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Abstract

Concept Bottleneck Model (CBM) is a methods for explaining neural networks. In CBM,
concepts which correspond to reasons of outputs are inserted in the last intermediate layer
as observed values. It is expected that we can interpret the relationship between the output
and concept similar to linear regression. However, this interpretation requires observing all
concepts and decreases the generalization performance of neural networks. Partial CBM
(PCBM), which uses partially observed concepts, has been devised to resolve these difficul-
ties. Although some numerical experiments suggest that the generalization performance of
PCBMs is almost as high as that of the original neural networks, the theoretical behavior of
its generalization error has not been yet clarified since PCBM is singular statistical model.
In this paper, we reveal the Bayesian generalization error in PCBM with a three-layered
and linear architecture. The result indcates that the structure of partially observed con-
cepts decreases the Bayesian generalization error compared with that of CBM (full-observed
concepts).

1 Introduction

Methods of artificial intelligence such as neural networks has been widely applied in many research and
practical areas (Goodfellow et al., 2016; Dong et al., 2021), increasing the demand for the interpretability of
the model to deploy more intelligence systems to the real world. The accountability of such systems needs
to be verified in fields related directly to human life, such as automobiles (self-driving systems (Xu et al.,
2020)) and medicine (medical image analysis (Koh et al., 2020; Klimiene et al., 2022)). In these fields,
the models cannot be black boxes, and therefore, various interpretable machine learning procedures have
been investigated (Molnar, 2020). The concept bottleneck model (CBM) reported by Kumar et al. (2009);
Lampert et al. (2009); Koh et al. (2020) is one of the architectures used to make the model interpretable. The
CBM has a novel structure, called a concept bottleneck structure, wherein concepts are inserted between the
output and last intermediate layers. In this structure, the last connection from the concepts to the output is
linear and fully connected; thus, we can interpret the weights of that connection as the effect of the specified
concept to the output, which is similar to the coefficients of linear regression. Concept-based interpretation
is used in knowledge discovery for chess (McGrath et al., 2022), video representation (Qian et al., 2022),
medical imaging (Hu et al., 2022), clinical risk prediction (Raghu et al., 2021), computer-aided diagnosis
(Klimiene et al., 2022), and other healthcare domain problems (Chen et al., 2021). For this interpretation,
concepts must be labeled accurately as explanations of inputs to predict outputs. For example, the concepts
need to be set as clinical findings that are corrected by radiologists to predict the knee arthritis grades of
patients based on X-ray images of their knee (Koh et al., 2020). In other words, CBM cannot be trained
effectively without an accurate annotation from radiologists. Thus, the labeling cost is higher than that of
the conventional supervised learning machine. Further, the concept bottleneck structure limits the parameter
region of the network and it decreases the generalization performance decreases (Hayashi & Sawada, 2023).

Sawada & Nakamura (2022) proposed CBM with an additional unsupervised concept (CBM-AUC) to de-
crease the annotation cost of concepts. The core idea of CBM-AUC is that concepts are partially replaced
as unsupervised values, and they are classified into tacit and explicit knowledge. The former concepts
are provided as observations similar to that in the original CBM, i.e., they are supervised. The latter
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Figure 1: Schematics of CBM and PCBM architectures.

ones are not observable and obtained as output from the previous connection, i.e., they are unsupervised.
In the following, concepts corresponding to explicit/tacit knowledge are referred to as explicit/tacit con-
cepts for simplicity. Futher, CBM-AUC uses a structure based on self-explaining neural networks (SENN)
(Alvarez Melis & Jaakkola, 2018) for interpreting learned tacit concepts. In addition, partial CBM (PCBM)
was developed in Li et al. (2022) and it only uses the above-mentioned core idea. For example, when the
architecture is three-layered and linear (i.e., reduced rank regression), a neural network y = ABx is trained,
where x, y, and (A, B) represent the input, output, and weight matrices, respectively. For CBM, there is an
explicit concept vector c, and the weight parameters are learned as y = ABx and c = Bx. The architectures
of CBM and PCBM are illustrated in Figure 1. The detailed technical settings for learning: independent,
sequential, and joint CBM (Koh et al., 2020), commonly represent the situation y = ABx and c = Bx in
some forms. Alternatively, for PCBM and CBM-AUC, the dimension of the explicit concept vector is less
than that of Bx. In other words, Bx is partially supervised by explicit concepts as c = B2x, and the other
part B1x becomes the tacit concepts, where B is vertically decomposed as B = [B1; B2]. Here, B1 and B2
are block matrices whose column dimensions are the same and the summation of their row dimensions is
equal to the number of the rows in B. There are relevant variants of PCBM, which use different partitions for
explicit and tacit concepts (Lu et al., 2021) and decoupling concepts (Zhang et al., 2022). The foundation
of their structures is the network architecture of PCBM. Also, if the regularization term inspired by SENN
in the loss function of CBM-AUC is zero, its loss function is equal to that of PCBM (Sawada & Nakamura,
2022; Li et al., 2022). Thus, in this paper, we consider only PCBM.

It has been empirically showed that PCBM outperforms the original CBM in terms of generalization
(Li et al., 2022; Sawada & Nakamura, 2022); however, its theoretical generalization performance has not
yet been clarified. This is because neural networks are statistically singular in general (Watanabe,
2007). Let Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn) be inputs and outputs of n observations from
q(x, y) = q(y|x)q(x), respectively. Let p(y|w, x) be a probability density function of a statistical model with
a d-dimensional parameter w and an input x, and φ(w) represent a prior distribution. For instance, in the
scenario wherein that a neural network is trained by minimizing a mean squared error, we set the model
p(y|w, x) ∝ exp(− 1

2 ‖y − f(x; w)‖2), where f(x; w) is a neural network function parameterized by w. A
statistical model is termed regular if the map from parameter w to model p is injective; otherwise, it is called
singular (Watanabe, 2009; 2018). For neural networks, the map w 7→ f(·; w) is not injective, i.e., there exists
(w1, w2) such that f(x; w1) = f(x; w2) for any x. In the singular case, there are singularities in the zero
point set of the Kullback-Leibler (KL) divergence between q and p: {w | DKL(q‖p) = 0}. These singularities
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cause that a singular model has a higher generalization performance compared to that of a regular model
(Watanabe, 2000; 2001; 2009; 2018; Wei et al., 2022; Nagayasu & Watanbe, 2022). Given these singularities,
the behavior of the generalization error in the singlar model remains unclear. Let Gn be the KL divergence
between the data-generating distribution q and predictive distribution p∗: Gn := DKL(q‖p∗). Gn is called
the Bayesian generalization error. If the model is regular, the expected Gn is asymptotically dominated by
half of the parameter dimension with an order of 1/n: E[Gn] = d/2n+o(1/n); otherwise, there are a positive
rational number λ and an asymptotic behavior of E[Gn] as indicated below:

E[Gn] = λ

n
+ o

(
1
n

)
, (1)

where λ is called a real log canonical threshold (RLCT) (Watanabe, 2009; 2018). This theory is called the
singular learning theory (Watanabe, 2009). The RLCTs of models depend on (q, p, φ); thus, statisticians
and machine learning researchers have analyzed them for each singular model. Furthermore, if the RLCT of
the model is clarified, we can run effective sampling from the posterior distribution (Nagata & Watanabe,
2008) and select the optimal model (Drton & Plummer, 2017; Imai, 2019).

In the previous research, the RLCT of CBM was clarified in the case with a three-layered and linear archi-
tecture network (Hayashi & Sawada, 2023). In this paper, we theoretically analyze RLCT, and based on the
results, we derive an upper bound of the Bayesian generalization error in PCBM and prove it is less than
that in CBM with assuming the same architecture.

The remainder of this paper is organized as follows. In section 2, we introduce prior works that determine
RLCTs of singular models and its application to statistics and machine learning. In section 3, we describe
the framework of Bayesian inference when the data-generating distribution is not known, and we briefly
explain the relationship between statistical models and RLCTs. In section 4, we state the main theorem.
In section 5, we discuss our theoretical results from several perspectives, and in section 6, we conclude this
paper. The proof of the main theorem is presented in appendix A.

2 Related Works

The RLCT depends on the triplet of the data-generating distribution, statistical model, and prior distribu-
tion, and therefore, we must consider resolution of singularities (Hironaka, 1964) for a family of functions
on the real number field. In fact, there exist some procedures for resolving singularities for a single function
on a algebraically closed field such as the complex number field (Hironaka, 1964). However, for the singular
learning theory, a family of functions whose domain is a subset of the Euclidean space is considered. Cur-
rently, there is no standard method for calculating the theoretical value of the RLCT. That is why we need
to identify the RLCT for each model.

Over the past two decades, RLCTs have been studied for various singular models. For example, mix-
ture models, which are typical singular models (Hartigan, 1985; Watanabe, 2007), and their RLCTs have
been analyzed for different types of component distributions: Gaussian (Yamazaki & Watanabe, 2003a),
Bernoulli (Yamazaki & Kaji, 2013), Binomial (Yamazaki & Watanabe, 2004), Poisson (Sato & Watanabe,
2019), and etc. (Matsuda & Watanabe, 2003; Watanabe & Watanabe, 2022). Further, neural networks
are also typical singular models (Fukumizu & Amari, 2000; Watanabe, 2001), and studies have been con-
ducted to determine their RLCTs for cases where activation functions are linear (Aoyagi & Watanabe,
2005), analytic-odd (like tanh) (Watanabe, 2001), and Swish (Tanaka & Watanabe, 2020). Almost
all learning machines are singular (Watanabe, 2007; Wei et al., 2022). Other instances of the sin-
gular learning theory applied for concrete models include the Boltzmann machines for several cases
(Yamazaki & Watanabe, 2005b; Aoyagi, 2010a; 2013), matrix factorization with parameter restriction such
as non-negative (Hayashi & Watanabe, 2017a;b; Hayashi, 2020) and simplex (equivalent to latent Dirichlet
allocation) (Hayashi & Watanabe, 2020; Hayashi, 2021), latent class analysis (Drton, 2009), naive Bayes
(Rusakov & Geiger, 2005), Bayesian networks (Yamazaki & Watanabe, 2003b), Markov models (Zwiernik,
2011), hidden Markov models (Yamazaki & Watanabe, 2005a), linear dynamical systems for prediction of
a new series (Naito & Yamazaki, 2014), and Gaussian latent tree and forest models (Drton et al., 2017).
Recently, singular learning theory has been considered for investigating deep neural networks. Wei et al.
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(2022) reviewed the singular learning theory from the perspectives of deep learning. Aoyagi (2024) derived
a deterministic algorithm for the deep linear neural network and Furman & Lau (2024) numerically demon-
strated it for the modern scale network. Nagayasu and Watanabe clarified the asymptotic behavior of the
Bayesian free energy in cases where the architecture is deep with ReLU activations (Nagayasu & Watanabe,
2023a) and convolutional with skip connections (Nagayasu & Watanabe, 2023b).

From an application point of view, RLCTs are useful for performing Bayesian inference and solving model
selection problems. Nagata & Watanabe (2008) proposed a procedure for designing exchange probabilities
of inversed temperatures in the exchange Monte Carlo method. Imai (2019) derived an estimator of an
RLCT and claimed that we can verify whether the numerical posterior distribution is precise by comparing
the estimator and theoretical value. Drton & Plummer (2017) proposed a method called sBIC to select an
appropriate model for knowledge discovery, which uses RLCTs of statistical models. Those studies are based
on the framework of Bayesian inference.

3 Preliminaries

3.1 Framework of Bayesian Inference

Let Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn) be a collection of random variables of n. The function value
of (Xi, Yi) is in X × Y, where X and Y are subsets of a finite-dimensional real Euclidean or discrete space.
In this article, the collections Xn and Y n are referred to as the inputs and outputs, respectively. The pair
Dn := (Xi, Yi)n

i=1 is called the dataset (a.k.a. sample) and its element (Xi, Yi) is called the (i-th) data.
The sample is independently and identically distributed from the data-generating distribution (a.k.a. true
distribution) q(x, y) = q(y|x)q(x). From a mathematical point of view, the data-generating distribution is
an induced measure of measurable functions Dn. Let p(y|w, x) be a statistical model with a d-dimensional
parameter w ∈ W and φ(w) be a prior distribution, where W ⊂ Rd.

In Bayesian inference, we obtain the result of the parameter estimation as a distribution of the parameter,
i.e., a posterior distribution. We define a posterior distribution as the distribution whose density is the
function on W, given as

φ∗(w|Dn) = 1
Zn

φ(w)
n∏

i=1
p(Yi|w, Xi), (2)

where Zn is a normalizing constant used to satisfy the condition
∫

φ∗(w|Xn)dw = 1:

Zn =
∫

dwφ(w)
n∏

i=1
p(Yi|w, Xi). (3)

Zn is called a marginal likelihood or partition function and its negative log value is called free energy
Fn := − log Zn.

The free energy appears as a leading term in the difference between the data-generating distribution and
model used for the dataset-generating process. In other words, as a function of models, DKL(q(Y n|Xn)‖Zn)
only depends on E[Fn]. For the model-selection problem, the marginal likelihood leads to a model maxi-
mizing a posterior distribution of model size (such as the number of hidden units of neural networks). This
perspective is called knowledge discovery.

Evaluating the dissimilarity between the true and the predicted value is also important for statistics and
machine learning. This perspective is called prediction. A predictive distribution is defined by the following
density function of a new output y ∈ Y with a new input x ∈ X .

p∗(y|Dn, x) =
∫

dwφ∗(w|Dn)p(y|w, x). (4)

When the data-generating distribution is unknown, the Bayesian inference is defined by inferring that the
data-generating distribution may be predictive. A Bayesian generalization error Gn is defined by the KL
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divergence between the data-generating distribution and predictive one, given as

Gn =
∫∫

dxdyq(x)q(y|x) log q(y|x)
p∗(y|Dn, x)

. (5)

Obviously, it is the dissimilarity between the true and predictive distribution in terms of KL divergence.

Both of these perspectives consider the scenario wherein q(y|x) is unknown. This situation is considered
generic in the real world data analysis (McElreath, 2020; Watanabe, 2023). Moreover, in general, the model
is singular when it has a hierarchical structure or latent variables (Watanabe, 2009; 2018), such as models
written in section 2.

3.2 Singular Learning Theory

We briefly intoduce some important properties of the singular learning theory. First, several concepts are
defined. Let S and Sn be

S = −
∫

dxdyq(x)q(y|x) log q(y|x), (6)

Sn = − 1
n

n∑
i=1

log q(Yi|Xi). (7)

S and Sn are called the entropy and empirical entropy, respectively. The KL divergence between the data-
generating distribution and statistical model is denoted by

K(w) =
∫

dydxq(x, y) log q(y|x)
p(y|w, x)

(8)

as a non-negative function of parameter w. This is called an averaged error function based on Watanabe
(2018).

As technical assumptions, we suppose the parameter set W ⊂ Rd is sufficiently wide and compact, and the
prior is positive and bounded on

K−1(0) := {w ∈ W | K(w) = 0}, (9)
i.e., 0 < φ(w) < ∞ holds for any w ∈ K−1(0). In addition, we assume that φ(w) is a C∞-function on
W and K(w) is an analytic function on W. For the sake of simplicity, we assume K−1(0) is not empty:
the realizable case. In fact, if the true distribution cannot be realized by the model candidates, we can
redefine the averaged error function as DKL(p0‖p): the KL divergence between the nearest model to the
data-generating distribution and candidate model, where w0 = arg min DKL(q‖p) and p0(y|x) = p(y|w0, x),
and therefore, we can expand the singular learning theory for the non-realizable cases (Watanabe, 2010;
2018).

The RLCT of the model is defined by the following. Let <(z) be the real part of a complex number z.
Definition 3.1 (RLCT). Let z 7→ ζ(z) be the following univariate complex function,

ζ(z) =
∫

dwφ(w)K(w)z. (10)

ζ(z) is holomorphic on <(z) > 0. Further, it can be analytically continued on the entire complex plane as a
meromorphic funcion. Its poles are negative rational numbers. The maximum pole is denoted by (−λ), and
λ is the RLCT of the model with regard to K(w).

We refer to the above complex function ζ(z) as the zeta function of learning theory. In general, the RLCT
is determined by the triplet that consists of the true distribution, the model, and the prior: (q, p, φ). If the
prior becomes zero or infinity on K−1(0), it affects the RLCT; otherwise, the RLCT is not affected by the
prior and becomes the maximum pole of the following zeta function of learning theory.

ζ(z) =
∫

dwK(w)z. (11)
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We refer to the RLCT determined by the maximum pole of the above as the RLCT with regard to K(w).

When the model is regular, K−1(0) = {w0} is a point in the parameter space, and we can expand K(w)
around w0 as

K(w) = (w − w0)T H(w∗)(w − w0), (12)

where w∗ exists in the neighborhood of w0 and H(w) is the Hessian matrix of K(w). Note that K(w0) =
∇K(w0) = 0 holds in the regular case. It is a quadratic form and there is a diffeomorphism w = f(u) such
that

K(f(u)) = u2
1 + . . . + u2

d. (13)

By using this representation, we immediately obtain its RLCT from the definition: d/2. However, in general,
the averaged error function cannot be expanded as a quadratic form since K−1(0) is not a point. If the prior
satisfies 0 < φ(w) < ∞ for any w ∈ K−1(0), d/2 is an upper bound of the RLCT and its tightness is often
vacuous. Watanabe had resolved this issue by using resolution of singularities (Hironaka, 1964) for K−1(0)
(Watanabe, 2001; 2010). Thus, we have the following form even if the model is singular. There is a manifold
M and birational map g : M → W such that

K(g(u)) = u2k1
1 . . . u2kd

d , (14)
|g′(u)| = uh1

1 . . . uhd

d . (15)

This is called the normal crossing form. Based on this form, the asymptotic behaviors of the free energy and
the Bayesian generalization error have been proved.
Theorem 3.1. Let λ be the RLCT with regard to K(w). The free energy Fn and the Bayesian generalization
error Gn satisfies

Fn = nSn + λ log n + Op(log log n), (16)

E[Gn] = λ

n
+ o

(
1
n

)
. (17)

The proof of the above facts and the details of the singular learning theory are described in Watanabe (2009)
and Watanabe (2018). As mentioned in section 2, there is no standard method for deterministic construction
of M and g; thus, prior works have found them or resolved relaxed cases to derive an upper bound of the
RLCTs. For example, Aoyagi & Watanabe (2005) clarified the exact value of the RLCT for the three-layered
and linear neural network by constructing resolution of singularity.
Definition 3.2 (RLCT of Reduced Rank Regression). Consider a three-layered and linear neural net-
work (a.k.a. reduced rank regression) with N -dimensonal input, H-dimensional intermediate layer, and
M -dimensional output. Let U and V be real matrices whose sizes are M × H and H × N , respectively; they
are the weight matrices of the model. The true parameters with regard to U and V are denoted by U0 and
V 0, respectively. A zeta function of learning theory is defined as follows:

ζR(z) =
∫∫

dUdV ‖UV − U0V 0‖2z. (18)

It is holomorphic in <(z) > 0 and can be analytically continued as a meromorphic function on the entire
complex plain. The maximum pole of ζR(z) is denoted by (−λR). Then, λR is called the RLCT of three-
layered and linear neural network.
Theorem 3.2 (Aoyagi). Let r be the true rank: r = rank(U0V 0). The RLCT λR is obtained as follows:

1. If M + r ≦ N + H and N + r ≦ M + H and H + r ≦ N + M

(a) and N + M + H + r is even,

λR = 1
8

{2(H + r)(N + M) − (N − M)2 − (H + r)2}. (19)
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(b) and N + M + H + r is odd,

λR = 1
8

{2(H + r)(N + M) − (N − M)2 − (H + r)2 + 1}. (20)

2. If N + H < M + r,

λR = 1
2

{HN + r(M − H)}. (21)

3. If M + H < N + r,

λR = 1
2

{HM + r(N − H)}. (22)

4. Otherwise, i.e. if N + M < H + r,

λR = 1
2

N(M + K). (23)

We aim to transform K(w) into a normal crossing form and relax K(w) to derive an upper bound of the
RLCT of PCBM.

4 Main Theorem

Let N , H, and M be the dimensions of the output, hidden layer, and input, respectively. The hidden layer is
decomposed by H1-dimensional learnable units and H2-dimensional observable concepts, and H = H1 + H2
holds. The true dimension of the learnable units is denoted by H0

1 .

Let x ∈ RN , c ∈ RH2 , and y ∈ RM , respectively. Define A and B as real matrices whose sizes are M × H
and H × N . We consider the block matrices of A and B. A1, A2, B1, and B2 denote matrices whose sizes
are M × H1, M × H2, H1 × N , and H2 × N , respectively. Assume that A is horizontally concatenated by
A1 and A2 and B is vertically concatenated by B1 and B2; A = [A1, A2] and B = [B1; B2]. Similarly, by
replacing H1 to H0

1 , we define matrices and their block-decomposed representation as A0 := [A0
1, A0

2] and
B0 := [B0

1 ; B0
2 ]. They are the true parameters corresponding to A = [A1, A2] and B = [B1; B2], respectively.

In the following, the input x is observable, w = (A, B) is a parameter and the output y and concept c is
randomly generated by the data-generating distribution conditioned by x. ‖·‖ of a matrix is denoted by a
Frobenius norm.

Here, along with Definition 3.1, we define the RLCT of PCBM as follows.
Definition 4.1 (RLCT of PCBM). Let (−λP) be the maximum pole of the following complex function
z 7→ ζ(z),

ζ(z) =
∫∫

dAdB(‖AB − A0B0‖2 + ‖B2 − B0
2‖2)z, (24)

where ζ(z) is holomorphic on <(z) > 0 and can be analytically continued on the entire complex plane as a
meromorphic funcion. Then, λP represents the RLCT of PCBM.

It is immediately derived that λP is a positive rational number. In this article, we prove the following
theorem.
Theorem 4.1 (Main Theorem). The RLCT of PCBM λP satisfies the following inequality:

λP ≦ λR(M, H1, N, rank(A0
1B0

1)) + H2(M + N)
2

, (25)

where λR(N, H1, M, r) is the RLCT of reduced rank regression in Theorem 3.2 when the dimensions of the
inputs, hidden layer, and outputs are N , H1, and M , respectively, and the true rank is r.
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We prove the above theorem in appendix A. As an application of the main theorem, we derive an upper
bound of the Bayesian generalization error in PCBM.
Theorem 4.2 (Bayesian Generalization Error in PCBM). We define the probability distributions of (y, c)
conditioned by x

q(y, c|x) ∝ exp
(

−1
2

‖y − A0B0x‖2
)

exp
(

−1
2

‖c − B0x‖2
)

, (26)

p(y, c|A, B, x) ∝ exp
(

−1
2

‖y − ABx‖2
)

exp
(

−1
2

‖c − Bx‖2
)

. (27)

Further, let φ(A, B) be a prior distribution whose density is positive and bounded on K(A, B) = 0, where
K(A, B) = DKL(q‖p). Then, the expected generalization error E[Gn] asymptotically has the following upper
bound:

E[Gn] ≦ 1
n

(
λR(M, H1, N, rank(A0

1B0
1)) + H2(M + N)

2

)
+ o

(
1
n

)
. (28)

If Theorem 4.1 is proved, Theorem 4.2 is immediately obtained. Therefore, we set Theorem 4.1 as the main
theorem of this paper.

5 Discussion

We discuss the main result of this paper from six points of view as well as the remaining issues. First,
we focus the other criterion of Bayesian inference: the marginal likelihood. In this paper, we analyzed the
RLCT of PCBM with a three-layered and linear architecture, which resulted in obtaining Theorem 4.2; the
theoretical behavior of the Bayesian generalization error is clarified. In addition, we derive the upper bound
of the free energy Fn. According to Theorem 3.1, we have

Fn = nSn + λP log n + Op(log log n), (29)

where λP is the RLCT in Theorem 4.1 and Sn is the empirical entropy. Thus, we have the following
inequality: an upper bound of the free energy in PCBM.

Fn − nSn ≦
[
λR(M, H1, N, rank(A0

1B0
1)) + H2(M + N)

2

]
log n + Op(log log n). (30)

There exists an information criterion that uses RLCTs: sBIC (Drton & Plummer, 2017). Further, the non-
trivial upper bound of an RLCT is useful for approximating the free energy by sBIC (Drton & Plummer,
2017; Drton et al., 2017). PCBM is an interpretable machine learning model; thus, it can be applied to not
only prediction of unknown data but also explanation of phenomenon, i.e., knowledge discovery. Evaluation
based on marginal likelihood is conducted in knowledge discovery (Good et al., 1966; Schwarz, 1978). Hence,
our result also contributes resolving the model-selection problems of PCBM.

Next, we consider that there is a potential expansion of our main result. The Bayesian generalization error
depends on the model with regard to the predictive distribution:

p∗(y, c|x) =
∫∫

dAdBp(y, c|A, B, x)φ∗(A, B|Y n, Cn, Xn), (31)

where Y n, Cn, and Xn are the dataset of the output, concept, and input, respectively. If the posterior
distribution was a delta distribution whose mass was on an estimator (Â, B̂), the predictive one would be
the model whose parameter is the estimator:

p∗(y, c|x) =
∫∫

dAdBp(y, c|A, B, x)δ(Â, B̂) (32)

= p(y, c|Â, B̂, x). (33)
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Thus, the Bayesian predictive distribution namely includes point estimation. Recently, many neural networks
are trained by parameter optimization with mini-batch stochastic gradient descent (SGD). We believe that
it is an important issue what is the difference between the generalization errors of the Bayesian and other
point estimations. There are many theoretical facts that the Bayesian posterior distribution dominates the
stationary distribution of the parameter optimized by the mini-batch SGD (Şimşekli, 2017; Mandt et al.,
2017; Smith et al., 2018). Besides, Furman and Lau empirically demonstrated that RLCT measures the
model capacity and complexity of neural network for the modern scale at least in the case where the activa-
tions are linear (Furman & Lau, 2024) effectively via stochastic gradient Langevin dynamics (Welling & Teh,
2011; Lau et al., 2023). Hence, the method based on singular learning theory, which analyzes the Bayesian
generalization error through RLCTs, has a probability of contributing to the generalization error evaluation
of learning by the mini-batch SGD.

Although we treat a three-layered and linear neural network, we consider a potential application to transfer
learning. There is a method for constructing features from a state-of-the-art deep neural network, including
vectors in some middle layers in the context of transfer learning (Yosinski et al., 2014). Here, the original
input is transformed to the feature vector through the frozen deep network. Using these features as inputs of
three-layered and linear PCBM and learning it, our main result can be applied for its Bayesian generalization
error, which corresponds to connecting the PCBM to the last layer of the frozen deep network and learning
weights in the PCBM part, where we consider transferring the trained and frozen network to other domains
and adding interpretability using concepts. In practice, the efficiency and accuracy of such a method needs
to be evaluated by numerical experiments; however, we only show the above potential application because
this work aims at the theoretical analysis of the Bayesian generalization error.

The main theorem suggests that PCBM should outperform CBM. In the previous research
(Hayashi & Sawada, 2023), the exact RLCT of CBM λC is clarified for the three-layered and linear CBM:
λC = H(M+N)

2 , where H is the number of units in the intermediate layer and equal to the dimension of
the concept. Besides, since λR(M, H1, N, r) is the RLCT of the three-layered and linear neural network, its
trivial upper bound is H1(M+N)

2 : a half of the parameter dimension. Therefore,

λP ≦ λR(M, H1, N, r′) + H2(M + N)
2

(34)

≦ H1(M + N)
2

+ H2(M + N)
2

(35)

= H(M + N)
2

(36)

= λC (37)

holds, where r′ = rank(A0
1B0

1) in Theorem 4.1. Let GC and GP be the expected Bayesian generalization
error in CBM and PCBM, respectively. Then, we have{

GP = λP
n + o

( 1
n

)
,

GC = λC
n + o

( 1
n

)
.

(38)

Because λP ≦ λC,

GP ≦ GC + o

(
1
n

)
. (39)

Therefore, the Bayesian generalization error in PCBM is less than that in CBM. We have the following
decomposition

λC = H1(M + N)
2

+ H2(M + N)
2

. (40)

By replacing the first term, the right-hand side becomes an upper bound in Theorem 4.1 and it is less than
the left-hand side: the RLCT of CBM satisfies

λC ≧ λR(M, H1, N, r′) + H2(M + N)
2

. (41)
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Since this replacement makes the H1-dimensional concept unsupervised (a.k.a. tacit) in CBM, i.e., construct-
ing PCBM, the structure of PCBM improves the generalization performance compared to that of CBM. This
is because the supervised (a.k.a. explicit) concepts are partially given in the middle layer of PCBM. In addi-
tion, we can find a lower bound of the degree of the generalization performance improvement λC − λP. The
following corollary is immediately proved because of the above discussion and Theorems 4.1 and 4.2.
Corollary 5.1 (Lower Bound of Generalization Error Difference between CBM and PCBM). In a three-
layered neural network with N -dimensional input, H-dimensional middle layer, and M -dimensional output,
the expected Bayesian generalization error is at least

GC − GP ≧ 1
n

[
H1(M + N)

2
− λR(M, H1, N, r′)

]
+ o

(
1
n

)
(42)

smaller for PCBM, which gives the observations for only the H2 dimension of the middle layer, than for
CBM, which gives the observations for all of the middle layers, where H1 = H − H2.

Note that the dimensions of observation in PCBM and CBM are different because the numbers of supervised
concepts in them do not eqaul. We can use this corollary to decrease the concept dimension when we plan
the dataset collection. This is just a result for shallow networks; however, it contributes the foundation
to clarify the effect of the concept bottleneck structure for model prediction performance. Indeed, some
experimental examinations demonstrate that PCBM and its variant (such as CBM-AUC) outperform CBM
(Sawada & Nakamura, 2022; Li et al., 2022; Lu et al., 2021; Zhang et al., 2022).

In the above paragraph, we showed a perspective of the network structure for the upper bound in Theorem
4.1. There exists another point of view: a direct interpretation of it. In PCBM, we train both the part of
tacit concepts and that of explicit ones, simultaneously. According to the proof of the main theorem in the
appendix A, our upper bound is the RLCT with regard to the averaged error function

K(A, B) = ‖A1B1 − A0
1B0

1‖2 + ‖A2B2 − A0
2B0

2‖2 + ‖B2 − B0
2‖2. (43)

We can refer it to the following model called the upper model. This model separately learns the part of
tacit concepts and that of explicit ones. The former is a neural network whose averaged error function
is ‖A1B1 − A0

1B0
1‖2: a three-layered and linear neural network, and the latter is another neural network

whose averaged error function is ‖A2B2 − A0
2B0

2‖2 + ‖B2 − B0
2‖2: a CBM. In the upper model, the former

and latter are independent since there is no intersection of parameters, i.e., the former only depends on
(A1, B1) and the latter on (A2, B2). Hence, our main result shows that PCBM is preferred to the upper
model for generalization. The upper model is just artificial; however, the inequality of Theorem 4.1 suggests
that simultaneous training is better than separately training (multi-stage estimation) such as independent
and sequential CBM (Koh et al., 2020). Indeed, similar phenomenon have been observed in constructing
graphical models (Sawada & Hontani, 2012; Hontani et al., 2013), representation learning (Collobert et al.,
2011; Krizhevsky et al., 2012), and pose estimation (Tobeta et al., 2022).

We consider the data type of the outputs and concepts. The main theorem assumes that the objective
variable (output) and concept are real vectors. However, categorical varibales can be outputs and concepts
like wing color in a bird species classification task (Koh et al., 2020). The prior study concerning the RLCT
of CBM (Hayashi & Sawada, 2023) clarified the asymptotic Bayesian generalization error in CBM when not
only the output and concept are real but also when at least one of them is categorical. According to this
result, we derive how the upper bound of the RLCT in the main theorem behaves if the data type changes.
The upper bound has two terms: the RLCT of reduced rank regression for the tacit concept and that of
CBM for the explicit concept. Let λ1 and λ2 be the first and second term of the upper bound in Theorem
4.1: {

λ1 = λR(M, H1, N, r′),
λ2 = H2(M+N)

2 .
(44)

λ1 depends on only the type of the output since all concepts in this part are unsupervised. On the other
hand, λ2 is determined by the type of the concept as well as that of the output. From the probability
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distribution point of view, the source distribution is replaced from Gaussian to categorical in Theorem 4.2
if categorical variables are generated. Hence, we should also replace the zeta function defining the RLCT in
Definition 4.1 to the appropriate form for the KL divergence between categorical distributions. Meanwhile,
concepts can be binary vectors such as birds’ features e.g., whether the wing is black or not. In this case, the
concept part of the data-generating distribution is replaced from Gaussian to Bernoulli. By using Corollaries
4.1 and 4.2 in (Hayashi & Sawada, 2023), we immediately obtain the following result.
Corollary 5.2. Let Hr

2 and Hc
2 be the dimension of the real and categorical concept, respectively. The

dimension of the real and categorical output are denoted by M r and M c. Then, we have

λ1 = λR(M r + M c − 1, H1, N, r′), (45)

λ2 = 1
2

(Hr
2 + Hc

2)(M r + M c + N − 1), (46)

i.e., the following holds:

λP ≦ λR(M r + M c − 1, H1, N, r′) + 1
2

(Hr
2 + Hc

2)(M r + M c + N − 1). (47)

Therefore, we can expand our main result to categorical data.

Lastly, remaining problems are discussed. As mentioned above, it is important to clarify the difference
between the generalization error of Bayesian inference and that of optimization by mini-batch SGD. This
research aims to perform the theoretical analysis of the RLCT; thus, numerical behaviors have not been
demonstrated. The other issues are as follows. Our result is suitable for three-layered and linear architectures.
For the shallowness, the RLCT of the deep linear neural network has been clarified in (Aoyagi, 2024).
For the linearity, some non-linear activations are studied for usual neural networks in the case of three-
layered architectures (Watanabe, 2001; Tanaka & Watanabe, 2020). Besides, Vandermonde-matrix-type
singularities have been analyzed to establish a multi-purpose resolution method (Aoyagi, 2010b; 2019).
However, these prior results are not for PCBM. It is non-trivial whether these works can be applied to deep
and non-linear PCBM. In addition, when the activations are non-linear, the structure of K−1(0) and its
singularities become complicated even if the network is shallow. Therefore, there are challenging problems
for the shallowness and linearity. The other issue is clarifying the theoretical generalization performance
of PCBM variants and how different it is from that of PCBM. There are other PCBM variants such as
CBM-AUC (Sawada & Nakamura, 2022), explicit and implicit coupling (Lu et al., 2021), and decoupling
(Zhang et al., 2022). They have various structures. For example, in CBM-AUC, they add a regularization
term that makes concepts more interpretable using SENN to the loss function. If the main loss is based on the
likelihood, the regularization term is referred to the prior. However, SENN has some derivative restrictions
as a regularization term and it is non-trivial to find a distribution corresponding to the restriction, making
it difficult to ascribe the generalization error analysis of CBM-AUC to the singular learning theory.

6 Conclusion

In this paper, we mathematically derived an upper bound of the real log canonical threshold (RLCT) for
partical concept bottleneck model (PCBM) and a theoretical upper bound of the Bayesian generalization
error and the free energy. Further, we showed that PCBM outperforms the conventional concept bottleneck
model (CBM) in terms of generalization and provided a lower bound of the Bayesian generalization error
difference between CBM and PCBM.
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A Proof of Main Theorem

Proof. According to Definition 4.1, the RLCT of PCBM is determined by the zero points K−1(0) of the
averaged error function

K(A, B) = ‖AB − A0B0‖2 + ‖B2 − B0
2‖2. (48)

Thus, considering order isomorphism of RLCTs, we can derive an upper bound of the RLCT by evaluating
the averaged error function.

Decomposing matrices, we have

‖AB − A0B0‖2 (49)
= ‖[A1, A2][B1; B2] − [A0

1, A0
2][B0

1 ; B0
2 ]‖2 (50)

= ‖A1B1 + A2B2 − (A0
1B0

1 + A0
2B0

2)‖2. (51)

By using the triangle inequality, we obtain

‖AB − A0B0‖2 + ‖B2 − B0
2‖2 (52)

≦ ‖A1B1 − A0
1B0

1‖2 + ‖A2B2 − A0
2B0

2‖2 + ‖B2 − B0
2‖2. (53)

Let K(A, B) be the right-hand side of the above. Considering K(A, B) = 0, we have the following joint
equation: 

‖A1B1 − A0
1B0

1‖2 = 0,

‖A2B2 − A0
2B0

2‖2 = 0,

‖B2 − B0
2‖2 = 0.

(54)

Using the third B2 = B0
2 , we solve the second equation and

‖A1B1 − A0
1B0

1‖2 = 0,

‖A2 − A0
2‖2 = 0,

‖B2 − B0
2‖2 = 0

(55)

holds. Let λ1 and λ2 be the RLCT with regard to ‖A1B1−A0
1B0

1‖2 and ‖A2−A0
2‖2+‖B2−B0

2‖2, respectively.
Since the parameter in the first equation (A1, B1) and that in the second and third (A2, B2) are independent,
the RLCT with regard to K(A, B) becomes the sum of λ1 and λ2. For λ1, by using Theorem 3.2, we have

λ1 = λR(M, H1, N, rank(A0
1B0

1)). (56)

For λ2, the set of the zero point is {(A0
2, B0

2)}, i.e., the corresponding model is regular. Thus, λ2 is equal to
a half of the dimension:

λ2 = H2(M + N)
2

. (57)

Therefore, the RLCT with regard to K(A, B) is denoted by λP, and

λP = λR(M, H1, N, rank(A0
1B0

1)) + H2(M + N)
2

(58)

holds. Because of K(A, B) ≦ K(A, B), i.e., a λP ≦ λP, we obtain the main theorem:

λP ≦ λR(M, H1, N, r′) + H2(M + N)
2

. (59)
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