EXPLORING SOURCE VIEW CAPABILITY: IMPROVE GENERALIZABLE 3D RECONSTRUCTION WITH MULTI VIEW CONTEXT FROM SOURCE VIEWS

Anonymous authors

Paper under double-blind review

Abstract

Recent generalizable 3D reconstruction methods have been facing challenges in constructing geometry-consistent 3D features. This is primarily due to the source views conveying redundant information to the sampled 3D points that they do not observe, resulting in the samples struggling to distinguish the correct observations of them. We attribute this issue to that canonical supervision methods focus solely on the rendered target view from a single viewpoint, overlooking source views that capture the scene from different perspectives. With this insight, we pioneer a supervision method for source views, which can be applied alongside existing target view supervision in each iteration. Specifically, we define the Learned Geometry of the Scene (LGS) as source-view depth distributions, which are derived from the weights of source views for each sampled 3D point. To regularize the LGS to better model the real-world geometry, we introduce a novel unsupervised learning objective, which mitigates the optimization bias in existing objectives and ensures the LGS is more concentrated near the real-world geometry surface. Regularizing the LGS effectively helps filter out irrelevant source views for each sampled 3D point, and thus noticeably improves the performance of backbones. Mathematical proof is provided to validate the proposed objective, and extensive experiments demonstrate that our supervision method significantly improves both NeRF- and 3DGS-based backbones with negligible computation overhead.

031 032

033 034

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

1 INTRODUCTION

Starting with Neural Radiance Fields (NeRF) (Mildenhall et al., 2021), vast amount of per sence optimization methods (Liu et al., 2020; Barron et al., 2022; Kerbl et al., 2023; Yu et al., 2024) spring out as the protagonist of 3D reconstruction in recent years. However, these methods overfit to each scene and can not generalize to new ones, limiting their possible applications. As an alternative, generalizable reconstruction methods synthesize novel views on the fly of few source views without per-scene optimization (Wang et al., 2021; Charatan et al., 2024). These methods typically aggregate visual features extracted from source views to produce 3D feature for each sampled 3D point, and render each target-view pixel by integrating the feature of 3D points projecting on it.

Though there has been adequate research for generalizable reconstruction methods (Yu et al., 2021; 043 Wang et al., 2021; Charatan et al., 2024; Wewer et al., 2024), they continue to struggle with construct-044 ing precise 3D features for sampled 3D points because of including irrelevant source views during 045 the sample-wise feature aggregation, which hinders target view rendering. As shown in Figure 1a, 046 irrelevant source views may prevent the 3D feature from paying attention to correct views, or mislead 047 it to denote an occupied space. This problem is derived from the absence of the geometric constraint, 048 that a source-view image should be only relevant to the 3D points lying around the observed geometry surface. Meeting this constraint requires 3D reasoning to determine the visibility of a 3D point from various viewpoints. To tackle this problem, most methods adopt a self-adaptive manner to satisfy the 051 geometric constraint implicitly, which either utilize costly 3D-CNN to introduce global 3D context (Johari et al., 2022; Gu et al., 2020; Chang et al., 2022; Liu et al., 2022) to refine the 3D features, or 052 powerful modules such as transformers for source-view aggregation (Ren et al., 2023; Wang et al., 2022; Suhail et al., 2022; Chen et al., 2024). Recent methods take one step forward by explicitly

064 Figure 1: (a) Example of irrelevant source views hindering sample-wise source-view aggregation. 065 For the sampled 3D point on the surface, source view 1 may prevent its feature from paying attention to source view 3. For the sampled 3D point in the vacancy, source view 2 provides information of a 066 solid surface, which may mislead its feature to denote an occupied space. (b) The discrete depth 067 distribution of a source ray. We register the samples collected on target rays to source rays. After 068 registration, the value of a sample is the weight of the source view for it. (c) Supervising the samples 069 from different source views is 3D-context-aware by engaging samples which are not on the same 070 plane. Consider plane ABC and ACD as not overlapped, and thus point A, B, C, D compose a 3D 071 tetrahedron. Simultaneously constraining source rays engages A, B, C, D mediately. 072

073

predicting the visibility of the sampled 3D points to source views to guide source-view aggregation
 (Huang et al., 2023; Liu et al., 2022).

Different from all works above, we explore a brand new approach to satisfy the geometric constraint. We propose to utilize the geometric constraint to regularize the Learned Geometry of the Scene (LGS), which we define as depth distributions of source-view pixels. Specifically, with the widely used weighted pooling mechanism for source-view aggregation (Wang et al., 2021; Liu et al., 2022; Charatan et al., 2024; Liu et al., 2024), we denote the visibility of the sampled 3D points to source views as weights in weighted pooling, and transform the them into a discrete depth distribution for each source-view pixel ray (shorten as *source rays* in the following discussion), as illustrated in Figure 1b. By regularizing the depth distributions to be pulse-like through an unsupervised learning objective, the geometric constraint can be satisfied without any geometric ground truth.

However, for the regularization of the discrete depth distribution, we find that the optimization bias of existing unsupervised learning objective (Barron et al., 2022) will lead to a gap between real-world geometry and the optimized LGS. This gap behaves as the pulse of the optimal distribution for the objective occurs tightly at certain sample, rather than the actual hitting surface of the ray (depicted in Figure 3b, and discussed in Section 3.3). To mitigate the optimization bias, we devise a novel unsupervised learning objective to regularize the discrete depth distribution, whose optimal solutions compose a field that contains the real-world distribution, so that the object surface can be modeled in a regressive manner continuously, as depicted in Figure 3c.

OP3 The simultaneous supervision with source views from crossed perspectives engages the sampled 3D points by multi-view 3D context, as illustrated in Figure 1c. Benefiting from directly supervising the source-view aggregation process, our proposed supervision is algebraically interpretable, and can be carried alongside existing target view supervision with one target view rendering in a plug-and-play manner. To summarize our contributions in a few words:

- To the best of our knowledge, we are the first to propose source-view supervision for generalizable 3D reconstruction, which can be carried along target view supervision without additional rendering. Our supervision method filters out irrelevant source views for the sampled 3D points by regularizing the Learned Geometry of the Scene.
- We devise a novel unsupervised learning objective to regularize the discrete depth distributions of source-view pixels to be pulse-like, which mitigates the optimization bias by ensuring its optimal solutions to form a field that contains the real-world distribution.
- We provide mathematical proof to verify the devised learning objective, and extensive experiments demonstrate our proposed supervision method correctly encourages the confidence of the LGS, thereby improving the performance of both NeRF- and 3DGS-based backbones.

108 2 RELATED WORKS

110 **3D Reconstruction and Its Generalization.** 3D reconstruction, building the scene based on several 111 known views and corresponding camera parameters, has been long investigated as an important topic 112 in computer vision. Recently proposed NeRF (Mildenhall et al., 2021) and a mass of follow-up 113 studies (Barron et al., 2021; Chen et al., 2022; Hu et al., 2023; Barron et al., 2022; 2023; Kerbl et al., 114 2023; Yu et al., 2024) have drawn the community's attention to per-scene optimized reconstruction methods. Though there has already been methods that support fast per-scene training and rendering 115 (Wizadwongsa et al., 2021; Müller et al., 2022; Barron et al., 2023; Kerbl et al., 2023), they typically 116 still require minutes to train and densely captured known views, blocking their possible applications. 117 Meanwhile, inspired by NeRF, researchers start to combine radiance field with epipolar geometry 118 (Wang et al., 2021; Yu et al., 2021; Charatan et al., 2024) to form a new paradigm, which is so called 119 generalizable reconstruction. Alternative to per-scene optimized methods, generalizable methods 120 learn the common sense of vision and geometry to adapt to different scenes. Recent generalizable 121 reconstruction methods tend to apply transformer (Vaswani et al., 2017) in their networks to fuse 122 the feature of sampled 3D points and source views (Suhail et al., 2022; Ding et al., 2022; Ren et al., 123 2023), some of which even completely discard multi-layer perceptron (MLP) based volume rendering 124 (Wang et al., 2022). On the other hand, fully image-to-image methods propose to predict novel 125 views in a geometry-free manner (Sajjadi et al., 2022; Kulhánek et al., 2022). This paper follows the canonical 3D reconstruction framework (Wang et al., 2021), which builds understanding of the scene 126 with epipolar geometry. 127

128

Multi-View 3D Context. Awareness of multi-view 3D context is obliviously important for 3D 129 reconstruction. While early neural representation based works straightly embody the multi-view 130 context with epipolar geometry (Yu et al., 2021; Chen et al., 2021; Wang et al., 2021), recent 131 works inspired by surface reconstruction methods tend to refine the volume features with 3D-CNN 132 (Ding et al., 2022; Chang et al., 2022; Peng et al., 2022; Huang et al., 2023; Liu et al., 2024; Chen 133 et al., 2024). On the other hand, image-to-image methods propose to learn the 3D context in the 134 embedding space with a completely implicit manner (Sajjadi et al., 2022; Kulhánek et al., 2022). 135 Different from these works, we believe that source views could be utilized more than simply as input, 136 thus we propose to supervise the LGS derived from source views with geometric constraint. With 137 simultaneous constraint from different viewpoints, the 3D context is explicitly embedded into the proposed supervision without any costly 3D module like 3D-CNN, as depicted in Figure 1c. 138

139

Source-View Geometry in Generalizable Reconstruction. The most related works to this paper 140 are NeuRay (Liu et al., 2022) and its follow-up works (Huang et al., 2023), who try to explore the 141 geometric information of source views to constrain the generalizable reconstruction model. For 142 example, NeuRay assumes that the visibility of the sampled 3D points on the same source-view ray 143 follows the probability density function of a logistics distribution, and predicts the shape factors of 144 the logistics distribution to infer the weights of source views to samples explicitly. Such an approach 145 requires a specific network design, which performs well but cannot directly benefit other existing 146 generalizable reconstruction methods. However, our work is significantly distinct from NeuRay 147 and its follow-up works. What we propose is **not** a specific network design, but a plug-and-play 148 supervision method that improves the performance of both NeRF- and 3DGS-based generalizable 149 reconstruction backbones. Moreover, we propose a novel objective to mitigate the optimization 150 bias of the existing objective (Barron et al., 2022), which is the key of our method but has not been discussed by existing works to the best of our knowledge. 151

152 153

154

3 Method

Overview. We present Source-view Geometric Constraint (SGC), a novel source-view based supervision method to regularize the source-view *encoder* of generalizable reconstruction backbones to better model the real-world geometry, as the result improving the performance of backbones *decoding* the scene with either NeRF or 3DGS. We first introduce the pipeline of epipolar geometry based generalizable reconstruction methods in Section 3.1. Next, we present how SGC is applied to these backbones and improves their performance. Specifically, we explain how the LGS is efficiently derived from a given backbone in Section 3.2, and then we introduce how to regularize the LGS and mitigate the optimization bias issue with our devised unsupervised objective in Section 3.3.

Figure 2: **Pipeline of our source-view supervision method.** Our method directly supervises the source-view encoder of generalizable reconstruction methods with geometric constraint. Canonically, to encode source views and represent the scene, 3D points sampled in the space are projected to all source views with epipolar geometry for extracting local visual features. The visual features are then aggregated to produce 3D feature of the samples through weighted pooling. To apply our supervision method, we regard the weights as the visibility of the samples to source views, derive the depth distribution of source-view pixels from the weights with an efficient rearrangement algorithm and regularize the depth distributions to be pulse-like with our devised source-view geometric loss.

3.1 EPIPOLAR GEOMETRY BASED GENERALIZABLE 3D RECONSTRUCTION

Generalizable reconstruction methods render an unknown target view $\mathbf{I}_0 \in \mathbb{R}^{H \times W}$ based on Nknown source views $\{\mathbf{I}_i \in \mathbb{R}^{H \times W}\}_{i=1}^N$ and corresponding camera parameters $\{\mathbf{P}_i \in \mathbb{R}^{3 \times 4}\}_{i=0}^N$. Typically, the pipeline of generalizable reconstruction methods could be broken down as *encoder* and *decoder*, where the encoder fuse the visual features from source views to build a representation of the scene, and the decoder resolves the scene representation to produce novel observations.

Take ray casting based rendering pipelines (Wang et al., 2021; Liu et al., 2024) for example. As shown in Figure 2, rays $\{\mathbf{r}_j = \mathbf{o}_0 + t\mathbf{d}_j | \mathbf{o}_0, \mathbf{d}_j \in \mathbb{R}^3, t \in \mathbb{R}\}_{j=1}^{H \times W}$ are cast from target viewpoint o_0 (shorten as *target rays* in the following discussion) to imitate the observation of each target-view pixel. For each target ray, *n* samples $\{\mathbf{p}_j^k = \mathbf{o}_0 + t_k \mathbf{d}_j \in \mathbf{r}_j\}_{k=1}^n$ are collected and projected to source views by epipolar geometry to extract visual features. Formally, given $\mathbf{f}_{src}(\mathbf{p}) = [\mathbf{f}_1(\mathbf{p}), ..., \mathbf{f}_N(\mathbf{p})]^T$ denoting the corresponded visual features of sample $\mathbf{p} \in \mathbb{R}^3$ in *N* source views, a source-view aggregation mechanism is typically adopted,

$$\mathcal{M}_{\text{encode}} : \left(\mathbf{f}_{\text{src}}(\mathbf{p}), \{ \mathbf{P}_i \}_{i=0}^N \right) \mapsto \mathbf{V}(\mathbf{p}), \tag{1}$$

to obtain the 3D feature V(p) of sample p by aggregating source-view features, where V(p) is the encoded 3D representation of the scene, capable for embedding both appearance and geometry. Subsequently, sampling based rendering is performed by fusing samples on each target ray to decode the pixel color $c(\mathbf{r}_j)$, which could be denoted as,

$$\mathcal{M}_{\text{decode}} : \left\{ \mathbf{V}(\mathbf{p}_{j}^{k}) | \mathbf{p}_{j}^{k} \in \mathbf{r}_{j} \right\}_{k=1}^{n} \mapsto c(\mathbf{r}_{j}).$$

$$\tag{2}$$

210 211 212

213

209

203

204

181

182

183

185

186

187 188

189

3.2 THE LEARNED GEOMETRY OF THE SCENE

Canonically, generalizable reconstruction methods are supervised with target-view losses, which
 constrain samples on the same target ray to produce the right color and other properties such as depth.
 Since a ray is one-dimensional, supervision from a single viewpoint only embodies 1D context for

(a) The learned depth distribution of the source rays is (b) The optimal learned depth distribution regularized (c) The optimal learned depth distribution regularized not regularized with optimization bias without optimization bias

Figure 3: Blue/red denotes the learned/real-world geometry, and stem/line denotes corresponded discrete/continuous depth distribution. (a) If the learned depth distribution is not regularized, its 228 density can be scattered, indicating the network doesn't properly understand the real-world geometry. (b) The learned depth distribution is regularized with \mathcal{L}_{dist} (Barron et al., 2022), which introduces optimization bias. The gap between the optimal and real-world depth distribution indicates a strong geometric misunderstanding. (c) We mitigate the optimization bias by allowing the optimal solution of \mathcal{L}_{sgc} to regress the real-world surface with adjacent samples. Mitigating optimization bias indicates 233 the optimal solution of the regularization objective can model the real-world better.

234 235

225

226

227

229

230

231

232

236 the samples on the same target ray. The lack of 3D context in supervision leads to the weakness 237 in reasoning the visibility of the sampled 3D points to source views. To tackle this problem, we 238 propose to supervise the LGS with SGC. Concluding SGC in a sentence, we rule the discrete depth 239 distribution of each source-view pixel to be pulse-like.

240 There are multiple means to obtain the source-view depth distributions. The most straight forward 241 one is to carry additional rendering on source views with difference samples for each view. However, 242 this can lead to N times of computation overhead compared to a single target-view rendering. Such 243 an approach is infeasible for generalizable reconstruction models, which typically take days to train. 244

To this end, we propose a novel approach to the distributions by using the intermediate results during 245 target-view rendering. As shown in Figure 2, to derive the LGS of a given backbone for a specific 246 scene, we first denote the visibility of a sampled 3D point **p** to N source views as the weights $\mathbf{w}(\mathbf{p}) = [w_1(\mathbf{p}), ..., w_N(\mathbf{p})]^T \in \mathbb{R}^{N \times 1}$ of weighted pooling (Wang et al., 2021) for source-view 247 248 aggregation, where $w_i(\mathbf{p})$ denotes how much source view i contributes to $\mathbf{V}(\mathbf{p})$. With S samples 249 collected for representing the scene in total, a visibility matrix $\mathbf{W}_{v} = [\mathbf{w}(\mathbf{p}_{1}), ..., \mathbf{w}(\mathbf{p}_{S})] \in \mathbb{R}^{N \times S}$ 250 could be built as the explicit representation of the LGS. To regularize $\mathbf{W}_{\rm v}$, we have to rearrange $\mathbf{W}_{\rm v}$ 251 into depth distributions of source-view pixels, which we denote as $\mathbf{W}_{d} \in \mathbb{R}^{(N \times H \times W) \times L}$, where L 252 indicates the uniform length of all $N \times H \times W$ depth distributions.

253 However, the rearrangement is non-trivial since samples collected on target rays leads to irregular 254 sampling frequency of source rays, as a result of which L is inconsistent for source rays, resulting 255 in unfriendly computation for GPU. To tackle this problem, we propose to rearrange \mathbf{W}_{y} by the 256 depth-bins (the dashed cells in Figure 2) on each source ray, where the value of a bin indicates its 257 visibility to the source view, and each source ray shares the same number of bins. To save the page 258 for the coming discussion in Section 3.3, we suggest reader to further details in Appendix A.3.1. 259 Thanks to the efficient rearrangement algorithm, we can now obtain the depth distributions of each source ray alongside the rendering of target view with negligible computation overhead. In the next 260 section, we are going to introduce how to regularize the discrete depth distributions \mathbf{W}_{d} . 261

262 263

264 265

266

3.3 DISCRETE DEPTH DISTRIBUTION REGULARIZATION

DISCRETE DISTRIBUTION TO BE PULSE-LIKE 3.3.1

With L samples $\{\mathbf{p}_k\}_{k=1}^L$ of a source ray $\mathbf{r}_s = \mathbf{o}_i + t\mathbf{d}_s$ cast from source viewpoint \mathbf{o}_i , where 267 $t \in [a,b), i = 1, ..., N, s = 1, ..., N \times H \times W$, the discrete depth distribution of \mathbf{r}_s is defined as, 268 269

$$\mathcal{Q}(\mathbf{r}_s): q(\mathbf{p}_1), q(\mathbf{p}_2), \dots, q(\mathbf{p}_L),$$
(3)

where $q(\mathbf{p}_i)$ denotes the probability that the surface hit by \mathbf{r}_s lies around \mathbf{p}_i . With \mathbf{W}_d introduced in Section 3.2, we can straightly obtain $Q(\mathbf{r}_s)$ from any line of it. By default we suppose $Q(\mathbf{r}_s)$ regularized as a probability density function (PDF) that $q(\mathbf{p}_i)$ are non-negative and sum up to 1.

Ideally, with $L \to \infty$, $Q(\mathbf{r}_s)$ should be a pulse distribution whose peak occurs at the surface hit by \mathbf{r}_s . It could be easily regularized with the objective proposed by Barron et al. (2022),

$$\mathcal{L}_{\text{dist}} = \frac{1}{3} \sum_{i=1}^{L} q_i^2 (x_i - x_{i-1}) + \sum_{i=1}^{L} \sum_{j=1}^{L} q_i q_j |\frac{x_i + x_{i-1}}{2} - \frac{x_j + x_{j-1}}{2}|, \tag{4}$$

where q_i denotes $q(\mathbf{p}_i)$ for briefness, $a = x_0 < \cdots < x_L = b$ and $[x_{i-1}, x_i)$ denotes the interval containing \mathbf{p}_i . In the following discussion, we suppose the samples as linearly collected, by which we have $x_i = a + (b-a)\frac{i}{L}$. In this case, x_i represents just the relative instead of the actual position of the sample. We further exam this assumption in Appendix A.2.

3.3.2 SOURCE-VIEW GEOMETRIC CONSTRAINT OBJECTIVE

Optimization Bias from Optimal Condition. Despite $Q(\mathbf{r}_s)$ could be easily regularized in the ideal case, *L* is far smaller than ∞ in practice due to computational limitation, in which case Equation 4 would introduce optimization bias. More concretely, Barron et al. (2022) achieved Equation 4 from its continuous form with the assumption that q_i is consistent within each sample interval $[x_{i-1}, x_i)$. This is not satisfied in practice where $Q(\mathbf{r}_s)$ is discrete and sparse and thus being the root of the optimization bias. Denoting the interval length as $l = x_i - x_{i-1} = (b-a)/L$, Equation 4 could be reformed equivalently into,

292 293

295

310

311 312

313

276

277 278

283

284

$$\mathcal{L}_{\text{dist}} = \frac{l}{3} \left[\left(\sum_{i=1}^{L} q_i \right)^2 + \sum_{i=1}^{L} \sum_{j=1}^{L} q_i q_j |i-j| + 2 \sum_{i=1}^{L} \sum_{j=1}^{L} [|i-j| \ge 2] q_i q_j (|i-j|-1) \right], \quad (5)$$

where $\sum_{i=1}^{n} q_i$ is **constant** to be 1 for that $Q(\mathbf{r}_s)$ is regularized as a PDF, and $[|i-j| \ge 2] = 1$ if | $i-j| \ge 2$ and 0 otherwise. The optimal value of Equation 5 is l/3, which is achieve if and only if the last two terms in the square brackets are 0, or in other words, only one q_i is non-zero. As Figure 3b illustrates, such an optimal solution introduces geometric gap between the LGS and real-world geometry, because real-world surface rarely lies tightly to certain sample.

Mitigate Optimization Bias with Relaxed Optimal Condition. With the optimal solution of 301 Equation 5 unraveled, a solution to mitigate the optimization bias is straight forward. We modify the 302 optimal condition of Equation 5 to: there are at most two non-zero samples and they must be adjacent 303 to each other. With the new optimal condition, the real-world surface could be better approximated 304 with the continuous regression of adjacent samples on source rays, as depicted in Figure 3c. The 305 optimal value of the two non-zero samples q_i is left to the existing objectives like photometric loss to 306 decide. The last term of Equation 5 meets the new optimal condition well, while it's the second term 307 that introduces the optimization bias who reaches 0 only when there is at most one non-zero q_i . If we 308 directly remove the second term of Equation 5, it can be rewritten as,

$$\mathcal{L}_{\rm sgc} = \frac{l}{3} \left[\left(\sum_{i=1}^{L} q_i \right)^2 + \alpha \sum_{i=1}^{L} \sum_{j=1}^{L} [|i-j| \ge 2] q_i q_j (|i-j|-1) \right],\tag{6}$$

whose optimal condition is the one we devise, and α denotes a weight factor equalling 2 in Equation 5. Scaling up the whole objective by 3, Equation 6 can be further reformed as,

$$\mathcal{L}_{\rm sgc} = l \left[\sum_{i=1}^{L} q_i^2 + \sum_{i=1}^{L} \sum_{j=1}^{L} q_i q_j | i - j| + (\alpha - 1) \sum_{i=1}^{L} \sum_{j=1}^{L} [|i - j| \ge 2] q_i q_j (|i - j| - 1) \right].$$
(7)

Taking $\alpha = 1$ to remove the last term of Equation 7 for simplified computation, we adopt $\mathcal{L}_{sgc}^{\alpha=1}$ to regularize $\mathcal{Q}(\mathbf{r}_s)$, which we refer to as the SGC loss in the following discussion.

For thorough understanding of Section 3.3, we strongly suggest the readers to Appendix A.1 and A.2. The former provides another approach to devise $\mathcal{L}_{sgc}^{\alpha=1}$, and the latter exams the linear sampling assumption mentioned in Section 3.3.1. Furthermore, in Section 4.3 we present experimental evidence about why the optimal condition is important for the LGS regularization objective.

324 Table 1: Qualitative results of the NeRF-based backbone with SGC supervision. With GNT (Wang et al., 2022) being the backbone, our SGC supervised GNT is denoted as GNT+SGC(\mathcal{L}_{sgc}), while 326 $GNT+SGC(\mathcal{L}_{dist})$ denotes replacing \mathcal{L}_{sgc} with \mathcal{L}_{dist} . The \dagger indicates the result directly referenced from published papers (Wang et al., 2021; Liu et al., 2022; Cong et al., 2023). 327

328									
329			NeRF S	nthetic		Local	Light Field	l Fusion (L	LFF)
330		PSNR↑	SSIM↑	LPIPS↓	Avg↓	PSNR↑	SSIM↑	LPIPS↓	Avg↓
331	IBRNet†	26.73	0.908	0.101	0.040	25.17	0.813	0.200	0.064
332	NeuRayt	28.29	0.927	0.080	0.032	25.35	0.818	0.198	0.062
333	GNT	27.25	0.935	0.059	0.030	25.88	0.863	0.123	0.049
334	GNT-MOVE†	27.47	0.940	<u>0.056</u>	<u>0.029</u>	26.02	0.869	0.108	0.043
335	$\text{GNT+SGC}(\mathcal{L}_{\rm dist})$	27.31	0.935	0.057	0.030	25.85	0.861	0.125	0.049
336	GNT+SGC(\mathcal{L}_{sgc}), ours	<u>27.87</u>	<u>0.939</u>	0.054	0.027	<u>25.96</u>	<u>0.867</u>	<u>0.119</u>	0.047

Table 2: Qualitative results of the 3DGS-based backbone with SGC supervision. With pixelSplat (Charatan et al., 2024) being the backbone, metrics of both small and large baseline of source views are listed, with $+SGC(\mathcal{L}_{dist})$ denoting supervising the backbone with the distortion loss proposed by Barron et al. (2022), and +SGC(\mathcal{L}_{sgc}) denoting supervising the backbone with our proposed SGC loss. Experiments are conducted on the DTU dataset. See discussion in Section 4.2

	Small Baseline				Large Baseline				
	PSNR ↑	SSIM↑	LPIPS↓	Avg↓	PSNR ↑	SSIM↑	LPIPS↓	Avg↓	
pixelSplat	26.88	0.777	0.197	0.058	21.68	0.645	0.334	0.111	
$+SGC(\mathcal{L}_{dist})$	27.20	0.778	0.199	0.057	21.87	0.647	0.333	0.109	
+SGC(\mathcal{L}_{sgc}), ours	27.27	0.783	0.198	0.056	22.02	0.650	0.333	0.107	

EXPERIMENT 4

336 337 338

339

340

341

342 343

345

351

352 353

354

355

356

357 358

359 360

Overview. We conduct experiments on both NeRF- and 3DGS-based backbones to perform how the proposed SGC supervision improves their performance. Section 4.1 and 4.2 presents experiments on NeRF- and 3DGS-based backbones, respectively. And we discussion why the convergence condition of the regularization objective is vital (and other findings) from the curve of the LGS regularization objective throughout the training span in Section 4.3. Ablations study is provided in Appendix A.4.

4.1 NERF-BASED BACKBONE

Implementation Details. For the NeRF-based backbone, we choose GNT (Wang et al., 2022), a fully 361 transformer-based network that utilizes subtraction efficient attention (Zhao et al., 2021) to encode 362 source views for each sample, and decodes the target view with transformer fusing the features on the target rays. We believe such a full transformer network is representative as a NeRF-based 364 generalizable reconstruction method. We attach $\mathcal{L}_{sgc}^{\alpha=1}$ with a weight of 10^{-3} to the existing loss and train the network from scratch. Further experimental details could be found in Appendix A.3.3. 365 366

Datasets and Metrics. Following Wang et al. (2022), we perform training on 7 indoor and outdoor, 367 realistic and synthetic datasets: Google Scanned Object (Downs et al., 2022), RealEstate10K (Zhou 368 et al., 2018), the Spaces dataset (Flynn et al., 2019), and handheld phone captures (Mildenhall et al., 369 2019). For evaluation, NeRF Synthetic (Mildenhall et al., 2021) and LLFF (Mildenhall et al., 2019) 370 datasets are adopted. We report average metrics across all scenes, including Peak Signal-to-Noise 371 Ratio (PSNR), Structural Similarity Index Measure (SSIM) (Wang et al., 2004), and the Learned 372 Perceptual Image Patch Similarities (LPIPS) (Zhang et al., 2018). The geometric mean of 10^{-PSNR/10}, 373 $\sqrt{1-\text{SSIM}}$ and LPIPS is also reported as a summary of the three metrics. 374

375 **Result.** As shown in Table 1, GNT+SGC(\mathcal{L}_{sgc}) significantly outperforms the vanilla GNT. What's more, on the NeRF Synthetic dataset, GNT+ $\hat{S}GC(\mathcal{L}_{sgc})$ even visibly surpasses GNT-MOVE (Cong 376 et al., 2023), the upgraded version of GNT which equips the mixture-of-export inspired by large 377 language models and an additional spatial consistency loss at the same time. Our proposed SGC supervision is concise, elegant while being more effective than GNT-MOVE, indicating the superiority of our method. To intuitively see how the SGC supervision improves GNT, we show evaluation renderings in Figure 4. It's clear to see that GNT tends to produce defective rendering with hollows on objects or blurs around edges, which are significantly improved with our SGC supervision. Meanwhile, replacing \mathcal{L}_{sgc} with \mathcal{L}_{dist} yields no difference of performance from the vanilla GNT, which strongly advocates the importance of \mathcal{L}_{sgc} . Depth renderings in Figure 5 intuitively express how the defects in color rendering are formed.

Figure 4: Rendering results of NeRF-based experiments, where GNT is our NeRF-based backbone, +SGC(\mathcal{L}_{dist}) denotes applying SGC to the backbone with the distortion loss (Barron et al., 2022), and +SGC(\mathcal{L}_{sgc}) denotes applying SGC to the backbone with our proposed SGC loss. Yellow arrows in the last 3 columns are devoted to point out the alleviated local defects.

Figure 5: Depth rendering results of NeRF-based experiments, visualized by the the weight-averaged position of samples on each target ray. The depth and color rendering echos well, where GNT and GNT+SGC(\mathcal{L}_{dist}) produce hollow in the corresponding region of both domains, while our method produces well rendered color and smoothed depth. The results demonstrate how our SGC supervision improves GNT by equipping it with a precise sense of geometry.

Figure 6: **Rendering results of 3DGS-based experiments.** Case names are kept consistent with Table 2. The SGC supervised pixelSplat (either implemented with \mathcal{L}_{dist} or \mathcal{L}_{sgc}) succeeds to help render sharper and more reasonable results compared to the vanilla pixelSplat.

4.2 3DGS-BASED BACKBONE

Implementation Details. We have pixelSplat (Charatan et al., 2024), the most representative 3DGS-458 based generalizable reconstruction method as the 3DGS-based backbone. Specifically, for encoding 459 source views, pixelSplat adopts attention mechanism for each pixel with the pixels on its epipolar 460 line in the other view, which is a different paradigm from GNT. We apply our SGC loss on the 461 intermediate attention vectors that embeds depth information, and attach the SGC loss by a weight of 462 10^{-3} to the existing objectives. More experimental details can be found in Appendix A.3.4.

Datasets and Metrics. Since the RealEstate10k dataset (Zhou et al., 2018), which is the original dataset for training pixelSplat in Charatan et al. (2024), has been used for training the NeRF-based backbone in this paper, we perform experiments for the 3DGS-based backbone on the challenging DTU dataset (Jensen et al., 2014) in order to expand the field of evaluation data for our method. The partition of training and evaluation sets follows canonical multi-view stereo works (Yao et al., 2018). We use the same evaluation metrics as Section 4.1.

Results. We show qualitative results in Table 2. The SGC enhanced backbones significantly improves over the vanilla one in both small and large baseline settings, where we define the small baseline as a source-view index distance of 2 (as DTU camera moves like a snake), and the large baseline as the source-view index distance of 6.

Discussion. It's worth noting that replacing \mathcal{L}_{sgc} with \mathcal{L}_{dist} has a more slight impact on pixelSplat than GNT. We attribute this to the different sampling strategies adopted by the two methods for encoding the scene, that GNT samples on 3D target rays, while pixelSplat samples on the epipolar lines in the 2D images. As the result the former has extremely irregular sampling frequency of source rays, and a big portion of the source rays cannot be applied with SGC supervision for having too little samples. As contrary, the latter has uniformed sampling frequency for source rays and all the source-view pixels can be applied with SGC supervision. Irregular sampling is more likely to produce large sampling intervals, thus aggravates the optimization bias problem.

- 482 4.3 CONVERGENCE OF THE LGS REGULARIZATION OBJECTIVE
- We present the curves of the LGS regularization objective under different experiments throughout the training span in Figure 7a (for GNT, \mathcal{L}_{sgc} is depicted). The convergence of the curve is a good criterion to measure if the LGS suffers from aliasing because of including irrelevant source views.

Figure 7: The curves of the regularization objective throughout the training span. (a) The objective curves of GNT, GNT+SGC(\mathcal{L}_{dist}) and GNT+SGC(\mathcal{L}_{sgc}) respectively. All the curves converge in the early stage of training. (b) The dataset-wise objective curves for GNT. There is significant gap between the converged value if difference datasets. (c) The dataset-wise objective curves for GNT+SGC. The objectives converges to a consistent value on all training datasets.

In Figure 7a, for the vanilla GNT, the curve converges at a high position, while as comparison, the curves converge to a much lower position when the regularization objective is supervised. On the other hand, the curves for GNT+SGC(\mathcal{L}_{dist}) and GNT+SGC(\mathcal{L}_{sgc}) in Figure 7a demonstrate that the convergence condition is achieved indeed during training, so different convergence condition of the regularization objective will surely affect the network behavior. This experimental result advocates why we should care about the convergence condition of the regularization objective.

Furthermore, we depict the dataset-wise curves of GNT and GNT+SGC(\mathcal{L}_{sgc}) in Figure 7b and 7c, respectively. It is worth noting that curves of GNT behaves different convergence position, indicating there is gap between how GNT understands the scene over different datasets. As contrary, curves of GNT+SGC(\mathcal{L}_{sgc}) converges to the same position, which indicates our SGC supervision encourage GNT to understand the scenes in a more generalized and uniformed approach.

- 514
- 515 **)** 516

496

497

498

499

500 501 502

504

505

506

507

5 DISCUSSION

The paper has meticulously demonstrated how the proposed SGC supervision method improves the 517 performance generalizable 3D reconstruction methods. However, there are still few drawbacks of 518 this work. First, as the experiments have demonstrated, the optimal condition of the regularization 519 objective counts for the SGC supervision to have a positive impact to the backbone. Our proposed 520 SGC loss doesn't really have its optimal solution to be the real-world geometry, but allows its optimal 521 solution field to contain the real-world geometry. More precise solutions could be explored for 522 the regularization objective. Second, as the regularization objective is unsupervised, it should not 523 converge too early when the backbone don't have an overall 3D reasoning ability. Otherwise the 524 unsupervised learning objective may mislead the backbone, resulting in degraded performance. We control the speed of convergence by a small weight for the objective, even so the objective converges 526 very fast as shown in Figure 7a. Further research could be made on a more elegant solution to this issue. And we leave how SGC impacts surface reconstruction to the future. 527

528 529

530

6 CONCLUSION

531 In this paper, we innovatively propose Source-view Geometric Constraint, a supervision method which 532 improves generalizable 3D reconstruction methods by regularizing the discrete depth distributions 533 on source views. We further propose a novel unsupervised training objective to regularize the 534 discrete depth distributions to be pulse-like, which crucially mitigates the gap between the optimized LGS and real-world geometry. The proposed supervision can be elegantly attached to the existing 536 training objectives for a given backbone with negligible computation overhead, visibly improves the performance of both NeRF- and 3DGS-based backbones. Mathematical analysis and experimental results convincingly profile the mechanism of our work. We suggest the readers to the Appendix for 538 further details and ablation study. We hope that this work exhibits a new direction to the community for improving generalizable reconstruction quality by supervision on source-view information.

540 REFERENCES

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and 542 Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. 543 In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864, 544 2021. 546 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 547 360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference 548 on Computer Vision and Pattern Recognition, pp. 5470-5479, 2022. 549 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf: 550 Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International 551 Conference on Computer Vision, pp. 19697-19705, 2023. 552 Di Chang, Aljaž Božič, Tong Zhang, Qingsong Yan, Yingcong Chen, Sabine Süsstrunk, and Matthias 553 Nießner. Rc-mvsnet: Unsupervised multi-view stereo with neural rendering. In European confer-554 ence on computer vision, pp. 665–680. Springer, 2022. 555 556 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the 558 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467, 2024. 559 Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. 560 Mysnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In Proceedings 561 of the IEEE/CVF international conference on computer vision, pp. 14124–14133, 2021. 562 563 Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In European Conference on Computer Vision, pp. 333–350. Springer, 2022. 565 Anpei Chen, Haofei Xu, Stefano Esposito, Siyu Tang, and Andreas Geiger. Lara: Efficient large-566 baseline radiance fields. arXiv preprint arXiv:2407.04699, 2024. 567 Wenyan Cong, Hanxue Liang, Peihao Wang, Zhiwen Fan, Tianlong Chen, Mukund Varma, Yi Wang, 568 and Zhangyang Wang. Enhancing nerf akin to enhancing llms: Generalizable nerf transformer with 569 mixture-of-view-experts. In Proceedings of the IEEE/CVF International Conference on Computer 570 Vision, pp. 3193-3204, 2023. 571 572 Yikang Ding, Wentao Yuan, Oingtian Zhu, Haotian Zhang, Xiangyue Liu, Yuanjiang Wang, and 573 Xiao Liu. Transmysnet: Global context-aware multi-view stereo network with transformers. 574 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 575 8585-8594, 2022. 576 Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann, 577 Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset 578 of 3d scanned household items. In 2022 International Conference on Robotics and Automation 579 (ICRA), pp. 2553–2560. IEEE, 2022. 580 John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck, 581 Noah Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent. 582 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 583 2367-2376, 2019. 584 585 Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost volume 586 for high-resolution multi-view stereo and stereo matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2495–2504, 2020. 588 Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen Ma. Tri-miprf: 589 Tri-mip representation for efficient anti-aliasing neural radiance fields. In Proceedings of the 590 IEEE/CVF International Conference on Computer Vision, pp. 19774–19783, 2023. 591 Xin Huang, Qi Zhang, Ying Feng, Xiaoyu Li, Xuan Wang, and Qing Wang. Local implicit ray function 592 for generalizable radiance field representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 97–107, 2023.

594 595 596 597	Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale multi- view stereopsis evaluation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413. IEEE, 2014.
598 599 600	Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. Geonerf: Generalizing nerf with geometry priors. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 18365–18375, 2022.
601 602 603	Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. <i>ACM Transactions on Graphics</i> , 42(4):1–14, 2023.
604 605 606	Jonáš Kulhánek, Erik Derner, Torsten Sattler, and Robert Babuška. Viewformer: Nerf-free neural rendering from few images using transformers. In <i>European Conference on Computer Vision</i> , pp. 198–216. Springer, 2022.
607 608 609	Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields. <i>Advances in Neural Information Processing Systems</i> , 33:15651–15663, 2020.
610 611 612	Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen, Xinyi Ye, Yuhang Zang, Zhiguo Cao, Wei Li, and Ziwei Liu. Mvsgaussian: Fast generalizable gaussian splatting reconstruction from multi-view stereo. <i>arXiv preprint arXiv:2405.12218</i> , 2024.
613 614 615 616	Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt, Xiaowei Zhou, and Wenping Wang. Neural rays for occlusion-aware image-based rendering. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 7824–7833, 2022.
617 618 619 620	Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra- mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. <i>ACM Transactions on Graphics (TOG)</i> , 38(4):1–14, 2019.
621 622 623	Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. <i>Communications of the ACM</i> , 65(1):99–106, 2021.
624 625 626 627	Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. <i>ACM transactions on graphics (TOG)</i> , 41(4): 1–15, 2022.
628 629 630	Rui Peng, Rongjie Wang, Zhenyu Wang, Yawen Lai, and Ronggang Wang. Rethinking depth estimation for multi-view stereo: A unified representation. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 8645–8654, 2022.
631 632 633 634 635	Yufan Ren, Tong Zhang, Marc Pollefeys, Sabine Süsstrunk, and Fangjinhua Wang. Volrecon: Volume rendering of signed ray distance functions for generalizable multi-view reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16685–16695, 2023.
636 637 638 639	Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan, Suhani Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation transformer: Geometry-free novel view synthesis through set-latent scene representations. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 6229–6238, 2022.
640 641 642	Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable patch-based neural rendering. In <i>European Conference on Computer Vision</i> , pp. 156–174. Springer, 2022.
643 644 645	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. <i>Advances in neural information processing systems</i> , 30, 2017.
040 647	Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang, et al. Is attention all that nerf needs? <i>arXiv preprint arXiv:2207.13298</i> , 2022.

648	Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P Sriniyasan, Howard Zhou, Jonathan T Barron
649	Ricardo Martin-Brualla Noah Snavely and Thomas Funkhouser Ibruet: Learning multi-view
650	image-based rendering. In Proceedings of the IEFE/CVF Conference on Computer Vision and
651	Pattern Recognition pp 4600_4600 2021
652	<i>Tunern Recognition</i> , pp. 4090–4099, 2021.
652	Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
055	error visibility to structural similarity. <i>IEEE transactions on image processing</i> , 13(4):600–612,
654	2004.
655	
656	Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, and Jan Eric Lenssen. latentsplat: Autoencod-
657	ing variational gaussians for fast generalizable 3d reconstruction. arXiv preprint arXiv:2403.16292,
658	2024.
659	Setting Winderson Dellegen Dhenethouse Linghen Venderscheit und Summeren Summinglam
660	Suttisak wizadwongsa, Pakkapon Phonginawee, Jiraphon Yenphraphai, and Supasorn Suwajanakorn.
661	Nex: Real-time view synthesis with neural basis expansion. In <i>Proceedings of the IEEE/CVF</i>
662	Conference on Computer vision and Pattern Recognition, pp. 8534–8545, 2021.
663	Yao Yao Zixin Luo Shiwei Li Tian Fang and Long Quan Mysnet: Depth inference for unstructured
664	multi-view stereo. In Proceedings of the European conference on computer vision (ECCV), pp.
665	767–783. 2018.
COO	101 103, 2010.
666	Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
667	one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
668	<i>Recognition</i> , pp. 4578–4587, 2021.
669	
670	Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free
671	3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
672	<i>Pattern Recognition</i> , pp. 19447–19456, 2024.
673	Dichard Zhang Dhillin Isola, Alavai A Efros, Eli Shachtman, and Olivar Wang. The unreasonable
674	affectiveness of deep features as a percentual metric. In <i>Proceedings of the IEEE conference on</i>
675	computer vision and pattern recognition pp 586-505 2018
676	computer vision and pattern recognition, pp. 560-555, 2016.
677	Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
077	Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259–16268,
678	2021.
679	
680	Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
681	Learning view synthesis using multiplane images. ACM Trans. Graph. (Proc. SIGGRAPH), 37,
682	2018. URL https://arxiv.org/abs/1805.09817.
683	
684	
685	
686	
687	
688	
689	
600	
601	
091	
092	
693	
694	
695	
696	
697	
698	
699	
700	
701	

A APPENDIX

702

703 704

705 706

707

708

715

716

717

718

719 720

721

722 723 724

725 726 727

A.1 ANOTHER APPROACH TO $\mathcal{L}_{ m sgc}^{lpha=1}$

In this section, we demonstrate the uniqueness of $\mathcal{L}_{sgc}^{\alpha=1}$ if we try to achieve it by adjusting weights of terms in Equation 5. To make the discussion more clear, we first transform Equation 5 into an equivalent but simplified form,

$$\mathcal{L}_{\text{dist}} = l \left[\frac{1}{3} \sum_{i=1}^{L} q_i^2 + \sum_{i=1}^{L} \sum_{j=1}^{L} q_i q_j |i-j| \right]$$
(8)

Let's consider the moment where only two q_i are non-zero while being adjacent. As already discussed, the optimization bias comes from Equation 8 converging to a distribution where their is only one non-zero q_i , thus one of the two non-zero samples would be optimized to be zero. If we try to stop this trend to mitigate the optimization bias by adjusting ratio of the terms in the square brackets of Equation 8 to form a new objective \mathcal{L}_b , that

 $\mathcal{L}_{\rm b}^{L=2} = l \left[\lambda \sum_{i=1}^{L} q_i^2 + \sum_{i=1}^{L} \sum_{j=1}^{L} q_i q_j | i - j | \right] = l \left[(\lambda - 1)(q_1^2 + q_2^2) + (q_1 + q_2)^2 \right], \tag{9}$

then $\mathcal{L}_{b}^{L=2}$ should be consistent with any $q_1, q_2 > 0$ that sum up to 1 (regularized as PDF), where $\lambda > 0$ is a ratio factor controlling the ratio of the two terms. It's obvious that only $\lambda = 1$ can keep $\mathcal{L}_{b}^{L=2}$ being a constant. As the result, $\mathcal{L}_{b}^{\lambda=1} = \mathcal{L}_{sgc}^{\alpha=1}$ when L = 2.

To conclude, $\lambda = 1$ is a necessary condition for $\mathcal{L}_{\rm b}$ to mitigate the optimization bias, leading to $\mathcal{L}_{\rm b}^{\lambda=1} = \mathcal{L}_{\rm sgc}^{\alpha=1}$ for any positive integer $L \ge 1$. As the convergence of $\mathcal{L}_{\rm sgc}^{\alpha=1}$ has already been discussed in Section 3.3.2, we do not make further discussion on the convergence of $\mathcal{L}_{\rm b}^{\lambda=1}$.

731 732

733

A.2 LINEAR SAMPLING ASSUMPTION

As we mentioned in Section 3.3.1, we have a strong assumption that x_i is linearly sampled regardless of the actual position of the sampled 3D points. Similar to Appendix A.1, with a discussion of the case where L = 2, it is trivial to prove that the optimization bias always exists for non-linearly sampled x_i . To mitigate the optimization bias, its the most straight forward approach to treat x_i as linearly sampled.

739

740 A.3 IMPLEMENTATION DETAILS 741

742 A.3.1 REARRANGEMENT

Typically, for epipolar geometry based generalizable reconstruction methods, 3D points are sampled on target rays, resulting in irregular sampling frequency on source rays. Meanwhile, to correctly denote $Q(\mathbf{r}_s)$, samples on the same source ray should be sorted by their depth to the corresponding source view. These two issues make it challenging to efficiently rearrange \mathbf{W}_v into \mathbf{W}_d , from a GPU-unfriendly structure to a GPU-friendly structure, where the latter is the explicit representation of the LGS to be supervised.

To tackle the problem, we propose a devoted rearrangement algorithm. The algorithm utilize camera extrinsics and intrinsics to obtain view-specific depths and the projected pixels for each sampled 3D point, and then rearrange the samples with depth-bin based bucket sort.

753 **Depth-bin Partition.** In one target-view rendering pass, for each source-view pixel indexed $s = 1, ..., N \times H \times W$, we compute the depth range of samples projected to it, which is denoted as 755 $[d_{\min}^s, d_{\max}^s)$. We linearly divide the range as N_{\min} depth-bins for each source-view pixel, with the depth range of the *i*-th bin denoted as $[d_{i-1}^s, d_i^s)$, where $d_i^s = d_{\min}^s + i/N_{\min} \times (d_{\max}^s - d_{\min}^s)$. **Register samples to the depth-bins.** With view-specific depth, the sampled 3D points could be registered to the depth-bins efficiently, with the value of the depth-bin being the weight of the specific source view for the sampled 3D point. Once the registering is complete, samples projected to the same source-view pixel are naturally ordered by depth. There are two advantages of the bucket sort, one is that the irregular sampling frequency of source rays are aligned with each other by the same bucket resolution $N_{\rm bin}$, the other is that it doesn't need any comparison between the sorted elements but only index registering, which is more efficient than sorting on GPU.

Post Process. After the bucket sort, for a group of bins of the same source-view pixel, we further bubble the non-empty bins to the front, pad the value of empty bins at the end with 0, and regularize depth bins of the same pixel to sum up to 1. Picking K source rays with the highest sampling frequency for each of the N source views and concatenate them together, we have $\mathbf{W}_{d} \in \mathbb{R}^{(K \times N) \times N_{bin}}$ as the explicit representation of (Section 3.2).

768 **Discussion.** The value of $N_{\rm bin}$ decides the probability of conflict where two samples are registered 769 to the same depth-bin. This probability goes negligible as $N_{\rm bin}$ is large enough. More concretely, 770 $N_{\rm bin}$ is equivalent to the L in Section 3.2. On the other hand, the reason why we have K is that, for a 771 NeRF-based generalizable reconstruction method, only a batch of target-view pixels can be sampled 772 in a single iteration because of out-of-memory issue. As the result, most of the source-view pixels 773 only have little samples projected on them (usually less than 10 by our experiment). Such a sparse 774 sampling can not depict a distribution well, which could even degrade performance of the backbone 775 if used for supervision. So we only pick the K most sampled pixels on each source view to perform 776 depth distribution regularization.

777 778

A.3.2 NORMALIZATION FOR $Q(\mathbf{r}_s)$

In practice, we normalize $Q(\mathbf{r}_s)$ by $q_i = q_i/(\epsilon + \sum q_j)$, where ϵ is a small positive constant. Since probably the real-world surface hit by \mathbf{r}_s might be far from all sampled 3D-points on it, such a normalization enables $\mathcal{L}_{sgc}^{\alpha=1}(Q(\mathbf{r}_s))$ to be optimized as 0 in this case, where $q_i = 0$ for any *i*.

783784 A.3.3 Additional Details for NeRF-based Experiments

785 SGC for GNT. GNT (Liu et al., 2022) is a 8-layer transformer based network, which performs the 786 aggregation-rendering loop for 8 times. For source-view aggregation, GNT utilize the subtraction 787 efficient transformer (Zhao et al., 2021), which produces an attention vector $\mathbf{w}(\mathbf{p}) \in \mathbb{R}^{N \times 1}$ for each 788 sampled 3D point \mathbf{p} , indicating its visibility to N source views. To apply our SGC supervision 789 to GNT, we derive W_d by the averaging and rearrangement (Section 3.2) of w(p) in the first 4 790 layers, leaving the last 4 layers unchanged to remedy the possible misguide from the unsupervised learning objective. For the experiments in Section 4.1, we take $N_{\rm bin} = 1024$ and K = 256 for the 791 computation of W_d . 792

Training Details. All NeRF-based experiments are performed on 8 Nvidia V100 GPUs. For the vanilla GNT, we follow Liu et al. (2022) to train for 250k iterations. For the GNT supervised by SGC, we only train for 150k iterations because we found its already enough for the network to converge in this case. Other training details, such as the learning rate and hyper-parameters are kept strictly consistent with Liu et al. (2022).

798 799

800

A.3.4 ADDITIONAL DETAILS FOR 3DGS-BASED EXPERIMENTS

SGC for pixelSplat. Similar to GNT, pixelSplat (Charatan et al., 2024) utilizes a 2-layer transformer
based network. We apply the SGC loss to regularize the attention vector from the epipolar attention
mechanism. More concretely, only the attention vector in the first layer is regularized, and the second
layer is left unchanged. And the rearrangement is not necessary for pixelSplat because of it's not
adopting a ray casting based sampling strategy.

Training Details. All 3DGS-based experiments are performed on 2 RTX 3090 GPUs, trained for 200k
 iterations for convergence, with source-view baseline gradually increase in the first 10k steps. All
 hyper-parameters are directly referenced from Charatan et al. (2024) without any further adjustment
 for this paper. For difference light levels in the DTU dataset, light levels from 1 to 6 are adopted for
 training, while evaluation is conducted on the light level of 3.

	NeRF	Synthetic	Dataset	LLFF Dataset			
	PSNR ↑	SSIM↑	LPIPS↓	PSNR ↑	SSIM↑	LPIPS↓	
(1) w/o SGC	27.25	0.935	0.059	25.88	0.863	0.123	
(2) +SGC(\mathcal{L}_{dist})	27.31	0.935	0.057	25.85	0.861	0.125	
(3) +SGC(\mathcal{L}_{sgc}), $\lambda = 3$	26.90	0.934	0.057	25.74	0.863	0.121	
(4) +SGC(\mathcal{L}_{sgc}), w/o top K	27.55	0.935	0.058	25.71	0.859	0.128	
(5) +SGC(\mathcal{L}_{sgc}), ours	27.87	0.939	0.054	25.96	0.867	0.119	

Table 3: Ablation studies on GNT. Both settings achieve consistent conclusion that the proposed supervision improves rendering quality, and our \mathcal{L}_{sgc} do alleviates the optimization bias.

A.4 ABLATION STUDY

We conduct the following ablation studies on GNT to profile the key to the SGC supervision, the results are listed in Table 3.

(1) Without SGC supervision. We present the vanilla implementation of GNT (Liu et al., 2022) as
 the baseline of ablation. Also, the vanilla implementation of pixelSplat (Charatan et al., 2024) is
 presented in Table 2.

(2) With SGC supervised by the distortion loss. We present the backbone with SGC supervision but replacing our SGC loss with the distortion loss (Barron et al., 2022), and also this ablation for pixelSplat is presented in Table 2. For GNT, it comes out that there is no much difference and even significant degrade from the vanilla backbone. For pixelSplat, the ablation result has been discussed in the discussion paragraph of Section 4.2. The results strongly advocate out analysis in Section 3.3, that the optimization bias will mislead the backbone from benefiting from the SGC supervision.

(3) Simply Manipulating λ . As discussed in Appendix A.1, for \mathcal{L}_b , λ must be 1 to mitigate the optimization bias. In this ablation case, we set λ to be 3, which suffers from the optimization bias and record the result. As shown in Table 3, their is significant degrade from the vanilla GNT, evidences the analysis about the optimization bias with a different perspective from ablation case 2.

840 (4) Randomly Supervising Source Rays. As discussed in Appendix A.3.1, we find it important to 841 have the most sampled source rays to be supervised by our method. In this ablation case, we pick the 842 K source rays randomly from each source view, rather than the K most sampled ones, for our SGC 843 supervision. Results come out that the impact is inconsistent on different evaluation datasets, and the 844 performance is significantly worse than our top-K implementation in ablation case 5.

(5) Full Implementation of Our Method. In ablation case 5, we present the full implementation of our method supervising GNT. The same result is also presented for pixelSplat in Table 2. The full implementation significantly outperforms all ablation cases. The ablation studies demonstrate the importance of sampling frequency of source rays for SGC supervision, the existence of the optimization bias, and the effectivity of our proposed SGC supervision and the devised objective.

850 851 852

823

A.5 COMPUTATION OVERHEAD FOR REARRANGEMENT

In Table 4, we present the iteration-wise additional time for $\mathcal{L}_{sgc}^{\alpha=1}$ computation, mainly consists of the rearrangement time cost. The first line represents the same setting used in Section 4.1. The computation time is insensitive to N_{bin} , while linearly relates to K because of unavoidable CPU operation in our implementation. The additional time cost for computing $\mathcal{L}_{sgc}^{\alpha=1}$ is less than 4% of the time for a single training step, having negligible burden on training.

- 860
- 861 862
- 863

Table 4: Computation time of $\mathcal{L}_{sgc}^{\alpha=1}$ with respect to N_{bin} and K.

$N_{\rm bin}$	K	Time (ms)
1024	256	24
1024	512	41
1024	1024	76
4096	256	27

16