
TABLE CALL: A New Paradigm for Table Question Answering

Anonymous EMNLP submission

Abstract

Large language models (LLMs) have exhibited001
strong semantic understanding capabilities in002
interpreting and reasoning for table question003
answering (TQA). However, they struggle with004
excessively lengthy or complex input tables, es-005
pecially when dealing with disorganized or hier-006
archical structures. To address these issues, we007
propose a new paradigm for TQA, named TA-008
BLE CALL, which leverages the tool-using ca-009
pabilities of LLMs. Specifically, TABLE CALL010
invokes different tools for various types of table011
questions, such as SQL, Python, and LLMs, to012
simplify table understanding. Moreover, to en-013
hance table comprehension capabilities of the014
LLM, we propose a few-shot library updating015
technique where we use a dynamically updated016
library to provide better QA pairs for LLM017
prompting. Experimental results on both open-018
domain and specific-domain datasets demon-019
strate that our approach achieves state-of-the-020
art performance, significantly outperforming021
previous methods.022

1 Introduction023

Table Question Answering (TQA) (Berant et al.,024

2013; Pasupat and Liang, 2015; Herzig et al.,025

2020a; Yin et al., 2020) is a critical task in natural026

language understanding and information retrieval,027

gaining prominence in fields such as finance and028

education. TQA evaluates the ability to reason over029

structured or semi-structured table data, understand030

the textual content of tables, and integrate free-031

form natural language questions with table data.032

The complexity of TQA arises from the unordered033

nature of table cells and the substantial length of034

many tables, presenting unique challenges for ef-035

fective analysis and comprehension.036

Earlier SQL-based approaches for Table Ques-037

tion Answering (TQA) (Zhong et al., 2017; Yu038

et al., 2018) employ semantic parsing to convert039

natural language table questions into executable040

commands, such as SQL queries. These queries fa-041

Question:
What was the total number of medals won by canadians in all events?

Original Table:

Out-of-length Error 4

Ground Truth: 4

TABLE CALL
(Ours)

Program of
Thought

SQL
Queries

SQL Retrieval Error

Figure 1: Comparison between different TQA ap-
proaches when handling a lengthy, disorganized ta-
ble. LLM-based methods take the entire table as input,
resulting in out-of-length errors. SQL-based methods
are confused by single cells containing both the name
and country abbreviation of the cyclist, leading to SQL
retrieval errors. In contrast, our proposed TABLE CALL
excels at the TQA task, providing correct answers.

cilitate the retrieval and manipulation of table data 042

to generate responses, allowing for quick database 043

access without being limited by table length. Re- 044

cently, large language models (LLMs) like GPT 045

(Ouyang et al., 2022; OpenAI, 2023b; Achiam 046

et al., 2023) and LLaMA (Touvron et al., 2023; 047

MetaAI, 2024) have shown exceptional capabili- 048

ties in language understanding and generation, pro- 049

viding greater robustness compared to traditional 050

rule-based methods and pre-training fine-tuning 051

paradigms. This has led to extensive research 052

aimed at enhancing TQA using LLMs. Strate- 053

gies include leveraging LLMs through in-context 054

learning (Chen, 2023; Pourreza and Rafiei, 2024; 055

Zhang et al., 2023; Ye et al., 2023; Chen et al., 056

2023; Wang et al., 2024) and employing multi-step 057

reasoning via chain-of-thought (CoT) prompting 058

(Zhang et al., 2023; Liu et al., 2023; Chen et al., 059

2023; Wang et al., 2024). Additionally, some ap- 060

proaches (Zhang et al., 2023) integrate LLMs with 061

tools like SQL or Python to further improve TQA 062

1

Question

LLM

{
 column_header,
 row_header,
 sample_data
}

<BoTC> {
 "name"
 "parameters": {
 "task_type”,
 "decision_explanation”,
 "key_parameter1”,
 …
 }
} <EoTC>

Tools

TABLE CALL
Table

Few-shot
Library

Serialization & Sampling

Dynamic
Update

Figure 2: Overview of TABLE CALL. We initially serialize the table and sample the first three rows as input. By
employing few-shot library updating technique, we guide the large language model to categorize the question types
and extract key parameters. The resulting JSON-formatted output is then utilized with various tools.

performance.063

While the above strategies are commonly used to064

handle TQA, they encounter several challenges, as065

shown in Figure 1: 1) SQL-based methods require066

converting the question into a precise SQL query,067

and their performance is critically influenced by the068

regularity of the table. 2) Large Language Models069

(LLMs) exhibit inadequate table comprehension070

capabilities when facing complex tables, such as071

disorganized or hierarchical tables. They tend to072

treat TQA as a uniform language task, neglecting073

the different types of table tasks and performing074

poorly in numerical reasoning, aggregation, com-075

parison, and understanding of layout information.076

Moreover, LLMs struggle with lengthy tables that077

consume many tokens, leading to a decline in per-078

formance as the number of tokens increases.079

To overcome the above problems, we propose a080

novel paradigm for table question answering called081

TABLE CALL, as depicted in Figure 2. Our ap-082

proach combines the immunity of tools like SQL083

to table length limitations with the powerful com-084

prehension and reasoning capabilities of LLMs.085

Unlike previous methods, our approach classifies086

question types and utilizes the appropriate tools,087

including SQL, Python, and LLMs, to address each088

corresponding question type. In the first phase of089

TABLE CALL, we categorize table-related ques-090

tions and extract key information from both the091

tables and questions through few-shot library up-092

dating, while inputting sampled table data to avoid093

out-of-length errors. In the second stage, our model094

selects and leverages tools such as LLMs, SQL, and095

Python to more accurately answer specific ques-096

tions.097

Previous methods (Chen, 2023; Pourreza and098

Rafiei, 2024) have demonstrated the powerful capa-099

bilities of in-context learning in the TQA task. By100

adding few(1)-shot examples, LLMs can quickly101

learn to answer TQA questions. However, this ap- 102

proach relies heavily on the quality of the few-shot 103

examples, as demonstrated by Nori et al. (2023). 104

Our study also utilizes dynamic few-shot learn- 105

ing to enhance TQA performance. We propose a 106

few-shot library updating technique based on dy- 107

namic few-shot learning (Nori et al., 2023) to en- 108

able LLMs to better understand and answer ques- 109

tions. We feed the output of an LLM, along with 110

the table and the question, into another LLM acting 111

as an evaluator. This evaluator assesses the qual- 112

ity of the generated output and checks whether the 113

QA pair should be added to the few-shot library, 114

thereby becoming part of future few-shot examples. 115

By dynamically updating the few-shot library, we 116

can provide better QA pairs as few-shot examples 117

for LLM prompting. 118

The contributions of this paper can be summa- 119

rized as follows: 120

• We present a novel method named TABLE 121

CALL, classifying table problems into corre- 122

sponding tasks and applying specific tools for 123

each task. Without exceeding the token limits 124

of LLMs, this approach can handle tables up 125

to ten times longer for certain TQA tasks than 126

common LLM-based methods. 127

• We incorporate few-shot library updating tech- 128

nique to generate better few-shot examples 129

and enhance table comprehension capabilities 130

and reduce hallucinations. 131

• Extensive experiments on pubic benchmark 132

datasets WikiTableQuestions and AIT-QA, 133

demonstrate that our proposed TABLE CALL 134

outperforms the state-of-the-art methods. 135

2

Question: What is the
number of locations named
St. Clair in Pennsylvania?

{
Column header:["Name of place", "Number of
counties", "Principal county", "Lower zip code",
"Upper zip code"],
Sample data:
[["Sabinsville", "1", "Tioga County", "16943", ""],
["Sabula", "1", "Clearfield County", "15801", ""],
["Sackett", "1", "Elk County", "16735", ""]]
}

<BoTC> {
"name": "TableQA",
"parameters": {
"task_type": "filter_based_retrieval ",
"decision_explanation": "The question focuses
on the number of locations named St. Clair in
Pennsylvania. For column header: ... For
key_question_info: ... So the key_question_info is
["St. Clair", "pennsylvania"]",

"key_column_headers": ["Name of place"],
"key_question_info": ["St. Clair", "Pennsylvania"]
}

} <EoTC>

column_header:["Name of place", "Number of
counties", "Principal county", "Lower zip code",
"Upper zip code"],
Filtered data:
[['St. Clair', '1', 'Schuylkill County', '17970', ’’],
['St. Clair', '1', 'Westmoreland County', '15601', ’’],
['St. Clair', '1', 'Allegheny County', '', ’’],
['St. Clair', '1', 'Allegheny County', '', ’’,
['St. Clairsville', '1', 'Bedford County', '16667', ’’]]

Based on the provided table, I can help you with that.
To find the number of locations named "St. Clair" in Pennsylvania, I'll filter the table
by the "Name of place" column and look for rows where the value is "St. Clair".
Here's the filtered result:
* ('St. Clair', '1', 'Schuylkill County', '17970', '')
* ('St. Clair', '1', 'Westmoreland County', '15601', '')
* ('St. Clair', '1', 'Allegheny County', '', '')
* ('St. Clair', '1', 'Allegheny County', '', '')
* ('St. Clairsville', '1', 'Bedford County', '16667', '')
There are 4 rows that match the condition "Name of place" = "St. Clair". However, we
need to exclude "St. Clairsville" since it's not exactly "St. Clair".
So, the correct count is 3 locations named "St. Clair" in Pennsylvania.
Answer: 3

Question: What is the number of
locations named st. clair in pennsylvania?

LLM

Table
Se

ria
liz

at
io

n
&

 S
am

pl
in

g

Tools

Few-shot
Library

Dynamic
Update

Figure 3: Example of TABLE CALL processing a filter-based retrieval question. The table length is 517. Baseline
approaches suffer from the token length limits of LLMs, leading to out-of-length errors. However, our approach
avoids such errors by initially inputting only sample data into the model.

2 Related Works136

2.1 Table Question Answering137

Table question answering (TQA) is a task of lan-138

guage reasoning from table data. It tests the ability139

to reason over structured or semi-structured data,140

understand textual table contents and fuse free-141

form natural language questions with table data.142

Early works conducted semantic parsing through143

hand-crafted features and grammar rules to trans-144

form table questions into executable commands145

(Berant et al., 2013; Pasupat and Liang, 2015; Yin146

and Neubig, 2017; Zhong et al., 2017; Yu et al.,147

2018). However, these methods require converting148

the question into a strict SQL/Python query state-149

ment, and the regularity of the table influences the150

performance bottleneck critically.151

Pretrained language models, trained on extensive152

tabular data, gain a general syntactic and semantic153

understanding of tables. Thus these models can en-154

code tables and generate answers directly (Herzig155

et al., 2020a; Yin et al., 2020; Liu et al., 2022; Xie156

et al., 2022; Zhou et al., 2022; Deng et al., 2022;157

Zhong et al., 2022; Sundar and Heck, 2023; Yu158

et al., 2023). These methods have high training159

costs and lack interpretability however.160

Some works have shown that adding few-shot161

learning to large language models (LLMs) signifi-162

cantly improves TQA accuracy (Chen, 2023; Pour-163

reza and Rafiei, 2024). This capability of LLMs 164

can also be applied to answering tabular questions. 165

However, simply adding few-shot examples lacks 166

interpretability and does not fully unleash the po- 167

tential of LLMs. Subsequent works use various 168

strategies to better guide LLMs in TQA interpre- 169

tation and reasoning. ReAcTable (Zhang et al., 170

2023) generates intermediate data representations 171

using external tools such as SQL and Python code 172

executors, transforming TQA tasks into a more ac- 173

cessible format. Similarly, Binder (Cheng et al., 174

2023) splits the reasoning phase and uses exter- 175

nal tools. Ye et al. (2023) generate sub-tables and 176

sub-questions with SQL queries through in-context 177

learning. Liu et al. (2023) aggregate textual and 178

symbolic reasoning and use a mix self-consistency 179

mechanism to get the answer. Chen et al. (2023) 180

propose Program-of-Thoughts to generate step-by- 181

step python code for complex numerical reasoning 182

tasks. CHAIN-OF-TABLE (Wang et al., 2024) 183

guides LLMs to iteratively generate operations and 184

update the table, creating a table reasoning chain. 185

Liu et al. (2024) construct an augmenting table 186

with external information and then generate SQL 187

queries over both tables to answer questions. 188

Some methods have been proposed to handle 189

lengthy tables. Zhao et al. (2023) reconstruct hi- 190

erarchical tables into a tree structure and employ 191

multi-turn QA for long-text tables. Sui et al. (2024) 192

3

introduce predefined certain constraints to meet the193

LLM call request. Binder (Cheng et al., 2023) in-194

puts only three tables rows for all table sizes. We195

draw inspiration from Binder to tackle the issue196

of lengthy tables causing the LLM to exceed its197

input length limits by inputting only the first three198

rows. During the tool phase, we adeptly resolve the199

issues of information loss caused by this truncated200

input method.201

2.2 Function Calling202

Function calling is a technology first introduced by203

OpenAI in June 2023 (OpenAI, 2023a). It connects204

large language models (LLMs) to external tools.205

Models are trained to both detect when a function206

should to be called (depending on the input) and207

to respond with JSON that adheres to the function208

signature. The basic sequence of steps for function209

calling is as follows: 1. Call the model with the210

user query and a set of functions defined in the211

functions parameter. 2. The model can choose to212

call one or more functions; if so, the content will be213

a stringified JSON object adhering to your custom214

schema. 3. Parse the string into JSON, and call215

the function with the provided arguments if they216

exist. 4. Call the model again by appending the217

function response as a new message, and let the218

model summarize the results back to the user.219

3 Method220

3.1 Overview221

Figure 2 illustrates an overview of the proposed222

TABLE CALL. TABLE CALL receives a natural223

language query Q and a table T as inputs. Ta-224

ble T comprises column headers Hcolumn, data225

D, and potentially row headers Hrow. For hierar-226

chical tables, T features multi-layered headers for227

both columns and rows. During the calling phase,228

we initially serialize the table T and sample the229

data D. A large language model (LLM), enhanced230

with few-shot library updating, is then employed231

to determine the task type of the question Q, gener-232

ate pertinent key parameters, and provide explana-233

tions for its decision-making process. Based on the234

JSON-formatted output from the calling phase and235

the question, various tools are then used to generate236

the final results.237

3.2 Calling Phase 238

3.2.1 Serialization and Sampling 239

Function calling (OpenAI, 2023a) involves the ca- 240

pability within an API to describe and invoke one 241

or more functions, enabling the model to intelli- 242

gently produce a JSON object with arguments that 243

can be used to execute the specified functions. In 244

this paper, we leverage this concept to guide large 245

language models (LLMs) to classify task types of 246

the question Q, and to generate corresponding key 247

parameters for each task. 248

The input of the calling phase is a question Q, 249

column headers Hcolumn, the sample rows of data 250

Dsample, and possibly row headers Hrow. For hi- 251

erarchical tables, the column headers Hcolumn and 252

the row headers Hrow are nested. We simply flatten 253

the header. This can retain the layout information 254

of the table to the greatest extent, with the cost 255

of taking up more token input. We refer to the 256

initial three rows of data D fed into the model as 257

Dsample, drawing inspiration from Binder (Cheng 258

et al., 2023). Given the token limitations of the 259

model, inputting only Dsample addresses out-of- 260

length error associated with lengthy tables. Fur- 261

thermore, Dsample facilitates the model’s compre- 262

hension of the overall table structure and the data 263

representation types present in the complete table. 264

3.2.2 Few-shot Library Updating 265

Incorporating few-shot learning, even with a single 266

example, considerably enhances the reasoning ca- 267

pabilities of large language models (LLMs) (Chen, 268

2023; Pourreza and Rafiei, 2024). Nevertheless, for 269

table-based questions that encompass multiple task 270

types, it is crucial to supply better question-answer 271

pairs that enhance the model’s comprehension of 272

both the table and the question. Inspired by Nori 273

et al. (2023), we introduce few-shot library up- 274

dating technique during the calling phase. This 275

strategy can provide better QA pairs and aids in 276

the precise classification of question tasks and the 277

extraction of key parameters. 278

As illustrated in Figure 4, we utilize a few-shot 279

library consisting of basic question-JSON pairs. 280

In the first stage, for any given question, we 281

select k semantically similar few-shot examples 282

using k-NN clustering within the embedding space. 283

In Section 4.4, we discuss the impact of the choice 284

of k on the outcomes. 285

In the second stage, these k few-shot examples, 286

along with the column header Hcolumn, the row 287

4

header Hrow, and the sample data Dsample, are288

input into the large language model (LLM) as289

prompts. This setup facilitates the generation of a290

JSON-formatted output that includes the task type,291

key parameters, and decision explanation. The task292

type and key parameters are subsequently used to293

invoke additional tools. Meanwhile, drawing from294

the Chain of Thought (CoT) approach (Wei et al.,295

2022), we prompt our LLM to generate a series296

of intermediate reasoning steps, termed decision297

explanation. We provide detail explanations in the298

Appendix A.1 on how to use prompts during the299

calling phase to generate JSON outputs.300

We use an alternative LLM to evaluate the task-301

type and key parameters in the output. If the JSON-302

formatted output is accurate, we update the few-303

shot library by adding the new question-JSON pair.304

This iterative refinement ensures the continuous305

enhancement and relevance of our few-shot library,306

thereby improving the performance over time.307

Q1

…

JSON1

JSON2

JSON3

…

Few-shot Library

Q

JSON

Stage2

Q2

Q3

Q1

Q2
Q3

Q

X Axis

Y Axis

JSON2

JSON3

Q2

Q3

Stage1

Q

Updating

…

JSON3

…

Few-shot Library

Q3

… …

Q JSON

T

Add few-shot

Choose few-shot

LLM
(eval)

LLM

Figure 4: Overview of our proposed few-shot library
updating technique. In the first stage, we select k few-
shot examples by computing and compare the similarity.
In the second stage, we update the few-shot library by
judging the generating JSON-formatted output and in-
corporating the new question-JSON pair.

3.2.3 Task Type Classifier308

In the realm of Table Question Answering (TQA),309

we encounter a diverse range of question tasks,310

each requiring distinct reasoning strategies. These311

tasks can be broadly categorized into five types: Di-312

rect Retrieval, Filter-Based Retrieval, Aggregation,313

Comparison, and Sequential/Relative Positioning.314

Direct Retrieval requires identifying specific315

rows and columns using key information to directly316

access the answer within the table. This involves317

defining key column headers and key question in-318

formation, which ideally allows tools to directly319

retrieve answers.320

Filter-Based Retrieval retrieves data using spe- 321

cific criteria applied to one or more columns. This 322

method differs from Direct Retrieval as it often 323

involves complex query conditions that are not di- 324

rectly derivable from the sample data Dsample. 325

Aggregation tasks filter data on certain criteria 326

before performing operations like summing, aver- 327

aging, or counting. Parameters for Aggregation 328

tasks include key column headers, key question in- 329

formation, and task-specific commands like SUM, 330

AVG, or COUNT. 331

Comparison tasks involve data filtering and 332

comparing values to identify extremes such as the 333

highest or lowest values. Key parameters contain 334

the key column header, key question information 335

and comparison terms like ‘highest’. 336

Sequential/Relative Positioning tasks focus on 337

the sequence or relative positioning of table items, 338

typically involving prepositions like ‘after’ or ‘di- 339

rectly before’ indicating a relational query concern- 340

ing sequence. For these types of tasks, it’s not 341

possible to directly locate useful row information 342

from Dsample. Therefore, the key parameters are 343

the corresponding row information and relative po- 344

sitioning prepositions. 345

3.3 Tools 346

In the field of table question answering (TQA), 347

integrating large language models (LLMs) with 348

external tools is becoming increasingly prevalent 349

(Zhang et al., 2023; Liu et al., 2024). In this paper, 350

we employ a combination of distinct tools: SQL, 351

Python, and large language models (LLMs), tai- 352

lored to different task types within table question 353

answering. For more detailed examples, please 354

refer to Appendix A.2. 355

We input the complete data D into a SQL 356

database to circumvent issues associated with ex- 357

ceeding the token limits. 358

For Direct Retrieval and Filter-Based Retrieval, 359

by leveraging SQL, we can identify rows corre- 360

sponding to the key question information and sub- 361

sequently locate the relevant column using the key 362

column header. If there is only one row filtered, 363

we directly determine the answer. If there are more 364

than one rows, we then use a task-based LLM as 365

the reansoning tool to further reasoning and get the 366

answer. 367

For Aggregation tasks, we first use SQL to iden- 368

tify related rows and columns. We then use a task- 369

based LLM to combining the key task information 370

5

and use Python shell to compute the final result.371

For Comparison tasks, we similarly first use SQL372

and then input the question, filtered rows, and key373

task information into the LLM.374

For Sequential or Relative Positioning tasks, we375

directly use the taskbased LLM as relying solely376

on the sample data Dsample, we cannot determine377

the sequential or relative positioning table item.378

3.4 Handling Exceptions379

Given our method involves converting strings to380

JSON and code, there is an inherent risk of encoun-381

tering execution errors.382

After the calling phase, we generate a JSON-383

formatted file. Typically, we use <BoTC> and384

<EoTC> as specific identifiers to locate the JSON385

output. However, even though few-shot library386

updating technique can guide the LLM to generate387

the JSON output, the high requirements for JSON388

formatting and the inherent randomness of LLM389

outputs can lead to errors in the generated JSON.390

Specifically, these errors can manifest as symbol391

misplacements or irrelevant responses.392

- Symbol misplacements can cause JSONDe-393

codeError, such as an extra or missing bracket. In394

such cases, we employ additional scripts to check395

and correct these errors.396

-Irrelevant responses refer to situations where the397

LLM fails to correctly output key parameters, pre-398

venting the accurate selection of rows and columns399

based on these parameters.400

When using tools based on the JSON-formatted401

file, different exceptions may arise:402

- SQL exceptions occur when the SQL query403

requires a non-existing column header or row data404

required do not exist in the SQL database.405

- Python exceptions are similar to JSON excep-406

tions involving symbol errors, where the generated407

Python code may be non-standard.408

To address these exceptions, we input the ta-409

ble data into an LLM, and a task-guided chain-of-410

thought LLM directly outputs the results.411

4 Experiment412

4.1 Experimental Setup413

4.1.1 Datasets414

We conduct extensive experiments on two datasets:415

the open-domain table question-answering dataset416

WikiTableQuestions (Pasupat and Liang, 2015) and417

the aviation-domain hierarchical table question-418

answering dataset AIT-QA (Katsis et al., 2022).419

WikiTableQuestions consists of tables sourced 420

from Wikipedia. Each task involves answering a 421

question based on a given table. The dataset in- 422

cludes 2,108 tables on various topics and 22,033 423

questions of varying complexity. For our exper- 424

iments, we use the test set, comprising 4,344 425

question-answer pairs. This dataset features com- 426

plex questions that require multi-step reasoning 427

and various data operations such as comparison, 428

aggregation, and arithmetic computation. 429

AIT-QA is a question-answering dataset on hier- 430

archical tables in the aviation industry, consisting 431

of 116 tables with a total of 515 question-answer 432

pairs. Tables in AIT-QA have a much more com- 433

plex layout than Wikipedia tables, featuring hierar- 434

chical row and column headers and domain-specific 435

terminology. Thus, AIT-QA serves as a valuable 436

extension and supplement to WikiTableQuestions. 437

The two datasets encompass a wide variety of ta- 438

bles and questions that require multi-step reasoning 439

and various data operations, including comparison, 440

aggregation, arithmetic computation, and layout 441

understanding. 442

4.1.2 Baselines 443

For the WikiTableQuestions dataset, we compare 444

our method with training-based methods (Yin et al., 445

2020; Liu et al., 2022; Zhou et al., 2022; Jiang et al., 446

2022; Ni et al., 2023) and prompt-based methods 447

(Cheng et al., 2023; Zhang et al., 2023; Ye et al., 448

2023; Wang et al., 2024; Liu et al., 2023). 449

For the AIT-QA dataset, we compare our method 450

with the state-of-the-art method Zhao et al. (2023) 451

and the methods in the original AIT-QA paper, in- 452

cluding TABERT (Yin et al., 2020), TaPas (Herzig 453

et al., 2020b) and RCI (Katsis et al., 2022). 454

4.1.3 Model 455

Previous prompt-based methods mainly employ 456

GPT-3.5 (OpenAI, 2023b) as benchmarks. How- 457

ever, due to the per-second concurrency limits and 458

overall resource constraints of GPT platforms, we 459

opt to utilize open-source LLMs. Due to resource 460

limitations, we randomly sampled one-third of AIT- 461

QA (Katsis et al., 2022) for comparative experi- 462

ments with both GPT-3.5-turbo and LLaMA3-8B 463

(MetaAI, 2024). As shown in Table 1, the accuracy 464

of both models was nearly identical. 465

Thus, we conduct experiments mainly with the 466

LLaMA3-8B. LLaMA3-8B uses a tokenizer with a 467

vocabulary of 128K tokens that encodes language 468

more efficiently. LLaMA3-8B supports a maxi- 469

6

mum of 8,192 input tokens, while GPT-3.5-turbo470

supports up to 16,385 tokens. This means that the471

combined count of the input tokens and the gener-472

ated tokens for LLaMA3-8B cannot exceed 8,192,473

or the model will return an out-of-length error.

Methods Accuracy

gpt-3.5-turbo 77.5
LLaMA3-8B 78.4

Table 1: Model capabilities on the AIT-QA dataset.

474

4.1.4 Implementation Details475

We compared random sampling and selecting the476

first three rows of table data and found no signifi-477

cant difference. Hence, we opt to sample the first478

three rows as input. In the calling phase, we use479

the LLaMA3-8B (MetaAI, 2024) as a evaluater to480

judge the quality of generated JSON output. We481

use SQLite (Consortium, 2024) to run SQL queries482

and use Python shell to run Python code.483

4.1.5 Metrics484

In this paper, we use accuracy between the model-485

predicted answer and the ground-truth answer to486

compare the response quality of TABLE CALL with487

the baseline approaches. In specific, we use the488

Flexible Denotation Accuracy (FDA), which com-489

pares results after removing units (years, $, etc).490

4.2 Comparison with State-of-the-art491

Methods492

Table 2 shows the comparison result on the Wik-493

iTableQuestions dataset (Pasupat and Liang, 2015).494

Our model is compared with both training-based-495

LLM method and prompt-based-LLM method, and496

achieves the state-of-the-art performance. The re-497

sults indicate that TABLE CALL excels at answer-498

ing multi-step reasoning questions on disorganized499

and lengthy tables.500

The results on the AIT-QA dataset (Katsis et al.,501

2022) are shown in Table 3. Our method signif-502

icantly outperforms other methods on every data503

subset of the AIT-QA dataset. The results show that504

TABLE CALL excels in complex table understand-505

ing. Unlike other methods that require serializing506

tables into a tree structure or a specific SQL se-507

quence, we simply flatten the nested headers of the508

table without further operations. This highlights509

the universality and efficiency of our approach.510

Methods Accuracy

Training-based LLMs
TABERT (Yin et al., 2020) 52.3
Tapex (Liu et al., 2022) 57.5
TaCube (Zhou et al., 2022) 60.8
OmniTab (Jiang et al., 2022) 62.8
LEVER (Ni et al., 2023) 65.8

Prompt-based LLMs
Binder (Cheng et al., 2023) 64.6
ReAcTable (Zhang et al., 2023) 65.8
Dater (Ye et al., 2023) 65.9
CHAIN-OF-TABLE (Wang et al., 2024) 67.3
Mix SC (Liu et al., 2023) 73.6
Ours 77.6

Table 2: Accuracy on WikiTableQuestions.

Data subset TABERT TaPaS RCI LLMCTP Ours

KPI-driven 41.4 48.3 60.0 74.5 91.7

Table-driven 31.1 50.0 48.6 71.8 81.1

Row header hierarchy 21.9 47.3 45.9 61.6 82.2

No row header hierarchy 38.8 50.4 54.2 81.8 84.8

Overall 34.0 49.3 51.8 76.3 84.1

Table 3: Accuracy on AIT-QA.

4.3 Result on Lengthy Tables 511

End-to-end TQA often fails or degrades in per- 512

formance because it relies on the whole table as 513

input for reasoning. Thanks to the strategic ap- 514

proach of only inputting the first three rows of the 515

table during the calling phase and invoking dif- 516

ferent tools for various types of table questions, 517

TABLE CALL excels at reasoning lengthy tables, 518

effectively managing token limitations while still 519

capturing essential data features. As depicted in 520

Figure 5, the performance of LLaMA3-8B with 521

chain-of-thought shows a sharp decline as the table 522

size increases. In contrast, TABLE CALL maintains 523

a consistently higher performance, exhibiting only 524

minimal reductions. 525

4.4 Few-Shot Library Updating 526

A significant advantage of TABLE CALL is its 527

adaptability. We can continually refine our model 528

by updating our few-shot library during inference. 529

Table 6 shows the performance of TABLE CALL 530

on WikiTableQuestions using 0-shot, 1-shot, and 531

3-shot, with and without updates to the few-shot li- 532

brary. We created two sizes of the original few-shot 533

libraries, with the raw library built from selections 534

from the training set. The 0-shot model under- 535

7

Type Direct Retrieval Filter-Based Retrieval Aggregation Comparison Sequential/Relative Positioning Overall

LLaMA3-8B 82.6 68.1 56.5 76.1 72.0 71.1
Ours 88.7 73.4 75.6 76.8 77.6 77.6

Table 4: Performance across different task types on the WikiTableQuestions dataset.

Type Direct Retrieval Filter-Based Retrieval Aggregation Comparison Sequential/Relative Positioning Overall

LLaMA3-8B 81.6 70.6 71.4 62.5 - 78.45
Ours 86.1 78.6 85.7 75 - 84.1

Table 5: Performance across different task types on the AIT-QA dataset.

Figure 5: Lengthy Table Performance Comparison on
the WikiTableQuestions dataset.

performs compared to the direct chain-of-thought536

approach with LLaMA-8B due to the stringent re-537

quirements for generating JSON-formatted outputs538

and the complexities of task-type classification and539

key parameter extraction. However, incorporat-540

ing few-shot learning significantly enhances our541

model’s ability to answer table-based questions.542

Continuously updating the few-shot library fur-543

ther improves accuracy and enhances the model’s544

overall understanding abilities. Given the specific-545

domain nature of AIT-QA, with a 0.75 similarity546

between questions and library examples, we only547

need five examples in the raw library.548

4.5 Task Type Classifier549

As shown in Table 4 and Table 5, TABLE CALL550

categorizes question into five distinct task types551

on both WikiTableQuestions and AIT-QA datasets.552

We compared our method with LLaMA3-8B us-553

ing chain-of-thought prompting. Benefiting from554

the TABLE CALL paradigm and few-shot library555

updating for task type classification, our approach556

consistently outperform the end-to-end LLaMA557

model across all tasks. Specifically, aggregation-558

type questions pose a dual challenge: selecting key559

rows and executing complex numerical computa-560

tions. The direct end-to-end approach proves less561

Strategy Similarity Accuracy

0-shot - 56.2

Raw few-shot library with size 5
1-shot

w/o update 0.52 69.5
w/ update 0.56 73.9

3-shot
w/o update 0.46 67.3
w/ update 0.52 75.3

Raw few-shot library with size 50
1-shot

w/o update 0.57 71.4
w/ update 0.62 76.8

3-shot
w/o update 0.54 72.0
w/ update 0.61 77.6

Table 6: Comparison of few-shot strategies on the Wik-
iTableQuestions dataset.

effective. In contrast, our method not only clas- 562

sifies questions but also extracts key information 563

from them and employs SQL to pinpoint relevant 564

rows. Subsequent numerical computations are fa- 565

cilitated by a LLM within a Python shell. This 566

process significantly enhances the interpretability 567

and execution efficiency of the reasoning, effec- 568

tively minimizing model hallucinations. 569

5 Conclusion 570

The proposed TABLE CALL is a novel method in- 571

voking different tools for table question answering 572

in complex and lengthy tables. Unlike the existing 573

methods, TABLE CALL introduces well-designed 574

calling phase with few-shot library updating tech- 575

nique to classify tabular question types, enhanc- 576

ing table interpreting and reasoning. A large-scale 577

empirical study on the WikiTableQuestions and 578

AIT-QA datasets demonstrates that TABLE CALL 579

achieves state-of-the-art performance in table ques- 580

tion answering tasks. 581

8

Limitations582

In our classification of tabular question types, we di-583

vide questions into five categories: Direct Retrieval,584

Filter-Based Retrieval, Aggregation, Comparison,585

and Sequential/Relative Positioning. This catego-586

rization is sufficient for the benchmarks used in587

this paper. However, we can further expand these588

categories to include more tasks, such as Table-to-589

Text.590

In this paper, we employ SQL, Python, and large591

language models (LLMs) as tools. These tools are592

adequate for handling the vast majority of table593

tasks. Nonetheless, the tools in our method are594

extensible and can be integrated with any table pro-595

cessing or understanding approach, such as adding596

a voting mechanism among the tools.597

References598

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama599
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,600
Diogo Almeida, Janko Altenschmidt, Sam Altman,601
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.602
arXiv preprint arXiv:2303.08774.603

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy604
Liang. 2013. Semantic parsing on freebase from605
question-answer pairs. In Proceedings of the 2013606
Conference on Empirical Methods in Natural Lan-607
guage Processing, pages 1533–1544.608

Wenhu Chen. 2023. Large language models are few (1)-609
shot table reasoners. In Findings of the Association610
for Computational Linguistics: EACL 2023, pages611
1120–1130.612

Wenhu Chen, Xueguang Ma, Xinyi Wang, and613
William W. Cohen. 2023. Program of thoughts614
prompting: Disentangling computation from reason-615
ing for numerical reasoning tasks. Transactions on616
Machine Learning Research.617

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu618
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,619
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,620
Noah A. Smith, and Tao Yu. 2023. Binding language621
models in symbolic languages. In Proceedings of622
the Eleventh International Conference on Learning623
Representations.624

SQLite Consortium. 2024. Sqlite.625

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong626
Yu. 2022. Turl: Table understanding through repre-627
sentation learning. ACM SIGMOD Record, pages628
33–40.629

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas630
Mueller, Francesco Piccinno, and Julian Eisensch-631
los. 2020a. Tapas: Weakly supervised table parsing632

via pre-training. In Proceedings of the 58th Annual 633
Meeting of the Association for Computational Lin- 634
guistics, pages 4320–4333. 635

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas 636
Müller, Francesco Piccinno, and Julian Eisenschlos. 637
2020b. TaPas: Weakly supervised table parsing via 638
pre-training. In Proceedings of the 58th Annual Meet- 639
ing of the Association for Computational Linguistics, 640
pages 4320–4333. 641

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu- 642
big, and Weizhu Chen. 2022. Omnitab: Pretraining 643
with natural and synthetic data for few-shot table- 644
based question answering. In Proceedings of the 645
2022 Conference of the North American Chapter of 646
the Association for Computational Linguistics: Hu- 647
man Language Technologies, pages 932–942. 648

Yannis Katsis, Saneem Chemmengath, Vishwajeet Ku- 649
mar, Samarth Bharadwaj, Mustafa Canim, Michael 650
Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen, 651
Karthik Sankaranarayanan, et al. 2022. Ait-qa: Ques- 652
tion answering dataset over complex tables in the air- 653
line industry. In Proceedings of the 2022 Conference 654
of the North American Chapter of the Association 655
for Computational Linguistics: Human Language 656
Technologies: Industry Track, pages 305–314. 657

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi 658
Lin, Weizhu Chen, and Jian-Guang Lou. 2022. 659
TAPEX: Table pre-training via learning a neural SQL 660
executor. In Proceedings of the International Confer- 661
ence on Learning Representations. 662

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re- 663
thinking tabular data understanding with large lan- 664
guage models. arXiv preprint arXiv:2312.16702. 665

Yujian Liu, Jiabao Ji, Tong Yu, Ryan Rossi, Sungchul 666
Kim, Handong Zhao, Ritwik Sinha, Yang Zhang, 667
and Shiyu Chang. 2024. Augment before you try: 668
Knowledge-enhanced table question answering via 669
table expansion. arXiv preprint arXiv:2401.15555. 670

MetaAI. 2024. Introducing meta llama 3: The most 671
capable openly available llm to date. 672

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, 673
Wen-tau Yih, Sida I Wang, and Xi Victoria Lin. 2023. 674
Lever: learning to verify language-to-code genera- 675
tion with execution. In Proceedings of the 40th In- 676
ternational Conference on Machine Learning, pages 677
26106–26128. 678

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carig- 679
nan, Richard Edgar, Nicolo Fusi, Nicholas King, 680
Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. 681
2023. Can generalist foundation models outcom- 682
pete special-purpose tuning? case study in medicine. 683
Medicine, pages 77–3. 684

OpenAI. 2023a. Function calling and other api updates. 685

OpenAI. 2023b. Gpt-3.5 turbo. 686

9

https://arxiv.org/pdf/2303.08774
https://aclanthology.org/D13-1160.pdf
https://aclanthology.org/D13-1160.pdf
https://aclanthology.org/D13-1160.pdf
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://sqlite.org/
https://arxiv.org/pdf/2006.14806
https://arxiv.org/pdf/2006.14806
https://arxiv.org/pdf/2006.14806
https://aclanthology.org/2020.acl-main.398
https://aclanthology.org/2020.acl-main.398
https://aclanthology.org/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-main.68
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://aclanthology.org/2022.naacl-industry.34
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://arxiv.org/pdf/2401.15555
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://dl.acm.org/doi/abs/10.5555/3618408.3619494
https://dl.acm.org/doi/abs/10.5555/3618408.3619494
https://dl.acm.org/doi/abs/10.5555/3618408.3619494
https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/can-generalist-foundation-mode/2311.16452.pdf
https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/can-generalist-foundation-mode/2311.16452.pdf
https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/can-generalist-foundation-mode/2311.16452.pdf
https://openai.com/index/function-calling-and-other-api-updates/
https://platform.openai.com/docs/models/gpt-3-5-turbo

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,687
Carroll Wainwright, Pamela Mishkin, Chong Zhang,688
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.689
2022. Training language models to follow instruc-690
tions with human feedback. In Advances in Neu-691
ral Information Processing Systems, pages 27730–692
27744.693

Panupong Pasupat and Percy Liang. 2015. Composi-694
tional semantic parsing on semi-structured tables. In695
Proceedings of the 53rd Annual Meeting of the As-696
sociation for Computational Linguistics and the 7th697
International Joint Conference on Natural Language698
Processing, pages 1470–1480.699

Mohammadreza Pourreza and Davood Rafiei. 2024.700
Din-sql: Decomposed in-context learning of text-701
to-sql with self-correction. In Advances in Neural In-702
formation Processing Systems, pages 24824–24837.703

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and704
Dongmei Zhang. 2024. Table meets llm: Can large705
language models understand structured table data?706
a benchmark and empirical study. In Proceedings707
of the 17th ACM International Conference on Web708
Search and Data Mining, pages 645–654.709

Anirudh S Sundar and Larry Heck. 2023. ctbls: Aug-710
menting large language models with conversational711
tables. In Proceedings of the 5th Workshop on NLP712
for Conversational AI, pages 59–70.713

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-714
bert, Amjad Almahairi, Yasmine Babaei, Nikolay715
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti716
Bhosale, et al. 2023. Llama 2: Open founda-717
tion and fine-tuned chat models. arXiv preprint718
arXiv:2307.09288.719

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin720
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-721
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,722
and Tomas Pfister. 2024. Chain-of-table: Evolving723
tables in the reasoning chain for table understanding.724
In Proceedings of the Twelfth International Confer-725
ence on Learning Representations.726

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten727
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,728
and Denny Zhou. 2022. Chain-of-thought prompt-729
ing elicits reasoning in large language models. In730
Advances in Neural Information Processing Systems,731
pages 24824–24837.732

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,733
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng734
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,735
et al. 2022. Unifiedskg: Unifying and multi-tasking736
structured knowledge grounding with text-to-text lan-737
guage models. In Proceedings of the 2022 Confer-738
ence on Empirical Methods in Natural Language739
Processing, pages 602–631.740

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei741
Huang, and Yongbin Li. 2023. Large language mod-742
els are versatile decomposers: Decomposing evi-743
dence and questions for table-based reasoning. In744

Proceedings of the 46th International ACM SIGIR 745
Conference on Research and Development in Infor- 746
mation Retrieval, pages 174–184. 747

Pengcheng Yin and Graham Neubig. 2017. A syntactic 748
neural model for general-purpose code generation. In 749
Proceedings of the 55th Annual Meeting of the Associ- 750
ation for Computational Linguistics, pages 440–450. 751

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se- 752
bastian Riedel. 2020. Tabert: Pretraining for joint 753
understanding of textual and tabular data. In Proceed- 754
ings of the 58th Annual Meeting of the Association 755
for Computational Linguistics, pages 8413–8426. 756

Bowen Yu, Cheng Fu, Haiyang Yu, Fei Huang, and 757
Yongbin Li. 2023. Unified language representation 758
for question answering over text, tables, and images. 759
In Findings of the Association for Computational 760
Linguistics: ACL 2023, pages 4756–4765. 761

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 762
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 763
ing Yao, Shanelle Roman, et al. 2018. Spider: A 764
large-scale human-labeled dataset for complex and 765
cross-domain semantic parsing and text-to-sql task. 766
In Proceedings of the 2018 Conference on Empiri- 767
cal Methods in Natural Language Processing, pages 768
3911–3921. 769

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce 770
Cahoon, Shaleen Deep, and Jignesh M Patel. 2023. 771
Reactable: Enhancing react for table question answer- 772
ing. In Proceedings of the VLDB Endowment, page 773
1981–1994. 774

Bowen Zhao, Changkai Ji, Yuejie Zhang, Wen He, Ying- 775
wen Wang, Qing Wang, Rui Feng, and Xiaobo Zhang. 776
2023. Large language models are complex table 777
parsers. In Proceedings of the 2023 Conference on 778
Empirical Methods in Natural Language Processing, 779
pages 14786–14802. 780

Victor Zhong, Caiming Xiong, and Richard Socher. 781
2017. Seq2sql: Generating structured queries from 782
natural language using reinforcement learning. arXiv 783
preprint arXiv:1709.00103. 784

Wanjun Zhong, Junjie Huang, Qian Liu, Ming Zhou, 785
Jiahai Wang, Jian Yin, and Nan Duan. 2022. Reason- 786
ing over hybrid chain for table-and-text open domain 787
question answering. In Proceedings of the Interna- 788
tional Joint Conferences on Artificial Intelligence, 789
pages 4531–4537. 790

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng, 791
Fan Cheng, Shi Han, and Dongmei Zhang. 2022. 792
Tacube: Pre-computing data cubes for answering 793
numerical-reasoning questions over tabular data. In 794
Proceedings of the 2022 Conference on Empirical 795
Methods in Natural Language Processing, pages 796
2278–2291. 797

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://aclanthology.org/P15-1142.pdf
https://aclanthology.org/P15-1142.pdf
https://aclanthology.org/P15-1142.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://aclanthology.org/2023.nlp4convai-1.6
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://doi.org/https://doi.org/10.1145/3539618.3591708
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/P17-1041
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2020.acl-main.745
https://aclanthology.org/2023.findings-acl.292
https://aclanthology.org/2023.findings-acl.292
https://aclanthology.org/2023.findings-acl.292
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/https://doi.org/10.14778/3659437.3659452
https://doi.org/https://doi.org/10.14778/3659437.3659452
https://doi.org/https://doi.org/10.14778/3659437.3659452
https://aclanthology.org/2023.emnlp-main.914
https://aclanthology.org/2023.emnlp-main.914
https://aclanthology.org/2023.emnlp-main.914
https://arxiv.org/pdf/1709.00103
https://arxiv.org/pdf/1709.00103
https://arxiv.org/pdf/1709.00103
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://www.ijcai.org/proceedings/2022/0629.pdf
https://aclanthology.org/2022.emnlp-main.145
https://aclanthology.org/2022.emnlp-main.145
https://aclanthology.org/2022.emnlp-main.145

A Appendix798

A.1 Prompts for Calling799

In our prompts, we incorporate in-context learn-800

ing and chain-of-thought approaches to enhance801

the large model’s ability to understand task type802

classification and extract key parameters. Figure 6803

presents our prompt for defining and invoking the804

table call function. Figure 7 then shows the prompt805

for using input and few-shot examples. The combi-806

nation of Figure 6 and Figure 7 constitutes the full807

text of the prompt for the calling phase.808

A.2 Usage of Tools809

In this paper, we propose 5 question task types: Di-810

rect Retrieval, Filter-Based Retrieval, Aggregation,811

Comparison, and Sequential/Relative Positioning.812

In Figure 4, the example shows how TABLE CALL813

uses tools for a question with filter-based retrieval814

type. We then present examples of the remaining815

four task types.816

As shown in Figure 8, the large language model817

(LLM) identifies this question as a direct retrieval818

task and outputs the key column header and key819

question information in a JSON format. Sub-820

sequently, an SQL query is employed to fetch821

question-related rows, and the final answer is di-822

rectly determined according to the key column823

name. This method, which solely relies on SQL,824

is the fastest. If multiple rows are retrieved, we825

then employ a method similar to that illustrated in826

Figure 4, using the LLM for further reasoning to827

produce the final result.828

Figure 9 shows the process for the aggregation829

type. We first utilize SQL to extract rows and830

columns relevant to the question. Subsequently,831

we employ a LLM along with a Python shell to832

compute and derive the final result.833

Figure 10 shows the process for the comparison834

type. In this example, similar to the case presented835

in Figure 4, we first use SQL to extract filtered836

rows and then apply a LLM to determine the final837

result. The distinction lies in the inclusion of a838

comparison term in the key parameters.839

Figure 11 demonstrates that we utilize a task-840

guided Chain of Thought LLM to address questions841

involving sequential or relative positioning. This842

type of question necessitates the use of a complete843

table to determine the sequence or relative position844

of items. Similarly, in cases of exceptions, we input845

the table data into a LLM to directly provides the846

results.847

11

Role : SYSTEM
Content : You are a proficient artificial intelligence assistant , specialized in performing interface

parameter parsing tasks , locating and parsing parameters effectively.
Role : FUNCTION
Content : The available function calls are as follows. If function call is related to user 's question , help

me return function call and paremeters. Responses should be formatted as "<BoFC > JSONDICT <EoFC >",
where <BoFC > and <EoFC > are specific identifiers , and JSONDICT is a JSON dictionary that can be parsed
using json.loads(). JSONDICT consists 2 keys: "name" and "parameters ". The "name" key is the name of
the function call , and the "parameters" key is a dictionary where "arg" is the name of a function call
parameter and "value" is the value of that parameter. The value must be explicitly mentioned by the
user or default parameter value). For example , The return of function call should be like "<BoFC > {{"
name": "function call name", "parameters ": {{" arg1": "value1", "arg2": "value2 "...}}}} <EoFC >".

Role : FUNCTION
Content : {

"name": "TableQA",
"description ": "Choose the task type of the question. Based on the task type , retrieve key parameters

from the user 's question.
This function analyzes the question to identify key terms and phrases , matching them with available

column headers to determine the most applicable ones. It also compares these terms with items in
the sample data list to select pertinent key question info. Note that the sample data list is only
a preview , illustrating the table 's structure and data types , not the complete dataset. The actual
table contains many more rows and additional data not shown in the sample , ensuring comprehensive
data retrieval.",

"parameters ": {
"type": "object",
"properties ": {

"task_type ": {
"type": "string",
"description ": "According to the question , choose the task type from the following list: ["

Direct Retrieval", "Filter -Based Retrieval", "Aggregation", "Comparison", "Sequential/
Relative Positioning "]. Describe each task type and corresponding key parameters :..."} ,

"decision_explanation ":{
"type": "string",
"description ": "Provide a detailed rationale for selecting specific parameters ."},

"key_parameter1 ": {...},
"key_parameter2 ": {...},
...},},

"required ": [" task_type", "decision_explanation", "key_parameter1", "key_parameter2", ...]}

Figure 6: The prompt for define table call.

Role : USER
Content : Example:

Input :{" column header list": [EXAMPLE_TABLE_COLUMN_HEADER_HERE]},
"row header list": [EXAMPLE_TABLE_ROW_HEADER_HERE],
"sample data list": [EXAMPLE_SAMPLE_DATA_HERE]}

Question: [EXAMPLE_QUSTION_HERE].
Expected response: [EXAMPLE_RESPONSE_HERE].

Role : USER
Content : The sample data list consists of initial few rows of the table , providing a preview to assist in

understanding the data and the overall structure of the table. Please note that the actual table
contains many more rows.
Input :{" column header list": [TABLE_COLUMN_HEADER_HERE],

"row header list": [TABLE_ROW_HEADER_HERE],
"sample data list": [SAMPLE_DATA_HERE]}

Question :[QUSTION_HERE]
Expected response:

Figure 7: The prompt of the user input.

Question:
what is the only hospital in burlington?

Original Table:

Ground Truth: Alamance Regional Medical Center

{“task_type”: “direct_retrieval”:
"key_column_headers": ["Name"],
"key_question_info": ["burlington"]}LLM Alamance Regional Medical Center

Figure 8: The example of TABLE CALL for a question with a direct retrieval type.

12

Question:
what is the total wins?

Original Table:

Ground Truth: 473

{“key_column_headers”: [“total wins"],
“key_question_info”: [],
“aggregation_term”: [“SUM”]}LLM

473

Figure 9: The example of TABLE CALL for a question with an aggregation type.

Question:
is the unicode name for alert the same as the unicode name for backspace?

Original Table:

Ground Truth: no

{"key_column_headers": ["Unicode name"],
"key_question_info":[“alert”,“backspace”],
“Comparison_term”: [“same”]}

LLM

Filtered data:
["alert", "", "\\a", "U+0007", "BELL (BEL)"],
["backspace", "", "\\b", "U+0008",
"BACKSPACE (BS)"]]

no

Figure 10: The example of TABLE CALL for a question with a comparison type.

Question:
is the unicode name for alert the same as the unicode name for backspace?

Original Table:

Ground Truth: Tomomi Manako
LLM Tomomi Manako

Figure 11: The example of TABLE CALL for a question with a sequential/relative positioning type or a question
yielding exceptions.

13

