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Abstract

Large Language Models (LLMs) have demon-
strated remarkable general intelligence but still
struggle with hallucination problems. Retrieval
Augmented Generation (RAG) addresses it
by incorporating external knowledge sources.
However, a critical challenge in RAG systems
is the misalignment between embedding-based
retriever and LLM generator. This paper intro-
duces a novel approach to align the embedding
model with LLM through Citation Enhanced
Generation (CEG). Our method leverages cita-
tion information from LLM outputs to create
positive and negative training samples for em-
bedding model fine-tuning. This method incor-
porates LLM feedback into embedding model
training, thereby achieving alignment between
them. Experimental results demonstrate sig-
nificant improvements in RAG performance
across multiple datasets, with particularly no-
table gains in specialized domains.

1 Introduction

In recent years, Large Language Models (LLMs)
have achieved remarkable progress and demon-
strated powerful capabilities across various natural
language processing tasks (Zhao et al., 2025). How-
ever, LLMs still face hallucination issues in certain
scenarios, where they generate answers that contra-
dict facts (Ji et al., 2023; Bang et al., 2023). This
phenomenon can be attributed to the inherent limi-
tations of static parameters, which only internalize
knowledge encountered during the training phase
and lack the capability to dynamically update in
response to emerging world knowledge.

To address this challenge, Retrieval Augmented
Generation (RAG) methods have emerged (Gao
et al., 2024). RAG enhances the accuracy of LLM
responses by incorporating information from ex-
ternal knowledge bases, thereby mitigating hallu-
cination problems. Embedding models (Nie et al.,
2025) play a crucial role in RAG systems, as they

retrieve documents relevant to input queries. These
embedding models encode text into vector repre-
sentations, and high-quality representations enable
various downstream tasks such as classification and
retrieval. As a key component of RAG, embedding
model directly impacts the quality of the final gen-
erated answers.

However, existing RAG methods lack effective
alignment between embedding model and LLM.
These components differ in knowledge representa-
tion and comprehension. This misalignment can
cause problems: documents that appear similar in
the embedding model’s representation space may
not provide substantial support for LLM-generated
answers. Therefore, how to effectively align em-
bedding with LLM to eliminate this gap becomes
a significant challenge in RAG methods. Some re-
cent works attempt to address this issue by obtain-
ing signals from LLM outputs to train embedding.
LLM-Embedder (Zhang et al., 2024) introduces
a new reward formulation, namely rank-aware re-
ward. It utilizes the ranking position of expected
outputs among N sampled outputs from the LLM,
which leads to computation of reward from the
LLM’s feedback.

In this work, we propose a simple and intu-
itive method to align embedding model with LLM
through Citation Enhanced Generation (CEG).
CEG enables LLMs to generate text with citations,
improving factual accuracy and verifiability (Gao
et al., 2023; Li et al., 2024). Our approach lever-
ages citation information from CEG to distinguish
between documents that contribute to response cor-
rectness and those do not. Based on this distinc-
tion, we construct positive and negative samples
for each question and use these samples to fine-
tune embedding models. Through this process, we
enable embedding models to preferentially retrieve
documents that provide factual support for LLM
answers, rather than documents that are merely
semantically similar to the questions in their rep-
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Figure 1: The illustration of our method. Citation information from LLM output is used to construct positive and

hard negative samples for embedding model fine-tuning.

resentation space. Our method constructs positive-
negative sample datasets containing LL.M feedback
signals at low cost and fine-tunes embedding model
to align them with LLM.

In summary, the main contributions of our work
can be summarized as follows:

* To the best of our knowledge, we are the first
to propose using CEG to align embedding
models with LLMs.

* We present a simple but effective method
that constructs positive and negative sample
datasets using citation information generated
by CEG, and leverages them to fine-tune em-
bedding for alignment with LLM.

Experimental results show the effectiveness
of our approach in aligning embedding mod-
els with LLMs, with particularly significant
improvements in specialized domains.

2 Methodology

2.1 Formulation

Retrieval Augmented Generation mitigates hallu-
cination in LLM by incorporating external knowl-
edge into the generation process. Given an input
question g, the retriever first fetches & relevant doc-
uments D = {dy,ds,- - ,di} from a knowledge
base KCB:

D = Retriever(q, k, KB). €))
The retriever can employ sparse methods like
BM25 (Robertson and Zaragoza, 2009) or TF-
IDF (Salton and Buckley, 1988). It can also use

dense retrieval methods based on embedding mod-
els. Due to the powerful semantic representation
capabilities of embedding models, dense retrieval
methods are often the preferred solution for RAG.
The retrieved documents are combined with the
question ¢ as context. Together, they serve as in-
put to prompt the LLM, which generates the final
answer S:

S = LLM(q, D). 2)

Citation Enhanced Generation serves as a
further enhancement to RAG. When generat-
ing answers, CEG explicitly cites relevant docu-
ments. This enables answer tracing and verifica-
tion, thereby increasing answer credibility. Af-
ter RAG processing, the LLM output S can be
segmented into n statements si, S3, ..., S,. Each
statement s; may optionally cites a list of passages
Ci = {ci1,ci, ...}, Where ¢; j € D. Here, D rep-
resents the set of relevant documents retrieved by
the retriever, and c¢; ; provides factual support for
statement s;. In this work, we use symbol such as
[11[2] to mark C;. In summary, the CEG genera-
tion process can be represented as:

S = 8161, SQCQ, ceey ann = LLM(q, D) (3)

2.2 Align Embedding with LLM

Embedding models are typically fine-tuned through
contrastive learning. This fine-tuning paradigm re-
quires constructing numerous positive and negative
samples. These samples help the model learn text
similarities and differences. We propose using in-
formation generated by CEG to construct datasets
of positive and negative samples for fine-tuning
embedding models. This method eliminates the



cost of manual data annotation. It also introduces
LLM preferences into the embedding training data.
This further aligns the embedding model with the
LLM. The overall process of our proposed method
is illustrated in Figure 1.

Specifically, for a given question ¢, we execute
the CEG process using the embedding model and
LLM according to equations 1 and equations 3.
This produces a final answer S. We then determine
whether the answer S is correct for question q. If
correct, documents c; ; cited in S are considered
positive samples for ¢ and documents in D that
are not cited are treated as hard negative samples.
If incorrect, no positive or negative samples are
generated from this CEG process.

We iterate through this process on the training
set of a QA dataset. We gradually collect triplets of
positive and negative samples (¢, p, N'). Here, ¢ is
the question from the QA sample. p € | !, C;isa
positive sample for ¢. N' = {d € D|d ¢ |J;-, C;}
is a set of hard negative samples for q. Each QA
data point can produce multiple such triplets. These
triplets have different positive samples but share
the same set of hard negative samples.

All triplets collectively form a fine-tuning
dataset 7. We use T to fine-tune the embedding
model. The loss function can be expressed as:

exp(s(¢, p))
exp(s(¢,p)) + L gen exp(s(q, d))’
“4)
where s(z, y) represents the similarity between z
and y. We use cosine similarity to calculate this
similarity.

L =—log

3 Experiments

3.1 Settings
3.1.1 Datasets

To facilitate the evaluation of answer correctness,
we select three multiple-choice QA datasets for our
experiments. 1) MedQA (Jin et al., 2021) is a med-
ical domain multiple-choice QA dataset collected
from professional medical licensing exams. We
use the English version of MedQA and utilized its
built-in knowledge base for retrieval. 2) Open-
BookQA (Mihaylov et al., 2018) is a multiple-
choice QA dataset simulating open-book exams
in the scientific domain. We collect fact fields
from all data samples and combined them with the
provided commonsense fact corpus to construct a
knowledge base for retrieval. 3) QASC (Khot et al.,

2020) is a scientific domain multiple-choice QA
dataset focusing on sentence composition reason-
ing. QASC has a fact corpus containing 17 million
entries. To reduce the complexity of knowledge
base vectorization, we randomly sample a subset
of facts and combined them with fact fields and
composition fact fields from the dataset samples,
creating a knowledge base of 200,000 entries for
retrieval.

For each dataset, we apply proposed method
to construct positive and negative samples from
the training set and then fine-tuned the embedding
model. After fine-tuning, we evaluate the impact
of the fine-tuned embedding models on answer cor-
rectness using the test set. We use accuracy as the
evaluation metric. The statistics for each dataset
and constructed samples are shown in Table 3 and
Table 4.

3.1.2 Baselines

We implement several retrieval methods and em-
bedding models as baselines for comparative ex-
periments: BM25 (Robertson and Zaragoza, 2009),
BGE-large-en-v1.5 (Xiao et al., 2024), ES-large-v2
(Wang et al., 2024), BGE-M3 (Chen et al., 2024),
and LLM-Embedder (Zhang et al., 2024). BM25
serves as a classic sparse retrieval method. BGE-
large-en-v1.5 and E5-large-v2 are two BERT-based
embedding models that support English. BGE-M3
is a multilingual embedding model that supports
long-text and hybrid retrieval. LLM-Embedder
is an embedding model trained using LLM re-
ward signals, supporting English. For each dataset,
we employ Qwen2.5-3B-Instruct and Qwen2.5-7B-
Instruct (Yang et al., 2024) as generators paired
with different retrievers.

3.1.3 Implementation

We select BGE-base-en-v1.5 (Xiao et al., 2024) as
our base embedding model. For each dataset, we
construct positive and negative samples by pair-
ing with the corresponding LLM. We then fine-
tune checkpoints accordingly. We employ simple
prompt engineering to guide the CEG process. The
prompt template is shown in Figure 2. We imple-
ment embedding model fine-tuning using the Sen-
tenceTransformers (Reimers and Gurevych, 2019)
library. For the BM25 algorithm, we utilize the
BM25s (L, 2024) library. We use Flat index from
faiss (Johnson et al., 2021) for dense retrieval. We
deploy embedding model and LLM via the vLLM
(Kwon et al., 2023) library to accelerate the data



Generator Retriever MedQA OBQA QASC
BM25 4336 73.60  90.17
BGE-large-en-vl.5 (335M)  47.53 7420  91.58
E5-large-v2 (335M) 4030 7000  79.48

Qwen2.5-3B-Instruct oy vr3 (568M) 4195 7600  89.85
LLM-Embedder (110M) 4556  72.60  89.96
Ours (110M) 49.80 76.60 92.19
BM25 5271 8580  96.11
BGE-large-en-vl.5 (335M) 5593  86.00  97.52
E5-large-v2 (335M)  53.89 8280 8931

Qwen2.5-7B-Instruct  pop 1 (568M)  53.65 8520  97.30
LLM-Embedder (110M) 5475 8620  96.54
Ours (110M)  60.17  86.80  97.84

Table 1: Evaluation results. The metric is accuracy (%). The best results are in bold. The content in parentheses
after the embedding name indicate the number of parameters.

Generator Retriever MedQA OBQA QASC

Qwen2.5- BGE-base-en-vl.5 4540 73.60 89.85
3B-Instruct w/ IBN 46.98  75.60 91.58
w/ HN 49.80 76.60 92.19
Qwen2.5- BGE-base-en-v1.5 5821  85.80 96.87
7B-Instruct w/ IBN 57.74  86.20 97.30
w/ HN 60.17 86.80 97.84

Table 2: Ablation study of our method with different
negative strategy. The metric is accuracy (%).

synthesis and evaluation process. We set the num-
ber of documents to be retrieved to 10. We set the
LLM temperature to O to ensure output stability
and reproducibility.

3.2 Main Results

We present our comparative experimental results
in Table 1. Our method outperforms all baselines
across all datasets. The embedding models fine-
tuned with our method achieve better performance
even when compared to larger embedding models.
At the same model scale, LLM-Embedder uses a
similar concept of obtaining reward signals from
LLM to fine-tune embedding models. However,
our method achieves higher accuracy. This demon-
strates the superior effectiveness of our approach
in aligning embeddings with LLM. Additionally,
we observe that our method shows more signifi-
cant improvements on specific domain datasets like
MedQA. This phenomenon indicates that in spe-
cific domains, the knowledge gap between LLM
and embedding models is larger. Therefore, align-
ment becomes more crucial in specific domains.

3.3 Ablation Study

We conduct ablation study to evaluate different
negative sample strategy. 1) In-batch negatives
(IBN): This method only uses the positive samples
constructed in our approach. During training, it
employs positive samples from other instances in
the same batch as negative samples for the current
instance. 2) Hard negatives (HN): This is our
proposed method. It fully utilizes the constructed
positive and negative samples to train the embed-
ding model. The results of the ablation experi-
ments are shown in Table 2. We observe that the
HN method brings more significant improvements.
This indicates the rationality of treating documents
retrieved by the embedding model but not cited by
the LLM as hard negative samples. These docu-
ments are considered relevant to the question by
the embedding model. However, they do not actu-
ally provide support for the answers generated by
the LLM. Therefore, using them as hard negative
samples helps the embedding model better learn
this distinction. This strategy effectively aligns the
embedding model with the LLM.

4 Conclusion

In this work, we explore how to addresses the mis-
alignment between embedding and LLM in RAG
systems. By leveraging citation signals from LLM
outputs to construct positive and negative samples,
we establish an effective feedback that enables
embedding to better align with LLM. Our exper-
imental results demonstrate the effectiveness of
proposed method on several datasets. This high-
lights the potential of using CEG to enhance the
alignment between embedding and LLM.



Limitations

While our method demonstrates promising results,
several limitations remain. Our approach relies
on the citation quality of LLMs, which may not
always be accurate or comprehensive. If LLMs
make incorrect citations, these errors could propa-
gate into embedding model training. Besides, our
experiments are based on in-domain observations.
Whether the performance improvements achieved
by the proposed method within domains can be
generalized requires further study.
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A Dataset Details

Dataset # Corpus # Train Set  # Test Set

MedQA 213,330 10,178 1,273
OBQA 6,492 4,957 500
QASC 200,000 8,134 926

Table 3: The statistics of datasets.

# Constructed Samples

Dataset
Qwen2.5-3B-Instruct  Qwen2.5-7B-Instruct
MedQA 5,727 16,267
OBQA 20,499 17,194
QASC 42,666 38,715

Table 4: The statistics of constructed samples.

B Prompt Template

Instruction: Answer multiple-choice questions
based on searched documents. You are required to
give a detailed analysis that includes citations to
relevant documents. When citing documents, use
numbers such as [1][2][3]. Remember to only cite
documents that are helpful to the question. After the
analysis, give the best answer option label without
adding any extra content.

Documents:
{document_list}

Question: {question}

Options:

{options}

Next, give your answer. Format is:

Analysis: {{your analysis with citations}}
Choice: {{option label}}

Figure 2: Prompt template for CEG.
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