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ABSTRACT

Flow matching (FM) based on Ordinary Differential Equations (ODEs) has
achieved significant success in generative tasks. However, it faces several in-
herent limitations, including an inability to model trajectory intersections, capture
delay dynamics, and handle transfer between heterogeneous distributions. These
limitations often result in a significant mismatch between the modeled transfer
process and real-world phenomena, particularly when key coupling or inherent
structural information between distributions must be preserved. To address these
issues, we propose Delay Flow Matching (DFM), a new FM framework based on
Delay Differential Equations (DDEs). Theoretically, we show that DFM possesses
universal approximation capability for continuous transfer maps. By incorporating
delay terms into the vector field, DFM enables trajectory intersections and better
captures delay dynamics. Moreover, by designing appropriate initial functions,
DFM ensures accurate transfer between heterogeneous distributions. Consequently,
our framework preserves essential coupling relationships and achieves more flexible
distribution transfer strategies. We validate DFM’s effectiveness across synthetic
datasets, single-cell data, and image-generation tasks.

1 INTRODUCTION

Generative modeling is a key and rapidly advancing field in machine learning, focusing on learning
transformations between different distributions. It underpins a wide range of applications across
many tasks in diverse fields, including image generation (Nichol et al., [2021), molecule design
(Sanchez-Lengeling & Aspuru-Guzik} 2018)), and single-cell trajectory inference (Saelens et al.,
2019). Traditional approaches, such as Variational Autoencoders (Kingmal [2013; [Rezende et al.,
2014), Generative Adversarial Networks (Goodfellow et al.,|2014)), and Normalizing Flows (Dinh
et al., 2014; [2022; [Papamakarios et al., [2021), have achieved notable success, yet they still face
challenges like instability and computational inefficiency.

Recently, diffusion models (Sohl-Dickstein et al, [2015; [Song & Ermon, 2019} [Ho et al.| [2020;
Song et al., [2020a; [Yang et al., 2023) have garnered considerable attention for their ability to model
complex data distributions via a diffusion process. These models incrementally add noise to data in
a forward process and then learn to reverse this process in order to regenerate data samples, which
can be understood as learning stochastic dynamics that interpolate between the prior distribution
and the target data distribution (Song et al., 2020bj 2021)). Additionally, Flow Matching (FM), a
simulation-free method for training continuous normalizing flows (Chen et al.| |2018)), is proposed
to model the transformation between distributions as the flow maps of Neural ODEs (Chen et al.,
2018 |Grathwohl et al.,2018). FM achieves efficient training by directly regressing on an explicitly
constructed conditional vector field. Concurrently, the stochastic interpolant (Albergo & Vanden-
Eijnden} 2022) and rectified flow (Liu et al., [2022)) are introduced, both of which employ flow maps
for matching distributions, though from distinct conceptual frameworks.

As discussed above, most existing continuous generative models for distribution transfer rely on
ODEs or SDEs. However, ODE-based models have limited representational capacity, restricting
their ability to capture a broad range of distribution transfer strategies (Dupont et al., 2019). In
contrast, Delay Differential Equations (DDEs) have been widely adopted to model various real-world
systems, including neural dynamics (Campbell, [2007), electro-optical systems (Chembo Kouomou
et al.| 2005)), population dynamics (Lotkal |1925)), and many biological network motifs (Glass et al.|
2021)), where delayed feedback mechanisms naturally give rise to DDE-based formulations. To
address the limitations of ODEs in dynamic modeling, Neural DDEs (Zhu et al., [2020) and their
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variants (Ji & Orosz, [2024; |Zhu et al.| 2022) are proposed, which explicitly incorporate the effects of
historical states and thus exhibit a significantly enhanced representational capacity. Despite these
advancements, however, there is currently no approach that utilizes the probability flows of DDEs for
distribution transport.

Contributions. We present Delay Flow Matching (DFM), a generalized framework that enables
more flexible and precise distribution transport strategies using DDEs. The key contributions of this
study are summarized as follows:

1. Development of DFM: We introduce DFM, a novel generative model framework based
on Neural DDEs, which overcomes the inherent limitations of ODE-based models by
incorporating delay terms in the vector field and designing appropriate initial functions.
DFM can model a broader range of transport strategies, including those with trajectory
intersections, and achieves more precise transport between heterogeneous distributions. It
also naturally adapts to the probability flow generated by delay dynamical systems.

2. Theoretical insights: We rigorously prove that DFM can universally approximate any
continuous transport map between source and target distributions. In contrast, ODE-based
models cannot represent certain simple transport maps, such as those involving trajectory
intersections, and cannot achieve exact transport between heterogeneous distributions.

3. Integration with advanced techniques: DFM can be seamlessly integrated with existing
methods, such as keypoint-guided optimal transport, enabling more effective alignment with
known coupling information during transport.

4. Empirical validation: We validate DFM’s effectiveness on both synthetic and real-world
datasets. DFM accurately recovers underlying delay dynamics from snapshot data, sig-
nificantly outperforms existing methods in single-cell trajectory inference, and surpasses
ODE-based FM in image generation tasks.

2 PRELIMINARIES
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where p(x, t|1) is the probability density given the initial function, p(x, t; x,,t — 7|1¢) is the joint
probability density of being at x at time ¢ and at «- at time {—7. The specific relationships and
distinctions between the probability flows of ODEs and DDEs are elaborated in Appendix

2.2 OPTIMAL TRANSPORT

Optimal transport (OT) provides a mathematical framework for transforming one probability distri-
bution to another in the most cost-efficient manner (Villani et al.,|2009; |Santambrogio}, 2015} |Chenl,
20165 Peyré et al.| 2019). It seeks the optimal strategy for reallocating mass while minimizing the
transportation cost. Formally, given two separable metric spaces X and ) with probability measures
pon X and v on ), the objective is to determine a transport plan 7* that minimizes the total transport
cost, as defined in the Kantorovich problem (Kantorovich, |{1942):

C(p,v) =We}lrgw)/XXyC(w,y)dW(w,y), (p,v) = {m: PE(m) = p, Pi(m) = v}, (3)

where ¢(z,y) denotes the transportation cost of moving a unit mass from x to y, P%(r) and P} ()
denote the marginal distributions of 7 with respect to  and y. In most cases, the transport cost
between two points is defined as the squared Euclidean distance. The minimum total transport cost in
this scenario corresponds to the squared 2-Wasserstein distance between the two distributions:

Wa(p,v)? = we%lrgt » / |l —y|*dn(x,y). )

2.3 KEYPOINT-GUIDED OPTIMAL TRANSPORT

Traditional OT, which focuses solely on minimizing transport costs, often neglects other crucial
constraints, resulting in suboptimal matching strategies. Thus, it is important to use a small set
of well-matched source-target keypoint pairs, K = {(zx, yx) }~_,, to semi-supervise the transport
strategy, especially when inherent structures and features of data need to be preserved.

To ensure correct transport with these keypoints, Keypoint-guided Optimal Transport (KPG-OT) is
proposed (Gu et al.,|[2022; 2023)), which guarantees that the relationships between each data point
and the keypoints are preserved during transport. Formally, the objective can be expressed as:

inf / 9@, y)d(w o 7)(@,y), M(uv) = {7: PHwor) = u, Pwo ) = u}, (5)
Tell(p,v) J X xy

where w o T = w(x, y)7(x, y) is the keypoint-masked transport plan, w denotes the mask function.
For a pair of keypoints (&, yr) € K, the mask function is defined as: w(xy, yr) = 1, w(xk, y) =
0 for y # yi, w(x, yx) = 0 for & # x, and w(x,y) = 1 if neither  nor y matches any keypoint.
Obviously, the mask function defined above exactly preserves the matching of the keypoints in .

The cost function in Eq. (5) is defined as g(z,y) = d[R*(x), R*(y)], where d denotes the Jensen-
Shannon divergence. R(x) € (0,1)X (resp. R*(y) € (0, 1)) captures the relationship between x
(resp. y) and all source points (resp. target points) in /C, with its k-th dimension representing the
relation score between « (resp. y) and the k-th source keypoint xj, (resp. target keypoint yy):

e—c(m,mk)/T

S ec@a)/r’

L) e—c(Uyk)/T
Ri(Yy) = ———
K __ N/
Zi:l e—c(y.yi)/7
where 7 is the temperature hyperparameter. Note that g quantifies the similarity distance between the
two relationship vectors outlined above. Therefore, minimizing the cost function in Eq. (§) effectively
promotes the preservation of the relationship between each point and the keypoints.

Ry (z) = (6)

2.4 ODE-BASED FLOW MATCHING

Flow Matching (FM) (Lipman et al., 2022)) is a simulation-free training method for CNF, which trains
the parameterized vector field v(t, x; 6) by regression on the target vector field u (¢, ) that generates
the probability paths p(x, t) with marginals py = go and p; = ¢;. The training objective is

Lrn(0) = Bt i) |0t 2:0) — u(t, )|, (7
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where ¢ ~ U/(0, 1) follows the uniform distribution.

However, the explicit forms of w(¢,«) and p(x,t) are intractable to compute. To address this,
Conditional FM (CFM) (Tong et al.l 2023a}; |Pooladian et al., [2023)) introduces a latent variable
z to construct the target probability path as a mixture of conditional probability paths p(x,t) =
Eq(z)[p(, t|z)] and modifies the training objective to:

Ler(6) = Eu gz pelz) 100 2:0) — ult,zl2)|*, ®
where u(t, z|z) denotes the conditional vector field generating the conditional probability path
p(x,t|z). Then, it can be shown that the gradient w.r.t 6 of the CFM objective (8) is the same as
that of the FM objective (7). Typically, we set the latent condition z := (¢, z1), with ¢(z) being
the coupling between distributions go () and ¢; (x1), based on a coupling strategy such as OT or
KPG-OT. The conditional probability path is then modeled as a Gaussian flow:

p(x,t|z) = N(zlte, + (1 — t)xzo,0?), )
with the corresponding conditional vector field:
u(t, x|z) = x1 — xo. (10)

3 LIMITATIONS OF ODE-BASED FLOW MATCHING

Current continuous-time generative models utilize the parameterized vector field of ODEs to facilitate
distribution transport. However, the inherent constraints of ODEs limit their ability to model specific
transport strategies, leading to significant discrepancies between the modeled and true transport
processes. In this section, we theoretically demonstrate the limitations of the ODE-based FM
frameworks.

Proposition 3.1. (Restriction on trajectory intersections) Suppose that the target transport strategy,
guided by certain key points or specific coupling constraints, inevitably leads to trajectory inter-
sections during the transport process, the flow map corresponding to the ODE-based FM cannot
precisely preserve the transport strategy.

Remark 3.2. As demonstrated by Liu et al.|(2022), when trajectory intersections occur in the transport
strategy, FM tends to learn a rectified flow, with the targets of the trajectories being “rewired” at the
intersection points. As a result, the given transport strategy cannot be accurately preserved. A simple
example is shown in Fig.[T] (a).

Proposition 3.3. (Heterogeneity in distributions) Assume that the source (resp., target) distribution
qo (resp., q1) is supported on M (resp., N) disjoint compact sets {UP}}, (resp., {U}}IC,), where
each UP € R4 (resp., Uj1 € R%)isa path-connected set with non-zero measure and qo(xg) > 0
(resp., q1(x1) > 0) forall xy € U£1 U? (resp., ¢, € U;V:1 Ujl). If M # N, for any transport map
T: Uf\il U — U;V:1 Uj1 such that Tyqo = q1, we have that: (1). Neural ODEs with Lipschitz

continuous vector field cannot exactly represent T'; (2). If the flow of a Neural ODE is equal to the
transport map T almost everywhere, then the vector field is not Lipchitz continuous.

Remark 3.4. The conclusion emphasizes that accurate transport using an ODE-based FM requires
regularity assumptions on distributions, which are often violated in real-world scenarios. For example,
in single-cell dynamics, cells differentiate from one type into multiple types over time, leading to
heterogeneous distributions before and after differentiation. A simple example is shown in Fig.[I] (b).

Moreover, when snapshot data are generated by a delay dynamical system, ODE-based FM fails
to recover the true vector field with the delay term, resulting in inaccurate distribution transfer,
interpolation, and extrapolation predictions.

4 DELAY FLOW MATCHING

To overcome the limitations of ODE-based FM, we introduce the Delay FM (DFM) framework, a new
class of generative models based on Neural DDEs for distribution transport. Since the vector field
incorporates delay terms, DFM allows trajectory intersections, enabling more accurate transport for
tasks requiring keypoint-guided strategies. Additionally, by designing appropriate initial functions,
DFM addresses singularities caused by distributional heterogeneity. A comparison between DDE-
based and ODE-based FM under various scenarios is shown in Table[T]
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Table 1: Comparison of ODE-based and DDE-based FM. DFM can handle not only KPG-OT coupling
and trajectory intersections but also distribution heterogeneity by employing diverse initial functions.
Furthermore, DFM can accurately model and recover the dynamics of delay dynamical systems.

Methods | KPG-OT Intersection Heterogeneity —Delay Dynamics

FM X X X X
CFM X X X X
DFM(C) X

DFM(D)

4.1 FORMULATION

Consider a target probability flow p(a,t), generated by a vector field with a single delay term
u(t, x, x,) and initial functions 1 ~ ¢°(1)). The vector field and initial functions naturally define a
joint probability flow at time ¢ and t — 7, denoted as p(x, t; x,,t — T), which satisfies

/p(w,t; z,,t—7)de, = p(x,t). (11)

Note that p(x,t) and p(x, t; x,,t — 7) can be modeled as a mixture of conditional distributions
p(x, tlyp) and p(x, t; 2., t — T|1p), respectively, as follow:

p(x,t) = Egogyp(2, t), plx,t;xr,t —7) = Egoyyp(, t; 2+, t — T[1)), (12)

where p(x,t|t)) and p(x,t; x,,t — 7|1p) represent the probability flow generated by w(t, x, x) and
the initial function ), and they satisfy the delay Fokker-Planck equation (2. Based on the joint
probability flow, we aim to learn a parameterized vector field v(¢, x, x,; 8), which can generate the
target probability flow, by minimizing the following regression objective against the target vector
field:

‘CDFM(H) = Et,q" (),p(x,t;x, ,t—7|p) | ‘v(tv T, Tr; 9) - u(t7 Z, :ET)H2' (13)

In most cases, both p(x, t; ¢, t — 7|1)) and u(t, x, x,) are computationally intractable. To address
this, inspired by CFM, we introduce a latent variable z and further decompose the target probability
path and joint probability path conditioned on the initial function into mixtures of simple probability
paths and simple joint probability paths conditioned on both 1) and z, respectively, as follow:

p(wa t|¢) = Eq(z)p(wv t‘za 1/’), p(w, s, t— Thp) = Eq(z)p(m7 i, t— T|Z, ¢), (14)

where p(x,t|z,v) = [p(x,t;x,,t — 7|z,7)dx,. We can define the marginal vector field by
marginalizing over the conditional vector field u(t, x, x|z) as follow:

u(t,w,mT|z)p($,t; CCT,th|Z,’l,[J)
'U/(t,m7.’1}.,—) = Eq(z) p(iL',t;iL‘T,t _ T|¢) )

where wu(t,z,z.|z) represents the conditional vector field that generates p(x,t|z,1)) and
p(x,t; -, t — 7|z,1). Under this setup, we can derive the following result.

15)

Proposition 4.1. The marginal vector field u(t,x, x,) given in Eq. , together with the se-
lected initial function v, generates the probability path p(x,t|1y) and the joint probability path

p(x, t;x., t — 7|2) in Egq. .

Then, we can train the parameterized vector field by minimizing the following Delay Conditional FM
(DCFM) objective:

£DCFM(9) = IE:t,q(z),qo (),p(x,t;xr t—7|2,7) | "U(t, T, Tr, 9) - U(t, Z, CE7—|Z)||2, (]6)

because the following proposition holds.

Proposition 4.2. Given that p(x,t;x,,t — 7|p) > 0 for all z,x, € R and t € [0,1], up
to a constant independent of 0, Lpcry(0) and Lpry(0) are equal, which further implies that
VoLpcru(0) = VoLpru(0).
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4.2 SELECTION OF THE LATENT VARIABLE z

4.2.1 TRANSPORT BETWEEN TWO MEASURES

As outlined in Section ODE-based FM typically selects latent variables as two endpoints
z = (o, x1) jointly sampled from the source and target distributions. In contrast, DFM requires the
construction of a conditional joint probability density path for x(¢) and (¢ — 7) based on the latent
variable. Hence, we define the latent variable z as a entire path ~(¢; o, 1) connecting xo and .

Formally, we define the probability distribution of the latent variable as g¢[vy(t; xo,x1)] =
(@0, €1)P(v; o, 1), Wwhere m(xq, x1 ) represents the OT or KPG-OT coupling between the source
and target distributions, and P (+y; o, 1) denotes the path measure pinned at &g and ;. In practice,
we can simply construct the path measure as a Dirac Delta distribution at a given path v* connecting
o and x;:

P(7;m03m1) :5(77’7*)7 78 :.’130,’7T =T, (17)
where «* is constructed using a specific interpolation method. For instance, it can be taken as the
linear interpolation ;" = (1 — t)xg + ta1, or alternatively, as a geodesic interpolation on the data
manifold, based on appropriate manifold learning techniques.

After sampling a path ~(¢; o, 1) ~ ¢(z), the conditional joint probability density naturally degen-
erates into the following form:

p(@,t; @t = 7ly) = dl@ — y(B)]d[xr —~(t —7)], (18)
which is exactly generated by the conditional vector field:
aV(L Zo, 331)

u(t, x, x,|v(t; To, 1)) = . (19)

ot
4.2.2 TRANSPORT BETWEEN MULTIPLE PROBABILITY MEASURES OVER TIME

For tasks with multiple target probability distributions over time {q, } 3-’:0, where to = 0,15 =T, we

define the latent variable z := ~v(t; {z¢, } 3-]:0) as a trajectory passing through x;; at time ¢;, sampled

from
J—1

q(’Y(t; {mtj }}]:O)) = 7)(7; {wtj }.j]:O) H W(wtwwti+1)7 (20)
i=0
where {x;, }3]:0 ~ H;Col (e, , @y, , ), with (e, , @, , ) representing the OT or KPG-OT coupling
between adjacent probability distributions at time ¢; and ¢, 1, and P (v; {x¢, } }']:0) denotes the path
measure pinned at {x;; } 3’:0. Similarly, we construct the path measure as:

Pyi{me, Yo) = 6(v =), %, = x4y, 1)
where ~* represents a path passing through @, at time ¢;, which can be constructed using the cubic
spline (CSpline) interpolation method. With this path as the latent variable, the resulting conditional
joint probability path and conditional vector field are identical to those in Eq. (I8)) and Eq. (19),
respectively.

4.3 SELECTION OF THE INITIAL FUNCTION
4.3.1 DFM WITH CONSTANT INITIAL FUNCTIONS

In general, the initial function can be simply chosen as a constant (DFM(C)), i.e. ¢° (1) = 6(¢p —1p*),
where ¥* (t; xg) = xg for t € [—7,0] and &y ~ ¢o. Under this setting, we can theoretically prove
that DFM can approximate any continuous transport strategy to arbitrary precision.

Proposition 4.3. (Universal approximating capability of DFM). For any given continuous transport
map F : R® — RY, which push-forward the source distribution qq to the target distribution qi,
i.e. Fuqo = qu, if there exists a neural network that can approximate V(x) = F(x) — x, then we
can construct a vector field with a single delay term, where the corresponding flow map, under the
constant initial function condition, can approximately push-forward qq to q1, while preserving the
target transport strategy x — F(x).

This indicates the exceptional representational capacity of DFM, enabling the modeling of a wider
range of transport processes than ODE-based FM.
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4.3.2 DFM WITH DIVERSE INITIAL FUNCTIONS

In Section 3] we rigorously prove that ODE-based FM cannot effectively handle tasks with heteroge-
neous source and target distributions. Here, we demonstrate that DFM addresses this by designing
diverse initial functions (DFM(D)).

Specifically, we employ clustering methods, such as Gaussian Mixture Model, DBSCAN, to partition
the source dataset Xy ~ qo (resp. target dataset X1 ~ ¢1) into M (resp. N) mutually exclusive
subsets, denoted as X(()l), ey X((]M) (resp. Xl(l), e XfN)). We can assign a normalized mass to each
subset X\™ (resp. X\™) as p{™ = | X5™|/|X0] (resp., o\ = | X™|/|X1|). If the endpoints

(zo, 1) of a sampled trajectory - are drawn from Xém) and X £"), we assign it an initial function
» Which has a constant time derivative C,,,,, i.e.:

dt

where t € [—,0]. In this case, ¢° () is a discrete distribution which satisfies:

= Omn7 ,(7b:n,n(07 CL’O) = m07 (22)

N M
ST Wi =0, Y W) =", (23)
n=1 m=1

p(xo,0|¢p = ¥¥,.) = qo(xoltp = 17,,,) represents empirical data distribution available as data

points in X ém) whose corresponding transport target is in X 1(”). By coupling the source and target
data through OT or KPG-OT, we can obtain the transport target for any initial point. This enables the
construction of ¢°(¢)) as described above, from which we can sample to obtain the corresponding
initial function.

In summary, we design distinct initial functions for different subsets of the source and target data, guid-
ing the vector field from different initial subsets to corresponding target subsets, thereby effectively
handling distributional heterogeneity.

4.4 GENERATION PROCESS BASED ON NEURAL DDES

After training, we sample data from gq and initial functions from ¢° (%)), then generate the target data
by solving the forward pass of the trained vector field with a single delay term using a piecewise
ODE solver, as in Neural DDEs (Zhu et al., |2020).

5 EXPERIMENTS

We demonstrate the advantages of DFM over ODE-based FM across various tasks, including recon-
structing delay dynamics from snapshots, inferring differentiation trajectories from single-cell RNA
sequencing (scRNA-seq) data, and image generation. The experimental details and additional results
can be found in Appendix [C] Sensitivity analysis of the time delay 7 is discussed in Appendix

5.1 SYNTHETIC DATASETS OF DELAY DYNAMICAL SYSTEMS

Figure 2: Comparison of predicted trajectories of CFM and DFM trained on snapshots of delay dy-
namical systems. (a-b) Interpolation and extrapolation (insets) results on the biological autoregulation
motif dataset using KP-CFM (a) and KP-DFM(C) (b), both with two keypoints. (c-d) Interpolation
results on the spiral DDE using OT-CFM (c) and OT-DFM(C) (d).

7
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Biological autoregulation motif. DDEs provide a simplified framework for modeling biological
network motifs (Glass et al.,[2021)). We consider recovering the delay dynamics from snapshot data
generated by the autoregulation model: &(t) = #ﬁ_ﬂ with 7 = 1, n = 2, n = 5, which produces
damped oscillations (Fig. |2|(a,b)). Using 1,000 initial values sampled from 2{(0.2, 1.2) and constant
initial functions, we generate trajectories and collect snapshots at =0, 1, ..., 7 for training. During
training, KPG-OT (KP-) matches minibatches at adjacent time steps using two known keyoints. After
training, forward integration from ¢t=0 shows that KP-CFM fails to recover the dynamics, while
KP-DFM(C) with 7=1 accurately captures and extrapolates the oscillatory behavior (insets in Fig. 2]
(a,b)). Results with other delays and error metrics are provided in Appendix and[D]

Spiral DDE. We next consider a 2-d DDE (Zhu et al., 2020): &(¢) = A tanh(x(t) + x(t—7)) with
7=0.5 and A € R?*2, which produces crossing spiral trajectories (Fig. [2| (c,d)). Snapshots are
taken every 0.05 in ¢ € [0, 0.6] and coupled using minibatch-OT (OT-) between adjacent steps. After
training, OT-DFM(C) with 7=0.5 successfully reproduces the dynamics, while OT-CFM fails around
the crossing region. DFM also generalizes well across a range of 7 values (Appendix [C.2} D).

5.2 TRAJECTORY INFERENCE OF SINGLE-CELL

We investigate the inference of differentiation trajectories from real scRNA-seq data, where hetero-
geneity increases as cells transition from one type to multiple types during development, complicating
modeling with ODE-based approaches. To evaluate model performance, we train on all time points
except one intermediate time point, and then sample from the initial distribution, performing forward
integration to predict distributions at each time point. Predictions are validated through unsupervised
leave-one-out validation (L) by comparing to the true distribution at the held-out intermediate time
point, and supervised final-time validation (F) by comparing to the true distribution at the final time
point. Trajectory inference accuracy is assessed using the 2-Wasserstein distance (WW3) and Maximum
Mean Discrepancy with a Gaussian kernel (MMD(G)).

Table 2: Trajectory inference results on the scRNA-seq dataset in mouse hematopoiesis and the
single-cell gPCR iPSC dataset with bifurcation. All results are averages of 10 runs.
Mouse hematopoiesis | qPCR iPSC

Methods ‘

| Wa(L) MMD(L) W2(F) MMD(F) | Wa(L) MMD(L) Wa(F) MMD(F)
TIGON 0519  0.563 0264 0155 | 0.733  0.791  0.695  0.405
MIOFlow 0514  0.629 0220  0.056 | 0.770  1.039  0.345  0.155
OT-CFM 0.378  0.357  0.192  0.047 | 0579  0.492  0.226  0.030

OT-DFM(C) | 0.379 0.384 0.136 0.021 0.553 0.447 0.234 0.041
OT-DFM(D) | 0.372 0.341 0.095 0.010 0.532 0.399 0.213 0.027

Mouse hematopoiesis dataset. We evaluate DFM on scRNA-seq data from mouse hematopoiesis
(Weinreb et al., [2020), focusing on cells differentiating into neutrophils (Neu) and monocytes (Mo)
at Day 2, 4, and 6. Models are trained on Day 2 and 6 data; after training, samples from Day 2 are
integrated forward to predict distributions at Days 4 and 6. Geodesic interpolation is used to construct
trajectories for both CFM and DFM (Appendix [C.3). Due to the heterogeneity between pre- and
post-differentiation distributions, trajectories inferred by ODE-based models (TIGON (Sha et al.,
2024), MIOFlow (Huguet et al.} 2022), OT-CFM) partially deviate from the data manifold, falling
into regions between Neu and Mo fates (Fig. E] (b-e)). In contrast, OT-DFM(D), using distinct initial
functions for Neu and Mo (Appendix [C.3), preserves alignment with the data manifold (Fig. [3| (f))
and achieves more accurate distribution predictions (Table [2)).

qPCR iPSC dataset. We further apply DFM to model the bifurcation process of iPSCs in cardiomy-
ocytes (Bargaje et al.,|2017). Data from Day 2, 3, 4, and 5 are selected, with bifurcation observed from
Day 3, where progenitor cells differentiate into mesodermal (M) and endodermal (En) fates. Models
are trained on all time points except Day 3. After training, samples from Day 2 are forward-integrated
to infer trajectories and predict distributions at Day 3 and 5. Due to distributional heterogeneity at the
bifurcation point, ODE-based methods and OT-DFM(C) produce trajectories that partially misalign
with the data manifold (Fig. [3] (h-k)). In contrast, OT-DFM(D), by assigning separate initial functions
for each fate (Appendix [C.4)), preserves trajectory alignment with the corresponding manifolds and
yields more accurate predictions at both Day 3 and 5 compared to other methods (Table 2).
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Figure 3: Comparisons between predicted trajectories of MIOFlow (b, h), TIGON (c, i), OT-CFM (d,
j), OT-DFM(C) (e, k), and OT-DFM(D) (f, 1) on scRNA-seq dataset in mouse hematopoiesis (a-f) and
gPCR iPSC dataset (g-1). (a) and (g) illustrate the true data distribution.

5.3 IMAGE GENERATION

MNIST dataset. We design a Semi-paired

Image-to-Image Translation task on the MNIST

dataset, where the source domain consists of Table 3: Comparison of FID between KP-CFM
original images, and the target domain includes (7 = 0) and KP-DFM(C) with different time delay
their negative images (the normalized pixel val- on the MNIST dataset.

ues transformed via X +— 1—X). To provide 7 |[O0(CFM) 0125 0250 0500  1.000
partial supervision, 10% of the training data are FID | 45020 28497 11747 12653 12031
paired with their negative counterparts as key-
points. During training, minibatches are inde-
pendently sampled from the source and target distributions, and coupled via KPG-OT (KP-). The task
aims to transform source images into their negatives, where, under linear interpolation, all transport
paths intersect at an image with uniform pixel values of 0.5. While KP-CFM struggles with this
transformation, KP-DFM(C) effectively handles it. As shown in Table[3] across varying time delays 7,
KP-DFM(C) consistently achieves lower FID scores and better distribution alignment than KP-CFM.

CIFAR-10 dataset. We further evaluate DFM

on the CIFAR-10 dataset under a more general

generation setup (Zhu & Lin, 2024)), where the Table 4: Comparison of FID between CFM and
source distribution is a two-component Gaussian DFM on the CIFAR-10 dataset.

mixture rather than a standard Gaussian. DFM  NrE | 10 20 30 40 Adap.
employs trainable initial functions with distinct  .cpm 108.291 94.629 91.404 90.254 88.306
constant time derivatives (Appendix [C.6), en- OT-CFM ‘ 78.165  27.512 16409 12.026  6.162
abling generation from different mixture com- [-DFM(D) | 54.064 18.248 11429 9.008 4.980
ponents to specific image classes. We compare  OFDFM(D) | 54222 18508 11804 9.287 5191
CFM and DFM(D) under two coupling strate-

gies: independent coupling (I-) and OT coupling (OT-). As shown in Table [ I-CFM struggles
with mode heterogeneity, while I-DFM(D) generates higher-quality images. With OT coupling,
OT-DFM(D) consistently outperforms OT-CFM, especially when the number of function evaluations
(NFE) is small. Additional results are provided in Appendix [C.6]

6 CONCLUSION

We introduce DFM, a novel continuous-time generative framework based on Neural DDEs. Through
theoretical analysis, we highlight the limitations of ODE-based generative models, particularly their
inability to capture certain transport strategies and preserve critical coupling information. In contrast,
DFM offers universal approximation for arbitrary continuous transport strategies, addressing these
shortcomings effectively. DFM also overcomes the challenge of transport between heterogeneous
distributions by incorporating task-specific initial functions. Furthermore, it is naturally suited for
modeling delay dynamical systems, a feature beyond the capability of ODEs. Extensive experiments
on both synthetic and real-world datasets demonstrate that DFM achieves significantly more precise
and versatile distribution transport strategies compared to FM.
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The structure of the appendix is as follows:

* Appendix[A]provides the connection between the probability flows of ODEs and DDE:s.
* Appendix [B| provides the formal proofs for the theoretical results presented in the main text.
* Appendix [C]includes the experimential setup details and additional experimental results.

* Appendix D] provides the sensitivity anaysis of time delay parameter 7 on both synthetic
and real-world datasets.

A CONNECTION BETWEEN THE PROBABILITY FLOWS OF ODES AND DDES

Based on the vector field w(t, (t), z(t — 7)] in Eq. (1), we can define the conditional average drift
(CAD) without delay terms as follows (Guillouzic et al.,{1999):

alt,al$) = [ dafutt o,z )plat - et ), e
where p(x.,t — T|x,t;1) denotes the conditional probability given x(t) = x. Note that
p(x, t;x,, t — 7|1p) = p(x,,t — 7], t;9)p(x, t|2)), so Eq. (2) is equivalent to:

op(x,t _
W) g (2ot ) 23)

which is precisely the continuity equation satisfied by the probability flows of ODEs.

Remark A.1. This implies that a non-delayed vector field can be constructed to match the probability
flow of the delayed vector field in Eq. (I). However, the integration in Eq. (24) eliminates the coupling
information between the states at times ¢ and ¢ — 7. Consequently, while the ODE preserves the
marginal probability flow, it fails to maintain the coupling relationship during distribution transfer, as
illustrated by a simple example in Fig.[T](a).

B PROOFS OF THEORETICAL RESULTS

B.1 FOKKER-PLANCK EQUATION OF DDESs

Theorem B.1 (Fokker-Planck equation of DDEs, (Guillouzic et al., [1999; [Frank, 2005)). Consider a
time-dependent DDE with a single delay term:
de(t
O — wit 2,27, 1e0.7]
x(h) =v(h), hel[-7,0]

where ult, (t),x(t — 7)] : [0,T] x R? x R? — R? is a smooth vector field which is abbreviated
as u(t,x,x,) in the following, ¥ (h) represents the continuous initial function. The associated
probability flows p(z,t|1) : R x [0, T] — RY satisfy the delay Fokker-Planck equation:

%’ttlw =-V- {/d:cT[u(uw,:cT)p(w,t;xT,t - T|1/J)]}, (27)

(26)

where p(x, t|)) is the probability density at time t given the initial function, while p(x,t; x,,t—T|1)
is the joint probability density representing the likelihood of the system being at x at time t and at x;
attimet — 7.

Proof. The proof follows a similar approach as presented in|Guillouzic et al.|(1999). Without loss of
generality, we assume that d = 1 and the state variable x € [a, b] in Eq. . Consider an arbitrary
C? function F(z) defined on the interval [a, b], i.e. F' € C?([a,b]), which satisfies the following
conditions:

lim F(z) = lim F(z) =0, (28)
T—a z—b
. d . d
Jim 35 F'(@) = Jim 22 (@) = 0. @9
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Then, by applying the Taylor expansion, we obtain:

dF[z(t)] = Flz(t) + dz(t)] — Flz(t)] = {u[t, x(t), x(t — T)]dF[CU(t)]} dt. (30)

dx
The ensemble average (average over realizations) of dF'[x(t)] can be written as
d d
—F = —7)—F . 1
(5o} = (ule.a(0).a(t - D] Flo(o)]) 61)

We denote p(x,t;z,,t — 7|tp)dada, as the probability that 2(t) € [z,z + da] and z(t — 7) €
[x,, 2z, + dz,] given the initial function . Then, Eq. is equivalent to

b b b
/dxF(m)/ dxrap(x,t;:vﬂt—ﬂzm

b g b (32)
= / d:z:—F[x(t)]/ de,u(t,z, x)p(a, t; ., t — T|Y).
a dx a
By applying the integration by parts formula to the right-hand side, we obtain:
b b
/ de(x)/ de%p(ﬂc,t;mT,t —Tl)
a a (33)

:/abdxF(a:) /abde{—i[u(t,x,m)p(x,t;:cﬂt—le)]},

where the surface terms are neglected due to Eq. and Eq. (29). Since F'(z) is arbitrary, Eq.
leads to

B d b
ap(%t‘iﬁ) =5 {/ dz,[u(t,z, z )p(x, t; .t — T|¢)]} ) (34)

O

B.2 PROOFS OF PROPOSITIONS IN THE MAIN TEXT

Proposition 3.1. (Restriction on trajectory intersections) Suppose that the target transport strategy,
guided by certain key points or specific coupling constraints, inevitably leads to trajectory inter-
sections during the transport process, the flow map corresponding to the ODE-based FM cannot
precisely preserve the transport strategy.

Proof of [Proposition 3.1] Consider a time-dependent Neural ODE corresponding to a ODE-based
FM with the following form:

da(t)
dt

= o[t x(t);0], tel0,T], (35)

z(0) = o,

where v[t, z(t); 0] : [0,T] x R — R? is a parameterized vector field. We further assume that
the vector field is (locally) Lipschitz continuous. Then, by the Picard-Lindelof Theorem, the
corresponding initial value problem has a unique solution on the interval [0, T']. Suppose that
there exist two distinct solutions ! (¢) and =2 (t) corresponding to different initial values =} and =2,
which intersect at (¢*, z*). By the uniqueness of the solution, these two trajectories must correspond
to the same solution, leading to a contradiction. Therefore, given a transport strategy, which inevitably
leads to trajectory intersections during the transport process, the flow map corresponding to the
ODE-based FM cannot precisely ensure the transport strategy. O

Proposition 3.3. (Heterogeneity in distributions) Assume that the source (resp., target) distribution
qo (resp., q1) is supported on M (resp., N) disjoint compact sets {U?}M | (resp., {U jl }j\;l ), where
each U? € R? (resp., Uj1 € RY) is a path-connected set with non-zero measure and qo(xg) > 0
(resp., g1(x1) > 0) for all xy € qu\i1 U (resp., ¢, € U;V=1 Ujl). If M # N, for any transport map
T: Uf\il U — Ujvzl Uj1 such that Tyuqo = q1, we have that: (1). Neural ODEs with Lipschitz

continuous vector field cannot exactly represent T'; (2). If the flow of a Neural ODE is equal to the
transport map T' almost everywhere, then the vector field is not Lipchitz continuous.
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Proof of Proposition 3.3} Without loss of generality, assume M < N. Let T : M, U9 — U;\;l Uj

be an arbitrary transport map such that T'xqo = ¢;.

(1). By Dirichlet’s drawer principle, there must exist a non-empty path-connected compact set
UY € {UP}M, such that T(U?) ¢ U} for any U} € {Uj1 ?’:1. Since T(U?) C U;V:1 Ujl, there
must exist two different points o, yo € U? and two disjoint sets U,i, U, ll such that T'(xg) € U ,% and
T(yo) € U}'. Consider a Neural ODE as Eq. , where the vector field v[t, z(t); 0] is sufficiently
smooth with a bounded Lipschitz constant L, it is well-known that its solution exists and is unique
over the entire time interval, and the associated flow map ®;(z) is a diffeomorphism. Since U is
path-connected, there exists a continuous function f : [0, 1] — U? such that f(0) = xo, f(1) = yo.
Due to the diffeomorphic property of the flow, we have that & f : [0,1] — &7 (U?) is also a
continuous function such that ®7 f(0) = @ (xo), Prf(1) = ®r(yo). If &7 = T, O f is a path
connecting T'(xzo) € U} and T(yo) € U}!. Since the compact sets U;V:1 U are disjoint, there

exists a t* € (0, 1) such that &1 f(t*) & Ujvzl Uj. Therefore, 1 f(t*) # T(f(t*)), leading to a
contradiction.
(2). Without loss of generality, we further consider the case where M = 1 and N = 2. Under

the given condition, there exists a Neural ODE with the flow map &7 = T on U {)\Z , where Z is
a set with zero measure. Since U} is compact, for any € > 0, there exist finitely many open balls

{O(xk, €)}K_, such that U? C Ji, O(xk, €), where O(x €) is the open ball centered at 2§ € U?
with radius e. From the compactness and path-connectedness of UY, the following conclusion can be
easily derived:

30(x5, €) € {O(xg, €)1

(36)
st. Jx,y € O(x,e)\Z, Pr(x)=T(x)c U}, or(y) =T(y) € U,.

We define the distance between U} and U3 as d. It is easy to see that d > 0. Therefore, we have:

@5 (@) ~ er(y)] _ d

z—wl 2 G7)

By the arbitrariness of the choice of e, it follows that the flow map of the Neural ODE is not Lipschitz
continuous.

Assume that the vector field is Lipschitz continuous, then there is a constant L > 0 such that

||ve(2:0) — ve(y; 0)]| < Lilz — yl, (3%)
Then, we have

@7 (2) = 2 (y)]| < "l - yll, (39)
which implies that the flow map is Lipschitz continuous, leading to a contradiction. Therefore, the
vector field of the Neural ODE is not Lipschitz continuous. O

Proposition 4.1. The marginal vector field u(t,z,x,) given in Eq. , together with the se-
lected initial function v, generates the probability path p(x,t|1y) and the joint probability path

p($7 Lxr,t— T|,'7b) in Eq -

Proof of[Proposition 4.1} Given that u(t,x,x,|z) is the conditional vector field that generates
p(x, t|z, 1) and p(x, t; x,,t — 7|2,1)), it is evident that the following delay Fokker-Planck equation

holds:
Ip(z, t|z, )
ot
To verify this proposition, we only need to check that the marginal vector field w(¢, ¢, x,) given
by Eq. (15), the marginal probability density path p(z,t|+)) and the joint probability density
p(x, t; -, t — 7|1p) satisfy the following delay Fokker-Planck equation:

op(@ ) _ -V { /da:T[u(t,w,wr)P(w,t;wT,t - T|¢)]}~ (41)

=-V. { /da:T[u(t,w,wT|z)p(:c,t; T, t— T|z,¢)]}. (40)

ot
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Assuming that all the functions involved satisfy the regularity conditions necessary for the interchange
of integration and differentiation, we have that

Op(x, t|vp)
ot

_ % / pla, t]z,9)q(z)dz
_/[gt (z,t|z, 'tb)] q(z)dz

< { Az, [u(t, z, @, |2)p(z, t; xr, t — T|z,¢)]}) q(2)dz
-V- {/me [ u(t, x, x|2)p (m,t;wT,t—T|z,¢)q(z)dz} }
-V {/me [ ultz, wf(f)t(itt ff;rwﬂz’ch(Z)dz ~p(w,t;x7,t7|¢)} }
V. {/d ult,z,x,)p (w,t;wT,t—T|¢)1}-
(4?]

Proposition 4.2. Given that p(z,t;x,,t — T|1p) > 0 for all x,x, € R% and t € [0,1], up
to a constant independent of 0, Lpcry(0) and Lpry(0) are equal, which further implies that
VoLpcru(0) = VoLpru(0).

Proof of [Proposition 4.2] To guarantee the existence of all integrals and the validity of changing the
order of integration (as justified by Fubini’s Theorem), we assume that p(x, t|z, V), p(x, t; @, t —
T|z,4)) decay to zero sufficiently fast as ||x|| — oo and ||| — oo, and further assume that
u(t,z,x.|z),v(t,x,x;0), Vev(t, @,z ;0) are bounded. Note that ¢ ~ U(0,1) and ¥ ~ ¢°(1))
are both independent of 8, so we fixed ¢ and ¥ in the following analysis. Using the bilinearity of the
Euclidean norm and the independence of u(t, x, x,|z) from 8, we have:

VH]Ep(w,t;:cf,t—Tl'd)) ||’U(t, T, Lr; 9) - u(ta Z, mT) H2
:veﬂzp(mt;mﬂt—ﬂw) (H’U(ta T, Tr; 0) ”2 -2 <'U(t, L, Tr; '9)7 u(tv Z, mT)> + ”u(tv T, 2137—)H2) (43)
=VoE,(x t:w. t—rp) (J0(t, 2, x0)]° — 2 (v(t, @, 5 0),u(t, z,@,))),

and
VG]Eq(z),p(m,t;a:T,t—ﬂzﬂ,b) ||’U(t, T, Tr; 9) - 'Ll,(t, T, :137—|Z) ”2
ZVBEQ(Z)J’(WJET,tf‘r‘zﬂﬁ‘)(Hv(ta T, Tr; 6)”2 -2 <U(t’ T, Tr; 9)7 ’U,(t, Z, 337-|Z)> + (44)
|u(t, z, 2 [2)]?)
:ve]Eq(z),p(m,t;mT,t—*r\z,'l,b) (H’U(t, L, Lr; 0) ”2 —2 <U(t7 T, Tr; 0)7 u(ta Zz, CBT|Z)>) .
Next,
Ep(m,t;mmtfﬂw)”v(tv T, Tr; 9)H2
— /[ Iott.@.2.0)Ppta.tir.t — rl)dade,
(45)

// |v(t, x, . 0)||*p(x, t; 20, t — 7|2,9)q(2)dzdzda,

(=) p@ tiz, t—rlzap) |06 @, 23 0)|
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Finally,
Ep(m,t;mmtf‘rh,b) <’U(t, Z,Tr; 0)7 u(t, €z, m‘r)>

:// <v(t,a:,a;f;0), Jult,z, z |2)p(x, t; 2., t — 7|2, 9)q(2)d2

p($7t7 w7'7t - T|'¢))

-// <v<t,x,wT;e>, / u(t,w,mz)p(m,t;wﬁt—rz,w>q<z>dz>dazdx,

>p(ac, tyxy, t — 7|Yp)dede.,

:/// (v(t,x,x;;0),u(t,x,x,|2)) plx, t;x  t —7|2,9)q(z)dzdedx,
=E

q(2),p(z,tyx, t—7|2,7) <’U(t, Z,Tr; 9)7 u(t, €T, m‘f‘|z)> :
(46)
From Eq. (@3) and Eq. (#6), it follows that Eq. (#3) is equal to Eq. (#4) for any latent variable z,
which can be further deduced that Vg Lpcpm(0) = Vo Lprm(0). O

Proposition 4.3. (Universal approximating capability of DFM). For any given continuous transport
map F : RY — RY, which push-forward the source distribution qq to the target distribution q,
i.e. Fipqo = qu, if there exists a neural network that can approximate V (x) = F(x) — x, then we
can construct a vector field with a single delay term, where the corresponding flow map, under the
constant initial function condition, can approximately push-forward qq to q1, while preserving the
target transport strategy x — F(x).

Proof of[Proposition 4.3] The proof is straightforward. We consider the following DDE with a
constant initial function and a parameterized vector field with a single delay term:

de(t)

- v[z(t —7); 0],

t€[0,1],
te [*Tv O]a

where the time delay 7 = 1, and the vector field depends solely on the delay term, independent of the
current state and time, which is a special degenerate case of DFM. In this case, for any point sampled
from the initial distribution &y ~ ¢o, the corresponding vector field v[x(t — 7); 8] = v[x(; 0] remains
constant over the time interval ¢ € [0, 1], which means that the flow map G : R? — R associated
with the above DDE will map x to xo + v[zo; 0] - 1. We further assume that the neural network
v[xo; 0] can approximate V(z) = F(x) — @, which implies that G(x¢) = x¢ + v[xo; 0] - 1
xo + [F(xo) — xo] = F(xo). This implies that the flow map of the Neural DDEs approximately
preserves the target transport strategy, and naturally, it can approximately push-forward qo to ¢;. [

(47)
x(t) = xo,

~
~

C EXPERIMENTAL SETUP DETAILS AND ADDITIONAL RESULTS

In this section, we provide a detailed explanation of the experimental settings for different datasets
described in the main text and present additional experimental results. The experimental details for
the delay dynamical systems and single-cell datasets are summarized in Table[5).

Table 5: The experimental setup details for delay dynamical systems and single-cell datasets.

Setup | Autoregulation | Spiral DDE | Mouse hematopoiesis | iPSCs
Data | Dimension | 1 | 2 | 2 | 4
Hidden layer 3 3 3 3
Hidden neuron 64 64 64 64
Structure Activation Tanh Tanh SELU SELU
Time input False False True True
Delay term input True (DFM) / False (CFM) | True (DFM) / False (CFM) | True (DFM) / False (CFM) | True (DFM) / False (CFM)
Coupling KPG-OT oT oT oT
Initical function (DFM) Constant Constant Diverse Diverse
Latent variable CSpline CSpline Geodesic CSpline
Training Batch size 256 256 128 128
Iteration 2k 2k 10k 2k
Optimizer Adam Adam Adam Adam
Learning rate 1073 1073 1073 1073
Results |  Figures & tables |  Figs.[2]& Tab.[6]7][8]
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C.1 BIOLOGICAL AUTOREGULATION MOTIF

Dataset generation. The autoregulation motif, which is one of the most common biological network
motifs, can be modeled as the following 1-d DDE:

. n
)= ——— 48
() 1+an(t—171)’ (48)
where 7 = 1, n = 2, 7 = 5. As shown in Fig. 2] the dynamics exhibit damped oscillations. We
sample 1, 000 initial points from the uniform distribution ¢/(0.2, 1.2) and perform forward integration
based on constant initial functions ¥ (h; zo) = xo, h € [—1, 0], to obtain trajectories. After that, we
select snapshots at ¢ = 0,1,2, - -- , 7 as the training dataset.

Details for training. For each training iteration, we randomly and independently sample 256 data
points from each snapshot. Pairing between minibatch data points from adjacent time steps is
performed using KPG-OT. For this task, we utilize the true coupling of only two keypoint pairs
between adjacent time steps as guidance, although incorporating more keypoint pairs would enable
more accurate pairing. Once data points across time steps are fully matched, we construct 256
transport trajectories using cubic spline (CSpline) interpolation. These trajectories provide the states,
delayed states, and vector fields at various time steps, enabling the computation of the training
objective Eq. (I6), which is then optimized via backpropagation. Further details on the experimental
setup can be found in Table[5]

Details for testing. After training, we evaluate the performance of KP-DFM(C) and KP-CFM on
both interpolation and extrapolation tasks. Specifically, we randomly select 100 initial points from the
initial distribution 2/(0.2, 1.2) and generate predicted trajectories by performing forward integration
on the learned vector field, obtaining the predicted trajectories and snapshots at various time steps. For
interpolation, we compute the mean 2-Wasserstein distance W5 between the predicted and ground-
truth distributions at ¢ = 0.5, 1.5, 2.5, - - - | 6.5. Additionally, since the true dynamics are known, we
calculate the error between the predicted and ground-truth trajectories at these points, quantified by
the Mean Squared Error (MSE) and Mean Relative Error (MRE). For extrapolation, we similarly
compute the W5 distance between the predicted and ground-truth distributions at ¢ = 8,9, 10, along
with the trajectory-wise error using MSE and MRE.

Results. As shown in Table[7)and[§] KP-DFM(C) significantly outperforms CFM in both interpolation
and extrapolation tasks, achieving much lower prediction errors for both distributions and individual
trajectories, demonstrating superior representational capability. Furthermore, as illustrated in Table 6]
CFM fails to reconstruct the underlying dynamics, whereas KP-DFM(C) successfully captures the
damped oscillatory dynamics, even when the time delay 7 deviates from the ground truth.

C.2 SpriIRAL DDE

Dataset generation. We consider the following 2-d DDE:
&(t) = Atanh(x(t) + =(t — 7)), (49)

where 7 = 0.5 and A = [[-1,20],[-30, —1]] € R?*2. As shown in Fig.[2} the dynamics exhibit
trajectory crossings. We sample 1,000 initial points from the uniform distribution 2/(0.8,1) x
U(0,0.1) and perform forward integration based on constant initial functions ¥ (h; xo) = @g,h €
[—0.5, 0], to obtain trajectories. After that, snapshots at intervals of 0.05 within ¢ € [0, 0.6] are
selected as training dataset.

Details for training. In each training iteration, 256 data points are randomly and independently
sampled from each snapshot. Pairing between the minibatch data points at adjacent time steps is
performed using OT. After matching data points across time steps, 256 transport trajectories are
constructed using CSpline interpolation. These trajectories provide the states, delayed states, and
vector fields at various time steps, enabling the computation of the training objective in Eq. (16)),
which is subsequently optimized via backpropagation. Additional details on the experimental setup
are provided in Table 5]

Details for testing. After training, we assess the performance of OT-DFM(C) and OT-CFM on the
interpolation task. Specifically, 100 initial points are randomly sampled from the initial distribution
U(0.8,1) x U(0,0.1), and predicted trajectories are generated via forward integration of the learned
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Table 6: Additional results on biological autoregulation motif based on CFM with keypoint-guided
coupling (KP-CFM), as well as DFM with constant initial functions and keypoint-guided coupling
(KP-DFM(C)). For DFM, the generation results are illustrated with various time delays, specifically
7 =10.6,0.8,1.0 (ground truth), 1.2, 1.4.

Method | KP-CFM KP-DFM(C) ( = 0.6) KP-DFM(C) (r = 0.8)
: -

o " o l o “f o

Method | I“(P—DFM(C)t(j- = 1‘;) IU(P—DFM(C)r(T = 1.;) ID(P»DFIZVI((;)t(‘T = 1.;)

Results :Q N /’7: =" :0 // S\ \:/’;4’:" ; =

Table 7: Comparison of the interpolation prediction error between KP-CFM and KP-DFM(C) with
different time delay 7 on the biological autoregulation dataset.

T | O(CFM) 0.6 0.8 1.0 1.2 14

Wy 0.1842  2.82e-2 1.55e-2 1.53e-2 2.27e-2 4.37e-2
MSE | 9.21e-2 1.51e-3 4.42e-4 3.45e-4 5.36e4 2.68e-3
MRE | 0.117 222e-2 1.23e-2 9.47e-3 1.14e-2 2.57e-2

vector field, yielding trajectories and snapshots at various time steps. The mean W5 distance between
the predicted and ground-truth distributions is computed at intervals of 0.01 within ¢ € [0, 0.6].

Moreover, we calculate the error between the predicted and ground-truth trajectories at these points,
quantified by MSE and MRE.

Results. As shown in Table [I0] OT-DFM(C) significantly outperforms CFM in the interpolation
prediction task, achieving substantially lower errors for prediction of both distributions and individual
trajectories. Additionally, as illustrated in Table[9} CFM collapses around the trajectory crossing area,
while OT-DFM(C) successfully captures the spiral dynamics, even when the time delay 7 deviates
from the ground truth.

Table 8: Comparison of the extrapolation prediction error between KP-CFM and KP-DFM with
different time delay 7 on the biological autoregulation dataset.

T | O(CFM) 0.6 0.8 1.0 1.2 14

Ws 2.13e-2  2.25e-2 8.67e-3 3.42e-3 4.55e-3 1.23e-2
MSE | 5.51le-4 6.3le-4 1.28e-4 1.46e-5 4.38e-5 2.13e-4
MRE | 1.59-2 1.68e-2 6.75e-3 2.26e-3 3.72e-3 9.37e-3

19



Under review as a conference paper at ICLR 2026

Table 9: Additional results on Spiral DDE based on CFM with OT coupling (OT-CFM), as well as
DFM with constant initial functions and OT coupling (OT-DFEM(C)). For DFM, the generation results
are illustrated with various time delays, specifically 7 = 0.35, 0.40, 0.45, 0.50 (ground truth), 0.55.

Method | OT-CFM OT-DFM(C) (7 = 0.35) OT-DFM(C) (7 = 0.40)

100 06

2 2
1 1
0 0
Results , ,
2 2

Method |

Results

2
1
o 0
<
1
2

Table 10: Comparison of the interpolation prediction error between OT-CFM and OT-DFM with
different time delay 7 on the spiral DDE dataset.

T | OCCFM) 0.35 0.40 045 0.50 0.55

Wy 3.95 033 043 042 020 045
MSE 15.81 0.07 0.13 0.12 0.03 0.14
MRE 13.14 125 166 180 0.68 1.96

C.3 MOUSE HEMATOPOIESIS DATASET

Data preprocessing. To efficiently apply various trajectory inference methods to scRNA-seq data
from mouse hematopoiesis, we first project the data into a low-dimensional space. Specifically, we
use the reduced two force-directed layouts (SPRING) space for this dataset with batch correction,
following the same preprocessing pipeline as TIGON (Sha et al.;2024). Besides, we use the DBSCAN
clustering algorithm to categorize all cells at Day 6 into two distinct clusters, corresponding to the
Neu fate and Mo fate, respectively.

Selection of initial functions. During training, we match the sampled minibatch cells at Day 2 and 6
using OT. For each matched cell pairs (x, x1), where x¢ is sampled from data of Day 2 and x; is
sampled from data of Day 6, the initial function is defined as:

dy*(t; o)  [[1,0], if & isin Neu cluster, (50)

dt ~ 1[0,1], if @, is in Mo cluster.
Details of training. During training, we align Day 2 and Day 6 with ¢ = 0 and ¢ = 1, respectively.
For testing, the distribution of Day 4 is predicted at ¢ = 0.5. In this task, the time delay is set to 7 = 1.
In each training iteration, we randomly and independently sample 128 cells from each snapshot at Day
2 and 6. Pairing between minibatch data points at adjacent time steps is performed using OT. After
matching data points across time steps, 128 transport trajectories -y are constructed using geodesic
interpolation (refer to the next paragraph). These trajectories provide the states, delayed states, and
vector fields at various time steps, enabling the computation of the training objective in Eq. (T6),
which is subsequently optimized via backpropagation. Additional details on the experimental setup
are provided in Table[5]

Construct geodesic interpolation . For each matched cell pairs, geodesic interpolation is employed
to generate the interpolation trajectory (Kapusniak et al.;|2024). Here, we first build a data-induced
Riemannian metric g on the data manifold M. Formally, a Riemannian metric g on M is a smooth
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family of inner products on the tangent spaces of M. Specifically, g provides each & € M a positive
defined symmetric bilinear form on T, M,

o : TuM X TuM — R, (51)

which induces a norm || - ||, : T M — R defined by ||v||g, = \/9=(v, v). Based on this norm, we
can calculate the length of any path connecting two points on the manifold and construct the geodesic
between them. We aim to equip the ambient space R¢ with an appropriate metric that constrains
geodesics to remain close to the data manifold. Specifically, given coordinates, the Riemannian
metric g can be equivalently represented as a state-dependent d x d symmetric positive definite
matrix G (), such that g, (u,v) = u G()v for any u,v € T, M. Intuitively, to impose manifold
constraints on the transport path, ||G(x)|| is supposed to take smaller values around data points and
larger values in regions far from all points in the dataset D. Therefore, we employ the LAND metric,
where G (z; D) = (diag(h(x; D) + €I)~!. Here, the components of h(x; D) are defined as
al 1
hi(@; D) = ;(% — o) exp(— 55z — 2'[[3), (52)

where 1 < k < d denotes the k-th component, the superscript ¢ represents the i-th data point in the
training dataset D and o is the kernel bandwidth. Subsequently, we utilize a neural network ¢,, to
parameterize the geodesic interpolation path between x( and x; as

Yot ko, 1) = (1 — t)xo + tay + t(1 — t)oy (¢, o, x1). (53)

The trajectory -y,, approximates the geodesic between any two points sampled at adjacent time steps
on the Riemannian manifold (M, ¢) implies learning parameters 7 to minimize the following loss
function:

1
EG (77) = Eﬂ(wo,ml) / ;Y'r] (ta Zo, ml)TG(7n,t; D);Yn (t7 Zo, :Bl)dt, (54)
0
where 7 represents the OT coupling. The optimal parameter is obtained as:
n* = argmin Lg(7n), (55)

n

By substituting n* into -, in Eq. (53), the resulting trajectory -y,,- provides an approximation of the
geodesic interpolation on the data manifold.

C.4 1PSCS DATASET

Data Preprocessing. To apply trajectory inference methods to the iPSC scRNA-seq data efficiently,
we first reduce the data to a 4-dimensional space using Principal Component Analysis (PCA),
following the preprocessing pipeline of TIGON (Sha et al.| [2024)). For cells after differentiation
(from Day 3), we categorize them into two groups corresponding to the M and En fates using a
Gaussian Mixture Model (GMM) with two components. For Day 2, we model the distribution with a
single-component GMM and denote its mean as fto. As described above, for Day 5, the distribution
is modeled with a two-component GMM, where the means of the M and En fates are denoted as 41,
and pq9, respectively.

Selection of initial functions. During training, we match the sampled minibatch cells at Day 2, 4
and 5 using OT. For each matched triplet (xq, 1, 2), where @ is sampled from the Day 2 dataset,
x from the Day 4 dataset, and x, from the Day 5 dataset, the initial function is defined as:

dy*(t; o) {Hll — po, if @9 is in M component, (56)

dt K12 — po, if & is in En component.

Details of training. During training, we align Day 2, 4 and 5 with¢ = 0, ¢t = 2 and ¢t = 3,
respectively. For testing, the distribution of Day 3 is predicted at ¢ = 1. In this task, the time delay
is set to 7 = 3. In each training iteration, we randomly and independently sample 128 cells from
each snapshot at Day 2, 4, and 5. Pairing between minibatch data points at adjacent time steps is
performed using OT. After matching data points across time steps, 128 transport trajectories -y are
constructed using CSpline interpolation. These trajectories provide the states, delayed states, and
vector fields at various time steps, enabling the computation of the training objective in Eq. (I6)),
which is subsequently optimized via backpropagation. Additional details on the experimental setup
are provided in Table 5]
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C.5 MNIST DATASET

Dataset Generation. We propose a Semi-paired Image-to-Image Translation task using the MNIST
dataset. The source domain consists of the original MNIST images, while the target domain comprises
their corresponding negative images. Specifically, the pixel values X of each image in the original
MNIST dataset are inverted by replacing them with 1 — X, which flips the brightness. The objective
is to map each image to its corresponding negative counterpart, as demonstrated in Table[TT]

Minibatch coupling. To provide partial supervision, 10% of the training data are paired with their
negative counterparts as keypoints. During training, minibatches are independently sampled from
the source and target distributions, and KPG-OT coupling (KP-) is applied. Specifically, for each
batch, we sample the same number of images from the source distribution and the target distribution.
Out of these, around 10% image pairs are selected from the keypoint set, while the remaining images
are independently sampled from the respective distributions. It is important to note that the negative
counterparts of the remaining images sampled from the initial distribution are not guaranteed to
appear in the target batch. Subsequently, we perform KPG-OT pairing on the remaining images in
the batch based on the selected keypoint pairs, which are then used for further training.

Table 11: Samples of generation process and results on MNIST data based on CFM with keypoint-
guided coupling (KP-CFM), as well as DFM with constant initial functions and keypoint-guided
coupling (KP-DFM(C)). For DFM, the generation results are illustrated with various time delays,
specifically 7 = 0.125, 0.25, 0.5, and 1.0. In each image, the first and last columns represent samples
obtained from the source data and their negative counterparts, respectively, while the 10 intermediate
columns depict the generation process.

Method | | KP-DFM(C) (r = 0.125) KP-DEM(C) (7 — 0.25)
Y] 000000 LY XA 0 0 0 0
ibi 1111 T
p S Js ) B2 o ot o ol od od <
TTE 3333 35333
~ 994y 5444 9y 4y
Generation T 23355 55555
A 2226 266066
e @z 7 7 T EE2
$111 Fiis 12411
29799 7999 29999
Method | \ KP-DEM(C) (7 — 0.5) —1.0)
9800 Hoooo @ooo0o00
i (1771 L1111
B2 2 < ot | ot ot ot ot k| ot ot o7 o<
TE 553353 55553
- 9949 7944y 44447
Generation trcs lisls 5 s 55555
eliio ey oy
By ppe ezt FrEEe
44412 11114 IR
299719 rer 929999

C.6 CIFAR-10 DATASET

Source distribution. The source distribution for @ is defined as follows: with a probability of 50%,
x is sampled as &y = torch.randn(3,32,32)/4 — 0.5, and with the remaining 50% probability, it
is sampled as zo = torch.randn(3,32,32)/4 + 0.5, following the setting in/Zhu & Lin|(2024). A

sample drawn from the source distribution is shown in Table

Trainable initial functions. Designing appropriate initial values for high-dimensional images
in image generation tasks is a particularly challenging problem. To address this, we employ
torch.nn.Embedding to automatically learn the initial functions. Specifically, the source distribution
consists of two modules, corresponding to two Gaussian distributions, while the target distribution
consists of ten modules, corresponding to ten image categories. Therefore, for each pair of modules
(m,n), where m € {0,1} and n € {0,1,---,9}, we need to design the time derivative C,,,, of
the initial function (Eq. (22))). To achieve this, we begin by defining Emb=torch.nn.Embedding(20,
3 x 32 x 32), which maps 20 discrete indices to corresponding tensors of the same shape as the
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image. Then, for each pair (m, n), we define the initial function as:
dt

where h € [—7,0]. This approach allows the derivative of the initial functions across different
modules to adaptively adjust during training, thereby enabling more flexible and efficient learning.

Experimental setup details. For the image generation tasks, both CFM and DFM are trained
following the configurations outlined in [Tong et al.| (2023aib). In particular, we utilize a UNet
architecture with the following structures and training parameters:

e channels = 128,

e depth =2,
* channels multiple = [1, 2, 2, 2],
¢ heads = 4,

¢ heads channels = 64,

e attention resolution = 16,

¢ dropout = 0.1,

* batch size per gpu = 128, gpus = 1,

» Adam optimizer with £, = 0.9, 83 = 0.999, ¢ = 10~8, and no weight decay,
* learning rate = 2 x 1074,

* gradient clipping with norm = 1.0,

* exponential moving average weights with decay = 0.9999.

Table 12: Samples from the source distribution and generation results based on CFM and DFM(D)
using independent coupling (I-) or OT coupling (OT-) for adaptive NFE on transporting the Gaussian
mixture model with 2 components to the CIFAR-10 dataset.

Method | I-CFM OT-CEM | I-DFM(D) OT-DFM(D)

Source

EYRGEETE 2 mrEepe N | EEAVES-N 2 GNACES- N
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TSePNEYS $Cwellmes | CneDlese CneSHmue
e, |  AEDCERGS EEESENGs HEECEEf- EEEOkEH6-
GRE=TREE zSEPECRED | SES-DNE<E SES=DdkeD
AEEE=NHE ATCR=REE | AFOE<DER  AROE - DER
SN | 2B -Eile NS Edlm
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23



Under review as a conference paper at ICLR 2026

Table 13: Samples from the source distribution and generation results based on CFM and DFM(D)
using independent coupling (I-) or OT coupling (OT-) for adaptive NFE on transporting the Gaussian
mixture model with 2 components to the CIFAR-10 dataset.
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D SENSITIVITY ANALYSIS OF TIME DELAY T

To evaluate the effect of time delay 7 selection on DFM performance, we perform a sensitivity
analysis using both synthetic and real-world datasets.

First, we examine how different values of 7 impact the reconstruction of delay dynamical systems.
For the biological autoregulation motif, where the true time delay is 7 = 1, we conduct extensive
experiments with 7 values ranging from 0.6 to 1.4. As shown in Table[6] [7and[8] while the prediction
errors for both the distribution and trajectories increase as the delay deviates from the true value,
KP-DFM(C) consistently captures the damped oscillation pattern across a wide range of delay values.
In contrast, CFM fails to capture this behavior accurately. For the spiral DDE, with a true delay
of 7 = 0.5, we experiment with delays from 0.35 to 0.55. Although the prediction errors become
larger when the delay does not match the true value, OT-DFM(C) consistently outperforms CFM,
achieving significantly better results, as shown in Table[TI0] Additionally, as illustrated in Table 9}
OT-DFM(C) successfully captures the spiral dynamics across different delay values, whereas CFM
exhibits divergence at the intersections of the trajectories.

Furthermore, we explore the effect of different time delay values on image generation performance.
Using the MNIST dataset, we compare the generated images for 7 = 0.125,0.25,0.5, and 1.0. As
shown in Table [T} the generated images from DFM significantly outperform those generated by
CFM, with FID scores also notably lower than CFM’s, as summarized in Table[3] Upon examining
the impact of varying time delays, we find that performance is least favorable at 7 = 0.125, which
can be attributed to DFM’s behavior approaching that of CFM as 7 tends towards 0. However, for
values of 7 > (.25, the generation quality improves substantially.
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