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ABSTRACT

Multi-modal data (e.g., audio-visual inputs, various medical images) fusion neu-
ral networks has draw more attention recently with growing number of models
and training techniques being proposed. Despite the success of the multi-modal
fusion neural network, we find a interesting ”low single-modality robustness” phe-
nomenon. Specifically, a multi-modal trained model may achieve worse perfor-
mance than single-modal trained model if another modal data are masked. This
is like a born blind or deaf person (single-modal trained) surpass the healthy one
(multi-modal trained) with only one modality data input, and the multi-modal ex-
perience becomes a bias causing negative transfer. It shows that the existing neural
networks have lower robustness than the human brain in terms of modal-missing
problem. To overcome the defect, in this paper we design a brain-like neural net-
work modeling the processing of audio and visual signals by training it to perform
audiovisual speech recognition tasks. Our results demonstrate the computational
model’s vulnerability to sensory deprivation while promoting this adaption can
help in multi-modal processing. Besides, we propose modality mix and gated fu-
sion techniques to get a more robust model with better generalization ability. We
ask for more attention on the interaction of signals of different modalities and hope
our work will inspire more researchers to study the cross-modal complementary.

1 INTRODUCTION

The artificial intelligence models aiming at human brain have made impressive progresses in many
hard tasks. However, many researches have demonstrated the significant gap between the cur-
rent AI models and human intelligence, such as catastrophic forgetting(Kirkpatrick et al., 2016),
texture bias(Geirhos et al., 2019) and adversarial attacks(Goodfellow et al., 2015)(Kurakin et al.,
2017)(Madry et al., 2018), and addressing these defects in the models can help us build more ro-
bust intelligent systems. Besides, more attention has been paid to the process of the multi-modal
data, which is closer to the real-world situation but the heterogeneous data also bring much more
difficulties.

As humane beings we naturally receive multi-modal signals, and the ability to combine and process-
ing multiple modals ensure the superior performance in the tasks that require intra-modal informa-
tion complementary, such as speech recognition task where lip movements help remove the noise in
the voice data. More importantly, the human brains are robust enough in dealing with modal-missing
problem. People with sensory deficiency can still live effectively in the multi-modal situation, af-
ter human-specific training (e.g., sign language for the deafs and braille for the blinds) or natural
learning process (e.g., distinguishing the speakers with eyes covered).

Artificial neural networks have achieved great success in multi-modal fusion tasks. However, we
find that the current multi-modal neural networks are far inferior to the brain in terms of modal-
missing problem, which is called as ”weak multi-modality robustness” phenomenon in this paper
(Figure 1). Specifically, a model trained with multi-modal data may achieve poor performance if one
modal data are masked, even worse than the same model trained with single-modal data. It is kind
of like that a born blind or deaf person (trained with single-modal data) surpasses the healthy one
(trained with multi-modal data) with only one modality data input, and the multi-modal experience
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Figure 1: Left: Audio-visually trained brains can adapt to single-modal tasks while neural networks
failed. Right: It’s not hard for us to distinguish ”Ah” from ”Oh” with pure audio or visual signals,
but for artificial neural networks, missing modality(ies) may result in the corruption of the whole
system.

becomes a bias causing negative transfer. People and animals with temporal or eternal sensory injury
can still survive in the multi-modal data, on the other hand, audiovisual complementary has been
observed and studied by researchers, uncovering the robustness of cognition for biological neuron
systems(Rauschecker, 1995)(Sadato et al., 2004)(Huber et al., 2020).

Rethink the recently proposed and advanced multi-modal neural networks, and less attention has
been paid to the robustness of modal-missing problem. In this paper we try to take inspirations
from human intelligent system and overcome the defects. We build a compact computation model
formulating the process of multi-modal inputs in the brain to study the robustness of such system
to missing modalities, and try to reproduce and study the audiovisual compensatory phenomenon
discovered in human brains. It is discovered that a blind person usually have better hearing while
deaf people have better sight and neuron science have also found the cross-modal plasticity in human
brains(Merabet & Pascual-Leone, 2010). We conducted sensory deprivation experiments and do
transfer learning on networks and found classically trained model failed to generate well facing
modal missing, even with retraining and fine-tuning, corresponding to humans with sensory loss.
We also propose to mix training data with uniformly dropout modalities and use a gated fusion to
train a model that not only reaches highest accuracy in audio-visual word recognition tasks among
our models and also is significantly more robust and can better generalize.

2 RELATED WORKS

2.1 NEURAL NETWORKS ROBUST TO MODAL MISSING

Multi-modal AI models can use complementary information from different modalities to form a
better perspective and avoid the limitation of single view. Models capable of receiving different
kinds of information has proved to steadily surpass traditional single ones with proper training tech-
niques(Wang et al., 2020), and more and more multi-modal models and methods have been proposed
recent years to tackle different problems in medical image analysis(van Tulder & de Bruijne, 2015),
speech recognition(Petridis et al., 2018) and video comprehension(Sun et al., 2019).

However, in real world it’s a common case that only data from a part of the whole modalities can
be acquired to be fed to the model. An intuitive solution is to synthesis the needed modals using
data from available modality(ies)(van Tulder & de Bruijne, 2015), which requires extra models and
make the amount of generators increase rapidly as more types of modalities being used since pos-
sible modal missing situations grows. Other approaches include making information from different
modals more similar to avoid strong bias(Chen et al., 2019)(van Tulder & de Bruijne, 2019), or to
fuse only modal-invariant information by modifing the loss function(Chartsias et al., 2018) or using
statistic information(Havaei et al., 2016), all of which highlight the importance of a model being
robust to missing modals or sensory loss. Most of such research focus on medical imaging since the
diversity of imaging techniques(i.e. PET, FLAIR, MRI) but we studied this problem in audio-visual
speech recognition task.
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2.2 AUDIOVISUAL COMPENSATORY

Humans have the ability to receive, process and combining different kinds of outside signals. The
brain firstly process information of different modalities in the respective cortex separately, but com-
plex human behaviors involve the interaction of multiple senses, such as watching videos, playing
games, etc. The input from different sense organs can be regarded as data of different modalities,
and the brain will eventually combine these data in more advanced brain areas (such as the prefrontal
cortex) to form higher level of cognition. Human sensory and cognition system shows high robust-
ness to sensory loss, especially for people with early or born sensory deprivation, most of which can
be found compensatory phenomenon in their brains.

Compensation mechanism refers to the mechanism in which parts of the body partially replace
the effects of the missing functions when other part(s) of the body is(are) lost due to damaging or
disease. The compensation in this article specifically refers to the visual and auditory compensation
of human brains, one aspect of which refers to the blind person’s hearing becomes more acute with
the loss of vision, so that in some cases they can obtain more information than normal people to
compensate for the visual information. Another situation is that after deaf people lose their hearing,
their vision will become sharper than ordinary people.

The compensating is probably due to that (for blind people) the original visual cortex has been
converted to process auditory information, and better information utilization at higher level may also
make contributions. For the former case, the biological explanation is the cross-modal plasticity of
neurons that mainly refers to the adjustment of the functional connection of different brain areas of
the brain(Merabet & Pascual-Leone, 2010)(Huber et al., 2020), thereby enhancing the response of
deprived modal neurons to other modal data(Karnekull et al., 2016). This aspect has been confirmed
by neuron science observation. The latter one refers to adaption at a higher cognition level. We
believe AI researches can take inspiration from human brains’ to build a more plastic and robust
multi-modal model.

3 AUDIOVISUAL NEURAL MODEL TRAINING

3.1 MODEL STRUCTURE

Figure 2: Structure of our multi-modal
computational baseline model using two
streaming primary processing combined
with high-level joint processing.

In order to study audiovisual compensatory
with neural networks, a neural network that ac-
cept inputs from two modalities is built, with
separate primary processes. We adopt the struc-
ture of Petridis et al. (2018) and use two parallel
processing modules to process visual and audi-
tory information separately. The two modals’
signals are only fused and processed near the
output layer. The reason for this structure is
that, on the one hand, each modal’s processing
in this structure is parallel, which is close to
the modular structure of the partition between
the different senses of the brain. On the other
hand, unlike some other structures which im-
port complex cross-modal interaction, in this
model different modal data adopts a process
that does not depend on other modal data, and is
highly independent of each other, which avoids
extra interference to sense deprivation and is
convenient for observing the model’s response
to different modalities. The structure is visual-
ized in Figure 2.

For visual input, the model uses 3D convolution operation to fuse inter-frame information. Each
frame of data obtained is input to a ResNet-34(He et al., 2016) with random initialization. After
visual features are extracted, each frame feature becomes a vector, and two layers of bidirectional
GRU modules with hidden dimension of 1024 are introduced to extract time series features.
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For auditory input, due to the smaller size of each sample, the model is directly input to ResNet-18 to
extract features, and then two layers of bidirectional GRU(Cho et al., 2014) with hidden dimension
the same as that of visual inputs are used to extract sequence features between frames.

After the feature vectors of the two visual and auditory modalities are extracted, the vectors are
fused as input using concat fusion or our proposed Gated Fusion, and two layers of bidirectional
GRU modules or convolution blocks are used to obtain the final predictive recognition output.

3.2 DATA PREPARATION

We choose the performance at audiovisual speech recognition task as our criteria for evaluation,
and use Lip Reading in the Wild (LRW) dataset(Chung & Zisserman, 2016) to train our model’s
single-modal feature extractors while further training were conducted in both LRW and OuluVS
dataset(Zhao et al., 2009). The reasons why we choose audiovisual task and LRW dataset to train
our features are as follows: (1) The amount of data is huge. This data set collects a large amount
of BBC program data, with 500 classes, each having up to 1000 video segments (1.16 seconds
and 29 frames), which can provide enough data for training a successful and convinced model; (2)
The data of each modal is complete. Some lip-reading data sets or video analysis data sets only
provide video without audio, and can only learn pure visual tasks, and cannot perform multi-modal
training; (3) Natural. The samples of LRW all come from the actual program, rather than being
recorded separately. On the one hand, it ensures the diversity and representativeness of the data, on
the other hand, it is more in line with the actual situation faced by the model and human beings; (4)
The research in LRW is mature. As a well-known data set in the field of audiovisual recognition,
the research on this data set is relatively mature, and the accuracy of speech recognition alone can
reach more than 95% in most cases. Relative simple model with good enough performance made it
convenient to conduct further analysis.

3.3 PREPROCESSING AND BASELINE MODEL TRAINING

The training on LRW dataset followed the procedure of (Petridis et al., 2018), the video inputs
are mouth regions of interest (ROI) cropped from each frame in the video, and the audio inputs
are audio waveform directly extracted from the raw mp4 file, without extra process. Video inputs
are augmented with random crop and horizontal flips. The structure already adapts to make LRW
features have the same sizes and the fusion operations need the features from different modals have
the same size, so for OuluVS we padded the inputs to the max size found in the dataset, same as the
OuluVS pad in Section 5.3. The complete training procedure includes pretraining in each modality
and combined training with multi-modal part only and end-to-end finetuning. Details can be found
in Appendix A.1.

The finally trained baseline model reaches accuracy over 97% in the validation set at audio-visual
task for LRW dataset, which is similar to the results of paper (Petridis et al., 2018) and the slight
drop may comes from not using the extra augmented material. For OuluVS we can reach nearly
perfect performance with accuracy over 99%. To have a more comprehensive comparison, we also
build models with CNN as multi-model part besides the baseline with Bi-GRU, and some of latter
experiments are also conducted on CNN structure1.

3.4 BORN DISABILITY AND ACQUIRED DISABILITY VARIANTS

We train lots of various models besides the baseline in the cascade experiments using different
structure and input modalities. We name them with different types of disability because we use
them to simulate the situation of variant kinds of sensory defects.

For a born blind model, the video inputs are replaced with zeroed-outed inputs (born deaf model is
vice versa), we train such models’ multi-modal parts 5 epochs. For an acquired blind model, while
the input data same as the born blind, the training starts from the previously trained audio-visual
model. The models are also trained 5 epochs in the multi-modal parts for a fair comparison with the
ones with born-disability.

1A transformer-based model is also tested but proved to be hard to convergence in this classification task
without extra pre-training, so we leave it for future work.
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4 MODALITY MIX TRAINING AND GATED-FUSION MODULE

In the experiments, we found that baseline model structure failed to build good connections between
modalities and often have two strong bias towards specific modality, which hurts the models’ gener-
alization and robustness to missing modality data. In order to tackle the disadvantages, we propose
two methods: Modality Mix and Gated Fusion.

4.1 MODALITY MIX

Traditionally audio-visual model training research focus on complex cross-modal interaction and
knowledge distillation(Ren et al., 2021), while a few introduced part of single modality as data
augmentation(Chung et al., 2017). The work of Chung et al. (2017) introduce mixing only a small
part of single-modal data in sentence-level lip-reading, in which a whole modality is eliminated,
making it only adapt to attention model that fuse information in temporal dimension. In van Tulder
& de Bruijne (2019) the authors proposed modality dropout as one of training techniques, but they
use averaging-based fusion thus remove the corresponding modality in the fused features, and they
chooses subset of modalities while our method generalized to use one modal only in situations with
more modalities than two. As stated before, we take inspiration from the modality bias and propose
Modality Mix technique which only need to zero-out the input from the deprived modality, and we
use an uniformly mixed data from different cases of sensory loss instead of a majority multi-modal
data.

(a) Modality Mix (b) Gated Fusion

Figure 3: Left: Samples conducted with Modality Mix where part of the training data have random
modality being zeroed out, and all modal’s data keep the same size. Right: Gated fusion Operation
where each feature in the two modalities are added with computed gating weight from the averaged
vector.

4.2 GATED FUSION

Usually a multi-modal structured network have special subset in it dealing with modal-specific data
stream, and the way to combine the information of such sub-network is defined as fusion. The fu-
sion techniques can be divided into early fusion, late fusion and intermediate fusion according to the
place of the fusion module. Traditionally the modalities are treated equally in fusion before further
processing in higher layer, and methods include concatenation, addition and dot-product. While
these processing methods ignores the inherent difference of different modals, they often results in
strong bias towards one more informative and plain modal(Michelsanti et al., 2021). We notice
that neural experiments have proved that gating mechanism in the brain are developed to process
information flow related to different subjects(Postle, 2005)(Gisiger & Boukadoum, 2011), enabling
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the flexibility and quick adaption in various tasks(Monsell, 2003). Consistent with the complemen-
tary of modalities and the gating mechanism in human brain, and inspired by the SE-Net(Jie et al.,
2017) in image classification, we design an attention-based Gated Fusion module for a more flex-
ible combination of different modals. Similar structure has been proposed in audio-visual speech
enhancement, in which only audio data are gated because the purpose of the network. (Chen et al.,
2019) proposed a gated fusion method similar to one of the methods used in our experiment, but
neither the case nor the purpose of the two researches are overlapped.

5 EXPERIMENT RESULTS

5.1 ROBUSTNESS TO SENSORY DEPRIVATION

5.1.1 MULTI-MODAL TRAINED MODELS ARE VULNERABLE DUE TO INCORRIGIBLE
MODALITY BIAS

We tested different models’ vulnerability to different cases of modal missing in both LRW and
OuluVS datasets. As in Section 3.4, the missing modal’s input are zeroed out to stimulate sensory
loss. The results can be viewed in Table 1. The A and B means the baseline model using concat
fusion and that using gated fusion, while B1 and B2 means the model trained end-to-end and the
model trained with features fixed. All results are tested on models with highest validation accuracy
in the targeted modality(ies), which is audio-visual for baseline, audio-only for the blind and video-
only for the deaf. We also studied models modified with our proposed gated-fusion model for a
more complete analysis. It shows that for LRW dataset, our gated fusion module can enhance the
models ability in audio processing while keeping competitive performance for multi-modal inputs,
and in the OuluVS dataset which is much smaller and simpler such operation will not affect the
performance much.

Table 1: Comparison of Robustness to Sensory Loss of Different Models: ”A” means the baseline
model with concat fusion. ”B1” means models use gated fusion and ”B2” is the same as ”B1”
models with the single-modal features keep fixed during training.

LRW OuluVS
AV AO VO AV AO VO

Bi-GRU
A 97.87% 39.63% 5.66% 99.50% 99.00% 10.45%
B1 97.78% 52.50% 4.53% 99.50% 100.00% 16.42%
B2 97.96% 68.38% 2.58% 99.50% 93.03% 7.96%

CNN

A 97.95% 81.70% 3.78% 100.00% 100.00% 9.45%
B1 97.79% 87.43% 4.53% 100.00% 99.50% 11.94%
B2 97.78% 77.90% 1.60% 99.50% 98.51% 11.44%

The results shows that for both recurrent and convolutional models has the obvious problem of vul-
nerability to sensory loss, with convolution-based models seems to have more bias towards audio
signals. As the effect of the gated-fusion model alone, it will improve the models’ bias towards
the more informative modal with little influence to the multi-modal performance, which is accept-
able results since we propose such mechanism to be combined with modality mix to have a better
understand of the relationship between modalities in the following transferring situation.

We further analysis the error patterns of the negative samples mistakenly classified by our model,
and the examples of the findings can be found in Figure 4. Prediction results from baseline recurrent
model with vision missing (above) and hearing missing (below). We can find that for the wrong
false results shown in red, the wrong true results in green mostly focus near some specific labels,
especially in deaf cases.

5.1.2 USING MODALITY MIX TO ENHANCE THE ROBUSTNESS

As described in Section 4.1 and shown in Figure 4, the main mistakes made by audio-visual trained
models are their irreformable bias towards specific modality, causing them take silence or black as
information. We believe Modality Mix will help the model overcome such behavior and made up
to a more robust model, and the training results are shown in Table 2. We can conclude that with
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Figure 4: Analysis of negative samples for baseline model in modal missing scenarios. Every posi-
tion in the x-axis refers to a class, with red bars indicates the number of samples that are mistakenly
classified to other classes and green bars means samples from other classes are mistakenly classified
to this class.

the Modality Mix the model would still keep the performance in the multi-modal scene but gain
significant improvements in the robustness towards modality missing. The slight drop of 0.3% in
the models using Gated Fusion and Modality Mix train end-to-end may results from the reduced
hidden dimension since we replace concatenation with gated-adding operation, halving the fused
features.

Table 2: Robustness to Sensory Loss For Models Trained With Modality Mix

LRW OuluVS
AV AO VO AV AO VO

Concat
Fusion

Baseline 97.87% 39.63% 5.66% 99.50% 99.00% 10.45%
+ Modality Mix 97.85% 95.88% 80.56% 99.50% 100.00% 61.69%

Gated Fusion Baseline 97.78% 52.50% 4.53% 99.5% 100.00% 16.42%
+ Modality Mix 97.84% 95.76% 78.60% 99.0% 99.50% 46.27%

Gated Fusion
(Feature Fixed)

Baseline 97.96% 68.38% 2.58% 99.5% 93.03% 7.96%
+ Modality Mix 97.69% 95.69% 78.60% 99.0% 98.51% 18.41%

5.2 GENERALIZATION TO MISSING MODALITY

5.2.1 BORN DISABILITY MODELS BEAT ACQUIRED DISABILITY ONES

For human beings, it’s intuitive that people with born disabilities will adapt better than those acquired
later, but a fashion in neural networks is conducting transfer learning as a way of training better mod-
els, which is also used in cross-modal situations, with SoundNet(Aytar et al., 2016) as an example.
In order to test the generalization ability of the models to the sensory deprivation cases, we train and
retrain variants with different methods as described in Section 3.4. At first we expect that the models
seen multi-modal data shall benefit from the understanding of different models, as researches like
Aytar et al. (2016) and Arandjelovic & Zisserman (2017) have shown some promotion. Surprisingly
we found that in all kinds of multi-modal models we found usually a trained-from-scratch model
outperform the transfer-learned one in the corresponding modality, even with the same procedure of
training, which is confusing for a neural network but in consistence with human brains, since our
daily experiences support that early-disabled people adapt better than the late-disabled ones, and
early studies has also shown that people lost their sense early have better performance than those
lost later in Minimum-Audible-Angle Discrimination(Voss et al., 2004), sound-source discrimina-
tion(Voss et al., 2008) and auditory episodic recognition(Karnekull et al., 2016) for the blind, and
sign language for the blind(Lieberman et al., 2014). Another finding is that the CNN models are
much harder to be retrained to fit missing modality scenes, and although such results may come
from high learning rate at the beginning of re-training, acquired blind models having worse results
in audio-only task even compared with multi-modal model as the start point of training is still out of
our expectation.
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Table 3: Generalization Ability For Models Multi-Modal Trained Compared With Born Disability

AV AO VO

Bi-GRU

Baseline 97.87% 39.63% 5.66%
Born Blind 89.42% 94.12% 0.20%
Born Deaf 0.25% 0.21% 76.80%

Acquired Blind 22.34% 67.28% 0.20%
Acquired Deaf 34.36% 0.28% 68.14%

CNN

Baseline 97.95% 81.70% 3.78%
Born Blind 72.76% 93.09% 0.18%
Born Deaf 0.56% 0.20% 76.41%

Acquired Blind 21.20% 67.76% 0.20%
Acquired Deaf 1.59% 0.28% 68.14%

As in Table 3, models trained with born sensory loss have sometimes achieved 20 percentage of
higher accuracy than those trained from an multi-modal model. On the other hand, there appeared a
strange result that acquired deaf model beat the blind model which is to the contrary of the models
with born disabilities, which is against our intuition that people can easily adapt to audio-only speech
recognition while lipreading is much harder. We fix such problem and get better combined single-
modal performance with our proposed gated fusion module in further experiments.

5.2.2 GATED FUSION AND MODALITY MIX EXPERIMENTS

We combined modality mix and gated fusion techniques so as to train a model that can better gener-
alized to modal missing situations. Following the procedure of Section 5.2.1, we conducted similar
transfer learning experiments in our models with modality mix and gated fusion. The results are
shown in Table 4. Mind that the modality mix doesn’t change network structure so the born disabil-
ity models are the same as the baseline.

From the results we can see that the acquired blind models with gated fusion have much better
accuracy than those using concat fusion with little drop in other modality, and the blind and deaf
models have the same accuracy relationship as that of the born ones. Although still slightly lower
compared to the performance of the born disability models, the modality mix trained models after
transfer learning still have better performance than the models with acquired disabilities. Another
intriguing discovery is that when we try to make a model trained with modality mix specialized
to one modality, both the performance of the other modality and multi-modalities are dropped, the
model often clearly fails to get better performance even in the specially trained modal’s data (except
on the acquired deaf with gated fusion, which still has competitive performance).

Table 4: Comparison of Generalization of Different Models

AV AO VO

Concat Fusion

Baseline with Modality Mix 97.85% 95.88% 80.56%
Born Blind 89.42% 94.12% 0.20%
Born Deaf 0.25% 0.21% 76.80%

Acquired Blind 22.34% 67.28% 0.20%
Acquired Deaf 34.36% 0.28% 68.14%

Acquired Blind (Modality Mix) 68.83% 67.60% 0.26%
Acquired Deaf (Modality Mix) 46.96% 0.24% 77.58%

Gated Fusion

Baseline with Modality Mix 97.84% 95.76% 79.78%
Born Blind 87.70% 94.32% 0.20%
Born Deaf 0.30% 0.14% 77.30%

Acquired Blind 85.82% 73.03% 0.20%
Acquired Deaf 10.78% 0.23% 67.73%

Acquired Blind (Modality Mix) 83.73% 91.28% 0.20%
Acquired Deaf (Modality Mix) 29.39% 0.40% 77.27%
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5.3 GENERALIZATION TO DIFFERENT DATASETS

Besides the generalization to missing modalities, another question is whether the proposed tech-
niques can help learn task-agnostic features that can be better generalized to other datasets, without
being specifically modified to consider out-of-distribution problem? In order to further evaluate the
learned multi-modality features’, we tried to retrain the classifier to help fit the model trained in
LRW dataset to OuluVS dataset. These two datasets differ in recording condition, head poses and
label space, which makes the transferring extraordinarily arduous.

Due to the lengths of records in the OuluVS dataset are not fixed, additional preprocessing are
needed to apply our models. We tested our LRW trained models in two differently preprocessed
OuluVS datasets, namely OuluVS pad and OuluVS resize, where the former one make all samples
zero-padded to the max length in the dataset and the latter resized all samples to the same length
as the LRW dataset, that is, 29 frames for video using linear interpolation and 19456 vector size
for audio using resampling. The results are shown in Table 5. The results shows that combined the
gated fusion and modality mix we proposed results in best generalization ability to new datasets. The
experiment is preliminary yet and future works may have better analysis and complete comparisons.

Table 5: Generalizing multi-modal features from LRW to OuluVS

OuluVS pad OuluVS resize
Concat Fusion 21.39% 10.95%

Concat Fusion & Modality Mix 28.86% 12.44%
Gated Fusion 16.92% 7.46%

Gated Fusion & Modality Mix 34.33% 16.42%

6 CONCLUSION & FUTURE WORK

In this paper we address and analysis the problem that a traditional multi-modal artificial neural
network dealing with audiovisual inputs failed to generalize well to corresponding single-modal
tasks, which is similar to the common view that born disabilities enables better adaption than those
acquired later. We take inspiration from human brains and suppose the lack of understanding the
inherent correlation of different modalities in the artificial network being the key of the problem.
We use modality mix techniques to enforce adaption of sensory deprivation, and try a clear gating
mechanism to simulate the plasticity of neurons in audiovisual compensatory. The detailed exper-
iments prove that modality mix and gated fusion module can help not only the robustness of the
models when facing sensory deprivation, but also permit better generalization to single-modal tasks.

A bunch of future works remained for deeper exploration in the similarities and differences between
multi-modal neural networks and biological intelligent systems. Firstly, we choose a simplified way
of stimulating sensory loss, using zeroed-out specific modality to represent black view or silence,
but more methods like regular noise, meaningless activation and unmatched inputs are also worth
trial. Secondly, our current models are trained with speech recognition task in which audio signals
have huge advantage in classification, and such bias may influence the fairness of our analysis,
so we can try to train multi-task models by also introducing tasks where video signals dominate,
like speaker recognition or video classification. Finally, we can cooperate with neural scientists to
further explore the plasticity and flexibility of human brains to make our computational model more
biologically reasonable, and we believe more advanced multi-modal models can be developed if we
further investigate the gating and adapting mechanism developed by our brains.
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A APPENDIX

A.1 DETAILED TRAINING PROCEDURE AND HYPERPARAMETERS

We train models using Bi-GRU as the layers processing the fused information in the detailed analy-
sis, but we also train CNN models for observation to prove that the phenomenons aren’t on account
of the special types of network. The structure of our CNN model is modified from that used in the
pretraining of single-modal features.

Firstly the audio stream and video stream are trained separately with the same classification task,
with a convolutional-based final two CNN blocks (which are also used in our CNN baseline) instead
of Bi-GRU for 30 epoches to train the former layers. Then GRUs are introduced and trained 5
epochs seperately and the whole model is trained end-to-end for 30 epochs.

Figure 5: The left and right groups of modules are the two blocks used in the training of single-
modal features and our CNN baseline. The LRW dataset has 29 frames for each sample. If more
frames are needed such as samples in the OuluVS pad dataset, the output of the first block will be
averaged in the last dimension.

After models for each modality has been trained, the output features from each modalities’ Bi-GRU
module are concatenated and fed into another two layers of Bi-GRU modules, which will then be
trained separately for 5 epochs. The whole network are finally trained end-to-end together for 30
epochs to get the final model. In practice we found that using models without GRU training in the
single-modal task resulted better performance in the final multi-modal task and use this trick in all
of our following model except those with special notifications.

In the whole processes we use Adam optimizer(Kingma & Ba, 2015) with the initial learning rate of
0.0003 that decays exponentially to its half every 5 epochs. Other Detailed processes can be found
in (Petridis et al., 2018) with negligible difference in data augmentation and learning rate settings.

As for the OuluVS dataset, we use the same structures and features pretrained in the LRW dataset
before finetuning in the multi-modal situation, and the following processes are the same as those in
the LRW dataset.

A.2 ADDITIONAL EXPERIMENT ON SENTENCE-LEVEL AUDIOVISUAL SPEECH RECOGNITION

For a further analysis of the multi-modal neural networks doing more complex tasks, we conduct
preliminary experiments on the model designed and trained for Lip Reading Sentences in the Wild
(LRS2) dataset(Chung et al., 2017). Due to the limit of computing resources we use the two-stream
model and the trained weights of Afouras et al. (2018) for sensory deprivation experiments and
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did simple transfer learning in which the whole models were trained end-to-end or with feature
from each single modal fixed. The pretrained weights are trained with curriculum learning tech-
niques(Bengio et al., 2009) and part of the data also had one modality dropped, so the conditions are
more like our experiment in Table 4.

The results are shown in Table 6 and the values are Word Error Rate (WER) with lower value means
better performance. We can see that most transfered models failed to reach the performance even
with their initial weights. The models were not simply overfitting since the training curves indicating
clear improvements with training, as shown in Figure 6.

Table 6: Sensory Deprivation Experiment on LRS2 models

AV AO VO
Original Trained Model 10.8% 12.9% 56.3%

Acquired Blind 12.5% 12.9% 59.7%
Acquired Deaf 13.7% 16.3% 56.6%

Acquired Blind (Feature Fixed) 11.8% 13.3% 60.1%
Acquired Deaf (Feature Fixed) 17.0% 15.9% 57.0%

(a) Acquired Blind (b) Acquired Deaf

(c) Acquired Blind (features fixed) (d) Acquired Deaf (features fixed)

Figure 6: Training curves of the different models, all of which have clear descendent of loss in the
training.

While the results are partly consistent with our experiments in the LRW dataset, we should also point
out that the models introduce pretrained visual frontend and language model for the generation of
final sentences so the conditions are quite complex, which disturbs our analysis, so the results are
not precisely showing the real cases, but enough for an overview of the question.
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