TABLE CALL: A New Paradigm for Table Question Answering

Anonymous EMNLP submission

Abstract

Large language models (LLMs) have exhibited
strong semantic understanding capabilities in
interpreting and reasoning for table question
answering (TQA). However, they struggle with
excessively lengthy or complex input tables, es-
pecially when dealing with disorganized or hier-
archical structures. To address these issues, we
propose a new paradigm for TQA, named TA-
BLE CALL, which leverages the tool-using ca-
pabilities of LLMs. Specifically, TABLE CALL
invokes different tools for various types of table
questions, such as SQL, Python, and LLMs, to
simplify table understanding. Moreover, to en-
hance table comprehension capabilities of the
LLM, we propose a few-shot library updating
technique where we use a dynamically updated
library to provide better QA pairs for LLM
prompting. Experimental results on both open-
domain and specific-domain datasets demon-
strate that our approach achieves state-of-the-
art performance, significantly outperforming
previous methods.

1 Introduction

Table Question Answering (TQA) (Berant et al.,
2013; Pasupat and Liang, 2015; Herzig et al.,
2020a; Yin et al., 2020) is a critical task in natural
language understanding and information retrieval,
gaining prominence in fields such as finance and
education. TQA evaluates the ability to reason over
structured or semi-structured table data, understand
the textual content of tables, and integrate free-
form natural language questions with table data.
The complexity of TQA arises from the unordered
nature of table cells and the substantial length of
many tables, presenting unique challenges for ef-
fective analysis and comprehension.

Earlier SQL-based approaches for Table Ques-
tion Answering (TQA) (Zhong et al., 2017; Yu
et al., 2018) employ semantic parsing to convert
natural language table questions into executable
commands, such as SQL queries. These queries fa-

[Question:
' What was the total number of medals won by canadians in all events?
| Original Table:

| Event Class Gold Silver

| Downhill BI1-3 B. Bunting (AUS) E. Villalon (ESP)

| Downhill LW2 M. Milton (AUS) C. Lanthaler (ITA)

| Downhill LW12 K. Bramble (USA) C. Devlin-Young (USA)
| Super-G BI-3 B.Bunting (AUS) E. Villalon (ESP)

: Super-G LW2 M. Milton (AUS) C. Lanthaler (ITA)

\

1 (129 rows omitted)

l P

Program of ' SQL
Thought - Queries

-
Out-of-length Error SQL Retrieval Error 4
Ground Truth: 4

Bronze
Y. Santacana (ESP)
J. Lalla (USA)
D. Wesley (CAN)
Y. Santacana (ESP)
F. Planker (ITA)

e =

-l TABLE CALL

[}] (Ours)

Figure 1: Comparison between different TQA ap-
proaches when handling a lengthy, disorganized ta-
ble. LLM-based methods take the entire table as input,
resulting in out-of-length errors. SQL-based methods
are confused by single cells containing both the name
and country abbreviation of the cyclist, leading to SQL
retrieval errors. In contrast, our proposed TABLE CALL
excels at the TQA task, providing correct answers.

cilitate the retrieval and manipulation of table data
to generate responses, allowing for quick database
access without being limited by table length. Re-
cently, large language models (LLMs) like GPT
(Ouyang et al., 2022; OpenAl, 2023b; Achiam
et al., 2023) and LLaMA (Touvron et al., 2023;
MetaAl, 2024) have shown exceptional capabili-
ties in language understanding and generation, pro-
viding greater robustness compared to traditional
rule-based methods and pre-training fine-tuning
paradigms. This has led to extensive research
aimed at enhancing TQA using LLMs. Strate-
gies include leveraging LL.Ms through in-context
learning (Chen, 2023; Pourreza and Rafiei, 2024;
Zhang et al., 2023; Ye et al., 2023; Chen et al.,
2023; Wang et al., 2024) and employing multi-step
reasoning via chain-of-thought (CoT) prompting
(Zhang et al., 2023; Liu et al., 2023; Chen et al.,
2023; Wang et al., 2024). Additionally, some ap-
proaches (Zhang et al., 2023) integrate LLMs with
tools like SQL or Python to further improve TQA

£ TABLE CALL Question
Table (
11 L[| "
row_header,

sample_data
}

LP[Serialization & Sampling]—T

Few-shot j ______ QM <BoTC> { f)
Library A “name” %3
"parameters”: { B,
J
Tools

~task_type”, s
~decision_explanation”, || S
~key_parameter1”, -

) .
} <EoTC>
\

Figure 2: Overview of TABLE CALL. We initially serialize the table and sample the first three rows as input. By
employing few-shot library updating technique, we guide the large language model to categorize the question types
and extract key parameters. The resulting JSON-formatted output is then utilized with various tools.

performance.

While the above strategies are commonly used to
handle TQA, they encounter several challenges, as
shown in Figure 1: 1) SQL-based methods require
converting the question into a precise SQL query,
and their performance is critically influenced by the
regularity of the table. 2) Large Language Models
(LLMs) exhibit inadequate table comprehension
capabilities when facing complex tables, such as
disorganized or hierarchical tables. They tend to
treat TQA as a uniform language task, neglecting
the different types of table tasks and performing
poorly in numerical reasoning, aggregation, com-
parison, and understanding of layout information.
Moreover, LLMs struggle with lengthy tables that
consume many tokens, leading to a decline in per-
formance as the number of tokens increases.

To overcome the above problems, we propose a
novel paradigm for table question answering called
TABLE CALL, as depicted in Figure 2. Our ap-
proach combines the immunity of tools like SQL
to table length limitations with the powerful com-
prehension and reasoning capabilities of LLMs.
Unlike previous methods, our approach classifies
question types and utilizes the appropriate tools,
including SQL, Python, and LLMs, to address each
corresponding question type. In the first phase of
TABLE CALL, we categorize table-related ques-
tions and extract key information from both the
tables and questions through few-shot library up-
dating, while inputting sampled table data to avoid
out-of-length errors. In the second stage, our model
selects and leverages tools such as LLMs, SQL, and
Python to more accurately answer specific ques-
tions.

Previous methods (Chen, 2023; Pourreza and
Rafiei, 2024) have demonstrated the powerful capa-
bilities of in-context learning in the TQA task. By
adding few(1)-shot examples, LLMs can quickly

learn to answer TQA questions. However, this ap-
proach relies heavily on the quality of the few-shot
examples, as demonstrated by Nori et al. (2023).
Our study also utilizes dynamic few-shot learn-
ing to enhance TQA performance. We propose a
few-shot library updating technique based on dy-
namic few-shot learning (Nori et al., 2023) to en-
able LLMs to better understand and answer ques-
tions. We feed the output of an LLLM, along with
the table and the question, into another LLM acting
as an evaluator. This evaluator assesses the qual-
ity of the generated output and checks whether the
QA pair should be added to the few-shot library,
thereby becoming part of future few-shot examples.
By dynamically updating the few-shot library, we
can provide better QA pairs as few-shot examples
for LLM prompting.

The contributions of this paper can be summa-
rized as follows:

* We present a novel method named TABLE
CALL, classifying table problems into corre-
sponding tasks and applying specific tools for
each task. Without exceeding the token limits
of LLMs, this approach can handle tables up
to ten times longer for certain TQA tasks than
common LLM-based methods.

* We incorporate few-shot library updating tech-
nique to generate better few-shot examples
and enhance table comprehension capabilities
and reduce hallucinations.

» Extensive experiments on pubic benchmark
datasets WikiTableQuestions and AIT-QA,
demonstrate that our proposed TABLE CALL
outperforms the state-of-the-art methods.

Table [0 0

-

{

Column header:["Name of place”, “Number of
counties”, “Principal county”, “Lower zip code”,
~Upper zip code”],

Sample data:

[[“Sabinsville”, “1”, “Tioga County”, “16943", "
[“Sabula~, “1~, “Clearfield County”, “15801", "],
[“Sackett”, “1~, “Elk County”, “16735", ""1]

}

Question: What is the
number of locations named
St. Clair in Pennsylvania?

[Serialization & Sampling
L 2

Libra

Dynamic

‘
J

0, <BoTC> {

. é 'name”: "TableQA”,

"parameters”: {

~task_type”: “filter_based_retrieval ”,
~decision_explanation”: “The question focuses
on the number of locations named St. Clair in
Pennsylvania. For column header: For
key_question_info: ... So the key_question_info is
[St. Clair”, “pennsylvania“]”,
“key_column_headers”: ["Name of place”],
~key_question_info”: [”St. Clair”, “Pennsylvania”]
} >
} <EoTC>

Update

@

Based on the provided table, I can help you with that.

Here’s the filtered result:

* ('St. Clair’, '17, ‘Schuylkill County’, 117970,)

* (‘St. Clair’, 17, "Westmoreland County’, ‘15601’, ')
* (St. Clair’, 1, *Allegheny County’, ,)

* (‘St. Clair’, '17, ‘Allegheny County’, ", ")

* ('St. Clairsville, '17, ‘Bedford County’, '16667, ")

need to exclude ”St. Clairsville” since it’s not exactly “St. Clair”.
So, the correct count is 3 locations named ~St. Clair” in Pennsylvania.
Answer: 3

To find the number of locations named ~St. Clair” in Pennsylvania, I'll filter the table
by the “Name of place” column and look for rows where the value is “St. Clair”.

There are 4 rows that match the condition “Name of place” = “St. Clair”. However, we

column_header:["Name of place”, “Number of
counties”, “Principal county”, “Lower zip code”,
~Upper zip code”],

Filtered data:

[['St. Clair, "1, *Schuylkill County’, "17970",],
['St. Clair’, '1’, 'Westmoreland County’, ‘15601, 1,
['St. Clair, '17, ‘Allegheny County’, ”, 7],

['St. Clair, '17, ‘Allegheny County, ", »,

['St. Clairsville, *17, ‘Bedford County’, '16667, 11

Question: What is the number of
locations named st. clair in pennsylvania?

Figure 3: Example of TABLE CALL processing a filter-based retrieval question. The table length is 517. Baseline
approaches suffer from the token length limits of LL.Ms, leading to out-of-length errors. However, our approach
avoids such errors by initially inputting only sample data into the model.

2 Related Works

2.1 Table Question Answering

Table question answering (TQA) is a task of lan-
guage reasoning from table data. It tests the ability
to reason over structured or semi-structured data,
understand textual table contents and fuse free-
form natural language questions with table data.

Early works conducted semantic parsing through
hand-crafted features and grammar rules to trans-
form table questions into executable commands
(Berant et al., 2013; Pasupat and Liang, 2015; Yin
and Neubig, 2017; Zhong et al., 2017; Yu et al.,
2018). However, these methods require converting
the question into a strict SQL/Python query state-
ment, and the regularity of the table influences the
performance bottleneck critically.

Pretrained language models, trained on extensive
tabular data, gain a general syntactic and semantic
understanding of tables. Thus these models can en-
code tables and generate answers directly (Herzig
et al., 2020a; Yin et al., 2020; Liu et al., 2022; Xie
et al., 2022; Zhou et al., 2022; Deng et al., 2022;
Zhong et al., 2022; Sundar and Heck, 2023; Yu
et al., 2023). These methods have high training
costs and lack interpretability however.

Some works have shown that adding few-shot
learning to large language models (LLMs) signifi-
cantly improves TQA accuracy (Chen, 2023; Pour-

reza and Rafiei, 2024). This capability of LLMs
can also be applied to answering tabular questions.
However, simply adding few-shot examples lacks
interpretability and does not fully unleash the po-
tential of LLLMs. Subsequent works use various
strategies to better guide LLMs in TQA interpre-
tation and reasoning. ReAcTable (Zhang et al.,
2023) generates intermediate data representations
using external tools such as SQL and Python code
executors, transforming TQA tasks into a more ac-
cessible format. Similarly, Binder (Cheng et al.,
2023) splits the reasoning phase and uses exter-
nal tools. Ye et al. (2023) generate sub-tables and
sub-questions with SQL queries through in-context
learning. Liu et al. (2023) aggregate textual and
symbolic reasoning and use a mix self-consistency
mechanism to get the answer. Chen et al. (2023)
propose Program-of-Thoughts to generate step-by-
step python code for complex numerical reasoning
tasks. CHAIN-OF-TABLE (Wang et al., 2024)
guides LLMs to iteratively generate operations and
update the table, creating a table reasoning chain.
Liu et al. (2024) construct an augmenting table
with external information and then generate SQL
queries over both tables to answer questions.
Some methods have been proposed to handle
lengthy tables. Zhao et al. (2023) reconstruct hi-
erarchical tables into a tree structure and employ
multi-turn QA for long-text tables. Sui et al. (2024)

introduce predefined certain constraints to meet the
LLM call request. Binder (Cheng et al., 2023) in-
puts only three tables rows for all table sizes. We
draw inspiration from Binder to tackle the issue
of lengthy tables causing the LLM to exceed its
input length limits by inputting only the first three
rows. During the tool phase, we adeptly resolve the
issues of information loss caused by this truncated
input method.

2.2 Function Calling

Function calling is a technology first introduced by
OpenAl in June 2023 (OpenAl, 2023a). It connects
large language models (LLMs) to external tools.
Models are trained to both detect when a function
should to be called (depending on the input) and
to respond with JSON that adheres to the function
signature. The basic sequence of steps for function
calling is as follows: 1. Call the model with the
user query and a set of functions defined in the
functions parameter. 2. The model can choose to
call one or more functions; if so, the content will be
a stringified JSON object adhering to your custom
schema. 3. Parse the string into JSON, and call
the function with the provided arguments if they
exist. 4. Call the model again by appending the
function response as a new message, and let the
model summarize the results back to the user.

3 Method

3.1 Overview

Figure 2 illustrates an overview of the proposed
TABLE CALL. TABLE CALL receives a natural
language query () and a table 7' as inputs. Ta-
ble T' comprises column headers H_ ,ymn, data
D, and potentially row headers H,,,. For hierar-
chical tables, T features multi-layered headers for
both columns and rows. During the calling phase,
we initially serialize the table 7" and sample the
data D. A large language model (LLM), enhanced
with few-shot library updating, is then employed
to determine the task type of the question (), gener-
ate pertinent key parameters, and provide explana-
tions for its decision-making process. Based on the
JSON-formatted output from the calling phase and
the question, various tools are then used to generate
the final results.

3.2 Calling Phase
3.2.1 Serialization and Sampling

Function calling (OpenAl, 2023a) involves the ca-
pability within an API to describe and invoke one
or more functions, enabling the model to intelli-
gently produce a JSON object with arguments that
can be used to execute the specified functions. In
this paper, we leverage this concept to guide large
language models (LLMs) to classify task types of
the question (), and to generate corresponding key
parameters for each task.

The input of the calling phase is a question @,
column headers H .yjymn, the sample rows of data
D sampie, and possibly row headers H,.,,. For hi-
erarchical tables, the column headers H.,ymn and
the row headers H.,.,,, are nested. We simply flatten
the header. This can retain the layout information
of the table to the greatest extent, with the cost
of taking up more token input. We refer to the
initial three rows of data D fed into the model as
D sampie» drawing inspiration from Binder (Cheng
et al., 2023). Given the token limitations of the
model, inputting only D sqpmpie addresses out-of-
length error associated with lengthy tables. Fur-
thermore, D gqmpie facilitates the model’s compre-
hension of the overall table structure and the data
representation types present in the complete table.

3.2.2 Few-shot Library Updating

Incorporating few-shot learning, even with a single
example, considerably enhances the reasoning ca-
pabilities of large language models (LLMs) (Chen,
2023; Pourreza and Rafiei, 2024). Nevertheless, for
table-based questions that encompass multiple task
types, it is crucial to supply better question-answer
pairs that enhance the model’s comprehension of
both the table and the question. Inspired by Nori
et al. (2023), we introduce few-shot library up-
dating technique during the calling phase. This
strategy can provide better QA pairs and aids in
the precise classification of question tasks and the
extraction of key parameters.

As illustrated in Figure 4, we utilize a few-shot
library consisting of basic question-JSON pairs.

In the first stage, for any given question, we
select k semantically similar few-shot examples
using k-NN clustering within the embedding space.
In Section 4.4, we discuss the impact of the choice
of k on the outcomes.

In the second stage, these k few-shot examples,
along with the column header H opymyn, the row

header H,,,, and the sample data Dgqpie, are
input into the large language model (LLM) as
prompts. This setup facilitates the generation of a
JSON-formatted output that includes the task type,
key parameters, and decision explanation. The task
type and key parameters are subsequently used to
invoke additional tools. Meanwhile, drawing from
the Chain of Thought (CoT) approach (Wei et al.,
2022), we prompt our LLM to generate a series
of intermediate reasoning steps, termed decision
explanation. We provide detail explanations in the
Appendix A.1 on how to use prompts during the
calling phase to generate JSON outputs.

We use an alternative LLM to evaluate the task-
type and key parameters in the output. If the JSON-
formatted output is accurate, we update the few-
shot library by adding the new question-JSON pair.
This iterative refinement ensures the continuous
enhancement and relevance of our few-shot library,
thereby improving the performance over time.

Stagel (* ey shot Library Y Axis

,
o] | — |

Stage2

Add few-shot §

hoose few-shot fq’.'

JSON;

@]

Few-shot Library

5\

(eval)™ : :
Updating

) o]

Figure 4: Overview of our proposed few-shot library
updating technique. In the first stage, we select k few-
shot examples by computing and compare the similarity.
In the second stage, we update the few-shot library by
judging the generating JSON-formatted output and in-
corporating the new question-JSON pair.

3.2.3 Task Type Classifier

In the realm of Table Question Answering (TQA),
we encounter a diverse range of question tasks,
each requiring distinct reasoning strategies. These
tasks can be broadly categorized into five types: Di-
rect Retrieval, Filter-Based Retrieval, Aggregation,
Comparison, and Sequential/Relative Positioning.

Direct Retrieval requires identifying specific
rows and columns using key information to directly
access the answer within the table. This involves
defining key column headers and key question in-
formation, which ideally allows tools to directly
retrieve answers.

Filter-Based Retrieval retrieves data using spe-
cific criteria applied to one or more columns. This
method differs from Direct Retrieval as it often
involves complex query conditions that are not di-
rectly derivable from the sample data D sqpmpie.

Aggregation tasks filter data on certain criteria
before performing operations like summing, aver-
aging, or counting. Parameters for Aggregation
tasks include key column headers, key question in-
formation, and task-specific commands like SUM,
AVG, or COUNT.

Comparison tasks involve data filtering and
comparing values to identify extremes such as the
highest or lowest values. Key parameters contain
the key column header, key question information
and comparison terms like ‘highest’.

Sequential/Relative Positioning tasks focus on
the sequence or relative positioning of table items,
typically involving prepositions like ‘after’ or ‘di-
rectly before’ indicating a relational query concern-
ing sequence. For these types of tasks, it’s not
possible to directly locate useful row information
from Dggpppie. Therefore, the key parameters are
the corresponding row information and relative po-
sitioning prepositions.

3.3 Tools

In the field of table question answering (TQA),
integrating large language models (LLMs) with
external tools is becoming increasingly prevalent
(Zhang et al., 2023; Liu et al., 2024). In this paper,
we employ a combination of distinct tools: SQL,
Python, and large language models (LLMs), tai-
lored to different task types within table question
answering. For more detailed examples, please
refer to Appendix A.2.

We input the complete data D into a SQL
database to circumvent issues associated with ex-
ceeding the token limits.

For Direct Retrieval and Filter-Based Retrieval,
by leveraging SQL, we can identify rows corre-
sponding to the key question information and sub-
sequently locate the relevant column using the key
column header. If there is only one row filtered,
we directly determine the answer. If there are more
than one rows, we then use a task-based LLM as
the reansoning tool to further reasoning and get the
answer.

For Aggregation tasks, we first use SQL to iden-
tify related rows and columns. We then use a task-
based LLM to combining the key task information

and use Python shell to compute the final result.

For Comparison tasks, we similarly first use SQL
and then input the question, filtered rows, and key
task information into the LLM.

For Sequential or Relative Positioning tasks, we
directly use the taskbased LLM as relying solely
on the sample data D4y, We cannot determine
the sequential or relative positioning table item.

3.4 Handling Exceptions

Given our method involves converting strings to
JSON and code, there is an inherent risk of encoun-
tering execution errors.

After the calling phase, we generate a JSON-
formatted file. Typically, we use <BoTC> and
<EoTC> as specific identifiers to locate the JSON
output. However, even though few-shot library
updating technique can guide the LLM to generate
the JSON output, the high requirements for JSON
formatting and the inherent randomness of LLM
outputs can lead to errors in the generated JSON.
Specifically, these errors can manifest as symbol
misplacements or irrelevant responses.

- Symbol misplacements can cause JSONDe-
codeError, such as an extra or missing bracket. In
such cases, we employ additional scripts to check
and correct these errors.

-Irrelevant responses refer to situations where the
LLM fails to correctly output key parameters, pre-
venting the accurate selection of rows and columns
based on these parameters.

When using tools based on the JSON-formatted
file, different exceptions may arise:

- SQL exceptions occur when the SQL query
requires a non-existing column header or row data
required do not exist in the SQL database.

- Python exceptions are similar to JSON excep-
tions involving symbol errors, where the generated
Python code may be non-standard.

To address these exceptions, we input the ta-
ble data into an LLM, and a task-guided chain-of-
thought LLLM directly outputs the results.

4 Experiment

4.1 Experimental Setup

4.1.1 Datasets

We conduct extensive experiments on two datasets:
the open-domain table question-answering dataset
WikiTableQuestions (Pasupat and Liang, 2015) and

the aviation-domain hierarchical table question-
answering dataset AIT-QA (Katsis et al., 2022).

WikiTableQuestions consists of tables sourced
from Wikipedia. Each task involves answering a
question based on a given table. The dataset in-
cludes 2,108 tables on various topics and 22,033
questions of varying complexity. For our exper-
iments, we use the test set, comprising 4,344
question-answer pairs. This dataset features com-
plex questions that require multi-step reasoning
and various data operations such as comparison,
aggregation, and arithmetic computation.

AIT-QA is a question-answering dataset on hier-
archical tables in the aviation industry, consisting
of 116 tables with a total of 515 question-answer
pairs. Tables in AIT-QA have a much more com-
plex layout than Wikipedia tables, featuring hierar-
chical row and column headers and domain-specific
terminology. Thus, AIT-QA serves as a valuable
extension and supplement to WikiTableQuestions.

The two datasets encompass a wide variety of ta-
bles and questions that require multi-step reasoning
and various data operations, including comparison,
aggregation, arithmetic computation, and layout
understanding.

4.1.2 Baselines

For the WikiTableQuestions dataset, we compare
our method with training-based methods (Yin et al.,
2020; Liu et al., 2022; Zhou et al., 2022; Jiang et al.,
2022; Ni et al., 2023) and prompt-based methods
(Cheng et al., 2023; Zhang et al., 2023; Ye et al.,
2023; Wang et al., 2024; Liu et al., 2023).

For the AIT-QA dataset, we compare our method
with the state-of-the-art method Zhao et al. (2023)
and the methods in the original AIT-QA paper, in-
cluding TABERT (Yin et al., 2020), TaPas (Herzig
et al., 2020b) and RCI (Katsis et al., 2022).

4.1.3 Model

Previous prompt-based methods mainly employ
GPT-3.5 (OpenAl, 2023b) as benchmarks. How-
ever, due to the per-second concurrency limits and
overall resource constraints of GPT platforms, we
opt to utilize open-source LLMs. Due to resource
limitations, we randomly sampled one-third of AIT-
QA (Katsis et al., 2022) for comparative experi-
ments with both GPT-3.5-turbo and LLaMA3-8B
(MetaAl, 2024). As shown in Table 1, the accuracy
of both models was nearly identical.

Thus, we conduct experiments mainly with the
LLaMA3-8B. LLaMA3-8B uses a tokenizer with a
vocabulary of 128K tokens that encodes language
more efficiently. LLaMA3-8B supports a maxi-

mum of 8,192 input tokens, while GPT-3.5-turbo
supports up to 16,385 tokens. This means that the
combined count of the input tokens and the gener-
ated tokens for LLaMA3-8B cannot exceed 8,192,
or the model will return an out-of-length error.

Methods Accuracy
gpt-3.5-turbo 77.5
LLaMA3-8B 78.4

Table 1: Model capabilities on the AIT-QA dataset.

4.1.4 Implementation Details

We compared random sampling and selecting the
first three rows of table data and found no signifi-
cant difference. Hence, we opt to sample the first
three rows as input. In the calling phase, we use
the LLaMA3-8B (MetaAl, 2024) as a evaluater to
judge the quality of generated JSON output. We
use SQLite (Consortium, 2024) to run SQL queries
and use Python shell to run Python code.

4.1.5 Maetrics

In this paper, we use accuracy between the model-
predicted answer and the ground-truth answer to
compare the response quality of TABLE CALL with
the baseline approaches. In specific, we use the
Flexible Denotation Accuracy (FDA), which com-
pares results after removing units (years, $, etc).

4.2 Comparison with State-of-the-art
Methods

Table 2 shows the comparison result on the Wik-
iTableQuestions dataset (Pasupat and Liang, 2015).
Our model is compared with both training-based-
LLM method and prompt-based-LLM method, and
achieves the state-of-the-art performance. The re-
sults indicate that TABLE CALL excels at answer-
ing multi-step reasoning questions on disorganized
and lengthy tables.

The results on the AIT-QA dataset (Katsis et al.,
2022) are shown in Table 3. Our method signif-
icantly outperforms other methods on every data
subset of the AIT-QA dataset. The results show that
TABLE CALL excels in complex table understand-
ing. Unlike other methods that require serializing
tables into a tree structure or a specific SQL se-
quence, we simply flatten the nested headers of the
table without further operations. This highlights
the universality and efficiency of our approach.

Methods Accuracy
Training-based LLMs
TABERT (Yin et al., 2020) 52.3
Tapex (Liu et al., 2022) 57.5
TaCube (Zhou et al., 2022) 60.8
OmniTab (Jiang et al., 2022) 62.8
LEVER (Ni et al., 2023) 65.8
Prompt-based LLMs
Binder (Cheng et al., 2023) 64.6
ReAcTable (Zhang et al., 2023) 65.8
Dater (Ye et al., 2023) 65.9
CHAIN-OF-TABLE (Wang et al., 2024) 67.3
Mix SC (Liu et al., 2023) 73.6
Ours 77.6

Table 2: Accuracy on WikiTableQuestions.

Data subset TABERT TaPaS RCI LLMCTP Ours

KPI-driven 414 483 60.0 74.5 91.7
Table-driven 31.1 50.0 486 71.8 81.1
Row header hierarchy 21.9 473 459 61.6 82.2

No row header hierarchy 38.8 504 542 81.8 84.8

Overall 34.0 493 518 76.3 84.1

Table 3: Accuracy on AIT-QA.

4.3 Result on Lengthy Tables

End-to-end TQA often fails or degrades in per-
formance because it relies on the whole table as
input for reasoning. Thanks to the strategic ap-
proach of only inputting the first three rows of the
table during the calling phase and invoking dif-
ferent tools for various types of table questions,
TABLE CALL excels at reasoning lengthy tables,
effectively managing token limitations while still
capturing essential data features. As depicted in
Figure 5, the performance of LLaMA3-8B with
chain-of-thought shows a sharp decline as the table
size increases. In contrast, TABLE CALL maintains
a consistently higher performance, exhibiting only
minimal reductions.

4.4 Few-Shot Library Updating

A significant advantage of TABLE CALL is its
adaptability. We can continually refine our model
by updating our few-shot library during inference.

Table 6 shows the performance of TABLE CALL
on WikiTableQuestions using 0-shot, 1-shot, and
3-shot, with and without updates to the few-shot li-
brary. We created two sizes of the original few-shot
libraries, with the raw library built from selections
from the training set. The 0-shot model under-

Type Direct Retrieval Filter-Based Retrieval Aggregation Comparison Sequential/Relative Positioning Overall
LLaMA3-8B 82.6 68.1 56.5 76.1 72.0 71.1
Ours 88.7 73.4 75.6 76.8 77.6 77.6
Table 4: Performance across different task types on the WikiTableQuestions dataset.
Type Direct Retrieval Filter-Based Retrieval Aggregation Comparison Sequential/Relative Positioning Overall
LLaMA3-8B 81.6 70.6 71.4 62.5 - 78.45
Ours 86.1 78.6 85.7 75 - 84.1
Table 5: Performance across different task types on the AIT-QA dataset.
708 4 Strategy Similarity Accuracy
£0.7
“os | AN W 0-shot - 56.2
os | HE BB wm . Raw few-shot library with size 5
s | B HE. B B 1-shot
0.3 w/o update 0.52 69.5
0.2 w/ update 0.56 73.9
0.1 3-shot
0 w/o update 0.46 67.3
<100 200 300 400 >400 w/ update 0.52 753
mOurs WLLaMA3-8B f# of rows
Raw few-shot library with size 50
Figure 5: Lengthy Table Performance Comparison on I-shot
the WikiTableQuestions dataset wo update 0.57 7.4
' w/ update 0.62 76.8
3-shot
performs compared to the direct chain-of-thought wo update 0.54 720
w/ update 0.61 77.6

approach with LLaMA-8B due to the stringent re-
quirements for generating JSON-formatted outputs
and the complexities of task-type classification and
key parameter extraction. However, incorporat-
ing few-shot learning significantly enhances our
model’s ability to answer table-based questions.
Continuously updating the few-shot library fur-
ther improves accuracy and enhances the model’s
overall understanding abilities. Given the specific-
domain nature of AIT-QA, with a 0.75 similarity
between questions and library examples, we only
need five examples in the raw library.

4.5 Task Type Classifier

As shown in Table 4 and Table 5, TABLE CALL
categorizes question into five distinct task types
on both WikiTableQuestions and AIT-QA datasets.
We compared our method with LLaMA3-8B us-
ing chain-of-thought prompting. Benefiting from
the TABLE CALL paradigm and few-shot library
updating for task type classification, our approach
consistently outperform the end-to-end LLaMA
model across all tasks. Specifically, aggregation-
type questions pose a dual challenge: selecting key
rows and executing complex numerical computa-
tions. The direct end-to-end approach proves less

Table 6: Comparison of few-shot strategies on the Wik-
iTableQuestions dataset.

effective. In contrast, our method not only clas-
sifies questions but also extracts key information
from them and employs SQL to pinpoint relevant
rows. Subsequent numerical computations are fa-
cilitated by a LLM within a Python shell. This
process significantly enhances the interpretability
and execution efficiency of the reasoning, effec-
tively minimizing model hallucinations.

5 Conclusion

The proposed TABLE CALL is a novel method in-
voking different tools for table question answering
in complex and lengthy tables. Unlike the existing
methods, TABLE CALL introduces well-designed
calling phase with few-shot library updating tech-
nique to classify tabular question types, enhanc-
ing table interpreting and reasoning. A large-scale
empirical study on the WikiTableQuestions and
AIT-QA datasets demonstrates that TABLE CALL
achieves state-of-the-art performance in table ques-
tion answering tasks.

Limitations

In our classification of tabular question types, we di-
vide questions into five categories: Direct Retrieval,
Filter-Based Retrieval, Aggregation, Comparison,
and Sequential/Relative Positioning. This catego-
rization is sufficient for the benchmarks used in
this paper. However, we can further expand these
categories to include more tasks, such as Table-to-
Text.

In this paper, we employ SQL, Python, and large
language models (LLMs) as tools. These tools are
adequate for handling the vast majority of table
tasks. Nonetheless, the tools in our method are
extensible and can be integrated with any table pro-
cessing or understanding approach, such as adding
a voting mechanism among the tools.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544.

Wenhu Chen. 2023. Large language models are few (1)-
shot table reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023, pages
1120-1130.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In Proceedings of
the Eleventh International Conference on Learning
Representations.

SQLite Consortium. 2024. Sqlite.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, pages
33-40.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020a. Tapas: Weakly supervised table parsing

via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320-4333.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020b. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320-4333.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. Omnitab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 932-942.

Yannis Katsis, Saneem Chemmengath, Vishwajeet Ku-
mar, Samarth Bharadwaj, Mustafa Canim, Michael
Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen,
Karthik Sankaranarayanan, et al. 2022. Ait-qa: Ques-
tion answering dataset over complex tables in the air-
line industry. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies: Industry Track, pages 305-314.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In Proceedings of the International Confer-
ence on Learning Representations.

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re-
thinking tabular data understanding with large lan-
guage models. arXiv preprint arXiv:2312.16702.

Yujian Liu, Jiabao Ji, Tong Yu, Ryan Rossi, Sungchul
Kim, Handong Zhao, Ritwik Sinha, Yang Zhang,
and Shiyu Chang. 2024. Augment before you try:
Knowledge-enhanced table question answering via
table expansion. arXiv preprint arXiv:2401.15555.

MetaAl. 2024. Introducing meta llama 3: The most
capable openly available 1lm to date.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I Wang, and Xi Victoria Lin. 2023.
Lever: learning to verify language-to-code genera-
tion with execution. In Proceedings of the 40th In-
ternational Conference on Machine Learning, pages
26106-26128.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carig-
nan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, et al.
2023. Can generalist foundation models outcom-
pete special-purpose tuning? case study in medicine.
Medicine, pages 77-3.

OpenAl. 2023a. Function calling and other api updates.

OpenAl. 2023b. Gpt-3.5 turbo.

https://arxiv.org/pdf/2303.08774
https://aclanthology.org/D13-1160.pdf
https://aclanthology.org/D13-1160.pdf
https://aclanthology.org/D13-1160.pdf
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://sqlite.org/
https://arxiv.org/pdf/2006.14806
https://arxiv.org/pdf/2006.14806
https://arxiv.org/pdf/2006.14806
https://aclanthology.org/2020.acl-main.398
https://aclanthology.org/2020.acl-main.398
https://aclanthology.org/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://dl.acm.org/doi/abs/10.5555/3618408.3619494
https://dl.acm.org/doi/abs/10.5555/3618408.3619494
https://dl.acm.org/doi/abs/10.5555/3618408.3619494
https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/can-generalist-foundation-mode/2311.16452.pdf
https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/can-generalist-foundation-mode/2311.16452.pdf
https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/can-generalist-foundation-mode/2311.16452.pdf
https://openai.com/index/function-calling-and-other-api-updates/
https://platform.openai.com/docs/models/gpt-3-5-turbo

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neu-
ral Information Processing Systems, pages 27730—
27744.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing, pages 1470-1480.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural In-
formation Processing Systems, pages 24824-24837.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645-654.

Anirudh S Sundar and Larry Heck. 2023. ctbls: Aug-
menting large language models with conversational
tables. In Proceedings of the 5th Workshop on NLP
for Conversational Al, pages 59-70.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In Proceedings of the Twelfth International Confer-
ence on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
pages 24824-24837.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 602—631.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In

10

Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 174—184.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation. In
Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 440—450.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413-8426.

Bowen Yu, Cheng Fu, Haiyang Yu, Fei Huang, and
Yongbin Li. 2023. Unified language representation
for question answering over text, tables, and images.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 4756-4765.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M Patel. 2023.
Reactable: Enhancing react for table question answer-
ing. In Proceedings of the VLDB Endowment, page
1981-1994.

Bowen Zhao, Changkai Ji, Yuejie Zhang, Wen He, Ying-
wen Wang, Qing Wang, Rui Feng, and Xiaobo Zhang.
2023. Large language models are complex table
parsers. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,

pages 14786-14802.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Wanjun Zhong, Junjie Huang, Qian Liu, Ming Zhou,
Jiahai Wang, Jian Yin, and Nan Duan. 2022. Reason-
ing over hybrid chain for table-and-text open domain
question answering. In Proceedings of the Interna-
tional Joint Conferences on Artificial Intelligence,
pages 4531-4537.

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng,
Fan Cheng, Shi Han, and Dongmei Zhang. 2022.
Tacube: Pre-computing data cubes for answering
numerical-reasoning questions over tabular data. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
2278-2291.

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://aclanthology.org/P15-1142.pdf
https://aclanthology.org/P15-1142.pdf
https://aclanthology.org/P15-1142.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2023.findings-acl.292
https://aclanthology.org/2023.findings-acl.292
https://aclanthology.org/2023.findings-acl.292
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/https://doi.org/10.14778/3659437.3659452
https://doi.org/https://doi.org/10.14778/3659437.3659452
https://doi.org/https://doi.org/10.14778/3659437.3659452
https://aclanthology.org/2023.emnlp-main.914
https://aclanthology.org/2023.emnlp-main.914
https://aclanthology.org/2023.emnlp-main.914
https://arxiv.org/pdf/1709.00103
https://arxiv.org/pdf/1709.00103
https://arxiv.org/pdf/1709.00103
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://aclanthology.org/2022.emnlp-main.145
https://aclanthology.org/2022.emnlp-main.145
https://aclanthology.org/2022.emnlp-main.145

A Appendix
A.1 Prompts for Calling

In our prompts, we incorporate in-context learn-
ing and chain-of-thought approaches to enhance
the large model’s ability to understand task type
classification and extract key parameters. Figure 6
presents our prompt for defining and invoking the
table call function. Figure 7 then shows the prompt
for using input and few-shot examples. The combi-
nation of Figure 6 and Figure 7 constitutes the full
text of the prompt for the calling phase.

A.2 Usage of Tools

In this paper, we propose 5 question task types: Di-
rect Retrieval, Filter-Based Retrieval, Aggregation,
Comparison, and Sequential/Relative Positioning.
In Figure 4, the example shows how TABLE CALL
uses tools for a question with filter-based retrieval
type. We then present examples of the remaining
four task types.

As shown in Figure 8, the large language model
(LLM) identifies this question as a direct retrieval
task and outputs the key column header and key
question information in a JSON format. Sub-
sequently, an SQL query is employed to fetch
question-related rows, and the final answer is di-
rectly determined according to the key column
name. This method, which solely relies on SQL,
is the fastest. If multiple rows are retrieved, we
then employ a method similar to that illustrated in
Figure 4, using the LLM for further reasoning to
produce the final result.

Figure 9 shows the process for the aggregation
type. We first utilize SQL to extract rows and
columns relevant to the question. Subsequently,
we employ a LLM along with a Python shell to
compute and derive the final result.

Figure 10 shows the process for the comparison
type. In this example, similar to the case presented
in Figure 4, we first use SQL to extract filtered
rows and then apply a LLM to determine the final
result. The distinction lies in the inclusion of a
comparison term in the key parameters.

Figure 11 demonstrates that we utilize a task-
guided Chain of Thought LLM to address questions
involving sequential or relative positioning. This
type of question necessitates the use of a complete
table to determine the sequence or relative position
of items. Similarly, in cases of exceptions, we input
the table data into a LLM to directly provides the
results.

11

Role : SYSTEM

Content : You are a proficient artificial intelligence assistant, specialized in performing interface
parameter parsing tasks, locating and parsing parameters effectively.

Role : FUNCTION

Content : The available function calls are as follows. If function call is related to user's question, help
me return function call and paremeters. Responses should be formatted as "<BoFC> JSONDICT <EoFC>",
where <BoFC> and <EoFC> are specific identifiers, and JSONDICT is a JSON dictionary that can be parsed
using json.loads(). JSONDICT consists 2 keys: "name" and "parameters”. The "name"” key is the name of
the function call, and the "parameters” key is a dictionary where "arg” is the name of a function call
parameter and "value" is the value of that parameter. The value must be explicitly mentioned by the
user or default parameter value). For example, The return of function call should be like "<BoFC> {{"

name"”: "function call name”, "parameters”: {{"argl": "valuel”, "arg2": "value2"...}}}} <EoFC>".
Role : FUNCTION
Content : {
"name": "TableQA",
"description”: "Choose the task type of the question. Based on the task type, retrieve key parameters

from the user's question.

This function analyzes the question to identify key terms and phrases, matching them with available
column headers to determine the most applicable ones. It also compares these terms with items in
the sample data list to select pertinent key question info. Note that the sample data list is only
a preview, illustrating the table's structure and data types, not the complete dataset. The actual
table contains many more rows and additional data not shown in the sample, ensuring comprehensive
data retrieval.”,

"parameters”: {

"type": "object”,
"properties”: {
"task_type": {

"type": "string",
"description”: "According to the question, choose the task type from the following list: ["
Direct Retrieval”, "Filter-Based Retrieval”, "Aggregation”, "Comparison"”, "Sequential/
Relative Positioning”]. Describe each task type and corresponding key parameters:..."},
"decision_explanation":{
"type": "string",
"description”: "Provide a detailed rationale for selecting specific parameters."},

"key_parameter1”: {...3},
"key_parameter2”: {...3},
o),

"required”: ["task_type"”, "decision_explanation”, "key_parameter1”, "key_parameter2”, ...]}

Figure 6: The prompt for define table call.

Role : USER
Content : Example:
Input:{"column header list”: [EXAMPLE_TABLE_COLUMN_HEADER_HERE]},
"row header list"”: [EXAMPLE_TABLE_ROW_HEADER_HERE],
"sample data list"”: [EXAMPLE_SAMPLE_DATA_HERE]}
Question: [EXAMPLE_QUSTION_HERE].
Expected response: [EXAMPLE_RESPONSE_HERE].
Role : USER
Content : The sample data list consists of initial few rows of the table, providing a preview to assist in
understanding the data and the overall structure of the table. Please note that the actual table
contains many more rows.
Input:{"column header list”: [TABLE_COLUMN_HEADER_HERE],
"row header list"”: [TABLE_ROW_HEADER_HERE],
"sample data list": [SAMPLE_DATA_HEREJ]}
Question:[QUSTION_HERE]
Expected response:

Figure 7: The prompt of the user input.

¢ Question:~

1

I what is the only hospital in burlington? I

| Original Table: I
1 Name City Hospital beds Operating rooms Total Trauma designation Affiliation Notes

Alamance Regional Medical Center Burlington 238 15 253 - Cone - |

| Albemarle Hospital Elizabeth City 182 13 195 - Vidant - 1

1 Alexander Hospital Hickory 25 3 28 - - -
(123 rows omitted) II

{“task_type™: “direct_retrieval™: -
"key_column_headers": ["Name"], —Pu —>
"key_question_info" ["burlington"]} e 51|

silter
result = filtered_rovs 0] [columns. index(‘Nane’)]

Ground Truth: Alamance Regional Medical Center

Figure 8: The example of TABLE CALL for a question with a direct retrieval type.

12

7 Question.~ — ~ ~ T~ - - TT-T-T-T-TTT-oTo oo T s s T T s T T T

what is the total wins?
| Original Table:

Season Conference Head Coach Total Wins Total Losses Total Ties Conference Wins Cc Losses Ci Ties Ci Standing P Result
1905 Independent Sidney Smith 2 3 1 — — — —
| 1906 Independent Ralph Foster 3 0 0 = = = —
1907 Independent Ralph Foster 1 5 1 — — — -

(108 rows omitted)
— - - - - —— ——

—e— e e o e o o = = = = = =

(£'PRAGNA table_info(‘{table_name}’)")

{“key_column_headers”: [“total wins"],
“key_question_info™: [],

- sun(tiltered_icems)""

G - 473
Ground Truth: 473

Figure 9: The example of TABLE CALL for a question with an aggregation type.

o 7 (7 2

| is the unicode name for alert the same as the unicode name for backspace?
I Original Table:

1 name glyph C string Unicode Unicode name

I NUL \\0 U-+0000 NULL (NUL)
alert \\a U-+0007 BELL (BEL)

1 backspace \\b U-+0008 BACKSPACE (BS)

|

(100 rows omitted)

— o o e e mme Em e M e R mmm R M mmm R R mmm R M mmm M Mm mmm e e mmm e M

{"key_column_headers": ["Unicode name"],
"key_question_info":[“alert”,“backspace™],
“Comparison_term”: [“same”]} =gl

o FRON *(cable_nase} ')
appesd(c.tecchall 0)

. Filtered
o ; @} ["alert",
Ground Truth: no "BACKSPACE (BS)

Figure 10: The example of TABLE CALL for a question with a comparison type.

7= (7 -2

| s the unicode name for alert the same as the unicode name for backspace? :
| Original Table: I
I Pos Rider Manufacturer Time/Retired Points I
I 1 Loris Capirossi Honda 38:04.730 25 I
I 2 Valentino Rossi Aprilia +0.180 20 I
\ 3 Jeremy McWilliams Aprilia +0.534 16)

> » Tomomi Manako

Ground Truth: Tomomi Manako

Figure 11: The example of TABLE CALL for a question with a sequential/relative positioning type or a question
yielding exceptions.

13

