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Abstract001

Large Language Models (LLMs) have demon-002
strated remarkable general intelligence but still003
struggle with hallucination problems. Retrieval004
Augmented Generation (RAG) addresses it005
by incorporating external knowledge sources.006
However, a critical challenge in RAG systems007
is the misalignment between embedding-based008
retriever and LLM generator. This paper intro-009
duces a novel approach to align the embedding010
model with LLM through Citation Enhanced011
Generation (CEG). Our method leverages cita-012
tion information from LLM outputs to create013
positive and negative training samples for em-014
bedding model fine-tuning. This method incor-015
porates LLM feedback into embedding model016
training, thereby achieving alignment between017
them. Experimental results demonstrate sig-018
nificant improvements in RAG performance019
across multiple datasets, with particularly no-020
table gains in specialized domains.021

1 Introduction022

In recent years, Large Language Models (LLMs)023

have achieved remarkable progress and demon-024

strated powerful capabilities across various natural025

language processing tasks (Zhao et al., 2025). How-026

ever, LLMs still face hallucination issues in certain027

scenarios, where they generate answers that contra-028

dict facts (Ji et al., 2023; Bang et al., 2023). This029

phenomenon can be attributed to the inherent limi-030

tations of static parameters, which only internalize031

knowledge encountered during the training phase032

and lack the capability to dynamically update in033

response to emerging world knowledge.034

To address this challenge, Retrieval Augmented035

Generation (RAG) methods have emerged (Gao036

et al., 2024). RAG enhances the accuracy of LLM037

responses by incorporating information from ex-038

ternal knowledge bases, thereby mitigating hallu-039

cination problems. Embedding models (Nie et al.,040

2025) play a crucial role in RAG systems, as they041

retrieve documents relevant to input queries. These 042

embedding models encode text into vector repre- 043

sentations, and high-quality representations enable 044

various downstream tasks such as classification and 045

retrieval. As a key component of RAG, embedding 046

model directly impacts the quality of the final gen- 047

erated answers. 048

However, existing RAG methods lack effective 049

alignment between embedding model and LLM. 050

These components differ in knowledge representa- 051

tion and comprehension. This misalignment can 052

cause problems: documents that appear similar in 053

the embedding model’s representation space may 054

not provide substantial support for LLM-generated 055

answers. Therefore, how to effectively align em- 056

bedding with LLM to eliminate this gap becomes 057

a significant challenge in RAG methods. Some re- 058

cent works attempt to address this issue by obtain- 059

ing signals from LLM outputs to train embedding. 060

LLM-Embedder (Zhang et al., 2024) introduces 061

a new reward formulation, namely rank-aware re- 062

ward. It utilizes the ranking position of expected 063

outputs among N sampled outputs from the LLM, 064

which leads to computation of reward from the 065

LLM’s feedback. 066

In this work, we propose a simple and intu- 067

itive method to align embedding model with LLM 068

through Citation Enhanced Generation (CEG). 069

CEG enables LLMs to generate text with citations, 070

improving factual accuracy and verifiability (Gao 071

et al., 2023; Li et al., 2024). Our approach lever- 072

ages citation information from CEG to distinguish 073

between documents that contribute to response cor- 074

rectness and those do not. Based on this distinc- 075

tion, we construct positive and negative samples 076

for each question and use these samples to fine- 077

tune embedding models. Through this process, we 078

enable embedding models to preferentially retrieve 079

documents that provide factual support for LLM 080

answers, rather than documents that are merely 081

semantically similar to the questions in their rep- 082
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Figure 1: The illustration of our method. Citation information from LLM output is used to construct positive and
hard negative samples for embedding model fine-tuning.

resentation space. Our method constructs positive-083

negative sample datasets containing LLM feedback084

signals at low cost and fine-tunes embedding model085

to align them with LLM.086

In summary, the main contributions of our work087

can be summarized as follows:088

• To the best of our knowledge, we are the first089

to propose using CEG to align embedding090

models with LLMs.091

• We present a simple but effective method092

that constructs positive and negative sample093

datasets using citation information generated094

by CEG, and leverages them to fine-tune em-095

bedding for alignment with LLM.096

• Experimental results show the effectiveness097

of our approach in aligning embedding mod-098

els with LLMs, with particularly significant099

improvements in specialized domains.100

2 Methodology101

2.1 Formulation102

Retrieval Augmented Generation mitigates hallu-103

cination in LLM by incorporating external knowl-104

edge into the generation process. Given an input105

question q, the retriever first fetches k relevant doc-106

uments D = {d1, d2, · · · , dk} from a knowledge107

base KB:108

D = Retriever(q, k,KB). (1)109

The retriever can employ sparse methods like110

BM25 (Robertson and Zaragoza, 2009) or TF-111

IDF (Salton and Buckley, 1988). It can also use112

dense retrieval methods based on embedding mod- 113

els. Due to the powerful semantic representation 114

capabilities of embedding models, dense retrieval 115

methods are often the preferred solution for RAG. 116

The retrieved documents are combined with the 117

question q as context. Together, they serve as in- 118

put to prompt the LLM, which generates the final 119

answer S: 120

S = LLM(q,D). (2) 121

Citation Enhanced Generation serves as a 122

further enhancement to RAG. When generat- 123

ing answers, CEG explicitly cites relevant docu- 124

ments. This enables answer tracing and verifica- 125

tion, thereby increasing answer credibility. Af- 126

ter RAG processing, the LLM output S can be 127

segmented into n statements s1, s2, ..., sn. Each 128

statement si may optionally cites a list of passages 129

Ci = {ci,1, ci,2, ...}, where ci,j ∈ D. Here, D rep- 130

resents the set of relevant documents retrieved by 131

the retriever, and ci,j provides factual support for 132

statement si. In this work, we use symbol such as 133

[1][2] to mark Ci. In summary, the CEG genera- 134

tion process can be represented as: 135

S = s1C1, s2C2, ..., snCn = LLM(q,D). (3) 136

2.2 Align Embedding with LLM 137

Embedding models are typically fine-tuned through 138

contrastive learning. This fine-tuning paradigm re- 139

quires constructing numerous positive and negative 140

samples. These samples help the model learn text 141

similarities and differences. We propose using in- 142

formation generated by CEG to construct datasets 143

of positive and negative samples for fine-tuning 144

embedding models. This method eliminates the 145
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cost of manual data annotation. It also introduces146

LLM preferences into the embedding training data.147

This further aligns the embedding model with the148

LLM. The overall process of our proposed method149

is illustrated in Figure 1.150

Specifically, for a given question q, we execute151

the CEG process using the embedding model and152

LLM according to equations 1 and equations 3.153

This produces a final answer S . We then determine154

whether the answer S is correct for question q. If155

correct, documents ci,j cited in S are considered156

positive samples for q and documents in D that157

are not cited are treated as hard negative samples.158

If incorrect, no positive or negative samples are159

generated from this CEG process.160

We iterate through this process on the training161

set of a QA dataset. We gradually collect triplets of162

positive and negative samples (q, p,N ). Here, q is163

the question from the QA sample. p ∈
⋃n

i=1 Ci is a164

positive sample for q. N = {d ∈ D|d /∈
⋃n

i=1 Ci}165

is a set of hard negative samples for q. Each QA166

data point can produce multiple such triplets. These167

triplets have different positive samples but share168

the same set of hard negative samples.169

All triplets collectively form a fine-tuning170

dataset T . We use T to fine-tune the embedding171

model. The loss function can be expressed as:172

L = − log
exp(s(q, p))

exp(s(q, p)) +
∑

d∈N exp(s(q, d))
,

(4)173

where s(x, y) represents the similarity between x174

and y. We use cosine similarity to calculate this175

similarity.176

3 Experiments177

3.1 Settings178

3.1.1 Datasets179

To facilitate the evaluation of answer correctness,180

we select three multiple-choice QA datasets for our181

experiments. 1) MedQA (Jin et al., 2021) is a med-182

ical domain multiple-choice QA dataset collected183

from professional medical licensing exams. We184

use the English version of MedQA and utilized its185

built-in knowledge base for retrieval. 2) Open-186

BookQA (Mihaylov et al., 2018) is a multiple-187

choice QA dataset simulating open-book exams188

in the scientific domain. We collect fact fields189

from all data samples and combined them with the190

provided commonsense fact corpus to construct a191

knowledge base for retrieval. 3) QASC (Khot et al.,192

2020) is a scientific domain multiple-choice QA 193

dataset focusing on sentence composition reason- 194

ing. QASC has a fact corpus containing 17 million 195

entries. To reduce the complexity of knowledge 196

base vectorization, we randomly sample a subset 197

of facts and combined them with fact fields and 198

composition fact fields from the dataset samples, 199

creating a knowledge base of 200,000 entries for 200

retrieval. 201

For each dataset, we apply proposed method 202

to construct positive and negative samples from 203

the training set and then fine-tuned the embedding 204

model. After fine-tuning, we evaluate the impact 205

of the fine-tuned embedding models on answer cor- 206

rectness using the test set. We use accuracy as the 207

evaluation metric. The statistics for each dataset 208

and constructed samples are shown in Table 3 and 209

Table 4. 210

3.1.2 Baselines 211

We implement several retrieval methods and em- 212

bedding models as baselines for comparative ex- 213

periments: BM25 (Robertson and Zaragoza, 2009), 214

BGE-large-en-v1.5 (Xiao et al., 2024), E5-large-v2 215

(Wang et al., 2024), BGE-M3 (Chen et al., 2024), 216

and LLM-Embedder (Zhang et al., 2024). BM25 217

serves as a classic sparse retrieval method. BGE- 218

large-en-v1.5 and E5-large-v2 are two BERT-based 219

embedding models that support English. BGE-M3 220

is a multilingual embedding model that supports 221

long-text and hybrid retrieval. LLM-Embedder 222

is an embedding model trained using LLM re- 223

ward signals, supporting English. For each dataset, 224

we employ Qwen2.5-3B-Instruct and Qwen2.5-7B- 225

Instruct (Yang et al., 2024) as generators paired 226

with different retrievers. 227

3.1.3 Implementation 228

We select BGE-base-en-v1.5 (Xiao et al., 2024) as 229

our base embedding model. For each dataset, we 230

construct positive and negative samples by pair- 231

ing with the corresponding LLM. We then fine- 232

tune checkpoints accordingly. We employ simple 233

prompt engineering to guide the CEG process. The 234

prompt template is shown in Figure 2. We imple- 235

ment embedding model fine-tuning using the Sen- 236

tenceTransformers (Reimers and Gurevych, 2019) 237

library. For the BM25 algorithm, we utilize the 238

BM25s (Lù, 2024) library. We use Flat index from 239

faiss (Johnson et al., 2021) for dense retrieval. We 240

deploy embedding model and LLM via the vLLM 241

(Kwon et al., 2023) library to accelerate the data 242
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Generator Retriever MedQA OBQA QASC

Qwen2.5-3B-Instruct

BM25 43.36 73.60 90.17
BGE-large-en-v1.5 (335M) 47.53 74.20 91.58
E5-large-v2 (335M) 40.30 70.00 79.48
BGE-M3 (568M) 41.95 76.00 89.85
LLM-Embedder (110M) 45.56 72.60 89.96
Ours (110M) 49.80 76.60 92.19

Qwen2.5-7B-Instruct

BM25 52.71 85.80 96.11
BGE-large-en-v1.5 (335M) 55.93 86.00 97.52
E5-large-v2 (335M) 53.89 82.80 89.31
BGE-m3 (568M) 53.65 85.20 97.30
LLM-Embedder (110M) 54.75 86.20 96.54
Ours (110M) 60.17 86.80 97.84

Table 1: Evaluation results. The metric is accuracy (%). The best results are in bold. The content in parentheses
after the embedding name indicate the number of parameters.

Generator Retriever MedQA OBQA QASC

Qwen2.5-
3B-Instruct

BGE-base-en-v1.5 45.40 73.60 89.85
w/ IBN 46.98 75.60 91.58
w/ HN 49.80 76.60 92.19

Qwen2.5-
7B-Instruct

BGE-base-en-v1.5 58.21 85.80 96.87
w/ IBN 57.74 86.20 97.30
w/ HN 60.17 86.80 97.84

Table 2: Ablation study of our method with different
negative strategy. The metric is accuracy (%).

synthesis and evaluation process. We set the num-243

ber of documents to be retrieved to 10. We set the244

LLM temperature to 0 to ensure output stability245

and reproducibility.246

3.2 Main Results247

We present our comparative experimental results248

in Table 1. Our method outperforms all baselines249

across all datasets. The embedding models fine-250

tuned with our method achieve better performance251

even when compared to larger embedding models.252

At the same model scale, LLM-Embedder uses a253

similar concept of obtaining reward signals from254

LLM to fine-tune embedding models. However,255

our method achieves higher accuracy. This demon-256

strates the superior effectiveness of our approach257

in aligning embeddings with LLM. Additionally,258

we observe that our method shows more signifi-259

cant improvements on specific domain datasets like260

MedQA. This phenomenon indicates that in spe-261

cific domains, the knowledge gap between LLM262

and embedding models is larger. Therefore, align-263

ment becomes more crucial in specific domains.264

3.3 Ablation Study 265

We conduct ablation study to evaluate different 266

negative sample strategy. 1) In-batch negatives 267

(IBN): This method only uses the positive samples 268

constructed in our approach. During training, it 269

employs positive samples from other instances in 270

the same batch as negative samples for the current 271

instance. 2) Hard negatives (HN): This is our 272

proposed method. It fully utilizes the constructed 273

positive and negative samples to train the embed- 274

ding model. The results of the ablation experi- 275

ments are shown in Table 2. We observe that the 276

HN method brings more significant improvements. 277

This indicates the rationality of treating documents 278

retrieved by the embedding model but not cited by 279

the LLM as hard negative samples. These docu- 280

ments are considered relevant to the question by 281

the embedding model. However, they do not actu- 282

ally provide support for the answers generated by 283

the LLM. Therefore, using them as hard negative 284

samples helps the embedding model better learn 285

this distinction. This strategy effectively aligns the 286

embedding model with the LLM. 287

4 Conclusion 288

In this work, we explore how to addresses the mis- 289

alignment between embedding and LLM in RAG 290

systems. By leveraging citation signals from LLM 291

outputs to construct positive and negative samples, 292

we establish an effective feedback that enables 293

embedding to better align with LLM. Our exper- 294

imental results demonstrate the effectiveness of 295

proposed method on several datasets. This high- 296

lights the potential of using CEG to enhance the 297

alignment between embedding and LLM. 298
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Limitations299

While our method demonstrates promising results,300

several limitations remain. Our approach relies301

on the citation quality of LLMs, which may not302

always be accurate or comprehensive. If LLMs303

make incorrect citations, these errors could propa-304

gate into embedding model training. Besides, our305

experiments are based on in-domain observations.306

Whether the performance improvements achieved307

by the proposed method within domains can be308

generalized requires further study.309
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A Dataset Details436

Dataset # Corpus # Train Set # Test Set

MedQA 213,330 10,178 1,273
OBQA 6,492 4,957 500
QASC 200,000 8,134 926

Table 3: The statistics of datasets.

Dataset # Constructed Samples

Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct

MedQA 5,727 16,267
OBQA 20,499 17,194
QASC 42,666 38,715

Table 4: The statistics of constructed samples.

B Prompt Template437

Instruction: Answer multiple-choice questions 

based on searched documents. You are required to 

give a detailed analysis that includes citations to 

relevant documents. When citing documents, use 

numbers such as [1][2][3]. Remember to only cite 

documents that are helpful to the question. After the 

analysis, give the best answer option label without 

adding any extra content.

Documents:

{document_list}

Question: {question}

Options:

{options}

Next, give your answer. Format is:

Analysis: {{your analysis with citations}}

Choice: {{option label}}

Figure 2: Prompt template for CEG.
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