parameters indicated with
asterisks are modified through optimization to match measured limb movements. Otherwise param-
eters were kept at fixed values. (B) Optimization pipeline for muscle parameters. Muscle parameters
are jointly tuned to minimize the error between measured and simulated joint angles for two behav-
iors (antennal grooming and locomotion). (C) Performance of muscle parameter optimization. Left:
root mean squared error (RMSE), normalized with respect to joint movement range. Right: square
of the Pearson correlation between simulated and reference joint angles across 7 DoFs (3 joints).
Because the coxa-trochanter roll joint does not move during locomotion, it is not shown and has
constant values. Data from the top 10 individuals are shown and indicated (dots). (D) Moment arms
of thoracic, coxal, and femoral muscles with respect to a single joint DoF. Other joints are fixed at
mid-range positions. Plots show means and standard deviations across 10 individuals.

3.3 REAL LIMB KINEMATICS DATA

2D and 3D limb kinematics were measured from tethered flies behaving spontaneously on an air-
supported spherical treadmill. Foreleg and head movements were tracked in 2D using DeepLabCut
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(Mathis et al., 2018). Separate models were trained for each camera angle. Annotations were
refined over multiple iterations to improve accuracy. Five synchronized cameras were calibrated
using a ChArUco board, and 3D poses were reconstructed using Anipose (Karashchuk et al., 2021)
with Viterbi filtering and spatiotemporal regularization. The resulting 3D pose data were then used
to estimate leg and head joint angles via inverse kinematics using SeqIKPy (Özdil et al., 2024b).
Behavioral videos were recorded at 100 Hz and interpolated to 500 Hz to ensure simulation stability.
We focused on two distinct behaviors, forward walking and antennal grooming, because they involve
different patterns of joint coordination in the front legs and can thus test the capacity of our muscle
model to reproduce a wider range of movements.

3.4 IMITATION LEARNING

To reproduce control strategies that animals use to drive efficient limb movements, we trained poli-
cies using imitation learning of reference motion trajectories. Imitation learning has been widely
applied in both computer graphics and motor control, providing a powerful framework for learning
complex behaviors in simulated agents (Vaxenburg et al., 2025; La Barbera et al., 2021; Chentanez
et al., 2018; Peng et al., 2018; Merel et al., 2017; Peng et al., 2020; Hasenclever et al., 2020). Here,
we trained neural network models to drive limb movements by activating muscles. Using MyoCon-
verter (Caggiano et al., 2022), we converted our OpenSim model with optimized muscle parameters
into a MuJoCo compatible format. We then created the control task in the MuJoCo physics engine
(Todorov et al., 2012), using dm control (Tunyasuvunakool et al., 2020), to track the measured
kinematics in a muscle-actuated manner.

We trained multilayer perceptron (MLP) policies with Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) for 15 × 106 steps at a control frequency of 500 Hz, while running the physics
engine at 10 kHz to ensure stability. We used PPO due to its well-known stability and robustness
in high-dimensional continuous control tasks and based on its prior use in animal imitation learning
tasks (Peng et al., 2018; 2020). The MLPs have 2 hidden layers of 512 units followed by a layer
of 256 units each and use the ReLU activation function. Policies are trained with a learning rate of
10−5 and a discount factor of 0.99, chosen through hyperparameter search. Each training episode
was initialized from a random frame in the motion capture sequence and terminated once the end of
the clip was reached.

At each timestep, the agent received an observation including joint angles, 3D positions of selected
body parts, muscle states, and the remaining time in the clip as described in (La Barbera et al., 2021).
The policy produced continuous muscle input levels (i.e., motor neuron activities) within the range
of [0, 1] for each muscle.

The reward function was designed to encourage accurate tracking of reference trajectories in Carte-
sian space, joint angle space, and joint velocity space. At each timestep, the reward was defined
as:

rt =
1

3

[
exp(−wpdxpos

t ) + exp(−wpdqpos
t ) + exp(−wvdqvel

t )
]
, (1)

where dxpos
t , dqpos

t , and dqvel
t denote the mean Euclidean distances between the simulated body and

the reference trajectory in Cartesian position, joint position, and joint velocity, respectively. The
reward was clipped to the range [0, 1]. The weights were set to wp = 5, and we = 3. To increase
robustness, joint angles were initialized with white noise of variance 0.02. For a 7-DoF leg model
with 15 MTUs, imitation learning took approximately 96 hours to complete on an Intel Core i7-
12700 processor with 128 GB of RAM.

4 RESULTS

4.1 MUSCLE SYNERGIES DURING WALKING AND GROOMING

To investigate how individual muscles contribute to movement, we analyzed activation patterns dur-
ing forward walking and grooming. Each walking trial contained three stance-swing cycles, and
each grooming trial contained three bouts of leg sweeps (Figure 4A). Using OpenSim’s static opti-
mization, we estimated joint torques, muscle forces, and activations from our musculoskeletal model
for both behaviors.
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Among thoracic muscles, the pleural remotor abductor (Pra) was active at stance onset, consistent
with its known role in initiating stance motion (Figure 4B, top) (Azevedo et al., 2024). The ter-
gopleural promotor and pleural promotor were elevated during stance-to-swing transitions, driving
the coxa forward (Figure 4B, top). During grooming, by contrast, the trochanter flexor and ex-
tensor showed rhythmic, overlapping activity, whereas they were out of phase during locomotion
(Figure 4B, bottom).

How are muscles acting in fixed groups (i.e., synergies) to produce these movements? To address
this question, we applied Non-negative Matrix Factorization (NMF), a widely used method for un-
covering low-dimensional structure in muscle activity (Rabbi et al., 2020), to our muscle activities
data. Remarkably, just three muscle primitives explained over 90% of the variance (Figure 4C);
therefore, we proceeded with these first three primitives. Each primitive exhibited distinct, non-
overlapping temporal dynamics (Figure 4D). The first primitive alone captured more than 80%, and
aligned with stance onset during locomotion and half of the grooming cycle.

We further examined synergy weights to reveal both invariance and flexibility. Sar and Sa con-
tributed consistently across all synergies and behaviors (Figure 4E), suggesting that they were task-
invariant muscles. By contrast, coxal muscles showed task-specific specializations: flexors con-
tributed primarily to synergy 2, whereas extensors contributed to synergy 3 for grooming. These
specialization was absent in locomotor primitives (Figure 4E), suggesting that these muscles might
have broader roles during locomotion.

Together, these findings predict that muscle coordination is highly behavior-dependent and that the
fly can flexibly repurpose the same musculature by engaging distinct, task-specific synergies.

Figure 4: Predicting muscle synergies from simulated muscle activations in OpenSim. (A)
Simulated joint angle trajectories of the left foreleg (LF) during locomotion (top) and grooming
(bottom), obtained from the Static Optimization-Forward Dynamics pipeline. (B) Simulated muscle
activation dynamics for thoracic (left), coxal (middle), and femoral (right) muscles during locomo-
tion (top) and grooming (bottom). (C) Variance explained by increasing numbers of synergies for
locomotion (black) and grooming (red). Three primitives capture over 90% of the variance. (D)
Time courses for the first three extracted synergies (black, gray, and green). (E) Synergy weight
matrix showing each muscle’s contribution; darker values indicate stronger loading.

4.2 PASSIVE JOINT PROPERTIES FACILITATE MUSCLE-DRIVEN CONTROL

Movement is shaped not only by active muscle forces but also from passive biomechanical forces
in the legs that can be either resistive or assistive (Ache and Matheson, 2013). These properties
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are thought to offload some control effort from the nervous system, suggesting that they may also
facilitate learning in musculoskeletal models.

To test this hypothesis, we systematically varied the passive properties of our MuJoCo model’s
joints. We considered three parameters: stiffness, which produces spring-like forces that return
joints to their reference angles; damping, which resists velocity; and armature, which adds joint
inertia (Figure 5A). Armature was included in all conditions to stabilize simulations, while stiff-
ness and damping were selectively added or removed, yielding four different biomechanical models
(Figure 5B). Each model was then trained with PPO to imitate locomotor kinematics for 15 million
steps. We quantified learning performance by measuring the average reward early (2.5-3M steps)
and late (14.5-15M steps) in training (Figure 5C).

We found that the combination of stiffness and damping yields the fastest learning and the highest
performance, outperforming models with either property alone (Figure 5D, left). This advantage
persisted to the end of training (Figure 5D, right), although final kinematics were qualitatively indis-
tinguishable across models (Figure 5E). We next asked how passive properties shape muscle control.
Averaging muscle activations across time and seeds revealed similar mean levels across conditions,
but with different temporal dynamics (Figure 5F, Supplementary Material).

Overall, these results support the idea that passive joint mechanics can substantially improve the
learnability and robustness of muscle-driven control. We speculate that this is because they stabi-
lize motion and reduce the need for constant correction, allowing the policy to focus on producing
effective coordinated muscle patterns rather than correcting instability. In biology, a similar divi-
sion of labor between passive mechanics and active control might support movement efficiency and
robustness (Ache and Matheson, 2013).

Figure 5: The impact of passive joint properties on imitation learning of limb kinematics. (A)
Schematic of passive joint properties modified in MuJoCo: stiffness (spring), damping, and armature
(inertia). (B) Experimental conditions combining these properties: (i) armature only, (ii) armature
and damping, (iii) armature and damping and stiffness, and (iv) armature and stiffness. (C) Motion
imitation rewards at the evaluation stage over the training period, averaged across 5 random seeds
(lines) with 5th-95th percentile ranges (shaded regions). Gray boxes indicate evaluation windows
for early and late performance in panel D. (D) Mean rewards at early (left) and late (right) training
stages. Each point is one seed. Statistical comparisons used two-sided Mann-Whitney U tests with
Holm-Bonferroni correction (* P < 0.05, ns: not significant). (B-D) Color code is the same across
panels. (E) Joint angle trajectories from ground-truth kinematics (dashed) and policy rollouts (solid)
for each condition for seeds with the highest final reward. (F) Time-averaged muscle activities across
conditions; darker shading indicates higher activation.
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5 DISCUSSION

Here, we present an end-to-end pipeline for constructing morphologically realistic Hill-type mus-
cle models based on annotated anatomical data. Our framework extracts each muscle’s anatomi-
cal features, estimates physiological parameters, and optimizes unknown parameters using multi-
objective optimization. To our knowledge, a similarly comprehensive and automated approach
linking anatomical inputs to functional, muscle-driven simulations is currently lacking in the field,
particularly for widely used model organisms like Drosophila melanogaster.

We modeled 15 muscle-tendon units (MTUs) per front leg in NeuroMechFly, a biomechanical model
of adult Drosophila (Lobato-Rios et al., 2022; Wang-Chen et al., 2024). After optimizing muscle
parameters, we evaluated how each MTU contributes to different joint DoFs during locomotion and
grooming. Our results predict that grooming and locomotion employ distinct muscle synergies. In
addition, we show that incorporating passive joint properties —such as damping and stiffness—
provides useful priors for musculoskeletal control, improving learning efficiency. Together, these
results demonstrate that combining detailed musculature with biologically inspired joint mechanics
enables fast, robust, and scalable simulations of muscle-driven behavior and facilitates the efficient
training of neural controllers.

Our work provides a critical interface between the outputs of neural network controllers and physical
movements. Placing a model of the musculoskeletal system —an additional layer of processing—
between the policy network’s output and physical actions stabilizes the control task by making the
action space better formed and more error-tolerant. The possible actions taken by the policy now
sit in a space that, through the musculoskeletal model, can only generate physically plausible move-
ments. This eliminates many unrealistic or even catastrophic actions that would otherwise burden
the learning process. In other words, whereas a model that naively controls target joint states would
have to first learn (explicitly or implicitly) a world model of physics before learning a policy that
operates within physical constraints, our model only needs to learn the latter. This approach enables
efficient training at scale, offering a promising path to reduce the sim-to-real gap (Wechsler et al.,
2024) without requiring costly task-specific real-world data. Our work focuses on Drosophila, an
animal with the most complex leg kinematics whose entire nervous system has been mapped. This
opens the door to testing neural architectures which are optimized through evolution in embodied
settings. We believe our work can impact neuroscience, robotics, and machine learning, areas that
share a common focus of understanding and replicating motor control in physically grounded sys-
tems.

6 LIMITATIONS AND FUTURE WORK

Our model has several limitations that can be addressed in future work. One major challenge is
the scarcity of experimental data and high uncertainty in our chosen physiological parameters. For
example, key properties such as the maximum isometric forces and contraction velocities were not
directly measured but instead were estimated and optimized using a combination of anatomical
and physiological data. Our model will benefit from the acquisition of further experimental data,
allowing users to narrow down the space of possible parameter values.

Another limitation is the omission of contact forces from body–body and body–environment inter-
actions. Without modeling external forces, muscle activation patterns may not accurately reflect the
demands of untethered behaviors such as locomotion. Incorporating active collision handling will
be essential for improving biomechanical realism.

Despite these limitations, our work represents the first biologically-grounded muscle modeling
framework for studying motor control in adult Drosophila melanogaster. It enables researchers
to test hypotheses of muscle function and provides a foundation for uncovering unmodeled passive
dynamics and emergent biomechanical properties. Integrating this framework with emerging exper-
imental datasets, such as in vivo muscle imaging (Melis et al., 2024), will help refine physiological
and anatomical constraints, narrow down the parameter space, and thereby improving the predictive
power of musculoskeletal models.
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Pembe Gizem Özdil, Auke Ijspeert, and Pavan Ramdya. SeqIKPy: a python package for inverse
kinematics in insects, 2024b. URL https://doi.org/10.5281/zenodo.12601317.

13

https://doi.org/10.5281/zenodo.12601317


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan Jeschke.
Physics-based motion capture imitation with deep reinforcement learning. In Proceedings of the
11th ACM SIGGRAPH Conference on Motion, Interaction and Games, pages 1–10, 2018.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions on
Graphics, 37(4):1–14, July 2018. ISSN 1557-7368. doi: 10.1145/3197517.3201311. URL
http://dx.doi.org/10.1145/3197517.3201311.

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne,
and Nicolas Heess. Learning human behaviors from motion capture by adversarial imitation.
arXiv preprint arXiv:1707.02201, 2017.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
ing agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

Leonard Hasenclever, Fabio Pardo, Raia Hadsell, Nicolas Heess, and Josh Merel. CoMic: Com-
plementary task learning amp; mimicry for reusable skills. In Hal Daumé III and Aarti Singh,
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A SUPPLEMENTARY MATERIAL

A.1 MUSCLE RECONSTRUCTION AND MODELING OF THE MIDDLE AND HIND LEGS

We concentrated our efforts on developing a fully functional front-leg muscle model for two main
reasons: (i) we have access to a rich kinematic dataset spanning diverse behaviors such as grooming
and locomotion, and (ii) multiple complementary datasets exist that validate joint rotation centers
and degrees of freedom (DoFs).

Nevertheless, we also annotated muscle fibers in the midlegs (Figure S1A) and hindlegs (Fig-
ure S2A) using our custom X-ray dataset. In total, we modeled seven muscle–tendon units (MTUs)
per midleg (Figure S1B) and eight MTUs per hindleg (Figure S2B). Because only a single dataset
was available for these legs, our ability to examine muscle attachment points across joint configura-
tions or to cross-validate the reconstructions was limited. For this reason, we restricted our work to
anatomical reconstruction rather than optimizing the models to reproduce motor behaviors.

Figure S1: Middle leg muscle reconstructions. (A) Muscles of the thorax, coxa, and femur were
segmented from a high-resolution X-ray scan and visualized within a 3D mesh of the leg in Blender.
Distinct colors denote anatomically grouped muscles.(B) Corresponding muscle-tendon units im-
plemented in OpenSim, preserve anatomical attachment points and fiber routing. Color coding is
the same as in panel A and reflects functionally grouped muscles.

Future datasets capturing the mid- and hindlegs at high resolution will enable more detailed biome-
chanical modeling and muscle reconstructions. Once such data become available, our framework
can be readily extended to achieve muscle-driven control of all six legs.

A.2 REFINING THE BIOMECHANICAL MODEL

A fundamental challenge in muscle modeling is accurately grounding muscle attachment points and
joint movements in anatomical data. To better align our model with biological reality, we replaced
NeuroMechFly’s foreleg meshes with those derived from X-ray scans (Figure S3A), where muscles
were reconstructed. This adjustment was motivated by two key factors. First, using the same leg
mesh as the dataset ensured a one-to-one mapping between the muscles in the dataset and our model.
Second, we identified a major discrepancy in the fully flexed resting posture of the original model’s
leg compared to real fly anatomy. Specifically, in the experimental data, the trochanter segment
of the front leg forms a bridge between the coxa and femur, positioning them side by side rather
than stacked vertically when fully flexed (Figure S3B). As a result, when fully extended, the foreleg
adopts a parenthesis-like shape rather than forming a straight line (Figure S3A).

With this improved biomechanical model, we next investigated the joint rotational axes and centers
that could more accurately replicate real leg movements. To determine these parameters, we exam-
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Figure S2: Hind leg muscle reconstructions. (A) Muscles of the thorax, coxa, and femur were
segmented from a high-resolution X-ray scan and visualized within a 3D mesh of the leg in Blender.
Distinct colors denote anatomically grouped muscles. (B) Corresponding muscle-tendon units im-
plemented in OpenSim, preserve anatomical attachment points and fiber routing. Color coding is
the same as in panel A and reflects functionally grouped muscles.

ined muscle attachment points and joint condyles (Haustein et al., 2024). Our analysis suggested
that the coxa-trochanter joint may, in fact, possess three DoFs, in contrast to the originally assumed
two DoFs (Lobato-Rios et al., 2022).

To test this hypothesis, we used SeqIKPy (Özdil et al., 2024) to design a kinematic chain with three
DoFs at the coxa-trochanter joint. The revised joint configuration was equally effective at track-
ing the leg trajectory compared to the original two-DoF model (Figure S3C). However, notably, the
three-DoF configuration reduced the reliance on thorax-coxa joint rotations during antennal groom-
ing, decreasing the range of motion from [−95◦, 50◦] to a more constrained interval of [−30◦,−7◦]
(Figure S3D), preventing unnatural rotations of the thorax-coxa joint.

A.3 HILL-TYPE MUSCLE MODEL

We chose to use a Hill-type muscle model because it offers a good balance between biological real-
ism and computational efficiency. Hill-type muscle models are widely adopted in the biomechanics
and neuromechanics communities due to their versatility and biological plausibility (Caillet et al.,
2022). By contrast, Ekeberg-type muscle models are computationally very efficient yet have limited
biological correspondence (Ekeberg et al., 2004). Compared with simpler torque-driven or mass-
spring systems, Hill-type models explicitly represent the key components of a muscle-tendon unit
(MTU)—namely, contractile, series elastic, and parallel elastic elements. This structure allows us
to capture essential nonlinear properties of biological muscles, including force-velocity and force-
length relationships, which are critical for simulating realistic motor behavior.

We adopted a Hill-type model based on (Millard et al., 2013) and (Geyer et al., 2003), consisting of
a Contractile Element (CE) for active force generation, Parallel Elasticity (PE) for passive stiffness,
and Series Elasticity (SE) representing the tendons. The Buffer Elasticity (BE) was omitted due to
its negligible contribution to muscle dynamics (Geyer and Herr, 2010).

The total muscle force is given by:

FMT = (FCE + FPE + Fdamper) cosα = FSE (S1)

where FCE , FPE , and Fdamper are the active, passive, and damping forces, respectively. The active
force is computed as:

FCE = a(t)Fmaxfl(lCE)fv(vCE) (S2)
where a(t) is the activation state, Fmax the maximum isometric force, and fl(lCE) and fv(vCE)
the force-length and force-velocity relationships, respectively. The passive force FPE is only active
during muscle elongation, while the damping force depends on contractile element velocity.
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Figure S3: Enhancements in the biomechanical model of NeuroMechFly. (A) The forelegs of
NeuroMechFly were updated by replacing the original meshes with an anatomically detailed muscle-
based dataset. Unlike the previous model, where the fully extended leg was nearly straight, the up-
dated model exhibits a natural parenthesis-like curvature, consistent with the biological data (mid-
dle). (B) The trochanter’s role in leg posture. The trochanter bridges the coxa and femur, positioning
them side by side rather than in a linear alignment. In the previous model (green), this structural
feature was simplified, whereas the updated model (red) better captures the fly’s natural joint config-
uration. (C) Mean squared error (MSE) between measured 3D poses and forward kinematics (FK)
reconstructed from inverse kinematics, comparing 2-DoF and 3-DoF coxa-trochanter joint configu-
rations during locomotion and grooming. Both kinematic configurations perform equally well. (D)
Distribution of left foreleg joint angles during locomotion and grooming for different degrees of
freedom, showing the effect of anatomical refinements and DoF addition on the joint angle range.
ThC roll and CTr roll (in bold) show a visible decrement in range in the 3 DoF model.

For compatibility across simulation engines, we set the pennation angle to zero and scaled Fmax ac-
cordingly. Assuming a rigid tendon, the model state variables reduce to the muscle fiber length
lCE, ensuring C2-continuity. The complete model is defined by physiological parameters (e.g.,
Fmax, vmax, α, τact, τdeact) and anatomical parameters (e.g., lopt, lslack, muscle attachment points, and
muscle paths), detailed in Table 1.

We modeled each functional muscle group as one MTU. Unlike human muscles, many fly muscles
attach directly to the inner cuticle, often without tendons, and fibers within a group can vary con-
siderably. To model each group, we selected representative fibers using the following criteria: (i)
If the muscle attaches via a tendon, we used the tendon’s location. If attachment is via multiple
fibers, we selected the fiber closest to the group’s center of mass—typically also the median-length
fiber. (ii) For groups with widely spread attachment points, we subdivided them into smaller, more
homogeneous clusters and selected one representative fiber per cluster.

A.4 MUSCLE MODELING IN OPENSIM

Muscles were defined as forceset objects in OpenSim, serving as force generators. The Millard
2013 muscle model (Millard et al., 2013) was used, with parameters categorized into three types
(Table 2): (i) open parameters requiring optimization, (ii) fixed parameters set by model choice, and
(iii) default parameters left unchanged.

Most anatomical and physiological parameters were open parameters, extracted or estimated through
data-driven methods described in the methods section of this paper. Assuming rigid tendons, tendon
compliance was ignored, and pennation angles were set to zero, meaning MTU length changes were
solely due to muscle fiber length changes.

Control and activation parameters were adjusted for greater flexibility, with a minimum activation
of 0.01%, while max control and detailed F-L and F-V curve parameters were left at their default
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Table 1: A collection of model parameters used in the muscle model. Letters A and P stand for
anatomical and physiological parameters, respectively.

Parameter Type Description
Optimal fiber length A The fiber length at which actin–myosin interactions are

maximal, i.e., when maximum force can be produced.
Tendon slack length A The length beyond which a muscle’s tendons begin resist-

ing stretch and producing force.
Pennation angles A The angle between a fascicle’s orientation and the tendon

axis.
Muscle cross-section area A The cross-section area of muscle fibers.
Muscle attachment points A The points to which a muscle tendon unit connects at its

fiber start (origin) and tendon end (insertion). Optionally
an additional attachment point can be defined for more
complex muscle paths

Muscle paths A The path that a muscle tendon unit travels along from its
origin to its insertion.

Maximum isometric force P The maximum isometric force generated by the Contrac-
tile Element (CE) at its optimal length lopt.

Maximum contraction velocity P The maximum velocity at which the Contractile Element
(CE) can contract.

Activation time constants P A time constant determining the transfer speed from neu-
ral signal to muscle activation.

Deactivation time constants P A time constant determining the transfer speed from neu-
ral signal to muscle deactivation.

Muscle damping factors P The coefficient for the muscle damping force as defined
in Millard’s muscle equation.

values. If not explicitly defined, these curves followed empirical formulations (Millard et al., 2013).
Due to the lack of measured Drosophila muscle curves, default curves in OpenSim were assumed to
approximate real physiological behavior.

A.5 MUSCLE PARAMETER OPTIMIZATION USING NSGA-II IN OPENSIM

To optimize muscle parameters, we used NSGA-II, an elitist genetic algorithm well-suited for multi-
objective optimization problems (Deb et al., 2002), implemented in Python using the geatpy pack-
age.

Each muscle–tendon unit (MTU) was optimized in a 6-dimensional parameter space (or 9-
dimensional when an additional via point was included in the muscle path), with separate objec-
tive metrics defined for each active degree of freedom (DoF). These objectives aimed to minimize
both the mean squared error and the reverse correlation between the ground-truth and simulated mo-
tion. To reduce overfitting of muscle parameters, we ran the SO-FD pipeline for both locomotion
and grooming behaviors (Figure S4). The total objective score was computed by summing the two
scores for each DoF. NSGA-II hyperparameters were empirically tuned (Table 3), and parameter
search ranges were iteratively refined based on optimization performance. The distribution of the
resulting muscle parameter values is shown in Figure S5.

Specifically, the following parameters were optimized:

• Maximum isometric force was computed as the product of a fixed base tension (from prior
experimental work), a scaling factor (optimized between 0.3–3), and the physiological
cross-sectional area (PCSA) calculated from CT scans.

• Maximum contraction velocity was defined as a base value (estimated from femur–tibia
motion videos under X-ray) scaled by a factor between 0.4 and 2.4.
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Table 2: Millard 2013 muscle model parameters categorized by type and optimization.
Parameter Value Type Parameter Type
Optimal fiber length Anatomical Open
Tendon slack length Anatomical Open
Geometry path Anatomical Open
Max isometric force Physiological Open
Max contraction velocity Physiological Open
Activation time constant Physiological Fixed
Deactivation time constant Physiological Fixed
Ignore tendon compliance Physiological Fixed
Pennation angle at optimal Anatomical Fixed
Maximum pennation angle Anatomical Fixed
Min activation Physiological Fixed
Min control Physiological Default
Max control Physiological Default
Fiber damping Physiological Default
Active force–length curve Physiological Default
Force–velocity curve Physiological Default
Fiber force–length curve Physiological Default
Tendon force–length curve Physiological Default

• Optimal fiber length and tendon slack length were based on ratios observed in the CT data,
scaled by a factor between 0.8 and 1.2, and capped at a maximum of 95% of the total
length.

• Muscle paths were allowed to vary within a cube of 5-10µm around the annotated insertion
points.

Table 3: NSGA-II parameters used in optimization.
Muscles Generation Population number Mutation Cross-over
Thorax 200 120 0.7 0.5
Coxa 200 40 0.7 0.5
Femur 200 300 0.5 0.3

We applied a curriculum learning strategy to each joint using front leg kinematics during groom-
ing and locomotion. The warm-up stage (5–10 generations) used conservative hyperparameters to
encourage rapid convergence, followed by a fine-tuning stage (5–10 generations) that employed
more exploratory search settings. Final optimized muscle parameters were validated in the SO-FD
pipeline, and the best-performing set was mirrored to the right leg, completing the musculoskeletal
model of the front legs.

A.6 IMITATION LEARNING USING PPO IN MUJOCO

We trained multilayer perceptron (MLP) policies with Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) for 15 × 106 steps at a control frequency of 500 Hz, while running the physics
engine at 10,000 Hz to ensure stability. The hyperparameters used for training are listed in Table 4.

Initially, our motion capture dataset included only joint angles and velocities. To enrich this dataset,
we replayed the joint kinematics using a point-torque model and recorded all observable physical
quantities, including body positions and velocities in Cartesian space. This expanded dataset was
then used as the reference trajectory in our imitation learning experiments.
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Figure S4: Joint kinematics across all degrees of freedom in reference and simulated data. Joint
angle trajectories from (A) locomotion and (B) grooming behaviors are used as reference inputs
for optimizing unknown muscle parameters. The MSE and correlation between the reference and
resulting trajectories are used as objectives. The thick solid line represents the reference trajectory,
the thin solid line shows the trajectory of the best-performing individual from the optimization, and
the shaded region indicates the standard deviation across the top 10 individuals.

At each timestep, the agent received an observation vector comprising joint angles, 3D positions of
selected body parts (i.e., tibia-tarsus and claw), muscle states (i.e., length, velocity, activation, and
force), and the remaining time in the clip, as described in (La Barbera et al., 2021). The policy
output consisted of continuous muscle input values in the range [0, 1] for each muscle.

The reward function was designed to encourage accurate tracking of the reference motion, both in
joint space and Cartesian space. We initially tested the reward function and training setup using
in a point-torque model. Upon achieving successful performance in this simpler setting, we transi-
tioned to the more complex musculoskeletal model. All parameter values were selected through a
hyperparameter search.

Table 4: Key hyperparameters used for imitation learning with PPO. The same values were applied
to both the actor and critic networks.

Hyperparameter Value
Network Architecture [512, 512, 256]
Activation Function ReLU
Optimizer Adam
Learning Rate 1× 10−5

Batch Size 64
Rollout Length (nsteps) 2048
Epochs per Update 10
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Figure S5: Distribution of optimized muscle parameters. Final values for maximum contraction
velocity (top), optimal fiber length (middle), and maximum isometric force (bottom) after optimiza-
tion. Each dot represents one of the top 10 individuals selected from a total population of 200.
Muscles are grouped by segment (thorax, coxa, femur) from left to right.
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Figure S6: Muscle activation dynamics across passive joint conditions. Simulated activations of
thorax (left), coxa (middle), and femur (right) muscles in PPO agents trained with different joint
properties: (i) armature only (top), (ii) armature and damping (second), (iii) armature and damping
and stiffness (third), and (iv) armature and stiffness (bottom). Shown are rollouts from the best-
performing seed in each condition.
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