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ABSTRACT

Functional magnetic resonance imaging (fMRI) data contain complex spatiotem-
poral dynamics, thus researchers have developed approaches that reduce the di-
mensionality of the signal while extracting relevant and interpretable dynamics.
Recently, the feasibility of latent factor analysis, which can identify the lower-
dimensional trajectory of neuronal population activations, has been demonstrated
on both spiking and calcium imaging data. In this work, we propose a new frame-
work inspired by latent factor analysis and apply it to functional MRI data from the
human somatomotor cortex. Models of fMRI data that can perform whole-brain
discovery of dynamical latent factors are understudied. The benefits of approaches
such as linear independent component analysis models have been widely appre-
ciated, however, nonlinear extensions are rare and present challenges in terms
of identification. Deep learning methods are potentially well-suited, but with-
out adequate inductive biases with respect to spatial weight-sharing may heavily
overparameterize the model for the dataset size. Due to the underspecification of
neuroimaging approaches, this increases the chances of overfitting and picking up
on spurious correlations. Our approach extends temporal ICA to the non-linear
case and generalizes weight sharing to non-Euclidean neuroimaging data. We
evaluate our model on data with multiple motor sub-tasks to assess whether the
model captures disentangled latent factors corresponding to each sub-task. Then,
to evaluate the latent factors we find further, we compare the spatial location of
each latent factor to the known motor homunculus. Finally, we show that our la-
tent factors correlate better to the task than the current gold standard of source
signal separation for neuroimaging data, independent component analysis (ICA).

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) is an important and widely used imaging method to
study the whole-brain dynamics of the human brain. Although it does not directly capture neuronal
activity, it can serve as a proxy for measuring neuronal activity non-invasively at high spatial resolu-
tions. Clinicians and researchers have had issues interpreting the signal, however, due to the signal’s
high dimensionality, poor temporal resolution, and multiple sources of noise leading to a low signal-
to-noise ratio. Both to understand the signal itself better and to move towards potentially clinically
relevant information, researchers have focused on developing methods that summarize the signal
across spatial and temporal scales Descombes et al. (1998); Woolrich et al. (2004). Pre-defined
Atlases are also a popular tool to average and increase the signal-to-noise ratio in brain regions
of interest (ROI). Averaging can be misleading because spatial regions can have multiple distinct
timecourses that overlap within each region, which has led researchers to tools such as independent
component analysis (ICA), that decompose the signal into multiple temporal trajectories with cor-
responding spatial sources McKeown & Sejnowski (1998); Beckmann & Smith (2005); Calhoun &
Adali (2006). A promising alternative is emerging with respect to the characterization of neuronal
population dynamics using fully-differentiable data-driven approaches. These approaches can scale
to large neurological data easily, as well as allow for individualized trainable models. One example
of such a technique is latent factor analysis via autoencoders Yu et al. (2008); Everett (2013). Clas-
sically, latent factor analysis for fMRI data is done with some form of matrix factorization, such as
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principal component analysis Thomas et al. (2002), ICA McKeown & Sejnowski (1998); Beckmann
& Smith (2005); Calhoun & Adali (2006), or dictionary learning Lee et al. (2010). Recently these
matrix factorizations have been extended to tensor factorizations/analysis Ma et al. (2016), restricted
Boltzmann machines (RBM)s Hjelm et al. (2014), and static autoencoders Kim et al. (2021); Geen-
jaar et al. (2021). In the field of neuronal populations, however, a recent approach finds latent factors
using a recurrent autoencoder Pandarinath et al. (2018). Although with different interpretations and
under different constraints, low-dimensional latent dynamics underlying the fMRI signal also likely
exist. As such, an adapted application of latent factor analysis using recurrent autoencoders is a
direction that can help alleviate some of the issues commonly associated with fMRI data. Although
this approach does not directly tackle the fact that fMRI data is a proxy for neuronal activity, with
careful interpretation, we can still make inferences about functional whole-brain dynamics. More-
over, deep learning approaches allow for the inclusion of relevant constraints, such as geodesic dis-
tances or known functional constraints that can further help constrain the solution space to relevant
brain dynamics. In this work, we try to find dynamic latent factors underlying the fMRI signal in the
context of motor task activations. In this paradigm, the ground truth factors are the motor regions
and their associated activations, and the motor homunculus is well-documented across species. For
a null model, we utilize the current gold standard of decomposing spatio-temporal fMRI signals,
ICA. In addition, we explore the inclusion of constraints to the dynamics by using weight sharing
based on hemispheric symmetry, geodesic distances, as well as prior functional activation. We show
that our approach combined with these inductive biases better captures task effects than linear ICA
when decomposing neural activity. Furthermore, the weight sharing we propose in this work helps
expand this work to larger datasets. In fact, as an example we perform a calculation of the weights
vs number of subjects in the Appendix A to emphasize our point that neuroscientifically-informed
weight sharing is absolutely critical in neuroimaging. Some recent work in this direction also iden-
tifies meaningful non-linear dynamical systems from fMRI task data, but they use task information
as input to their model Koppe et al. (2019), whereas we do not. Other related work Gao et al. (2020)
shows that there exists a non-linear manifold for all tasks in the HCP dataset, but does not look at
any specific factors and use ROIs to decrease the dimensionality of the data.

2 METHOD

The methods are organized by first explaining the experimental setup of the motor task fMRI data,
as well as the relevant biological data used. The ground truth activations are based on the gener-
alized linear model hemodynamic responses derived from SPM Penny et al. (2011) for each of the
sub-motor tasks. We then describe and explain our method. The subsequent sections detail our novel
weight sharing method to reduce the number of parameters and more directly incorporate neurosci-
entific inductive biases. Subsequently, we explain the temporal independence factor we include in
our objective function and how we evaluate the temporal factors. The comparisons to null models
using ICA are established in the final sections.

Biological data The data we use in this work are cortical surface timeseries from the open-access,
under data usage terms, HCP-1200 dataset Van Essen et al. (2013), for all subjects with cortical
surface timeseries data (1181). The data is registered using multimodal surface registration (MSM)
Robinson et al. (2014; 2018), and surfaces are constructed using Freesurfer Glasser et al. (2013);
Fischl (2012). Then, the vertices corresponding to the somatomotor region are extracted using
the Yeo-7 atlas Yeo et al. (2011). Each subject’s timeseries is band-pass filtered independently
(0.01− 0.15Hz) and then linearly detrended using the Nilearn package Abraham et al. (2014). The
cortical surface is represented as a set of vertices (V) and each vertex has a blood-oxygen-level-
dependent (BOLD) value associated with it at each timestep (t). The number of vertices in this work
is 11960, and the number of timesteps is 284. Furthermore, the timings of each of the sub-tasks for
the motor task are that the right-hand task occurs at 11 and 132 seconds, the left foot task occurs at
26 and 117 seconds, the tongue task occurs at 41 and 102 seconds, the right-foot task occurs at 56
and 177 seconds, and the left-hand task occurs at 71 and 162 seconds. Each sub-task block lasts 12
seconds. Each timeseries, for each subject, is mapped into a group space, which means that each
voxel represents roughly the same location in the brain. This also means that some deformation is
not only introduced in the process of obtaining the surface voxels but also during the registration of
the timeseries into group space. The locations of the voxels in this work are based on the group-
based pial surface, which is the boundary between gray and white matter in the brain. The surface is
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thus essentially a graph with a fixed structure, and only the values associated with the voxels change
over time. Although cortical surface data has previously been mapped to a sphere and then been
mapped to a 2D image using polar coordinates Kim et al. (2021), in this work we view the location
of each vertex as a graph to retain as much distance information as possible.

Metrics and experimental setting The data consists of 5 motor tasks, left hand, right hand, left
foot, right foot, and tongue movements, where the subject moves the respective limbs after hearing
an auditory cue. Since the regions associated with these movements are well defined based on the
motor homunculus as well as the timing of these events is known due to the event-based scientific
paradigm, the ground truth of the spatio-temporal signal is well established in these tasks. Therefore
we evaluate our model based on the following metrics: 1) its ability to reproduce the correct spatial
maps observed during motor activation, and 2) the exact temporal dynamics associated with the
activation during these tasks. The dataset is randomly shuffled and then divided into a training set
(70%), a validation set (10%), and a test set (20%) to make sure it generalizes beyond the training
data.

The tasks are assumed to last for 12 seconds, and each factor’s timeseries is convolved with SPM’s
simulated hemodynamic response based on the block design of each sub-task. After obtaining the
average temporal timeseries for the unseen test set, we find the factors that have the highest absolute
average correlation with each sub-task. We then take the average over those absolute correlations to
measure how well the model can learn some ground-truth underlying factors in the dataset. Knowing
that the model finds underlying factors in the dataset opens up using this model for resting-state data,
where underlying factors are often less apparent and no ground truth exists.

Sequential variational autoencoder Sequential autoencoders were developed to learn and model
temporal dynamics efficiently. From an information-theoretic perspective, they bottleneck the infor-
mation and assume that only the most important information is retained in the latent space. As such,
sequential autoencoders have been used in a variety of different problems in order to model tempo-
ral datasets such as speech processing Graves et al. (2013), to compress high dimensional neuronal
population data Keshtkaran et al. (2021), as well as model fMRI dynamics Kashyap & Keilholz
(2020).

The sequential variational autoencoder in this methodology consists of a gated recurrent unit
(GRU)Cho et al. (2014) and a linear layer. The GRU obtains as input the embeddings from the
spatial encoder et and outputs its hidden state at each timestep. These hidden states are used to
parameterize the mean and standard deviation of the Gaussian distributions at each timestep, see
Figure 1c. The distributions are referred to as the factors ft in this work. The reason we model
the factors as distributions is that the loss function of variational autoencoders Kingma & Welling
(2013) has been shown to encourage disentanglement of the separate factors in each distribution
Graves et al. (2008); Higgins et al. (2016); Burgess et al. (2018); Higgins et al. (2022).

Formally, the problem consists of a dataset {x(1),x(2), ...,x(N)} ∈ D, where each x(i) is made up
of T timesteps x(i) = {x(i)

1 ,xi
2, ...,x

(i)
T }. Each timestep for a subject x(i)

t are the blood-oxygen-level
dependent (BOLD) values for each input voxels at that time. The model proposed in this work is
based on a variational autoencoder (VAE) Kingma & Welling (2013), which learns both a generative
pθ(x|z) and a variational approximation qϕ(z|x) of the true posterior. VAEs are optimized using
the evidence lower-bound (ELBO) on the expected marginal log-likelihood of x, a more in-depth
explanation of the ELBO is provided in previous work Kingma & Welling (2013). In our case we
obtain a latent variable for each subject z(i) and for each timestep z(i) = {z(i)1 , z

(i)
2 , ..., z

(i)
T }. In

our work we assume the prior for the variational estimation to be a zero-mean, unit-norm diagonal
multivariate Gaussian distribution p(z). The resulting ELBO for our problem setting is as follows.

L(θ, ϕ;x(i)
t ) := −DKL

(
qϕ(z

(i)
t |x(i)

≤t)||p(z)
)
+ Eqϕ(z

(i)
≤t|x

(i)
t )

[
log pθ(x

(i)
t |z(i)

t )
]

(1)

The two terms can be seen as an encoder qϕ(z
(i)
t |x(i)

≤t) and a decoder pθ(x
(i)
t |z(i)

t ), both parameterized
by separate neural networks. If the variance of the input data is assumed to be constant, then opti-
mizing the log-likelihood of the decoder is the same as optimizing the mean-squared error between
the input data and the reconstructed data from the decoder. In this case, the parameters of the en-
coder θ correspond to the spatial encoder and temporal decoder, whereas the generative parameters
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ϕ correspond to the spatial decoder and distribution parameters (mean and standard deviations). The
optimization of this lower bound is in our case done by taking the mean over the dimensions of the
distribution and timesteps for the KL-divergence term. We take the sum over the mean-squared error
between the reconstructed and true timesteps within a subject but take the mean over the number of
input dimensions.

The importance of weight sharing As mentioned previously, it is important to first perform spa-
tial dimensionality reduction before modeling the timeseries with the temporal encoder and decoder.
The flexible weight sharing we propose allows us to do just that and learn lower-dimensional spa-
tial features that we can now use in our temporal encoder and decoder. The weight sharing heavily
reduces the number of weights necessary in the model. We compare the number of parameters nec-
essary to train a three-layer encoder and decoder with linear layers, and thus without weight sharing,
on fMRI data to our spatial encoder and decoder, see calculation in Appendix A. The model without
weight sharing contains 76M parameters, whereas our model contains 44k parameters. The three-
layer model may not seem that large, but relative to the number of samples the model is trained on
( 1200), this is like training an 896B parameter model on ImageNet Deng et al. (2009). Training
a neural network with that many parameters on ImageNet is a recipe for overfitting. Our method,
on the other hand, only has 44k parameters, which would be equivalent to training on ImageNet
with a 513M parameter model. Making sure the model does not have too many parameters for the
number of samples is critical to reducing overfitting. On top of this, fMRI data is noisier and thus
even more prone to overfitting than natural image datasets like ImageNet. Furthermore, a recent
paper has shown the adverse effects of training a neural network with that many parameters because
it worsens its underspecification D’Amour et al. (2020). This is exactly why convolutional neural
networks (CNNs) became so popular in computer vision initially, and still are for smaller datasets.
CNNs can perform effective weight sharing by re-using the same kernel for the full image, which
incorporates some of the inductive biases we have about our own vision. This allows us to stack
more convolutional layers on top of each other to find highly non-linear features, without having to
worry about the number of solutions. In our case, we apply the same MLPs to each cluster and each
cluster’s features, which is similar to using the same kernel over a full image, except the metric space
we define the clusters over is non-Euclidean. We also know that incorporating inductive biases about
the data help with underspecification because they constrain the solution space to solutions that are
more neuroscientifically feasible D’Amour et al. (2020). In this paper, we specifically evaluate the
difference in solutions across two separate inductive biases, namely structural and functional infor-
mation. Throughout the paper, we will evaluate both inductive biases to get an idea of their effect
on the performance of the model.

Weight sharing Both the spatial encoder and spatial decoder make use of many
neuroscientifically-inspired forms of weight sharing that draw similarities to weight sharing in con-
volutional neural networks (CNNs). For example, if we have a 28x28 image and use a convolutional
layer with a kernel and stride size of 3 and padding of 1 along the image, we get 100 3x3 patches
of the image. Each patch is shared among the 9 weights of the kernel, meaning the same 3x3 kernel
is applied to each patch. The intuition behind using a local kernel is that pixels close together in
Euclidean space are similar. Patches for a CNN are based on the Euclidean distance between the
pixels in the image, and can thus intuitively be understood as Euclidean clusters. The assumption
that points that are closer in Euclidean space are also more similar is not necessarily true in neuro-
science. The concept of distance in neuroscience is based on walking across the surface of the brain.
This distance is non-Euclidean due to the brain’s folds and is called the geodesic distance; hence
we have to define what would be Euclidean clusters but using the geodesic distance. To do this, we
propose to use graph clustering based on the geodesic distance between nodes on a graph, see Figure
1A. Defining the clusters using the geodesic distance is referred to as the ’structural’ inductive bias
in our work. However, since graph clustering is general for any distance metric and allows you to
incorporate any spatial inductive bias in a model, we also evaluate a ’functional’ distance metric that
groups vertices together that are similar in terms of their activity patterns.
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Figure 1: The top left (a) of the figure pictorially illustrates how spectral clustering works. Top right
(b) shows the mixer layer we use in both the spatial encoder and decoder. The MLP consists of two
linear layers, with an ELU activation on the first layer. The bottom left subfigure (c) shows the full
dynamic model.

On top of sharing weights across graph clusters, we also share the weights among the hemispheres.
To do this, we pad all other clusters in each hemisphere to have M vertices, where M is the maximum
number of vertices in a cluster. Then, for each hemisphere, we use two separate learnable linear
layers to map M to a hidden size (in this case, the hidden size is 256) and apply the same layer to
each cluster. This gives us C clusters of size 256 per hemisphere. Now, we apply a single spatial
encoder to these C clusters for each hemisphere separately and concatenate their output features.
Therefore, the spatial encoder shares its weights among the hemispheres. The concatenated output
features are then mapped to a desired final feature size using a learnable linear layer and used in our
model’s temporal encoder and decoder. The spatial encoder is shown in Figure 1C and how it fits
into the rest of our model is shown in Figure 1B.

The spatial encoder itself consists of multiple layers, and each layer contains two different MLPs.
For every layer, the first MLP mixes the clusters so that for C clusters, the MLP has input size,
hidden layer size, and output size C. Cluster mixing means the spatial encoder can learn relationships
between features in distant clusters, similar to a CNN’s receptive field, see Figure 1B. Thus, the
MLP shares its weights across the features in each cluster because it is applied to each of the clusters
independently. The second MLP in each layer maps the features (256) in the C clusters and gradually
reduces the number of features throughout the layers of the spatial encoder, see Figure 1. This
process is similar to the spatial size reduction throughout the layers of a CNN. This second MLP
shares its weights across each cluster because it is independently applied to each cluster’s features.
Our model consists of 3 of these feature mixing layers with hidden sizes (64, 32, 16, 8, 4, 1) for each
layer in the MLPs. The spatial decoder is symmetric with the spatial encoder in terms of its hidden
sizes.

To conclude, our model shares weights across features and clusters, inspired by the MLPMixer pa-
per Tolstikhin et al. (2021). Although inspired by, we do not use layer normalization and residual
connections, but instead use an ELU activation Clevert et al. (2015). However, the patches in our
model can be flexibly defined using any distance metric. Hence, our model generalizes the construc-
tion of patches to non-Euclidean space, which is critical for efficient neuroscientifically-informed
weight sharing in neuroimaging.

Connection to non-linear ICA Variational autoencoders can under some conditions also perform
non-linear ICA with identifiability guarantees Khemakhem et al. (2020); Hyvarinen et al. (2019).
The way the latent factors are modelled in this work can be considered such a condition, where
the additionaly observed variable u(i) are the previous timesteps in the timeseries. Namely, each
factor is a conditional distribution pθ(z

(i)
t |x(i)

≤t), where θ correspond to the spatial and temporal

encoder, and the temporal decoder. This can be rewritten as pθ(z
(i)
t |x(i)

t ,ui)). This is the same
formulation for the encoder as in the unifying framework for variational autoencoders and non-
linear ICA Khemakhem et al. (2020).
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Temporal independence The KL-divergence term in the ELBO effectively acts as a regularization
term and in previous works Zhao et al. (2017); Chen et al. (2018) has been shown to be equivalent
to the following decomposition with an expectation over the dataset ED.

ED [DKL (qϕ(z|x)||p(z))] = DKL (qϕ(z,x)||qϕ(z)p(x)) (Index-Code MI)

+ DKL(qϕ(z)||
∏
j

qϕ(zj)) (Total correlation)

+
∑

j

DKL (qϕ(zj)||p(zj)) (Dimension-wise KL)

(2)

Where qϕ(z) =
∑N

i=1 q(z|x(i))p(x(i)) is the aggregated posterior and z(i)
j is the jth dimension of the

latent factor. Note that with p(x(i) we refer to the probability that the sample is chosen as a training
sample, which is 1

N . The authors Chen et al. (2018) propose to use minibatch-weighted sampling
to get a naı̈ve Monte Carlo estimation of aggregated posterior to compute the total correlation (TC)
term and identify the TC term as important to learn disentangled factors. The TC measures the
dependency among a set of random variables, in this case, the dimensions of the latent factors. In
our case, however, we specifically want to minimize the dependency between the factors over time.
Thus, instead of estimating the aggregated posterior using samples in the batch, we estimate it over
the timesteps for each subject and take the average TC over the batch. We add the TC term to the
ELBO and due to the non-negativity of the KL-divergence, this is still a lower bound.

L(θ, ϕ;x(i)
t ) := −DKL

(
qϕ(z

(i)
t |x(i)

≤t)||p(z)
)
+ Eqϕ(z

(i)
t |x(i)

≤t)

[
log pθ(x

(i)
t |z(i)

t )
]

− β DKL(qϕ(z
(i)
t ||

∏
j

qϕ(z
(i))t, j)) (3)

We can now use β to increase or decrease the temporal independence of the factors we learn. This is
equivalent to using a TC-VAE Chen et al. (2018) with a minimum β of 1 and a different estimation
of the TC.

Implementation The algorithms are implemented using Pytorch Paszke et al. (2017) and are
trained on an internal cluster using single NVIDIA GeForce 2800 and NVIDIA V100 GPUs, with
a batch size of 8, the Adam optimizerKingma & Ba (2014), a 1E-4 weight decay, a learning rate
of 5E-3, 0.1 epsilon, and 0.9, 0.999 as betas. Each instantiation of the algorithm takes about 3 − 4
hours to train, based on the graphics card. We also reduce the learning rate when it plateaus using a
scheduler, with a 0.95 factor reduction on each plateau, patience of 6 epochs, and a minimum learn-
ing rate of 1E-5. L2 norm regularization is also specifically applied to the weight matrix between
hidden states in the temporal decoder. We train each model for 150 epochs, across four seeds (42,
1337, 9999, 1212), the epoch with the lowest loss on the validation set is used for the evaluation
and/or figures. All necessary code to download and preprocess the data, and run the model will be
made publicly available after the double-blind review has concluded on GitHub.

ICA null model Independent Component Analysis (ICA), has been used as a blind source sepa-
ration to determine different sources of spatial or temporal signals that mix to form the measured
signal. The algorithm maximizes the independence of these sources based on either spatial or tem-
poral dissimilarities. ICA has long been used as a gold standard in all neural data, due to its ability
to separate sources of neural activity, as well as separate non-neuronal activity, such as motion, res-
piration, and heartbeat effects. Over time, it has been established as the gold standard in separating
spatio-temporal dynamics in EEG, ECOG, MEG, as well as in fMRI datasets Calhoun et al. (2009).
We, therefore, utilize ICA as a null model in order to compare our algorithm. The temporal indepen-
dence results are compared to InfoMax ICA Lee et al. (1999) with the same number of factors as our
proposed model. The shortcomings of ICA are that, unlike PCA or other dimensionality techniques,
the ICA vectors are unordered and sometimes need manual selection. Moreover, ICA vectors can be
noisy for high dimensional data, and prior knowledge, such as in our work, cannot be trivially added
to the algorithm.

Comparison with ICA, β-VAE, and varying β The main experiments revolve around comparing
our model (TI-VAE) with ICA and a β-VAE, and most importantly across different β values. Both
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the functional and structural weight sharing methods are compared as separate models, both for
our model and the β-VAE. The experiments with our models, the β-VAE, and ICA are run across
4 different latent dimensions: [5 (ground truth number of factors), 8, 16, 32]. Our model and the
β-VAE are run across 4 different seeds, to compute the standard deviation of the performance of the
model, and for the following β values: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
2.0, 3.0]. The β-VAE is run with β values that are common to that model, namely 1.0, 2.0, and 3.0.
The goal of this experiment is to test our model’s performance against ICA and β-VAE, as well as
understand the impact of the independence term.

Figure 2: Subfigure A shows the average correlation of the factors corresponding to each sub-task,
and for each number of factors. Model name addenda -S and -F correspond to structural or functional
weight sharing. The temporal independence term in the loss function (Equation 3) clearly improves
the solutions of the learned factors. The right subfigure shows a comparison between the SPM
hemodynamic response (black), the best timeseries of our model for each weight sharing regime,
and the ICA timecourses. The numbers above the sub-task names correspond to the correlations
between each model’s timeseries and the SPM hemodynamic response timeseries for that sub-task.

3 RESULTS

Our results show how well our model can correctly identify relevant latent factors from fMRI data.
The first section discusses the performance of structural and functional weight sharing to its baseline.
We show that the weight sharing we induce is effective and seems to even improve the reconstruc-
tions. The algorithm is also demonstrated to outperform the null ICA model, and β-VAE for latent
factor identification across all evaluated number of latent dimensions. Lastly, we show how these
spatial maps are specific to the motor homunculus and are specific to higher effect sizes in the HCP
group maps, and use t-SNE Van der Maaten & Hinton (2008) to show a 2D view of the clustering
of sub-tasks in the latent factor space.

Temporal independence The indication that the latent factors contain meaningful information
regarding the spatio-temporal signal is supported by the high average sub-task correlations, shown
in Figure 2 on the left, and the sub-task correlations in the subfigure on the right. Clearly, some
sub-tasks are easier to identify for all models than others, but our models both outperform ICA for
some values of β. Furthermore, our model with structural weight sharing outperforms ICA more
than a standard deviation at multiple beta values for each of the latent dimensions. This result is a
clear demonstration that our method is valuable, especially because our model is fully differentiable,
non-linear, and can easily be extended to other data, or be combined with other modalities. To get
some more insight into the spatial locations that correspond to the factors of the best performing
models, we plot them in Figure 3. The spatial maps for our model are created by interpolating
each latent factor independently from its minimum value in the training and validation set in the
latent space, to its maximum value with 50 steps, and then taking the variance over those steps in
the reconstructed surface space. The spatial maps are thus non-negative, whereas the ICA spatial
maps can be negative. To deal with this, we use the sign of the correlation for each ICA factor
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Figure 3: Each model’s spatial maps corresponding to the sub-tasks (left), with structural weight
sharing on the left, functional weight sharing in the middle, and ICA on the right. Note that for
the dorsal view, the bottom hemisphere in the figure corresponds to the right hemisphere. We also
show the correlation between the top 10 %, top 5 %, and top 1 % values of the HCP group average
effect size maps with the produced spatial maps. Our model is highly specific and sparse, which is
reflected by its high correlation to the top values.

with the sub-task it corresponds to and multiply the corresponding spatial map with its sign. For
visualization, the bottom 25 % and top 75 % vertices are shown for the ICA, and the top 80 % are
shown for our models.

Task dynamics. To get an insight into the dynamics of the factors, we plot a 2D t-SNE Van der
Maaten & Hinton (2008) projection of the average timeseries over the subjects in the unseen test
set, for all of the 32 factors in the best models. Each point in Figure 4 corresponds to a time point
from the average timeseries and is colored based on which task it corresponds to, where gray points
correspond to time points without a task. Since there is a delay in the BOLD response to a task,
the first 5 timepoints at the start of a task are made gradually more opaque, from 0.5 to 1.0, and
the last 5 timepoints are made gradually less opaque, from 1.0 to 0.5 for each task. We do not
expect the first timepoints after the task starts to elicit a response, so some of the colored points
may not be clustered together. The trajectories for both the structural (left) and functional (right)
weight sharing are shown in Figure 4. They show clear clusters for each sub-task, which are each
performed twice in the timeseries. The same sub-task is not performed subsequently, making the
clustering non-trivial. An interesting finding is that the feet seem to be clustered together, and that
the right foot and left hand appear close in both the structural and functional inductive bias. In the
functional inductive bias, the left and right hand are also close together, which is not necessarily true
for the structural bias. Further research into the other, possible non-linear factors that our model
finds needs to be done to fully understand these trajectories, but they re-affirm that our model finds
meaningful factors, even without selecting the highest correlation ones.

4 DISCUSSION

The spatial maps in Figure 3 correspond to the functional motor homunculus and are correlated with
the top highest effect sizes in the HCP group Cohen D value maps. Namely, the spatial maps for the
left and right hands are located superior and laterally on the left and right hemispheres, respectively.
The locations of spatial maps for the left and right foot are located superior and more medially in the
brain, on the left and right hemispheres, respectively. The spatial maps corresponding to the tongue
are located inferior to the other sub-tasks, and laterally in both the right and left hemispheres. Given
that our model learns these spatial maps over the whole dataset and that individual spatial maps can
differ per subject, it is expected that the tongue spatial map occurs in both hemispheres. Another
interesting finding is the difference between structural and functional spatial maps, namely that the
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Figure 4: The average latent trajectory projected to 2D using t-SNE Van der Maaten & Hinton
(2008) for the test set, for both the model with structural (left) and functional (right) inductive
biases. Each point in the plot corresponds to a time point and the color corresponds to the task they
are in, where gray corresponds to not being in a task. We expect a delay in the reaction due to the
hemodynamic response, the first and last 5 timesteps into a task have a gradually increasing and at
the end decreasing opacity.

structural inductive bias finds local regions, whereas the functional map sometimes finds regions
more spread throughout the brain. This aligns with our expectations because spectral clusters for
the functional inductive bias are based on temporal correlations, compared to the geodesic distance
for the structural inductive bias. Additionally, both the structural and functional inductive bias find
more localized regions that correspond more directly to the functional human motor homunculus,
clearly indicating the usefulness of our model. The relationships between the timeseries of each
factor and the sub-task may be linear in some cases, which would mean ICA is more appropriate.
Given that our model learns those components and can learn non-linear components, our framework
opens up a field of future work with non-linear fMRI components.

Limitations. One limitation of the model is that it has only been applied to the somatomotor cortex.
This was done to have a good idea of ground-truth spatial and temporal factors we expect to find
with our model. The somatomotor cortex is an extensively studied area and has largely been mapped
out from a whole-brain perspective. However, it is important to test our model on larger input data
in future work to make sure it holds up for whole-brain data. Furthermore, the SPM simulated
hemodynamic response is not a perfect model for BOLD activation in the brain and we use a group
surface to create the spectral graph clustering, instead of subject-based surfaces.

Broader impact. The current model can have implications for surgical mapping, where functional
connectivity based on ICA components is sometimes used. This model does require further and
more extensive testing before it can be used in a clinical setting, however. The model’s ability to
learn non-linear factors can be both a positive and negative aspect of the model. The model can
learn subject-specific factors that are not linearly related to group-based factors, as is common in
ICA. This is important in a clinical setting, but could potentially lead to learning negative biases in
the dataset.

Conclusion The model we propose in this work is a leap toward a fully-differentiable non-linear
framework for whole-brain dynamic factor learning. We show that temporal independence is crucial
to learning meaningful factors and our model outperforms ICA when the extra term that encourages
temporal independence is added to the loss function. Our model can also comfortably scale to larger
inputs with its novel weight sharing technique. In fact, weight sharing in our model does not degrade
the reconstructions of the data under large dimensionality reduction (from 11k voxels to 16 factors)
compared to a baseline. In future work, we want to apply this model to more tasks, larger input data,
multiple modalities, and resting-state fMRI data.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beu-
tel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al. Under-
specification presents challenges for credibility in modern machine learning. arXiv preprint
arXiv:2011.03395, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Xavier Descombes, Frithjof Kruggel, and D Yves Von Cramon. Spatio-temporal fmri analysis using
markov random fields. IEEE transactions on medical imaging, 17(6):1028–1039, 1998.

B Everett. An introduction to latent variable models. Springer Science & Business Media, 2013.

Bruce Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.

Siyuan Gao, Gal Mishne, and Dustin Scheinost. Non-linear manifold learning in fmri uncovers a
low-dimensional space of brain dynamics. bioRxiv, 2020.

Eloy Geenjaar, Tonya White, and Vince Calhoun. Variational voxelwise rs-fmri representation learn-
ing: Evaluation of sex, age, and neuropsychiatric signatures. In 2021 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM), pp. 1733–1740. IEEE, 2021.

Matthew F Glasser, Stamatios N Sotiropoulos, J Anthony Wilson, Timothy S Coalson, Bruce Fischl,
Jesper L Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R Polimeni, et al. The
minimal preprocessing pipelines for the human connectome project. Neuroimage, 80:105–124,
2013.

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and Jürgen
Schmidhuber. A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5):855–868, 2008.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pp. 6645–6649. Ieee, 2013.

10



Under review as a conference paper at ICLR 2023

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.
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A APPENDIX: MODEL PARAMETER CALCULATION

We calculate how many parameters we need in a model with linear layers (and thus no weight
sharing) trained on fMRI input volumes of roughly 53-53-53 voxels. The size of the fMRI input
volume can differ, but 53-53-53 voxels is a normal size. Let us assume the linear model has hidden
hidden sizes of 256 and 128 ,and 16 factors. The following code then allows us to calculate the
number of parameters for this three-layer encoder, and three-layer decoder model:

i m p o r t t o r c h
i m p o r t numpy as np
from t o r c h i m p o r t nn
from a r c h i t e c t u r e s i m p o r t DoubleMixer

model a = nn . S e q u e n t i a l (
nn . L i n e a r (53 * 53 * 53 , 2 5 6 ) ,
nn . L i n e a r ( 2 5 6 , 1 2 8 ) ,
nn . L i n e a r ( 1 2 8 , 1 6 ) ,
nn . L i n e a r ( 1 6 , 1 2 8 ) ,
nn . L i n e a r ( 1 2 8 , 2 5 6 ) ,
nn . L i n e a r ( 2 5 6 , 53 * 53 * 5 3 ) )
p r i n t ( ’ Number o f modelA p a r a m e t e r s : ’

f ’{ sum ( p . numel ( ) f o r p i n model a . p a r a m e t e r s ( ) i f p . r e q u i r e s g r a d ) } ’ )

The output of the code is 76M parameters. To calculate the number of parameters of an equivalent
model with our encoder and decoder, that also has hidden sizes of 256 and 128, and a latent factor
size of 16, we would use the following code:

model b = nn . S e q u e n t i a l (
nn . L i n e a r ( i n t ( np . c e i l ( ( ( 5 3 * 53 * 53) / 128) / 2 ) ) , 2 5 6 ) ,
DoubleMixer ( i n t o k e n s =128 , h i d t o k e n s =128 , o u t t o k e n s =128 ,

i n s i z e =256 , h i d s i z e =128 , o u t s i z e =1 ) ,
nn . L i n e a r (128 * 2 , 1 6 ) ,
nn . L i n e a r ( 1 6 , 128 * 2 ) ,
DoubleMixer ( i n t o k e n s =128 , h i d t o k e n s =128 , o u t t o k e n s =128 ,

i n s i z e =1 , h i d s i z e =128 , o u t s i z e =256) ,
nn . L i n e a r ( 2 5 6 , i n t ( np . c e i l ( ( ( 5 3 * 53 * 53) / 128) / 2 ) ) ) )
p r i n t ( ’ Number o f modelB p a r a m e t e r s : ’

f ’{ sum ( p . numel ( ) f o r p i n model b . p a r a m e t e r s ( ) i f p . r e q u i r e s g r a d ) } ’ )

The first linear layer is shared between hemispheres, and each hemisphere is clustered into 128
clusters. In this case, we assume that the sizes of the clusters is roughly uniform. The number of
parameters for this model is: 44k. Relative to the number of samples the model is trained on ( 1200),
the linear model would be analogous to training an 896B parameter model on ImageNet. Training a
neural network with that many parameters on ImageNet is a recipe for overfitting. Our method, on
the other hand, only has 44k parameters, which would be equivalent to training on ImageNet with
a 513M parameter model.
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B APPENDIX: SPECTRAL CLUSTERING

There are three main steps in spectral clustering. First, we create the adjacency matrix (As or Af )
and normalize it between 0 and 1. We assume a fully-connected graph within each hemisphere,
so the degree matrix of the graph is the total number of vertices on the diagonal. Then, the graph
Laplacian of the graph is computed as Ls = Ds − As and similarly for the functional adjacency
matrix. Second, the graph Laplacian is decomposed using its eigendecomposition and only the
bottom k smallest eigenvalues are used, the others are discarded. The k smallest eigenvalues each
correspond to a cluster (eigenvector) of the graph Laplacian.
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