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Error correcting codes (ECCs) play a crucial role in modern communication sys-
tems by ensuring reliable data transmission over noisy channels. While traditional
algorithms based on belief propagation suffer from limited decoding performance,
transformer-based approaches have emerged as powerful solutions for ECC decod-
ing. However, the internal mechanisms of transformer-based approaches remain
largely unexplained, making it challenging to understand and improve their perfor-
mance. In this paper, we propose a White-box Error Correction Code Transformer
(WECCT) that provides theoretical insights into transformer-based decoding. By
formulating the decoding problem from a sparse rate reduction perspective and in-
troducing a novel Multi-head Tanner-subspaces Self Attention mechanism, our ap-
proach provides a parameter-efficient and theoretically principled framework for
understanding transformer-based decoding. Extensive experiments across various
code families demonstrate that this interpretable design achieves competitive per-
formance compared to state-of-the-art decoders.

1. Introduction
Error correcting codes (ECCs) are fundamental building blocks inmodern communication systems,
enabling reliable data transmission across noisy channels by adding redundant information to the
transmitted messages [1, 2]. The theoretical foundation of error correction coding was established
by Shannon’s seminal work [3], which proved the existence of codes capable of achieving reliable
communication up to channel capacity. However, the constructive design of practical codes and
efficient decoders remains a significant challenge [4]. While optimal decoding is theoretically de-
fined by themaximum likelihood (ML) rule, its implementation is NP-hard for general linear codes,
necessitating the development of efficient approximate solutions [5]. This challenge has become in-
creasingly critical with the growing demands of modern applications, from high-speed wireless
communications to deep space exploration, where both reliability and computational efficiency are
paramount [6, 7]. The complexity ofML decoding arises from the combinatorial nature of the prob-
lem: for a code of length n, the decoder must effectively search through a space of 2k possible code-
words, where k < n is the information length. This exponential complexity makes ML decoding
impractical for most real-world applications, particularly for respectively longer codes where error
correction is most needed [8].
Classical Approaches. The development of decoding algorithms has seen several major paradigm
shifts over the past decades. A significant breakthrough came with belief propagation (BP) and
message-passing algorithms, particularly for low-density parity-check (LDPC) codes [1]. BP op-
erates by iteratively exchanging probabilistic messages between variable nodes and check nodes in
the code’s Tanner graph, providing a practical approach to approximate ML decoding [9]. While
widely adopted in modern communication standards [6], BP suffers from limitations such as un-
certain convergence and performance degradation with short cycles in the Tanner graph [1]. For
the most recent decade, the development of deep learning has introduced two main approaches
to neural decoding. Model-based neural decoders enhance BP by parameterizing message-passing
operations with neural networks [10–12], maintaining interpretability while learning optimal up-
date rules. However, the fixed message-passing scheme and local nature of updates may prevent
these decoders from discovering more efficient global decoding strategies and achieving satisfac-
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tory results [11]. Model-free neural decoders, in contrast, employ generic neural architectures or
fully-connected networks without explicit reliance on traditional decoding algorithms [13, 14].
Transformer-based Methods. The landscape of neural decoding was fundamentally transformed
with the introduction of transformer-based architectures. The Error Correction Code Transformer
(ECCT) [15] pioneered this direction by adapting the transformer architecture [16] for ECC decod-
ing. At its core, ECCT processes concatenated magnitude and syndrome vectors through masked
self-attention modules, where the interaction between tokens follows the code’s parity check ma-
trix. While achieving competitive performance, ECCT’s design faces limitations that the concate-
nated representation may not optimally leverage the distinct properties of magnitude and syn-
drome information. Building on ECCT’s success, the Cross-attentionMessage-Passing Transformer
(CrossMPT) [17] processes magnitude and syndrome vectors separately through cross-attention
blocks, better reflecting their distinct roles in error correction. By sharing operational principles
with traditional message-passing decoders, CrossMPT achieves improved performance through
specialized information processing. However, CrossMPT still relies on heuristic masking schemes,
and its theoretical foundation remains unexplored - particularly regarding the nature of informa-
tion learned in the latent space and passed among nodes. This lack of interpretability presents a
significant barrier to understanding the model’s behavior.
White-box Transformer. More recently, Yu et al. [18] proposed the Coding-RATE transformer
(CRATE), a White-box Transformer architecture that provides theoretical insights into transformer
models through the lens of data compression. They show that transformer architectures can be
interpreted as optimizing a sparse rate reduction objective: the modified multi-head self-attention
implements approximate gradient descent on the coding rate to compress representations, while
the following feed-forward networks promote sparsity in the learned features. This framework
provides clear theoretical justification for each architectural component.
Our Contributions. In this work, we propose a White-box Error Correction Code Transformer
(WECCT) framework that builds upon CRATE’s theoretical foundation while specifically targeting
the challenges of ECC decoding. Our WECCT represents the first attempt to introduce an inter-
pretable, white-box transformer architecture for decoding tasks. We firstly design a novel Multi-
head Tanner-subspaces Self Attention (MTSA) mechanism that integrates code structure into rep-
resentation learning, enabling structured message passing between bits and syndromes through
Tanner subspaces. We further propose a two-stage optimization framework where attention opera-
tions implement rate reduction throughMTSA and feed-forward layers promote structured sparsity
through Iterative Shrinkage-Thresholding Algorithm (ISTA). This theoretically-motivated design
provides clear mathematical objectives and bridges the gap between transformer architectures and
coding theory. The resulting decoder not only substantially promotes parametric efficiency, but also
achieves competitive performance across various code families while maintaining its interpretabil-
ity.
Paper Organization. The remainder of this paper is organized as follows. Section 2 provides nec-
essary background on ECCs and CRATE. Section 3 presents our theoretical framework connect-
ing transformer-based decoding with sparse rate reduction principles and describes the proposed
WECCT architecture and algorithm in detail. Section 4 presents experimental results and analysis
and Section 5 finally concludes the paper.
Notation. Throughout this paper, scalars are written as non-bold letters (e.g., x, n, k), vectors as
lower-case bold letters (e.g., x,y, z), and matrices as upper-case letters (e.g., G,H,U ,D). We use
1 to represent a vector or matrix of all ones with appropriate dimensions, and I to represent an
identity matrix. Calligraphic letters (e.g., T ) indicate spaces or subspaces. For a matrix A, A∗

represents its transpose, andAij its (i, j)-th entry. For a real vectorx, xi is its i-th element, ∥x∥p is its
ℓp norm, and sign(x) applies the sign function element-wise. For a binary vector x, bin(x) converts
its elements from {±1} to {0, 1}. The notation [n] refers to the set {1, . . . , n}. For a set S, the notation
Sn denotes a n-dimensional column vector with elements in S. Note that k denotes the information
length of the code when used in coding context, while it represents the index of attention heads or
subspace bases in transformer context following standard notation - these should not be confused
despite using the same symbol. All logarithms are natural logarithms unless otherwise specified.
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2. Background

2.1. Error Correction Codes
Let C be a linear block code defined by a generator matrix G ∈ {0, 1}n×k and a parity check matrix
H ∈ {0, 1}(n−k)×n, where k and n are the information length and code length respectively [2].
These matrices satisfy HG = 0 over the binary field F2. A message m ∈ {0, 1}k is encoded into
a codeword x ∈ C ⊂ {0, 1}n through x = Gm. The codeword is modulated using Binary Phase
Shift Keying (BPSK) to obtain xs ∈ {±1}n before transmission over the channel. In this work, we
consider the Additive White Gaussian Noise (AWGN) channel, where the received signal y ∈ Rn

is given by y = xs + z where z ∼ N (0, σ21n) represents the channel noise with variance σ2.
The optimalMaximumLikelihood (ML) decoder aims to find themost likely transmitted codeword
given the received signal:

x̂ = argmaxx∈C p(y|x). (1)

The general decoders take as input the received signal y and syndrome vector s(y) = Hyb, where
yb = bin(sign(y)) represents the hard decision on y, with bin(+1) = 0 and bin(−1) = 1. Note
that the received signal contains both sign and reliability information for individual bits, while the
syndrome vector indicates relationships between potentially erroneous positions [1, 17].
The relationships among bits and syndromes can be visualized using a Tanner graph [19], which
is a bipartite graph representation of the parity check matrix H . The graph consists of n variable
nodes (representing codeword bits) and n− k check nodes (representing parity check equations).
An edge exists between variable node i and check node j if and only if Hji = 1. Traditional BP
operates by passing messages along these edges, where each message represents the probability or
log-likelihood ratio of a bit being 0 or 1 [1]. The algorithm iteratively updates the messages until
convergence or a maximum number of iterations is reached. This Tanner graph structure also plays
a crucial role in our proposed attention mechanism, as we will see in Section 3.1.

2.2. White-box Transformer via Sparse Rate Reduction
The theoretical understanding of transformers has been significantly advanced by CRATE [18],
which showed that the key components of transformer architectures can be derived from the prin-
ciple of rate reduction. Given a set of tokens Z = [z1, ...,zn] ∈ Rd×n (n tokens with dimen-
sion d of each token), it formulates the learning objective as maximizing the sparse rate reduc-
tion: maxf EZ=f(X)

[
R(Z)−Rc(Z | U[K])− λ∥Z∥0

]
, where R(Z) = 1

2 log det(I + αZ∗Z) is the
coding rate of the whole token set measuring the overall information content, Rc(Z | U[K]) =
1
2

∑K
k=1 log det(I + β(U∗

kZ)∗(U∗
kZ)) is the coding rate when tokens are encoded by a mixture ofK

low-dimensional subspaces with bases U[K] = (Uk)
K
k=1 in which Uk ∈ Rd×p; α = d/nϵ2, β = p/nϵ2

with quantization precision ϵ > 0, and λ∥Z∥0 ≥ 0 promotes sparsity. This framework implements
compression through Multi-head Subspaces Self Attention and sparsification through ISTA, pro-
viding a complete theoretical interpretation of transformer layers. While CRATE provides valuable
insights into why transformers are effective at learning compact representations, our work focuses
on adapting these principles specifically for ECCs, where the goal is to promote reliable decoding
via learning robust and interpretable representations for the bits and syndromes.

3. WECCT Framework
In this section, we present our WECCT architecture that is theoretically derived from the principle
of sparse rate reduction. Section 3.1 introduces our novel MTSA mechanism for feature compres-
sion, Section 3.2 describes the sparsification process via ISTA, and Section 3.3 details the complete
architecture design.
For the AWGN channel, where the noise follows a Gaussian distribution, the decoding objective (1)
is equivalent to minimizing the Euclidean distance [1]:

x̂s = argmin
x∈C

∥y − xs∥22. (2)
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The optimal local solution can be characterized by E[xs|y]. Through Tweedie’s formula [20], this
conditional expectation can be expressed as a denoising process:

E[xs|y] = y + σ2∇ log p(y), (3)

where ∇ log p(y) is the score function. For linear block codes with parity check matrix H , the code
structure is characterized by the constraint Hx = 0 for any valid codeword x. Therefore, optimal
decoding requires joint denoising that respects both the local noise statistics and the global struc-
tural relationship. Wemap the received signal y to bit representationsZb ∈ Rd×n and its syndrome
s(y) to syndrome representations Zs ∈ Rd×(n−k), where each column corresponds to a token em-
bedding in a d-dimensional space. Let Z = [Zb,Zs] ∈ Rd×(2n−k) combine these representations
into a unified space. Through energy-based insights [21], We formalize this intuition as sparse rate
reduction objective on token representations:
Approximation 1 (From ML Decoding to Sparse Rate Reduction). The ML decoding objective can be
approximated by optimizing a sparse rate reduction objective over the joint representation space of bits and
syndromes:

max
f

EZ

[
R(Z)−Rc(Z | U[K])− λ∥Z∥1

]
, (4)

where the coding rate measure R (·), Rc (· | ·) and the subspace bases U[K] are defined in Section 2.2.

Proof: See Appendix A.
Through batch training, we can approximate the expectations by empirical averages, allowing us to
omit the expectation notation in the following formulations. The optimization is split across two
key components of our architecture. Section 3.1 focuses on optimizing the feature compression (5)
term through MTSA:

min
f

Rc(Z | U[K]), (5)

while Section 3.2 addresses the sparsification objective (6) through ISTA:

min
f

λ∥Z∥1 −R(Z). (6)

This decomposition aligns with the theoretical framework in [18], where transformer layers alter-
nate between feature compression and sparsification steps.

3.1. Multi-head Tanner-subspaces Self Attention
To optimize the objective (5)while respecting the structural constraints of error correction codes, we
introduce a novel MTSA mechanism. The key insight of MTSA is to incorporate the Tanner graph
structure of the code into the attention computation, ensuring that information only flows between
connected bit and syndrome nodes. We first formally define the notion of Tanner subspaces that
captures this connectivity structure:
Definition 1 (Tanner Subspaces). Let H ∈ {0, 1}(n−k)×n be a parity check matrix. Let Z = [Zb,Zs] =

[z1, ...,z2n−k] ∈ Rd×(2n−k) be the d-dimensional representations of both bits and syndromes. For each node
i ∈ [2n− k], the Tanner subspace Ti is defined as:

Ti ≜ Span{zj | M(H)ji = 1} ⊂ Rd, (7)

whereM(H) is the extended connectivity matrix:

M(H) ≜

[
0n×n H∗

H 0(n−k)×(n−k)

]
. (8)

This definition establishes a geometric interpretation of the Tanner graph structure through sub-
spaces. Each representation zi resides in a subspace Ti that is spanned by its connected nodes in the
Tanner graph. These Tanner subspaces naturally encode the local connectivity of the code’s Tanner
graph in a geometric manner: two nodes can directly interact in the representation space if and only
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if they share a common subspace, which occurs precisely when they are connected in the Tanner
graph (i.e., M(H)ji = 1). This geometric interpretation provides a principled way to constrain
information flow in our model and ensures that the learned representations inherently respect the
algebraic structure of the code.
Building on these Tanner subspaces, we develop our MTSAmechanism that efficiently implements
gradient descent on the coding rate while preserving the Tanner graph structure:
Approximation 2 (Multi-head Tanner-subspaces Self Attention). Let Z ∈ Rd×(2n−k) have unit-norm
columns, and U[K] = (U1, . . . ,UK) such that each Uk ∈ Rd×p is an orthogonal matrix, the (Uk)

K
k=1

are incoherent, and the Tanner subspaces T = {Ti, i ∈ [2n− k]} are induced by M(H). The columns zi
approximately lie on (

⋃K
k=1 Span(Uk)) ∩ Ti. Let κ > 0. Then the gradient descent could be calculated as:

Z − κ∇ZR
c(Z | U[K]) ≈ (1− κβ)Z + κβMTSA(Z | U[K]), (9)

where

TSA(Z | Uk) ≜ (U∗
kZ) softmax((U∗

kZ)∗(U∗
kZ) + ϕ(M(H))),

MTSA(Z | U[K]) ≜ β[U1, . . . ,UK ]

 TSA(Z | U1)
...

TSA(Z | UK)

 ,
(10)

where softmax(·) is the softmax operator (applied to each column of an input matrix), i.e.,

softmax(v) =
1∑n

i=1 e
vi

 ev1

...
evn

 , (11)

softmax ([v1, . . . ,vK ]) = [softmax (v1) , . . . , softmax (vK)] , (12)
and the masking function ϕ(M(H)) is defined as

ϕ(M(H)) ≜

[
−∞n×n ϕ(H∗)
ϕ(H) −∞(n−k)×(n−k)

]
, (13)

where ϕ : {0, 1}m×n → {−∞, 0}m×n is an element-wise operator that maps 0 entries to −∞ and 1 entries
to 0, ensuring attention only flows among connected bit and syndrome nodes in the Tanner graph.

Proof: See Appendix B. We first derive the exact gradient and then approximate it using von Neu-
mann expansion, while consideration on Tanner subspaces finally leads to our MTSA formulation.

The operations are then simplified to the form Zl+1/2 = Zl + MTSA(Zl | U l
[K]), where l denotes

the layer index and l + 1/2 denotes the intermediate output layer after MTSA.

3.2. Sparse Coding via ISTA
After the Tanner-subspace attention update, we optimize the sparsification term (6) following [18]:

Zl+1 ≈ argmin
Z

{
λ∥Z∥1 +

1

2
∥Zl+1/2 −DlZ∥2F

}
, (14)

where Dl ∈ Rd×d is a learnable (complete) incoherent or orthogonal dictionary that enforces
R(Z)l+1 ≈ R(Z)l+1/2. This optimization can be solved using ISTA [22]:

Zl+1 = ISTA(Zl+1/2|Dl) ≜ ReLU(Zl+1/2 − η
(
Dl

)∗
(DlZl+1/2 −Zl+1/2)− ηλ1), (15)

where η > 0 is the step size. Through this structured sparse coding step, we ensure that both
bit and syndrome representations maintain efficient, sparse patterns while preserving the essential
information for error correction.
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Figure 1: Overview of theWECCT architecture. Themodel architecture flows from bottom to top on
the left, consisting of inputs embedding, decoder layers and outputs prediction, with the detailed
structure of decoder layers expanded on the right.

3.3. The Overall Architecture
The full WECCT architecture is designed to effectively process both bit and syndrome information
through a series of structured iterative transformations, enabling rich interactions through the Tan-
ner graph structure. Figure 1 roughly illustrates the complete architecture, which consists of three
main components: input embedding layer, multiple decoder layers, and output prediction layer.
The detailed decoding process is discussed as follows and summarized in Algorithm 1.
For input embedding, unlike ECCT [15] and CrossMPT [17] that use signal magnitude and binary
syndrome, we apply LLR scaling to the received signal itself for bit tokens and use reliability-scaled
soft syndrome for syndrome tokens. Specifically, given the received signal y ∈ Rn, for bit tokens
we compute:

yllr = 2y/σ2, (16)

z0
i = wemb,iyllr,i, i = 1, . . . , n, (17)

where wemb,i ∈ Rd is a learnable embedding vector for the i-th bit position, and σ2 is the noise
variance of the AWGN channel. For syndrome tokens, we compute soft syndrome by scaling each
parity check equation with the magnitude of its least reliable bit:

ssoft,j = min
i:Hji=1

|yi| ·Hj · bin(sign(yj)), j = 1, . . . , n− k, (18)

z0
n+j = wemb,n+jssoft,j , j = 1, . . . , n− k, (19)

where wemb,n+j ∈ Rd is a learnable embedding vector for the j-th syndrome position, and Hj de-
notes the j-th row of the parity check matrix.
After the initial embedding, the representations are processed through L decoder layers, each im-
plementingMTSA and ISTA operations. Within each layer l = 0 to L−1, inspired by the alternating
optimization in [17], we adopt a sequential update strategy that processes bit and syndrome do-
mains iteratively: bit representations are first refined through MTSA and ISTA steps while holding
syndrome tokens fixed, followed by syndrome updates based on the improved bit representations.
This alternating denoising pattern employs domain-specific learning parameters: subspace bases
U l

b,[K] and U l
s,[K] for bits and syndromes respectively, along with their sparsification dictionaries
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Algorithm 1 White-box Error Correction Code Transformer

Input: Input: y ∈ Rn, H ∈ {0, 1}(n−k)×n, Parameters: {U l
b,[K],U

l
s,[K]}L−1

l=0 (subspace bases), {Dl
b,D

l
s}L−1

l=0

(dictionaries), {wemb,i}2n−k
i=1 (input embeddings), {wout,i, θi}ni=1 (output projections)

Output: x̂ ∈ {0, 1}n
1: yllr = 2y/σ2 {LLR Scaling}
2: for i = 1 to n do
3: z0

i = wemb,iyllr,i {Bit Token Embedding}
4: end for
5: for j = 1 to n− k do
6: ssoft,j = mini:Hji=1 |yi| ·Hj · bin(sign(y)) {Soft Syndrome}
7: z0

n+j = wemb,n+jssoft,j {Syndrome Token Embedding}
8: end for
9: Z0

b = [z0
1 , . . . , z

0
n], Z0

s = [z0
n+1, . . . ,z

0
2n−k]

10: for l = 0 to L− 1 do
11: Z̃l

b = LayerNorm(Zl
b)

12: Z
l+1/2
b = Zl

b +MTSA([Z̃l
b,Z

l
s] | U l

b,[K])[:,1:n] with H

13: Ẑ
l+1/2
b = LayerNorm(Z

l+1/2
b )

14: Zl+1
b = Z

l+1/2
b + ISTA(Ẑ

l+1/2
b |Dl

b)

15: Z̃l
s = LayerNorm(Zl

s)

16: Z
l+1/2
s = Zl

s +MTSA([Zl+1
b , Z̃l

s] | U l
s,[K])[:,n+1:2n−k] withH

17: Ẑ
l+1/2
s = LayerNorm(Z

l+1/2
s )

18: Zl+1
s = Z

l+1/2
s + ISTA(Ẑ

l+1/2
s |Dl

s)
19: end for
20: for i = 1 to n do
21: pi = w∗

out,iz
L
i + θi {Linear Projection}

22: end for
23: x̂ = 1[p > 0.5] {Binary Decision}
24: return x̂

Dl
b andDl

s. This specialization allows each domain to learn distinct features that reflect their com-
plementary roles in error correction - bits carrying the actual (local) information while syndromes
providing error detection constraints.

The final bit representations {zL
b,i}ni=1 then pass through independent token-specific linear projec-

tions to generate the decoded codeword. Note that unlike previous transformer-based approaches
[15, 17] that concatenate all bit and syndrome tokens to predict the multiplicative noise through
a fully-connected layer, our decoder directly estimates the probability of each transmitted bit only
using bit tokens. This design choice preserves the spatial structure and offers a more direct path to
codeword recovery:

pi = w∗
out,iz

L
i + θi, i = 1, . . . , n, (20)

x̂ = 1[p > 0.5], (21)

where wout,i ∈ Rd is the learnable projection vector, θi ∈ R is the learnable bias term specific to the
i-th bit position, and p is the output probability vector for binary decision.
Through this architecture, our model achieves a balance among structural awareness (via MTSA’s
Tanner graph constraints), representation efficiency (via ISTA’s sparsity promotion), and learning
capacity (via the trainable embeddings, bases, dictionaries and output projections), which enables
our model to effectively capture and utilize the inherent properties of ECCs.
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Table 1: Comparison of decoding performance at three different SNR values (4 dB, 5 dB, 6 dB) for
different decoders, measured by the negative natural logarithm of BER (higher is better). For each
specific code in theWECCT column, the first row shows results with 6 decoder layers (L = 6), while
the second row shows results with 12 decoder layers (L = 12). Best results are shown in bold and
second best results are underlined.

Model BP AR BP ECCT CrossMPT WECCT
Codes Parameter 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

6.31 8.52 11.39BCH (31,16) 4.63 5.88 7.60 5.48 7.37 9.60 6.39 8.29 10.66 6.98 9.25 12.48 6.51 8.73 12.65
4.81 6.53 9.01BCH (63,36) 4.03 5.42 7.26 4.57 6.39 8.92 4.86 6.65 9.10 5.03 6.91 9.37 4.91 6.70 9.24
5.55 7.80 10.90BCH (63,45) 4.36 5.55 7.26 4.97 6.90 9.41 5.60 7.79 10.93 5.90 8.20 11.62 5.87 8.27 11.25
5.54 7.76 10.86BCH (63,51) 4.5 5.82 7.42 5.17 7.16 9.53 5.66 7.89 11.01 5.78 8.08 11.41 5.62 7.89 11.04
6.42 8.69 11.34Polar (64,32) 4.26 5.38 6.50 5.57 7.43 9.82 6.99 9.44 12.32 7.50 9.97 13.31 6.71 9.03 12.54
6.08 8.19 11.13Polar (64,48) 4.74 5.94 7.42 5.41 7.19 9.30 6.36 8.46 11.09 6.51 8.70 11.31 6.32 8.48 11.36
5.43 7.86 11.20Polar (128,64) 4.1 5.11 6.15 4.84 6.78 9.3 5.92 8.64 12.18 7.52 11.21 14.76 6.11 8.94 12.32
6.11 8.83 12.60Polar (128,86) 4.49 5.65 6.97 5.39 7.37 10.13 6.31 9.01 12.45 7.51 10.83 15.24 6.97 10.22 14.29
6.09 8.84 11.96Polar (128,96) 4.61 5.79 7.08 5.27 7.44 10.2 6.31 9.12 12.47 7.15 10.15 13.13 6.48 9.35 13.48
6.36 9.08 12.92LDPC (49,24) 6.23 8.19 11.72 6.58 9.39 12.39 6.13 8.71 12.10 6.68 9.52 13.19 6.70 9.63 14.02
5.63 8.97 13.91LDPC (121,60) 4.82 7.21 10.87 5.22 8.31 13.07 5.17 8.31 13.30 5.74 9.26 14.78 6.05 9.77 14.92
6.97 11.17 14.70LDPC (121,70) 5.88 8.76 13.04 6.45 10.01 14.77 6.40 10.21 16.11 7.06 11.39 17.52 7.42 12.20 14.92
7.50 10.97 14.29MacKay (96,48) 6.84 9.40 12.57 7.43 10.65 14.65 7.38 10.72 14.83 7.97 11.77 15.52 8.43 11.66 16.08
7.40 11.70 14.76CCSDS (128,64) 6.55 9.65 13.78 7.25 10.99 16.36 6.88 10.90 15.90 7.68 11.88 17.50 8.24 12.36 15.67

4. Experiments

4.1. Training and Testing Setup
The objective of the proposed decoder is to learn direct mapping to the transmitted codewords. For
a received signal y, we define the binary cross-entropy loss function:

L = −
n∑

i=1

{xi log(pi) + (1− xi) log(1− pi)}, (22)

where xi is the i-th bit of the transmitted codeword and pi is our model’s predicted probability for
that bit. Through backpropagation of this loss, we learn the model’s trainable parameters including
the input embedding vectors {wemb,i}2n−k

i=1 , subspace bases U l
b,[K],U

l
s,[K], dictionaries D

l
b,D

l
s, and

output projections {wout,i}ni=1. This direct optimization approach differs from previous methods
[15, 17] that predict the multiplicative noise through a preprocessing step.
For all transformer-based models, we set embedding dimension d = 128 and number of attention
heads h = 8. We replace ReLUwith GeLU activation [23] in ISTA operations for better gradient flow
and smoother optimization landscape. Two configurations are evaluated: WECCT(L = 6) with 6
layers, and WECCT(L = 12) with 12 layers to demonstrate the effect of increased optimization
steps. The ISTA step size η and sparsity weight λ are set to 0.1 and 0.5 respectively. We use the
Adam optimizer [24] with β1 = 0.9, β2 = 0.999 and conduct training for 1000 epochs. Each epoch
consists of 1000 minibatches, where each minibatch contains 512 samples. All simulations were
conducted using a GPU with 24GB VRAM and over 80 TFLOPS of FP32 compute performance.
The training samples y are generated by y = xs + z, where random codewords xs are transmitted
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Figure 2: The BER performance of various decoders (BP, AR BP, ECCT, CrossMPT) and WECCT.

through anAWGN channel with noise z sampled from a signal-to-noise ratio (SNR) range of 3 dB to
7 dB. The SNR is measured as energy per bit to noise power spectral density ratio (Eb/N0), where
Eb represents the average energy per information bit and N0 represents the noise power spectral
density [1]. The learning rate is initially set to 10−4 and gradually reduced to 5× 10−7 following a
cosine decay scheduler.
To evaluate the effectiveness of WECCT, we conduct extensive experiments on various code fami-
lies including BCH codes, polar codes and LDPC codes (includingMacKay and CCSDS codes). All
parity check matrices are taken from [25]. For comparison, we consider the traditional BP decoder
with 50 iterations and several neural decoders. Among BP-based neural decoders, we show results
for AR BP [26], which has demonstrated superior performance over earlier approaches like Hyper
BP [27]. For model-free transformer-based decoders, we compare with ECCT [15] and CrossMPT
[17]. During testing, we collect at least 500 frame errors at each SNRvalue using randomcodewords,
focusing on practical SNR ranges (4, 5, 6 dB). Performance is measured using negative natural log-
arithm of bit error rate (BER).

4.2. Results and Analysis
OurWECCT demonstrates significant parameter efficiency through several theoretically motivated
design choices. Compared with ECCT [15] and CrossMPT [17], this dramatic improvement in effi-
ciency comes from our theoretical insights: shared projection matrices in attention reduce parame-
ters from 4d2 to 2d2 per layer (without sharing between twomessage-passing iterations), while ISTA
network further reduces feedforward parameters from 8d2 to 2d2 per layer (excluding biasesO (d)),
complemented by efficient bit/syndrome processing through sparse rate reduction. An analysis of
parametric and computational efficiency across different architectures is provided in Appendix C.
Table 1 and Figure 2 show BER performance comparison across different decoders. We see that
despite the substantial reduction in parameters, WECCT(L=6) achieves better performance than
ECCT across various codes. More importantly, when we increase the number of layers to match the
computational budget of previous approaches withWECCT(L=12), our model matches or exceeds
CrossMPT’s performance while still maintaining a significantly lower parameter count. This scal-
ing behavior provides strong empirical validation for our theoretical framework, where additional
layers effectively implement more gradient update steps towards better convergence.
In Appendix D, ablation studies are conducted on the Tanner subspaces mechanism to validate its
crucial role in achieving optimal decoding performance. The visualization of rate reduction and
sparsification patterns can be found in Appendix E, where we also analyze the rate reduction dur-
ing training and its correlation with decoding performance. These analyses further support the
effectiveness of our framework in achieving the expected theoretical objectives.

5. Conclusion
In this paper, we present WECCT, a white-box transformer architecture for error correction code
decoding that combines theoretical interpretability with strong empirical performance. By formu-
lating the decoding problem from a sparse coding perspective, we develop a novel MTSA mech-
anism that explicitly incorporates code structure into representation learning. Our experiments
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demonstrate that WECCT achieves competitive performance with significantly fewer parameters
than previous approaches, while providing clear theoretical insights into its internal operations.
Several promising directions for future work include extending the framework to different channel
environments, scaling to longer codes through hierarchical Tanner subspaces, and exploring more
targeted sparsification strategies. Through these developments, we believe the white-box approach
introduced in this work can lead to efficient neural decoders for modern communication systems
while maintaining strong theoretical guarantees.
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A. Proof of Appproximation 1
Proof: For AWGN channels, the ML decoding objective can be written as minimizing the expected
squared error between the received signal and the predicted codeword:

x̂s = argmin
x∈C

∥y − xs∥22. (23)

Through Tweedie’s formula [20], the optimal estimator can be expressed in terms of the score func-
tion:

E[xs|y] = y + σ2∇p(y)

p(y)
= y + σ2∇ log p(y). (24)
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In our iterative framework, this denoising process can be formulated as token updates from layer l
to layer l+ 1. It moves the bit token set Zl

b towards the maximum-likelihood token set with respect
to the model U l

[K]:

Zl+1
b = Zl

b + σ2∇ log p(Zl
b | U l

[K]), (25)

whereZl
b represents bit tokens at layer l. One recently popular class of models performing ML esti-

mation is energy-based models [21]. Therefore, following [18], the desired probability distribution
of Zb is known up to constants as

p
(
Zb | U[K]

)
= Ce−E(Zb|U[K]) .

= C exp (−λ∥Zb∥1) ·
det (I + αZ∗

bZb)∏K
k=1 det

(
I + β (U∗

kZb)
∗
(U∗

kZb)
) , (26)

where the energy function is defined as

E(Zb | U[K]) = −
[
R(Zb)−Rc(Zb | U[K])− λ∥Zb∥1

]
. (27)

Note that the term det (I + αZ∗
bZb) /

∏K
k=1 det

(
I + β (U∗

kZb)
∗
(U∗

kZb)
)
has a natural intrinsic geo-

metric interpretation that it can be regarded as the ratio of the ’volume’ of Zb and the product of
’volumes’ of its projections into the subspaces [28].
For ECCs, any valid codeword must satisfy the parity check equations. The syndrome s(y) = Hyb

represents a combination of bit values, implying that the induced syndrome tokens Zs naturally
lie in subspaces spanned by bit tokens Zb. Performing joint denoising on syndromes helps better
capture parity check constraints and reinforce the structural dependencies among bits in the code,
which motivates us to model bits and syndromes together in a unified representation space Z =
[Zb,Zs]. The energy function can then be extended to this joint space:

E(Z | U[K]) = −
[
R(Z)−Rc(Z | U[K])− λ∥Z∥1

]
, (28)

Minimizing the energy E(Z | U[K]) above is equivalent to maximizing the sparse rate reduction
objective (4).

B. Proof of Approximation 2
Here we provide the complete derivation of the MTSA mechanism. The proof follows three main
steps: deriving the exact gradient of the coding rate, applying the von Neumann approximation,
and incorporating the Tanner graph structure.

Proof: Consider the coding rate Rc(Z | U[K]) where Z ∈ Rd×(2n−k) represents the combined bit
and syndrome representations. Following the rate reduction framework in [18], the gradient with
respect to Z is given by

∇ZR
c
(
Z | U[K]

)
= β

K∑
k=1

UkU
∗
kZ

(
I + β (U∗

kZ)
∗
(U∗

kZ)
)−1

. (29)

For computational efficiency, we apply the von Neumann series expansion [29] to approximate the
matrix inverse:

(I + β(U∗
kZ)∗(U∗

kZ))−1 = I − β(U∗
kZ)∗(U∗

kZ) +O(β2). (30)

Substituting this approximation into the gradient expression:

∇ZR
c
(
Z | U[K]

)
≈ β

K∑
k=1

UkU
∗
kZ

(
I − β (U∗

kZ)
∗
(U∗

kZ)
)

= β

K∑
k=1

Uk

(
U∗

kZ − βU∗
kZ

[
(U∗

kZ)
∗
(U∗

kZ)
])

.

(31)
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The term (U∗
kZ)

∗
(U∗

kZ) represents the auto-correlation among projected tokens in the k-th sub-
space. This correlation matrix indicates the subspace memberships and interactions between differ-
ent tokens. From Definition 1, tokens should only interact within their respective Tanner subspaces
defined byM(H). We incorporate the Tanner graph structure through masked attention:

∇ZR
c
(
Z | U[K]

)
≈ β

K∑
k=1

UkU
∗
kZ

− β2
K∑

k=1

Uk

(
U∗

kZ softmax
(
(U∗

kZ)
∗
(U∗

kZ) + ϕ(M(H))
))

,

(32)

where ϕ(M(H)) is defined in (13). This ensures that token i only attends to token j where
M(H)ji = 1. Note that this masking strategy deliberately excludes a token attending to itself in
the correlation computation, as our goal is to ensure message passing between bits and syndromes
through the Tanner graph structure.
The gradient update can be reformulated into the TSA and MTSA operations. For each subspace
basis Uk, the Tanner-subspace Self Attention (TSA) operation is defined as:

TSA(Z | Uk) = (U∗
kZ) softmax((U∗

kZ)∗(U∗
kZ) + ϕ(M(H))). (33)

The Multi-head Tanner-subspace Self Attention (MTSA) operation then aggregates the attention
outputs across all subspaces:

MTSA(Z | U[K]) = β[U1, . . . ,UK ]

 TSA(Z | U1)
...

TSA(Z | UK)

 . (34)

This formulation allows us to express the gradient descent update in a concise form:
Z − κ∇ZR

c(Z | U[K]) ≈ (1− κβ)Z + κβMTSA(Z | U[K]). (35)

The resulting MTSA mechanism effectively combines the gradient descent on coding rate with the
structural constraints of error correction codes. The multi-head design follows similar principles to
those in [16], but with a principled interpretation through rate reduction and explicit incorporation
of code structure.

C. Complexity

Table 2: Comparison of parameters and FLOPs for different decoders
Code Model Parameters (M) FLOPs (M)
LDPC(121,70) ECCT 1.23 37.7

CrossMPT 1.23 28.8
WECCT-6 0.46 17.2
WECCT-12 0.85 33.8

BCH(63,45) ECCT 1.19 14.0
CrossMPT 1.19 11.8
WECCT-6 0.43 8.4
WECCT-12 0.82 16.2

The parameter efficiency of WECCT mainly comes from the shared projection design in attention
modules. While WECCT uses separate weight matrices for bit-to-syndrome and syndrome-to-bit
message passing, it achieves significant parameter reduction by sharing projections between key and
value transformations within each attention module, reducing attention parameters from 4d2 to 2d2

per layer (excluding biases O (d)). Combined with the efficient ISTA operations that replace stan-
dard feed-forward networks which reduces parameters from 8d2 to 2d2 per layer, WECCT achieves
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approximately 64% parameter reduction compared to both ECCT and CrossMPT for BCH(63,45)
code. Notably, evenwith doubled layers,WECCT-12 still uses 31% fewer parameters thanCrossMPT
while achieving comparable or better performance.

In terms of computational complexity, all three models have theoretical complexity O(N(d2(2n −
k)+ ρhd))with different mask densities ρ [17]. The computation differences mainly come from the
attention designs: WECCT further reduces FLOPs by sharing key and value computations in each
attention module and using efficient ISTA operations with fewer matrix multiplications than stan-
dard feed-forward networks. As shown in Table 2, WECCT-6 requires 40% fewer FLOPs than ECCT
and 29% fewer than CrossMPT for BCH(63,45) code. The efficiency gain is even more pronounced
for longer codes - for LDPC(121,70), WECCT-6 achieves a 54% FLOPs reduction compared to ECCT
and 40% compared to CrossMPT. When doubling the number of decoder layers, the increasing of
FLOPs is still acceptable with significantly less parameters.

D. Ablation Study on Tanner Subspaces Mechanism

Table 3: -ln(BER) results comparing WECCT-6 with and without the Tanner subspaces mechanism
for LDPC(121, 60) code

Model 4dB 5dB 6dB
WECCT-6 5.63 8.97 13.91
WECCT-6 (without Tanner subspaces mechanism) 3.46 4.60 6.34
WECCT-12 6.05 9.77 14.92
WECCT-12 (without Tanner subspaces mechanism) 4.27 6.37 9.52

Tanner subspaces play a crucial role in our framework, ensuring correct subspace compression.
Table 3 shows the decoding performance comparing our model with and without the Tanner sub-
spaces mechanism for LDPC(121, 60) code. The performance degradation is substantial when re-
moving the designed mechanism, which clearly validates our architectural choices and provide in-
sights into the model’s behavior.

E. Coding Rate and Sparsity across Layers

Figure 3: Left: Coding rate reduction across layers for different SNR values. Right: Output sparsi-
fication of ISTA blocks across layers.

To validate our theoretical design objectives, we analyze the behavior of both MTSA and ISTA com-
ponents across network layers. Figure 3 shows that our model successfully achieves the theoretical
objectives of rate reduction and structured sparsification.

Specifically, the coding rate Rc(Z
l+1/2
b |U l

b,[K]) achieves significant reduction from 219 to 51 at
SNR=7dB, demonstrating that ourMTSAmechanism effectively compresses the bit representations.
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Table 4: Analysis of rate reduction during training WECCT-6 for LDPC(121,60) with SNR=6dB.
Values show percentage changes in coding rate relative to the first layer.

Epochs -ln(BER) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 5.27 +38.19% +49.57% +42.62% +37.58% +35.11%
100 11.41 -2.17% -28.20% -37.71% -44.69% -48.03%
200 11.58 -9.51% -35.31% -44.40% -49.09% -50.12%
350 12.44 -13.48% -37.20% -44.20% -51.95% -53.39%
1000 13.91 -22.87% -47.52% -58.03% -58.53% -69.27%

The sparsification defined as ∥Zl+1
b ∥0/ (d× n) across ISTA layers (with ReLU activation) decreases

from around 0.425 to 0.3, indicating that ISTA effectively promotes increasingly sparse representa-
tions as prescribed by our optimization framework. This trend is particularly pronounced at higher
SNR values (6-7dB), suggesting that cleaner channel conditions enable more efficient sparse coding
of the representations.
To further validate the connection between rate reduction and decoding performance, we analyzed
how coding rate reduction evolves during training. Table 4 shows the relative rate reduction com-
pared to the first layer for LDPC(121,60)with a 6-layerWECCTat SNR=6dB.As training progresses,
we simultaneously observe that the decoding performance improves and that the relative rate reduc-
tion becomes more significant across layers, suggesting that decoding performance improvements
correlate strongly with the increasing rate reduction.
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