
Reservoir Computing for Edge-based Automatic
Speech Recognition

Nicolo Micheletti - 2024280039
Diego Cerretti - 2024280040
Thomas Adler - 2024389002

29 October 2024

1 Introduction1

Automatic Speech Recognition (ASR) ensures seamless interaction between humans and LLM-2

powered AI. Current state-of-the-art ASR models are transformer-based neural networks [1] that3

have a very high level of accuracy but come with the cost of high complexity, partly due to the4

attention mechanisms present in the model [1]. The latest ASR model by Open AI, Whisper Large,5

has 1.55bn parameters (2̃.9 GB) [11] and is reported by users 1 to require around 12 GB of VRAM to6

run. A model of this size has to be deployed on the cloud, which introduces network latency, slowing7

response times and degrading user experience. Indeed, edge devices cannot host a model of this size:8

the latest iPhone 15 Pro Max is estimated to have around 8 GB of RAM. Due to limited resources,9

current edge-based ASR models also struggle with accuracy [6]. Reservoir Computing offers the10

potential for a new generation of edge-based ASR models with low latency and high accuracy.11

2 Background12

Reservoir Computing (RC) [15, 9] is an ideal candidate for an edge-based ASR model because13

of its low training requirement and strong predictive capabilities in complex time series. The key14

property of an RC is that its internal layer is fixed, requiring no training. As a result, RCs require15

very little memory, computational power, fine-tuning or retraining. They can potentially be hosted on16

memory-constrained edge devices and avoid the network latency issues introduced by cloud-based17

models. RCs can achieve high-performance levels on specific tasks because of the rich non-linear18

and recurrent dynamics within the reservoirs. This enables them to extract complex spatio-temporal19

features when transforming input data into a higher-dimensional space. We further describe the RC20

architecture in Appendix A.21

The following system of equations describes an RC.22

{
x(t+ 1) = (1− γ)x(t) + γf(Wx(t) +W (in)u(t) + b),
y(t) = W (out)x(t),

(1)

It operates with discrete time steps, denoted by t. The non-linear activation function is represented23

by f , and the reservoir is the internal weight matrix W . W in is the input weight matrix, defining24

the nodes in the network that receive inputs (input-to-reservoir mapping), while W out represents the25

output weight matrix (reservoir-to-output mapping). The leakage rate γ controls the amount of past26

information passed to the next time step. The input at time t is denoted by u(t), and b is a bias term27

[15, 8].28

1https://github.com/openai/whisper

https://github.com/openai/whisper


3 Related Work29

Optimization strategies State-of-the-art ASR models achieve high accuracy but require complex30

architectures. Several techniques can be used to alleviate this issue. Pruning and quantization31

techniques can be combined to compress a model. Pruning cuts links in a dense network to reduce32

complexity, whereas quantization lowers the precision of parameters to save memory [7, 4]. Other33

methods have been implemented to improve convergence rates and training efficiency of ASR34

models, like Sortagrad and automatic segmentation. SortaGrad consists of initially training neural35

networks on shorter audio clips, and gradually increasing their length [2]. Automatic segmentation of36

input audio into meaningful units enhances the training of automatic speech recognition systems by37

improving how input features align with phonetic labels and simplifies the data the model needs to38

handle [5].39

ASR for Edge Devices Recent works have aimed to reduce the latency and memory footprint of40

ASR models to run on resource-constrained devices. Specifically, Gondi et al. [6] achieved this by41

building transformer-based models with quantization and other optimization techniques. Xu et al.42

[14] ran ASR on low-memory devices using Conformer CTC (Connectionist Temporal Classification43

Automatic Speech Recognition) models. Conformer CTC ASR is a speech recognition model that44

combines Conformer neural architecture, known for its efficiency in capturing both local and global45

speech patterns, with CTC loss, which aligns predictions with input sequences without requiring46

pre-labeled data alignment. Compared to traditional models, these systems exhibit an increase in47

Word Error Rate (WER), a common accuracy metric in speech recognition tasks.48

Reservoir Computing for ASR Recent works have attempted to reduce complexity while main-49

taining high accuracy in ASR using RC models. Picco et al. [10] implemented a photonic-based50

system that makes RC architectures suitable for high-dimensional audio processing tasks. Ansari et51

al. [3] used heterogeneous single and multi-layer RC models to create non-linear transformations of52

the inputs, capturing temporal context at different scales.53

4 Proposal54

Lighter models operating at the edge face challenges in balancing accuracy, latency, and efficiency. RC55

provides a promising alternative due to its lower inference latency and reduced memory consumption.56

In this study, we aim to harness RC to improve the performance of edge-based ASR.57

For this project, we plan to evaluate our model on the English portion of the following two datasets:58

• The LibriSpeech2 corpus is a dataset comprising about 1,000 hours of audiobooks from the59

LibriVox project.60

• The Common Voice3 corpus is a multilingual collection of transcribed speech aimed at61

advancing research in ASR. The dataset contains 9,283 recorded hours.62

We will compare our implementation against current state-of-the-art approaches in edge-based ASR:63

Whisper Small from OpenAI [11] and Wav2Vec 2.0 from Meta [6]. Both models performed well64

on ASR benchmarks but still struggled with accuracy compared to cloud-models, hampering their65

effectiveness.66

To evaluate the performance of the models, we will use Word Error Rate (WER), Character Error67

Rate (CER), and frame-wise accuracy, representing the correct prediction of a sound present in a68

short audio segment. In addition, the models will be compared based on their memory usage and69

inference time.70

To improve the accuracy of our RC model, we will explore various approaches, including those71

mentioned in Section 3. In addition, we will fine-tune RC-specific parameters. These include reservoir72

size and connectivity, the number of reservoir layers, recurrent weights, spectral radius, and the73

degree of chaotic dynamics within the reservoir [12, 16].74

2https://paperswithcode.com/dataset/librispeech
3https://paperswithcode.com/dataset/common-voice

2

https://paperswithcode.com/dataset/librispeech
https://paperswithcode.com/dataset/common-voice


References75

[1] Sadeen Alharbi et al. “Automatic Speech Recognition: Systematic Literature Review”. In:76

IEEE Access 9 (2021), pp. 131858–131876. DOI: 10.1109/ACCESS.2021.3112535.77

[2] Dario Amodei et al. “Deep speech 2: End-to-end speech recognition in english and mandarin”.78

In: International conference on machine learning. PMLR. 2016, pp. 173–182.79

[3] Zohreh Ansari, Farzin Pourhoseini, and Fatemeh Hadaeghi. “Heterogeneous reservoir comput-80

ing models for persian speech recognition”. In: 2022 International Joint Conference on Neural81

Networks (IJCNN). IEEE. 2022, pp. 1–7.82

[4] Alexei Baevski et al. “wav2vec 2.0: A framework for self-supervised learning of speech83

representations”. In: Advances in neural information processing systems 33 (2020), pp. 12449–84

12460.85

[5] Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. “Wav2letter: an end-to-end86

convnet-based speech recognition system”. In: arXiv preprint arXiv:1609.03193 (2016).87

[6] Santosh Gondi and Vineel Pratap. “Performance Evaluation of Offline Speech Recogni-88

tion on Edge Devices”. In: Electronics 10.21 (2021). ISSN: 2079-9292. DOI: 10.3390/89

electronics10212697. URL: https://www.mdpi.com/2079-9292/10/21/2697.90

[7] Song Han et al. “Ese: Efficient speech recognition engine with sparse lstm on fpga”. In:91

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate92

Arrays. 2017, pp. 75–84.93

[8] Mantas Lukoševičius. “A Practical Guide to Applying Echo State Networks”. In: Neural94

Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr,95

and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 659–96

686. ISBN: 978-3-642-35289-8. DOI: 10.1007/978-3-642-35289-8_36. URL: https:97

//doi.org/10.1007/978-3-642-35289-8_36.98

[9] Mantas Lukoševičius and Herbert Jaeger. “Reservoir computing approaches to recurrent99

neural network training”. In: Computer Science Review 3.3 (2009), pp. 127–149. ISSN: 1574-100

0137. DOI: https://doi.org/10.1016/j.cosrev.2009.03.005. URL: https:101

//www.sciencedirect.com/science/article/pii/S1574013709000173.102

[10] Enrico Picco, Alessandro Lupo, and Serge Massar. “Deep photonic reservoir computer for103

speech recognition”. In: IEEE Transactions on Neural Networks and Learning Systems (2024).104

[11] Alec Radford et al. “Robust Speech Recognition via Large-Scale Weak Supervision”. In:105

Proceedings of the 40th International Conference on Machine Learning. Ed. by Andreas Krause106

et al. Vol. 202. Proceedings of Machine Learning Research. PMLR, July 2023, pp. 28492–107

28518.108

[12] Bin Ren and Huan-Fei Ma. “Global optimization of hyper-parameters in reservoir comput-109

ing”. In: Electronic Research Archive 30 (May 2022), pp. 2719–2729. DOI: 10.3934/era.110

2022139.111

[13] David Verstraeten et al. “The unified reservoir computing concept and its digital hardware112

implementations”. In: Proceedings of the 2006 EPFL LATSIS Symposium. 2006, pp. 139–140.113

[14] Mingbin Xu et al. “Conformer-based speech recognition on extreme edge-computing devices”.114

In: arXiv preprint arXiv:2312.10359 (2023).115

[15] Min Yan et al. “Emerging opportunities and challenges for the future of reservoir computing”.116

In: Nature Communications 15.1 (Mar. 2024), p. 2056.117

[16] Bolin Zhao. “Seeking optimal parameters for achieving a lightweight reservoir computing: A118

computational endeavor”. In: Electronic Research Archive 30 (June 2022), pp. 3004–3018.119

DOI: 10.3934/era.2022152.120

3

https://doi.org/10.1109/ACCESS.2021.3112535
https://doi.org/10.3390/electronics10212697
https://doi.org/10.3390/electronics10212697
https://doi.org/10.3390/electronics10212697
https://www.mdpi.com/2079-9292/10/21/2697
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.03.005
https://www.sciencedirect.com/science/article/pii/S1574013709000173
https://www.sciencedirect.com/science/article/pii/S1574013709000173
https://www.sciencedirect.com/science/article/pii/S1574013709000173
https://doi.org/10.3934/era.2022139
https://doi.org/10.3934/era.2022139
https://doi.org/10.3934/era.2022139
https://doi.org/10.3934/era.2022152


A Reservoir Computing Architecture121

Figure 1: RC architecture [15] (Authorized under (CC BY 4.0)

As Figure 1 shows, an RC consists of three layers: an input (sensing) layer, a reservoir (processing)122

layer, and an output (control) layer. The input layer sends data to the reservoir, a fixed-weighted123

network that projects input data into a higher-dimensional feature space. The output layer, the only124

trainable component, typically uses linear regression to map these signals to the final output. The125

reservoir is initialized once, with its size, connectivity, and chaotic dynamics fixed. Then, the RC126

processes sequential data at every time step, and its recurrent connections ensure past data is carried127

over to future time steps [15, 13, 9, 8].128

4

http://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Related Work
	Proposal
	Reservoir Computing Architecture

