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Abstract

Recently, interest has grown in applying machine learning approaches to the1

problem of table structure inference and extraction from unstructured documents.2

However, progress in this area has been challenging not only to make but to3

measure, due to several issues that arise in both training and evaluating such4

systems from labeled data. This includes challenges as fundamental as the lack of5

a single definitive ground truth output for a given input sample and the lack of an6

ideal metric for measuring partial correctness for this task. To address these we7

propose a new dataset, PubMed Tables One Million (PubTables1M), and a new8

class of metric, grid table similarity (GriTS). PubTables1M is nearly twice as large9

as the current largest comparable dataset, can be used for models across multiple10

architectures and modalities, and addresses issues such as ambiguity and lack of11

consistency in the annotations. We apply DETR [1] to table extraction for the first12

time and show that object detection models trained on images and bounding boxes13

derived from this data produce excellent results out-of-the-box for all three tasks of14

detection, structure recognition, and functional analysis. In addition to releasing15

the data, we describe the dataset creation process in detail to enable others to build16

on our work and to ensure forward and backward compatibility of this data for17

combining it with other datasets created for these tasks. It is our hope that this data18

and the proposed metrics can further progress in this area by serving as a single19

source of data for training and evaluation of a wide variety of models for table20

extraction.21

1 Introduction22

Tables are a compact, structured representation for storing data and communicating it in documents23

and other manners of presentation, such as PDF or images. In its presented form, however, a table24

may not and often does not explicitly represent its logical structure. This is an important problem, as25

without this structure information, a significant amount of data in presentation tables is unable to be26

used in downstream applications.27

The end-to-end problem of inferring a table’s structure from its presentation and converting it into a28

structured form is called table extraction. This problem is very challenging for automated systems, as29

noted by many [2–5], and can be difficult even for human annotators [6], due to the wide variety of30

formats, styles, and structures found in presented tables. One of the main challenges is inferring the31

separations between cells in the absence of ruling lines between them, as shown in the table in Figure32

1.33

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.



Figure 1: An example table without borders and ruling lines between cells.

(a) Ground truth as originally annotated (b) Our preferred ground truth annotation

Figure 2: One challenge for creating ground truth for table structure recognition is that there are
multiple ways to segment a table into cells that are compatible with its presentation.

Recently, there has been a shift in the research literature from traditional rule-based methods [7–9]34

for table extraction to data-driven methods based on deep learning (DL) [2, 10, 11]. The primary35

advantage of DL methods is that they can learn to be more robust to the wide variety of table36

presentation formats. However, these methods require a significant amount of data to train and37

thus far still rely significantly on additional rules, hand-engineered components, or special training38

procedures to achieve good performance.39

Recent datasets for table structure recognition (TSR) [4, 3, 11], while large, have several limitations,40

including in some cases missing cell-level location information, compatibility with only specific41

model architectures, and lack of guarantees for data quality and consistency. A more fundamental42

issue, which we illustrate in Figure 5, is that for a given input table, there may not be only one way to43

annotate its structure [6]. Yet these datasets have been used for model training and evaluation as if44

each annotation is the only correct output, which leads to inconsistent feedback during training and45

noise during evaluation.46

Another challenge for model evaluation in this area is the lack of an ideal metric. Several metrics47

have been proposed for evaluating the performance of TSR methods [12, 3, 13, 4]. While it is48

useful to have multiple metrics that evaluate TSR from different perspectives, these metrics lack a49

theoretical grounding, evaluate tables in ways that do not preserve their topological structure, and50

have different forms that lack an obvious connection between each other, making them difficult51

to interpret. Previous evaluations using these metrics have also not addressed the problem noted52

earlier, which is the possibility of multiple correct outputs for each input. This has made it difficult53

to benchmark current model progress, as it is not clear if when performance suffers it is due to54

deficiencies in the modeling or in the evaluation methodology.55

To address these issues, we introduce a new dataset, PubMed Tables One Million (PubTables1M),56

and a new class of evaluation metric for table structure recognition, grid table similarity (GriTS).57

• PubTables1M is the largest dataset of its kind. It contains nearly one million annotated tables58

from the PubMed Central Open Access (PMCOA) database, which is nearly twice as large59

as the current largest similar dataset, and nearly nine times as large as the most comparable60

dataset. It contains both PDF and image bounding box annotations for table detection, table61

structure recognition, and functional analysis, useful for training and evaluating any model62

whose data can be derived from PDF documents.63

• As far as we know, PubTables1M is the first attempt to create a dataset with unambiguous64

ground truth for both training and evaluation, making it more suitable than previous datasets65
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for benchmarking progress in deep learning models. We introduce a canonicalization proce-66

dure whose goal is to ensure each table has a unique, unambiguous structure interpretation.67

We also process and filter the data to ensure it has consistent annotations for table content.68

• Unlike previous metrics, grid table similarity (GriTS) evaluates a table in its natural matrix69

form. It also can evaluate multiple aspects of TSR within the same formulation, eliminating70

the need for different metrics that are difficult to compare.71

• We apply the Detection Transformer (DETR) [1] for the first time to the tasks of table72

detection, structure recognition, and functional analysis, and demonstrate how with our data73

all three tasks can be addressed within an object detection framework out-of-the-box without74

the need for any custom components or training procedures.75

• We plan to release all data and code for training and evaluation, which we hope will enable76

others to build off of and improve upon our work.77

2 Background78

Wang [14] distinguishes between a table in three forms, which we summarize here as:79

1. Abstract table: a data structure that represents information in terms of a set of values,80

uniquely indexed by a multi-dimensional hierarchical system of keys.81

2. Grid table: an abstract table with a two-dimensional arrangement of keys and values into82

cells occupying ordered rows and columns.83

3. Presentation table: a concrete table; a visualization of a topological table with typography,84

spacing, and style.85

A grid table is composed of cells, with each cell containing content. Each intersection of a row and a86

column forms a grid cell. A cell that spans multiple rows or multiple columns is called a spanning87

cell, and its content is considered to be repeated at each grid cell location that it spans.88

Generally, table extraction (TE) is considered the problem of inferring a table’s grid form from its89

presentation form. TE can be decomposed into three subproblems [15]: table detection (TD), which90

locates the table; table structure recognition (TSR), which recognizes the topological structure of91

a table in terms of rows, columns, and cells; and functional analysis (FA), which recognizes the92

keys and the values of the table. In this paper we address all three subproblems, but give particular93

attention to training and evaluating methods for TSR.94

The output of a TSR system can be evaluated from three perspectives: cell topology recognition,95

which considers just the structure of the cells in a grid; cell content recognition, which considers both96

cell topology and the text content of each cell; and cell location recognition, which considers both97

cell topology and the absolute coordinates of each cell within a document. For evaluation, all three98

perspectives are useful. Cell content recognition is most aligned with the end goal of table extraction99

but for PDF and image input it can be dependent on the quality of OCR. Cell location recognition100

does not depend on OCR, but not every TSR method reports cell locations. Cell topology recognition101

is free of OCR and is applicable to all TSR methods, but is not anchored to the actual content of102

the cells either by text content or location. Thus, a high score on a cell topology metric would be103

necessary but not sufficient for performing well at table extraction.104

3 Related Work105

Datasets Several large datasets have been introduced recently for table extraction [17, 18, 4, 3, 11].106

We present an overview of recent datasets for TSR and compare the types of annotations they provide107

in Table 1. Among previous datasets for TSR, PubTabNet is the largest, with a total of 568k tables.108

The source data for PubTabNet are pairs of PDF and XML versions of the same scientific articles109

from the PMCOA database. PubTabNet is created through an automated matching process [18]110
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Table 1: Comparison of recent large datasets for table structure recognition.

Name Format # Tables Cell
Topology

Cell
Content

Cell
Location

Canonical
Ground Truth

TableBank[4] Image 145k X
SciTSR[16] Image 15k X X
PubTabNet[3] Image 568k X X

FinTabNet[11] Image,
PDF 113k X X X

PubTables1M
(ours)

Image,
PDF 948k X X X X

that for many tables in the XML can determine its corresponding bounding box in the PDF. While111

large enough to support training for deep learning models, it has some limitations, including that it112

lacks bounding box information for cells, only supports training and evaluation for specific model113

architectures, and only a small portion of the selected tables are considered complex, with any114

spanning cells. Without an explicit match between content at the individual cell level, there are also115

potentially unresolved issues with data quality. This is particularly a concern due to the use of a116

matching procedure and examples intended for table detection, which for that task can tolerate errors117

in cell-level annotations that then may go undetected for TSR.118

Metrics Several evaluation metrics have been proposed for TSR. Göbel et al. [12] propose a content119

metric based on precision and recall for all pairs of adjacent cell content. Li et al. [4] propose a120

topology metric that evaluates HTML output with a custom tagset using the 4-gram BLEU score.121

Zhong et al. [3] propose a content metric that is a modified tree-edit distance on a custom HTML122

tagset and incorporates a text content score. Gao et al. [13] propose a location version of the metric123

proposed by Göbel et al. [12], which evaluates precision and recall for pairs of adjacent cells whose124

intersection-over-union (IoU) with a ground truth cell is above a threshold.125

While it is useful to have multiple metrics that evaluate TSR from different perspectives, it is not126

obvious how these metrics relate to each other, making it unclear if a particular metric is best or how127

they should be used in combination. Each approximates a table as a set, a sequence, or a tree, none128

of which captures a table’s two-dimensional structure. Both Zhong et al. [3] and Li et al. [4] also129

did not propose their metrics strictly for TSR, as they include aspects of functional analysis in their130

evaluations. These issues motivate us in Section 6 to propose new metrics with a clearer motivation131

that each retains a table’s true topological structure and are natural to use in combination with one132

another.133

4 PubTables1M Dataset134

The source data for creating PubTables1M are pairs of PDF and XML versions of the same document135

from the PMCOA dataset. Roughly the same text appears in both, but the text in the PDF has spatial136

location [xmin, ymin, xmax, ymax], while the text in the XML appears inside semantically labeled137

tags. We use the Needleman-Wunsch algorithm [19] to align the text from both sources, connecting138

each XML tag to its spatial location.139

Canonicalization To remedy the issue of inconsistency and ambiguity in these annotations, we140

propose to convert each table annotation into a canonical form. This canonical form is similar to that141

defined by Seth et al. [20], who describe a set of permissible tilings of a table into cells. However,142

ours is motivated from the goal of ensuring each presentation table has a unique interpretation, which143

is a way of favoring one particular segmentation of table into rows, columns, and cells over other144

possibilities.145
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Figure 3: Examples of page images with table bounding box annotations in PubTables1M.

(a) Pre-canonicalization (b) Post-canonicalization

Figure 4: The same table annotations before and after canonicalization.

To do this, our canonicalization procedure uses the idea that the row and column headers in a146

presentation table correspond in their abstract representation to trees. For an interpretation of the147

headers to be unambiguous, there should be a one-to-one correspondence between header cells148

and tree nodes. Canonicalization is a procedure to consolidate oversegmented header cells into a149

one-to-one correspondence with their abstract tree nodes. For the details of the procedure, please see150

the Appendix (code will be released).151

Header correction The canonicalization procedure operates on cells in the row and column headers.152

The source XML annotations, however, do not label row headers, and we found that they sometimes153

contain incomplete annotations of the column headers, as well. Before canonicalization, we again154

use the assumption that the logical structure of the headers in their abstract representations is a tree to155

identify missing row header and incomplete column header annotations. Accurately labeling the full156

row header of a table for functional analysis is considered outside the scope of this paper. However,157

the high accuracy of our row header identification method is useful to correct oversegmented cells in158

the first column, leading to a significant net improvement in segmentation correctness for these cells.159

There is one aspect of the row header, however, that is common enough and a special-enough case160

to include in both the canonicalization procedure and the annotations. This row header pattern has161

been referred to as a projected multi-level row header [21] or a section header [22]. An example162

of a table with a projected row header is given in Figure 4a. This is another common source of163

oversegmentation, as annotators differ on how to segment this row into cells. As each projected row164

header corresponds to one node in the tree representation of the header, we consolidate the entire row165

into a single spanning cell. For the tables in PMCOA, we consider this annotation of the spanning166
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cell as part of the row header accurate enough to include as part of the canonicalized ground truth.167

Figure 4b shows the table annotation after the full canonicalization procedure.168

Quality control Additional checks are needed to ensure the alignment locates content accurately169

and that the contents of the cells in their XML annotations match their PDF counterparts. For this,170

we discard any table annotations with rows that overlap each other, with columns that overlap each171

other, whose PDF cell contents do not match their XML annotations, or whose overall complexity172

is a significant outlier. For cell content, we check if the average edit distance between the PDF text173

content versus the XML text content in each corresponding cell is 0.05 or less. We choose not to force174

the text from each to be exactly equal, as the PDF text can differ even when everything is correct, due175

to things like word wrapping, which may add hyphens that would not appear in the XML. When the176

annotations do slightly differ, we choose to consider the PDF text to be the ground truth. For outlier177

removal, we measure complexity by the number of objects that are in the table, which is defined178

in Section 5, and cap the number of objects in a table at 100. In all, less than 0.1% of tables are179

discarded as outliers.180

Dataset splits and statistics Following the alignment, canonicalization, and quality control, from a181

large pool of documents we yield 947,642 annotated tables. Of these, 448,310 (47.3%) are simple182

tables and 499,332 (52.7%) are complex. Prior to canonicalization, only 379,735 (40.1%) of the183

tables in the set were considered complex by the original annotators. In total, canonicalization adjusts184

the annotations in some way for 328,421 tables (34.7%). 65.8% of the complex tables in the final set185

were adjusted from their original annotations. Finally, the method to add missing rows to the column186

header extends the header to more rows for 56,495 tables (6.0%).187

We split the data randomly into train, validation, and test sets at the document level rather than the188

table level using an 80/10/10 split. For TSR, this results in 758,849 tables for training; 94,959 for189

validation; and 93,834 for testing. For each document, we note if all tables in the XML version of190

the document are present in the final set of annotations. While every table in the set can be used191

for training TSR models, only tables from documents with all of their tables annotated can be used192

for table detection. For TD, there are 460,589 fully-annotated pages containing tables for training;193

57,591 for validation; and 57,125 for testing. The annotations are all on the source PDF documents194

themselves, which means they can be used for training any model whose data can be extracted from195

a PDF. However, one limitation of our implementation is we do not align tables that span multiple196

pages, so the data only contains tables that are fully contained within a single page.197

5 Model198

We model all three tasks of TD, TSR, and FA as object detection with images as input.199

TD model We use two object classes for TD: table and table rotated. The table rotated class200

corresponds to tables that are rotated counterclockwise 90 degrees, which is often the case for very201

wide tables. To create data for this model, we render the PDF pages to images with a maximum202

length of 1000 pixels and appropriately scale the bounding boxes for the objects to image coordinates.203

TSR and FA model We use a novel approach that models TSR and FA jointly using six object204

classes: table, table column, table row, table column header, table projected row header, and table205

spanning cell. The intersection of each pair of table column and table row objects can be considered206

to form a seventh implicit class, table grid cell. These objects model a table’s hierarchical structure207

through physical overlap and model sequential ordering through their relative vertical and horizontal208

positioning. For TSR and FA, we first render the page containing the table as an image with a209

maximum length of 1000 pixels, scale and pad the table bounding box with an additional 30 pixels210

on all sides (or fewer on a side if there are less than 30 pixels available on that side), and crop211

the image to this bounding box. The padding enables more variation in training through cropping212

augmentations.213
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(a) Columns (b) Rows

(c) Spanning cells (d) Column header

Figure 5: An example table with dilated bounding box annotations for different object classes.

Dilated bounding boxes Besides adjusting the bounding boxes to their image coordinates, we214

make another adjustment just for the data for the TSR and FA model. For each pair of adjacent row215

bounding boxes and adjacent column bounding boxes, we expand their boundaries until they meet216

halfway, which fills the empty space in between them. After, there are no gaps or overlap between217

rows, and no gaps or overlap between columns. We call these dilated bounding boxes. We adjust the218

other objects so their boundaries match the adjustments made to the rows and columns they occupy.219

DETR To demonstrate the proposed dataset and the object detection modeling approach, we apply220

for the first time the Detection Transformer (DETR) [1] to all three table extraction tasks. We choose221

DETR over typical methods for object detection such as Faster R-CNN [23] due to DETR’s superior222

ability to model global context for objects, as well as the fact that it does not perform an explicit223

early-stage non-maxima suppression step that would prevent it from outputting different classes with224

the same bounding box. We train one DETR model for TD and one model for TSR and FA. Each225

uses a ResNet-18 (R18) backbone, six layers in the encoder, and six layers in the decoder. For TD,226

we use 15 object queries, and for TSR and FA we use 125 object queries, each chosen to be slightly227

more than the maximum number of objects in each set’s training samples. Besides this, we use the228

same default architecture settings for each.229

Additional components We use no custom components, losses, or procedures for training the230

model, other than standard data augmentations, such as random cropping and resizing. We only add a231

simple conflict resolution step used strictly at inference time, followed by a conversion step from232

the set of objects to a logical table. The conflict resolution step only involves removing objects or233

adjusting their bounding boxes to eliminate overlap between objects of the same class. For the sake234

of evaluation, we also align the bounding boxes to the text extracted from the document, though this235

action is taken after text extraction and has no effect on the outcome.236

6 Proposed Metrics237

To address the weaknesses of prior evaluation metrics, we propose a new family of related metrics238

we refer to as grid table similarity (GriTS). Unlike previous metrics, GriTS evaluates the topological239

representation of a table as a two-dimensional grid, or matrix.240

2D-LCS As a starting point for these metrics, we first consider the generalization of longest common241

substring to two dimensions, which is called two-dimensional longest common substructure (2D-LCS)242

[24]. Let M[R,C] be a matrix with R = [r1, . . . , rm] representing its rows and C = [c1, . . . , cn]243

representing its columns. 2D-LCS operates on two matrices, A and B, and determines the largest244

two-dimensional substructure, M̃, the two have in common. In other words, M̃ = A[R′A, C
′
A] =245
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B[R′B , C
′
B ], where R′ | R is a subsequence of rows R, and C ′ | C is a subsequence of columns C.246

We can define a similarity score based on this as S(A,B) = 2|M̃|
|A|+|B| , where |Mm×n| = m · n.247

2D-MSS An extension to this is to relax the exact match constraint, and instead determine the two248

most similar two-dimensional substructures, Ã and B̃. We define this by replacing equality between249

entries Ai,j and Bi,j with some choice of similarity function between them f(Ai,j ,Bi,j), which250

maps to the range [0, 1]. We call this two-dimensional most similar substructures (2D-MSS).251

Grid table similarity (GriTS) GriTS is 2D-MSS with a particular choice of similarity function252

and a particular matrix of entries to compare. Given a similarity function f() and choice of matrices253

A and B we define GriTSf as:254

GriTSf (A,B) = max
R′

A,C′
A,R′

B ,C′
B

2 ·
∑

i

∑
j f(A[R′A, C

′
A]i,j ,B[R′B , C

′
B ]i,j))

|A|+ |B|
, (1)

=
2 ·

∑
i

∑
j f(Ãi,j , B̃i,j))

|A|+ |B|
. (2)

One of the main advantages of GriTS is we can use the same formulation for all aspects of TSR.255

We define one version for cell location recognition (GriTSLoc), one for cell content recognition256

(GriTSCont), and one for cell topology recognition (GriTSTop). For cell location recognition, A and257

B are such that Ai,j contains the bounding box of the cell located at row i and column j. The function258

we use for comparing the similarity of two bounding boxes is the standard intersection-over-union259

(IoU). For cell content recognition, A and B are such that Ai,j contains the text content of the cell260

located at row i and column j. The function we use for comparing the similarity of two strings of261

text content is normalized longest common substring (LCS).262

For cell topology recognition, we use the same similarity function as cell location recognition, IoU,263

but on bounding boxes with size and relative position given in the grid coordinate system. Let αi,j264

be the rowspan of the cell at position (i, j), let βi,j be the colspan of the cell at position (i, j), let265

ρi,j be the minimum row occupied by the cell at position (i, j), and let θi,j be the minimum column266

occupied by the cell at position (i, j). Then for cell topology recognition, A and B are such that Ai,j267

contains the bounding box [ρi,j − j, θi,j − i, ρi,j − j + βi,j , θi,j − i+ αi,j ]. Note that for any cell268

with rowspan of 1 and colspan of 1, this box is [0, 0, 1, 1].269

Factored 2D-MSS Computing the 2D-LCS of two matrices is NP-hard [24]. This suggests that all270

metrics for TSR may end up being an approximation to what could be considered the ideal metric.271

We propose a heuristic approach to determine the most similar 2D substructures by factoring the272

problem and determining the optimal 1D subsequences of rows and of columns from each matrix273

independently. This procedure uses dynamic programming (DP) in a nested manner, which is run274

twice: once to determine the most similar rows and once to determine the most similar columns275

between the two matrices. The nested DP procedure is O(|A| · |B|).276

Because the outcome of the procedure is a selection of rows and columns for each matrix, it still277

yields a valid 2D substructure of each; these just may not be the most similar substructures possible.278

It follows that the similarity computed using this procedure is a lower bound on the true similarity279

between A and B.280

7 Experiments281

Metrics To validate the behavior of the proposed metrics, we perform experiments where we282

evaluate each metric on the actual ground truth versus versions of the ground truth that are corrupted283

in straightforward ways. To produce a corrupted version of the ground truth, we select and keep rows284

and columns from the actual ground truth with probability x, where x can vary from [0, 1], while285

keeping the rows and columns in their original order.286
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(a) Only rows removed (b) Only columns removed (c) Rows and columns

Figure 6: Comparison of GriTS for the ground truth versus corrupted ground truth where we keep
each row, each column, or both (in their original order) with probability x.

Table 2: Test performance of both models on PubTables1M using object detection metrics.
Model Task AP50 AP75 AP AR

DETR-R18 TD 0.995 0.988 0.966 0.981
DETR-R18 TSR + FA 0.971 0.948 0.912 0.942

We report three such experiments, one where we keep all columns but select rows to keep with287

probability x, one where we keep all rows but select columns to keep with probability x, and one288

where we select both rows and columns with probability x, which keeps each cell with probability289

x2. In each experiment, we vary x in increments of 0.1. We report the results of these experiments290

in Figure 6. Since the rows and columns remain in their original order, x can be interpreted as the291

expected value of the fraction of true rows and columns in the ground truth that are in their true292

order and x2 as the expected value of the fraction of cells in a valid substructure of the true matrix of293

cells. For each experiment, this simulates evaluating the performance of a model that exhibits these294

expected values.295

As can be seen in Figure 6, all of the metrics are closely related to the fraction of rows, columns, and296

cells reported by a model that appear in the same order as they appear in the ground truth in both297

directions of the table, which is their desired behavior. Taken together, these results validate that all298

of the metrics can distinguish between good and bad models, carry a straightforward interpretation299

when evaluating model performance, and closely relate to each other despite their different forms.300

Model Evaluation In the next set of experiments, we train each DETR-R18 model on the object301

detection data derived from PubTables1M. All of the experiments are performed using a single NVidia302

Tesla V100 GPU. We train each model for 20 epochs and use all default hyperparameters except for303

those we note here. For both models, we use a learning rate drop of 1 and gamma of 0.9. For the304

TSR and FA model, we also use an initial learning rate of 0.00005 and a no-object class weight of305

0.4. We limited hyperparameter tuning to one short experiment to determine the initial learning rate.306

We ran training experiments with three different initial learning rates of 0.0002, 0.0001, 0.00005 and307

chose to use the learning rate for each model that had the best performance on the validation set after308

one epoch of training.309

We report evaluation of the trained models on the full test set using both standard object detection310

metrics and the proposed GriTS metrics. The average precision (AP), AP50, AP75, and average311

recall (AR) of the two models is displayed in Table 2. In Table 3, we report the performance of the312

DETR-R18 TSR and FA model according to our proposed metrics. We report a breakdown of the313

results by type between simple tables, which have no spanning cells, and complex tables, which do.314

We use a confidence threshold of 0.5 for all classes. For evaluating our TSR model according to cell315

location recognition, we report the cell locations after the conflict resolution stage that, in addition316
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Table 3: Test performance of the TSR + FA model on PubTables1M on the proposed GriTS metrics.

Data split # Samples
GriTS

Top Cont Loc RawLoc

Simple 44,355 0.995 0.995 0.992 0.947
Complex 49,479 0.975 0.983 0.966 0.909

All 93,834 0.985 0.989 0.978 0.927

to removing overlap between objects of the same class, also adjusts the row and column bounding317

boxes to tightly surround the bounding boxes for the words they contain.318

To assess how well the DETR-R18 TSR model performs with no post-processing, we define a fourth319

metric, GriTSRawLoc. GriTSRawLoc uses the same similarity function as GriTSLoc but the matrix of320

predicted cell bounding boxes are the raw output of the model, which we compare to the true dilated321

bounding boxes. The difference between GriTSLoc and GriTSRawLoc mostly measures the impact322

of the conflict resolution stage on performance.323

8 Conclusion324

In this paper we introduced a new dataset, PubMed Tables One Million (PubTables1M), the largest325

of its kind, and grid table similarity (GriTS), a new class of evaluation metric for table structure326

recognition that has a much better theoretical grounding than previously proposed metrics. Pub-327

Tables1M is the first attempt to create a large-scale dataset for table structure recognition with328

consistent, unambiguous ground truth. Unlike previous metrics proposed for TSR, GriTS evaluates329

table structure recognition in multiple ways within the same formulation, and can do so in a table’s330

natural matrix form. We trained DETR for the first time for the tasks of table detection, table structure331

recognition, and functional analysis, demonstrating excellent performance out-of-the-box using our332

data with minimal customization for these tasks. We believe PubTables1M and GriTS can further333

progress in this area by enabling for the first time the chance to train and compare models across334

different modalities and output formats with the same dataset and evaluation framework. While we335

do not believe this work raises any potential issues regarding negative impacts to society, we have336

documented the computation used in our experiments and noted any exclusions in our dataset that337

potentially could lead to impacts if incorporated into real-world systems. We welcome a discussion338

on any additional potential impacts raised by others.339

9 Future Work340

We hope the dataset and metrics proposed in this paper will aid progress by making it much easier to341

compare different methods for table extraction in the future. While the tables derived from scientific342

articles are diverse, we think it could be very useful to apply the canonicalization and quality control343

procedures proposed in this work to additional datasets for table extraction to increase the variety of344

training data and evaluation generalization across document types. Finally, we believe releasing a345

large collection of high-quality data samples for table extraction is helpful not just for that isolated346

task but also provides a large starting pool of data for combining with annotations for additional tasks347

made on the same source data. Consolidating document parsing tasks from across multiple sets of348

data and labels represents an interesting direction for work in this area and is something we plan to349

pursue in the future.350
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