
Under review as a conference paper at ICLR 2021

GRAPH STRUCTURAL AGGREGATION FOR EXPLAIN-
ABLE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks have proven to be very efficient to solve several tasks in
graphs such as node classification or link prediction. These algorithms that operate
by propagating information from vertices to their neighbors allow one to build node
embeddings that contain local information. In order to use graph neural networks
for graph classification, node embeddings must be aggregated to obtain a graph
representation able to discriminate among different graphs (of possibly various
sizes). Moreover, in analogy to neural networks for image classification, there
is a need for explainability regarding the features that are selected in the graph
classification process. To this end, we introduce StructAgg, a simple yet effective
aggregation process based on the identification of structural roles for nodes in
graphs that we use to create an end-to-end model. Through extensive experiments
we show that this architecture can compete with state-of-the-art methods. We show
how this aggregation step allows us to cluster together nodes that have comparable
structural roles and how these roles provide explainability to this neural network
model.

1 INTRODUCTION

Convolution neural networks (LeCun et al., 1995) have proven to be very efficient at learning mean-
ingful patterns for many articificial intelligence tasks. They convey the ability to learn hierarchical
information in data with Euclidean grid-like structures such as images and text. Convolutional Neural
Networks (CNNs) have rapidly become state-of-the art methods in the fields of computer vision
(Russakovsky et al., 2015) and natural language processing (Devlin et al., 2018).

However in many scientific fields, studied data have an underlying graph or manifold structure such
as communication networks (whether social or technical) or knowledge graphs. Recently there have
been many attempts to extend convolutions to those non-Euclidean structured data (Hammond et al.,
2011; Kipf & Welling, 2016; Defferrard et al., 2016). In these new approaches, the authors propose
to compute node embeddings in a semi-supervised fashion in order to perform node classification.
Those node embeddings can also be used for link prediction by computing distances between each
node of the graph (Hammond et al., 2011; Kipf & Welling, 2016).

Graph classification is studied in many fields. Whether for predicting the chemical activity of
a molecule or to cluster authors from different scientific domains based on their ego-networks
(Freeman, 1982). However when trying to generalize neural network approaches to the task of graph
classification there are several aspects that differ widely from image classification. When trying to
perform graph classification, we can deal with graphs of different sizes. To compare them we first
need to obtain a graph representation that is independant of the size of the graph. Moreover, for a
fixed graph, nodes are not ordered. The graph representation obtained with neural network algorithms
must be independant of the order of nodes and thus be invariant by node permutation.

Aggregation functions are functions that operate on node embeddings to produce a graph representa-
tion. When tackling a graph classification task, the aggregation function used is usually just a mean
or a max of node embeddings as illustrated in figure 1b. But when working with graphs of large sizes,
the mean over all nodes does not allow us to extract significant patterns with a good discriminating
power. In order to identify patterns in graphs, some methods try to identify structural roles for nodes.
Donnat et al. (2018) define structural role discovery as the process of identifying nodes which have
topologically similar network neighborhoods while residing in potentially distant areas of the network

1

Under review as a conference paper at ICLR 2021

as illustrated in figure 1a. Those structural roles represent local patterns in graphs. Identifying them
and comparing them among graphs could improve the discriminative power of graph embeddings
obtained with graph neural networks. In this work, we build an aggregation process based on the
identification of structural roles, called StructAgg.

The main contributions of this work are summarized bellow:

1. Learned aggregation process. A differentiable aggregation process that learns how to ag-
gregate node embeddings in order to produce a graph representation for a graph classification
task.

2. Identification of structural roles. Based on the definition of structural roles from Donnat
et al. (2018), our algorithm learns structural roles during the aggregation process. This is
innovative because most algorithms that learn structural roles in graphs are not based on
graph neural networks.

3. Explainability of selected features for a graph classification task. The identification
of structural roles enables us to understand and explain what features are selected during
training. Graph neural networks often lack explainability and there are only few works that
tackle this issue. One contribution of this work is the explainability of the approach. We
show how our end-to-end model provides interpretability to a graph classification task based
on graph neural networks.

4. Experimental results. Our method achieves state-of-the-art results on benchmark datasets.
We compare it with kernel methods and state-of-the-art message passing algorithms that use
pooling layers as aggregation processes.

(a) nodes with the same structural role are clas-
sified together (same color).

(b) aggregation process to create a graph embedding, the
node features are summed to produce a representation of
the graph.

Figure 1: Identification of structural roles and aggregation of node features over the whole graph.

2 RELATED WORK

The identification of nodes that have similar structural roles is usually done by an explicit featurization
of nodes or by algorithms that rely on random walks to explore nodes’ neighborhoods. A well
known algorithm in this line of research is RolX (Gilpin et al., 2013; Henderson et al., 2012),
a matrix factorization that focuses on computing a soft assignment matrix based on a listing of
topological properties set as inputs for nodes. Similarly struct2vec builds a multilayered graph based
on topological metrics on nodes and then generates random walks to capture structural information.
In another line of research, many works rely on graphlets to capture nodes’ topological properties and
identify nodes with similar neighborhoods (Rossi et al., 2017; Lee et al., 2018; Ahmed et al., 2018).
In their work, Donnat et al. (2018) compute node embeddings from wavelets in graphs to caracterize
nodes’ neighborhood at different scales.

In this work, we introduce an aggregation process based on the identification of structural roles in
graphs that is computed in an end-to-end trainable fashion. We build a hierarchical representation
of nodes by using neural network models in graphs to propagate nodes’ features at different hops.
Recently there has been a rich line of research, inspired by deep models in images, that aims at

2

Under review as a conference paper at ICLR 2021

redefining neural networks in graphs and in particular convolutional neural networks (Defferrard
et al., 2016; Kipf & Welling, 2016; Veličković et al., 2017; Hamilton et al., 2017; Bronstein et al.,
2017; Bruna et al., 2013; Scarselli et al., 2009). Those convolutions can be viewed as message passing
algorithms that are composed of two phases. A message passing phase that runs for T steps is first
defined in terms of message functions and vertex update functions. A readout phase then computes
a feature vector for the whole graph using some readout function. In this work we will see how to
define a readout phase that is learnable and that is representative of meaningful patterns in graphs.

3 PROPOSED METHOD

In this section we introduce the structural aggregation layer (StructAgg). We show how we identify
structural classes for nodes in graphs; how those classes are used in order to develop an aggregation
layer; and how this layer allows us to compare significant structural patterns in graphs for a supervised
classification task.

3.1 NOTATIONS

Let G = (V,E,X) be a graph, where V is the set of nodes of G, E the set of edges and X ∈ Rn×f
the feature matrix of G’s nodes where f is the dimensionality of node features. Let n = |V | be the
number of nodes of G and e = |E| the number of edges of G.

Let A be the adjacency matrix of graph G and D be its degree diagonal matrix. Let vi and vj be the
ith and jth nodes of G, we have:

Aij =

{
1 if (vi, vj) ∈ E
0 otherwise , Dii =

∑
j

Aij

Let S = {G1, ..., Gd} be a set of d graphs and {y1, ..., yd} be the labels associated with these graphs.

3.2 HIERARCHICAL STRUCTURAL EMBEDDING

Graph neural networks. We build our work upon graph neural networks (GNNs). Several archi-
tectures of graph neural networks have been proposed by Defferrard et al. (2016); Kipf & Welling
(2016); Veličković et al. (2017) or Bruna & Li (2017). Those graph neural network models are all
based on propagation mechanisms of node features that follow a general neural message passing
architecture (Ying et al., 2018; Gilmer et al., 2017):

X(l+1) =MP (A,X(l);W (l)) (1)

where X(l) ∈ Rn×fl are the node embeddings computed after l steps of the GNN, X(0) = X , and
MP is the message propagation function, which depends on the adjacency matrix. W (l) is a trainable
weight matrix that depends on layer l. Let fl be the dimension of the node vectors after l steps of the
GNN, f0 = f .

The aggregation process that we introduce next can be used with any neural message passing
algorithm that follows the propagation rule 1. In all the following of our work we denote by MP
the algorithm. For the experiments, we consider Graph Convolutional Network (GCN) defined by
(Kipf & Welling, 2016). This model is based on an approximation of convolutions on graphs defined
by (Defferrard et al., 2016) and that use spectral decompositions of the Laplacian. The popularity
of this model comes from its computational efficiency and the state-of-the-art results obtained on
benchmark datasets. This layer propagates node features to 1-hop neighbors. Its propagation rule is
the following:

X(l+1) =MP (A,X(l);W (l)) = GCN(A,X(l)) = ρ(D̃−1/2ÃD̃−1/2X(l)W (l)) (2)

3

Under review as a conference paper at ICLR 2021

Where ρ is a non-linear function (a ReLU in our case), Ã = A + In is the adjacency matrix with
added self-loops and D̃ii =

∑
j Ãij .

This propagation process allows us to obtain a node representation representing its l-hop neighborhood
after l layers of GCN. We build a hierarchical representation for nodes by concatenating their
embeddings after each step of GCN. The final representation Xstructi of a node i is given by:

Xstructi =

Ln

l=1

X
(l)
i (3)

Where L is the total number of GCN layers applied.

Identifying structural classes. Embedding nodes with MP creates embeddings that are close for
nodes that are structurally equivalent. Some use a handcrafted node embedding based on propagation
processes with wavelets in graphs to identify structural clusters based on hierarchical representation of
nodes (Donnat et al., 2018). By analogy, we learn hierarchical node embeddings and an aggregation
layer that identifies structural roles for node in graphs. Those structural roles are consistent along
graphs of a dataset which allows us to bring interpretability to our graph classification task.

Node features Xstruct contain the information of their L-hop neighborhood decomposed into L
vectors each representing their l-hop neighborhood for l varying between 1 and L. We will show next
that nodes that have the same L-hop neighborhood are embedded into the same vector.
To identify structural roles, we thus project each node embedding on a matrix p ∈ Rfstruct×c where

c is the number of structural classes and fstruct =
L∑
l=1

fl is the dimensionality of Xstructi for each

node i. We obtain a soft assignment matrix:

C = softmax(Xstructp) ∈ Rn×c (4)

Where the softmax function is applied in a row-wise fashion. This way, Cij represents the probability
that node i belongs to cluster j.

Definition 1. Let i and j be two nodes of a graphG = (V,E,X). LetNl(i) = {i′ ∈ N |d(i, i′) ≤ l}
be the l-hop neighborhood of i, which means all the nodes that are at distance lower of equal to l of i,
d being the shortest-path distance. Let XNl(i) be the feature matrix of the l-hop neighborhood of u.
Let Gi,l be the subgraph of G composed of the l-hop neighborhood of i.
We say that i and j are l-structurally equivalent if there exists an isomorphism ψ from Nl(j) to Nl(i)
such that the two following conditions are verified:

• Gi,l = ψ(Gj,l)

• ∀j′ ∈ Nl(j), Xψ(j′) = Xj′

Theorem 1. Two nodes i and j that are L-structurally equivalent have the same final embedding,
Xstructi = Xstructj .

3.3 STRUCTURAL AGGREGATION

After having identified structural classes, we aggregate node embeddings over those classes, as
illustrated in figure 2. The goal is to obtain an embedding that discriminates graphs that do not belong
to the same class and that selects similar patterns in graphs of the same class. Graphs that have similar
properties and thus similar node patterns should have nodes with similar roles and similar embeddings.

Performing a structural aggregation. The structural aggregation aims at comparing embeddings
of nodes that have similar roles in the graph. When computing the distance between two graphs, if
those two graphs have the same distribution of structural roles, they will have embeddings that are
close. Nodes that are leaves or nodes that are central in the graph should be compared separately.

4

Under review as a conference paper at ICLR 2021

Mathematically, the variance over all nodes if the graph may be high and decomposing nodes per
structural roles aims at decreasing the variance per cluster and thus at bringing more information to
the final graph embedding.
The structural aggregation layer performs an aggregation per structural role. This aggregation is a
mean of embeddings of nodes that belong to the same cluster. The final embedding is a concatenation
of the mean embeddings of the nodes per cluster of structural role.

Zgraph = CTX(L) ∈ Rc×fL

Proposition 1. The embedding Zgraph is invariant by node permutation.

Figure 2: Aggre-
gation of node fea-
tures over structural
classes

Moreover when performing soft classification, the output cluster assignment
for each node should generally be close to a one-hot vector so that each node
has a clear structural role identified. We therefore regularize the entropy of the

cluster assigmnent matrix by minimizing Lreg = 1
n

n∑
i=1

H(Ci.) where H(Ci.)

is the entropy of the assignment vector Ci. of node i. This is often done when
identifying classes for nodes. The same regularization is applied in (Ying et al.,
2018) to identify communities in graphs to develop a pooling layer.

Remarks.

• The structural classes identified by our algorithm are local. They
contain the information of the L-hop neighborhood of each node.
• Compared to the structural embedding presented in Donnat et al.

(2018), our algorithm needs multiple graphs and is trained in a su-
pervised fashion. Donnat et al. (2018) introduced a node embedding
that allows us to identify structural classes in a single graph. It is not straightforward how
to generalize this procedure to the case of a set of graphs. Indeed, when dealing with a
single graph, this procedure is very efficient at identifying structural roles. However, those
structural roles are defined per graph and thus two nodes that have the same structural role
but that lie in two different graphs can have embeddings that differ and can thus be classified
in two different classes.

3.4 INTERPRETABLE GRAPH NEURAL NETWORK

Graph neural networks lack interpretability. In the case of convolutional neural networks on images,
it is possible to visualize the activation of certain layers to have an idea of the patterns that are
selected during the process of image classification and of which pattern is usefull to discriminate
images of a certain class from the rest of the images of a dataset. In the case of graphs, most
algorithms based on neural network models bring no interpretability regarding the features that are
selected and that make the classification accurate.

In this work, we bring some interpretability to this class of models and illustrate it in the next sections
in experiments. By propagating information from node to node, we are able to identify structural
roles in graphs. Those structural roles contain the information of local neighborhoods of nodes and
of their local topological structure. By identifying roles in graphs, we compare between graphs the
embeddings per structural roles. This way, we can identify roles that are specific to a certain class and
caracterize each class with the combination of roles they are made of. We show through extensive
experiments that the information contained in the identification of roles allows us to discriminate
graphs of different classes and lead the way to other works that could bring interpretability to this
field of research.

4 EXPERIMENTS

4.1 GRAPH CLASSIFICATION

Datasets: We choose a wide variety of benchmark datasets for graph classification to evaluate our
model. The datasets can be separated in two types. 2 bioinformatics datasets: PROTEINS and

5

Under review as a conference paper at ICLR 2021

D&D; and a social network dataset: COLLAB. In the bioinformatics datasets, graphs represent
chemical compounds. Nodes are atoms and edges represent connections between two atoms. D&D
and PROTEINS contain two classes of molecules that represent the fact that a molecule can be either
active or inactive against a certain type of cancer. The aim is to classify molecules according to their
anti-cancer activity. COLLAB is composed of ego-networks. Graphs’ labels are the nature of the
entity from which we have generated the ego-network. In Table 1 we report some information on
these datasets such as the maximum number of nodes in graphs, the average number of nodes per
graph, the number of graphs, the size of node features f (if available) and the number of classes.
More details can be found in (Yanardag & Vishwanathan, 2015). We also use the new database
Open Graph Benchmark (OBG) to test our method on larger datasets (Hu et al., 2020). We use the
ogb-molhiv dataset whose properties are listed bellow. Each graph represents a molecule, where
nodes are atoms, and edges are chemical bonds. Input node features are 9-dimensional, containing
atomic number and chirality, as well as other additional atom features such as formal charge and
whether the atom is in the ring or not.

Experimental setup: We perform a 10-fold cross validation split which gives 10 sets of train,
validation and test data indices in the ratio 8:1:1. We use stratified sampling to ensure that the class
distribution remains the same across splits. We fine tune hyperparameters nroles the number of
structural roles, lr the learning rate and finally the dimensions of the successive layers respectively
chosen from the sets {2, 5, 10, 20}, {0.01, 0.001, 0.0001}, {8, 16, 32, 64, 128, 256}. The sets from
which our hyperparameters are selected vary according to the sizes of graphs in each dataset. We do
not set a maximum number of epochs but we perform early stopping to stop the training which means
that we stop the training when the validation loss has not improved for 20 epochs. We report the mean
accuracy and the standard deviation over the 10 folds on the validation set. We compare our method
with kernel methods and with a graph neural network that uses pooling layers (Ying et al., 2018). We
should note that kernel methods do not use node features that are available on bioinformatics datasets.
For COLLAB, we don’t have any features available on nodes. We compute the one-hot encoding of
node degrees that we use as node features for our algorithm.

Results: From the results of Table 1 we can observe that StructAgg is competing with state-of-the-art
methods. Indeed, on most datasets, StructAgg has a score very close to those obtained by Ying et al.
(2018) and Gao & Ji (2019). From Table 1, StructAgg outperforms all algorithms on COLLAB.
Moreover, StructAgg allows us to improve classification results from GCN on ogb-molhiv dataset as
illustrated in figure 2

Dataset D&D PROTEINS COLLAB

Max #Nodes 5748 620 492
Avg #Nodes 284.32 39.06 74.49

#Graphs 1178 1113 5000
f 89 3 -

classes 2 2 3

Graphlet (Shervashidze et al., 2009) 74.85 72.91 64.66
Shortest-Path (Borgwardt & Kriegel, 2005) 78.86 76.43 59.10

1-WL (Shervashidze et al., 2011) 74.02 73.76 78.61
WL-OA (Kriege et al., 2016) 79.04 75.26 80.74

GraphSage (Hamilton et al., 2017) 75.42 70.48 68.25
DGCNN (Zhang et al., 2018) 79.37 76.26 73.76

DIFFPOOL (Ying et al., 2018) 80.64 76.25 75.48
g-U-Nets (Gao & Ji, 2019) 82.43 77.68 77.56

StructAgg 78.42 ± 0.97 76.72 ± 2.53 80.26 ± 2.73

Table 1: Classification accuracy on bioinformatics datasets

6

Under review as a conference paper at ICLR 2021

Name #Graphs
#Node per

Graph
#Edges per

Graph GCN strcutAgg

ogbg-molhiv 41127 25.5 27.5 0.7606± 0.0097 0.7701± 0.0102

Table 2: OGB dataset for graph classification. The score reported is the ROC-AUC score.

4.2 IDENTIFICATION OF STRUCTURAL ROLES

(a) (b) (c)

(d) (e) (f)

Figure 3: Molecules drawn for a bioinformatics dataset. The colors represent structural classes
identified by our algorithm in figures 3a, 3b and 3c compared to the output of GraphWave in figures
3d, 3e and 3f. To compare the structural classes output by the two algorithms, 3a and 3d are the same
molecule, 3b and 3e also and 3c and 3f are the same molecule. To obtain comparable results, we run
our algorithm and output the structural classes for each molecule. For each molecule, we then run
GraphWave with the number of classes from StructAgg being set as input of GraphWave.

We show some examples of molecules of a molecular dataset and the roles identified by our algorithms.
From figure 3 we can see that there is some consistence in the assignment of nodes to structural roles.
Moreover, a great advantage of our method is that it takes into account node features that are in our
case a one-hot encoding of the atom type. Compared to Donnat et al. (2018) whose embeddings do
not include node features, our method identifies roles in a macroscopic fashion by identifying similar
roles in the whole dataset and not in a single graph. Most methods rely on computed features that
correspond to a single graph and do not generalize to multiple graphs because of scales issues. It is
the case for GraphWave for which features computed in order to cluster nodes per roles depend on
the size of the graph. To compare our role assignment with GraphWave, we computed assignments
per graph and not along the whole dataset. We can note that compared to GraphWave, our algorithm
uses node features to select structal roles.

7

Under review as a conference paper at ICLR 2021

4.3 IMPORTANCE OF STRUCTURAL PATTERNS

Identifying roles in graphs boils down to identifying significant patterns. As shown in subsection 4.2,
the roles that we were able to identify represent coherent patterns in graphs. Graphs’ final embeddings
are made of two parts. Nodes’ embeddings that are the result of successive GCNs and the allocation
of all nodes to different structural classes. We would like to quantify how much information is
contained in the structural roles and if the decomposition of the graph in c classes improves our
classification accuracy. To this end, from our trained algorithm, we compute all allocation matrices
of all graphs of a dataset.
In order to validate the fact that roles themselves have a high discriminative power, we need to identify
combinations of roles that are specific to different classes. We thus want to identify the structural
roles that compose each graph.

Let’s consider a graph G and an allocation matrix C ∈ Rn×c. We obtain a soft assignment matrix.
We compute on it a histogram per class over each node of the graph. The feature vector is now a
concatenation of all histograms per class. We have:

FeatG =

cn

j=1

hist(C.j , bins) ∈ Rbins∗c

Where bins is the number of bins for the histogram. The histogram upper and lower bounds are 0
and 1 because the values of C are the output of a softmax function.

Let (G1, ..., Gd) be d graphs of labels (y1, ..., yd). After having computed all graphs’ histograms we
obtain d vectors (FeatG1

, ..., F eatGd) that we use as imputs of a classifier. We use a SVM and we
display the results in table 3 in order to compare the information that comes from the strutural roles
identification and the information that comes from node embeddings.
We can see that the accuracy is lower when we don’t consider node embeddings which is consistent
with the fact that a lot of information is contained in the embeddings of nodes that are the outputs
of GCNs. But the accuracy is significantly higher than a random model which proves that we can
identify some patterns in the distribution of structural roles among graphs and that those patterns are
a good first approximation to separate classes in a dataset.

Dataset D&D PROTEINS COLLAB

StructAgg 78.42 ± 0.97 76.72 ± 2.53 80.26 ± 2.73

StructHist 74.54 ± 2.87 73.68 ± 2.03 70.94 ± 2.08

Table 3: Classification accuracy based on the histogram of the assignment matrix (StructHist)
compared to our algorithm (StructAgg).

5 CONCLUSION

Graph neural networks are very effective to build node embeddings by propagating node features in
graphs. But in order to build a graph representation from these embeddings there are several ways to
procede. In this work, we proposed a novel technique based on the identification of structural roles
for nodes in graphs. We showed that the identification of roles allows us to compare patterns between
graphs that are significant for graph classification. Moreover, this work opens new perspectives in the
field of explainability of graph neural networks. We showed that these patterns brought explainability
to this task and to which kind of structures are selected by our algorithm during the process of graph
classification. A better understanding of which features are selected during training can enable us
to develop new methods based on drawn conclusion and maybe open new perspective in applied
mathematics for drug discovery.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Nesreen K Ahmed, Ryan Rossi, John Boaz Lee, Theodore L Willke, Rong Zhou, Xiangnan Kong,
and Hoda Eldardiry. Learning role-based graph embeddings. arXiv preprint arXiv:1802.02896,
2018.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Data Mining,
Fifth IEEE International Conference on, pp. 8–pp. IEEE, 2005.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Joan Bruna and Xiang Li. Community detection with graph neural networks. arXiv preprint
arXiv:1705.08415, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pp. 3844–3852, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embed-
dings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1320–1329. ACM, 2018.

Linton C Freeman. Centered graphs and the structure of ego networks. Mathematical Social Sciences,
3(3):291–304, 1982.

Hongyang Gao and Shuiwang Ji. Graph u-nets. arXiv preprint arXiv:1905.05178, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Sean Gilpin, Tina Eliassi-Rad, and Ian Davidson. Guided learning for role discovery (glrd) framework,
algorithms, and applications. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 113–121, 2013.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu,
Danai Koutra, Christos Faloutsos, and Lei Li. Rolx: structural role extraction & mining in
large graphs. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1231–1239, 2012.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and
applications to graph classification. In Advances in Neural Information Processing Systems, pp.
1623–1631, 2016.

9

Under review as a conference paper at ICLR 2021

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao. Higher-
order graph convolutional networks. arXiv preprint arXiv:1809.07697, 2018.

Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed. Deep feature learning for graphs. arXiv preprint
arXiv:1704.08829, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, pp.
488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):
2539–2561, 2011.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, pp. 4800–4810, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

A APPENDIX

You may include other additional sections here.

B PROOFS

B.1 PROOF OF THEOREM 1

Theorem 2. Two nodes i and j that are L-structurally equivalent have the same final embedding,
Xstructi = Xstructj .

Proof. Let i and j be two nodes of a graph G = (V,E,X) that are L-structurally equivalent.
Let P(l) be the following proposition:
Two nodes that are l-structurally equivalent for some l, have the same embedding after l steps of
GCN.
Let’s prove this proposition by induction.
P(0) is true, two nodes that have the same embedding are 0-structurally equivalent after 0 step of
GCN.
Let P(l) be true and let’s prove P(l + 1).
Let i and j be two nodes that are l-structurally equivalent. After a step of GCN we have:

10

Under review as a conference paper at ICLR 2021

X(l+1) = GCN(A,X(l))

So we have:

(D̃−1/2ÃD̃−1/2X(l))i =
∑

i′∈N (i)

aii′√
didi′

X
(l)
i′

Since i and j are l-structurally equivalent, there exists an isomorphism ψ such that:

∀i′ ∈ Nl(i),∃j′ ∈ Nl(j) such that X(l)
i′ = X

(l)
ψ(j′) = X

(l)
j′

⇒
∑

i′∈N (i)

aii′√
didi′

X
(l)
i′ =

∑
j′∈N (j)

aψ(j)ψ(j′)√
dψ(j)dψ(j′)

X
(l)
ψ(j′) =

∑
j′∈N (j)

ajj′√
djdj′

X
(l)
j′

⇒ (D̃−1/2ÃD̃−1/2X(l))i = (D̃−1/2ÃD̃−1/2X(l))j

⇒ X
(l+1)
i = f(D̃−1/2ÃD̃−1/2X(l)W (l))i

= f(D̃−1/2ÃD̃−1/2X(l)W (l))j

= X
(l+1)
j

So two nodes i and j that are L structurally equivalent, are l structurally equivalent for all l between
0 and L and thus, Xstructi = Xstructj because Xstruct is the concatenation of embeddings after
each layer.

B.2 PROOF OF PROPOSITION 2

Proposition 2. The embedding Zgraph is invariant by node permutation.

Proof. Let P ∈ 0, 1n×n be any permutation matrix. Since P is a permutation matrix we have
PPT = I . We have PX(l+1) = GCN(PAPT , PX(l)).

Zgraph = CTX(L)

= (softmax(Xstructp))
TX(L)

= (softmax(PTPXstructp))
TPTPX(L)

Since the softmax is applied in a row-wise fashion, we have:

Zgraph = (PT softmax(PXstructp))
TPTPX(L)

= (softmax(PXstructp))
TPX(L)

= ZPgraph

Where ZPgraph is the embedding of our graph to which we have applied the permutation P

11

	Introduction
	Related Work
	Proposed Method
	Notations
	Hierarchical Structural Embedding
	Structural Aggregation
	Interpretable Graph Neural Network

	Experiments
	Graph classification
	Identification of structural roles
	Importance of structural patterns

	Conclusion
	Appendix
	Proofs
	Proof of theorem 1
	Proof of proposition 2

