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ABSTRACT

We study the problem of recovering a low-tubal-rank tensor X ⋆ ∈ Rn×n×k from
noisy linear measurements under the t-product framework. A widely adopted
strategy involves factorizing the optimization variable as U ∗ U⊤, where U ∈
Rn×R×k, followed by applying factorized gradient descent (FGD) to solve the re-
sulting optimization problem. Since the tubal-rank r of the underlying tensor X ⋆

is typically unknown, this method often assumes r < R ≤ n, a regime known as
over-parameterization. However, when the measurements are corrupted by some
dense noise (e.g., Gaussian noise), FGD with the commonly used spectral initial-
ization yields a recovery error that grows linearly with the over-estimated tubal-
rank R. To address this issue, we show that using a small initialization enables
FGD to achieve a nearly minimax optimal recovery error, even when the tubal-
rank R is significantly overestimated. Using a four-stage analytic framework, we
analyze this phenomenon and establish the sharpest known error bound to date,
which is independent of the overestimated tubal-rank R. Furthermore, we pro-
vide a theoretical guarantee showing that an easy-to-use early stopping strategy
can achieve the best known result in practice. All these theoretical findings are
validated through a series of simulations and real-data experiments.

1 INTRODUCTION

In recent years, the growing complexity and dimensionality of real-world data have highlighted the
limitations of traditional vector and matrix models. As a natural generalization, tensors provide a
more expressive framework to capture multi-dimensional correlations inherent in data arising from
applications such as hyperspectral imaging (Han et al., 2025), dynamic video sequences (Han et al.,
2024), and sensor arrays (Rajesh & Chaturvedi, 2021; Fu et al., 2025). A common trait shared
across these applications is the underlying low-rank structure of the data when represented in tensor
form. Leveraging this property, a wide range of inverse problems can be effectively reformulated as
low-rank tensor recovery tasks. Notable examples include image inpainting (Zhang & Aeron, 2016;
Gilman et al., 2022; Yang et al., 2022), compressive imaging and video representation (Wang et al.,
2017; Baraniuk et al., 2017; Wang et al., 2018), background modeling from incomplete observations
(Cao et al., 2016; Li et al., 2022; Peng et al., 2022), and even advanced medical imaging techniques
such as computed tomography (Liu et al., 2024a). The goal of low-rank tensor recovery is to recover
the target tensor X ⋆ from a few noisy measurements:

yi = ⟨Ai,X ⋆⟩+ si, i = 1, 2...,m, (1)

where si denotes the unknown noise. This model can be concisely represented as y = M(X ⋆)+s,
where M(X ⋆) = [⟨A1,X ⋆⟩, ⟨A2,X ⋆⟩, ..., ⟨Am,X ⋆⟩]. Since X ⋆ is low-rank, the problem can
be solved via rank minimization:

min
X

rank(X ), s. t. ||y −M(X )||2 ≤ ϵs, (2)

where rank(·) denotes the tensor rank function and ϵs denotes the noise level.

There are various tensor decomposition methods, such as CANDECOMP/PARAFAC decomposi-
tion (CP) (Carroll & Chang, 1970; Harshman, 1970), Tucker decomposition (Tucker, 1966), Tensor
Singular Value Decomposition (t-SVD)(Kilmer & Martin, 2011), Tensor Train (Oseledets, 2011),
and Tensor Ring (Zhao et al., 2016), each leading to different definitions of tensor rank. In this
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work, we adopt the t-SVD along with its associated tubal-rank (Kilmer et al., 2013). We adopt t-
SVD due to its use of circular convolution along the third dimension via the t-product, enabling it to
capture frequency-domain structures effectively (Wu et al., 2024). This capability makes it particu-
larly powerful for handling multi-dimensional data such as images and videos (He et al., 2024; Wu
& Fan, 2024; Wu et al., 2025; Liu et al., 2023). Furthermore, t-SVD guarantees an optimal low-rank
approximation, in a manner directly analogous to the Eckart–Young theorem for matrices (Eckart &
Young, 1936). Under the t-SVD framework, since problem (2) is NP-hard, a common approach is
to relax the tubal-rank constraint to the tensor nuclear norm. This reformulates the original problem
as a tubal tensor nuclear norm minimization. While this relaxation is theoretically sound, solving it
typically requires repeated t-SVD computations, which become increasingly expensive as the tensor
dimensions grow.

To address this issue, a more recent and popular approach is to adopt the tensor Burer–Monteiro
(BM) factorization, a higher-order extension of the matrix Burer–Monteiro method (Burer & Mon-
teiro, 2003). This technique represents the large tensor as the t-product of two smaller factor tensors,
thereby transforming the original problem into an optimization over the two factors, often minimiz-
ing an objective of the form1

min
U∈Rn×R×k

f(U) =
1

4m

∥∥∥y −M(U ∗ U⊤)
∥∥∥2 , M(·) : Rn×n×k → Rm, (3)

Figure 1: Comparison of training and
testing errors for Problem (3) using
FGD with spectral vs. small initializa-
tion. The ground-truth tensor has tubal-
rank r = 2, overestimated rank R = 4,
size n = 20, k = 3, m = 5kr(2n − r)
measurements, and noise σ = 10−3.
Spectral initialization follows Liu et al.
(2024b), while small initialization uses
a near-zero starting point. Training er-
ror is 1

4m ||y−M(U ∗U⊤)||2, and test-
ing error is ||U ∗U⊤−X ⋆||2F /||X ⋆||2F .
“Baseline” denotes recovery under ex-
act rank R = r. Insets show early (first
500 iterations) vs. full error curves.

where ∗ denotes the tensor-tensor product. Factorized
Gradient Descent and its variants can then be applied, sig-
nificantly reducing computational costs (Liu et al., 2024b;
Karnik et al., 2025). However, such methods typically re-
quire prior knowledge of the tubal-rank r of the target ten-
sor, which is often unavailable in practice. As a result, it
is common to assume an estimated rank R > r, a setting
often referred to as the over-parameterized or over-rank
case. However, in the case of noisy low-tubal-rank tensor
recovery, over-parameterization can lead to larger recov-
ery errors. Liu et al. (2024b) showed that the recovery er-
ror in the over-parameterized setting grows linearly with
the estimated tubal-rank R. When the tubal-rank is signif-
icantly overestimated, the error can become substantial.
Furthermore, FGD suffers from a severe slowdown in
convergence when the tubal-rank is overestimated. This
leads to an important question: In noisy low-tubal-rank
tensor recovery, is it possible to obtain an error bound
that depends only on the true tubal-rank r ?

By investigating this question further, we find that with
small initialization, factorized gradient descent con-
verges linearly to a nearly minimax optimal error only
relying on r, even when the tubal-rank is significantly
overestimated. As shown in Figure 1, under over-
parameterization, FGD with spectral initialization yields
suboptimal recovery error, while FGD with small initial-
ization achieves the same error as in the exact tubal-rank
setting. However, as the algorithm continues to iterate,
the error gradually increases and eventually matches that
of spectral initialization. We provide a theoretical analy-
sis of this phenomenon and derive the best-known error bound to date. Furthermore, based on early
stopping and validation (Prechelt, 1998; Stone, 2018; Ding et al., 2025), we show that this error is
achievable and provide corresponding theoretical guarantees.

We summarize the main contributions of this paper as follows:
Tightest error upper bound We discover that with small initialization, FGD can achieve an error

1As in prior work, we assume that X ⋆ is a symmetry and positive semi-definite tensor. for detailed expla-
nation, please refer to Definition 2.
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which only depends on the exact tubal-rank in noisy, over-parameterized low-tubal-rank tensor re-
covery. We establish global convergence and the tightest error bound for FGD that depends only on
the true tubal-rank. This significantly improves upon previous results (Liu et al., 2024b). To the best
of our knowledge, this is the first error bound that is independent of the overestimated tensor rank.
Minimax lower bound and near-optimality. We derive an information-theoretic minimax lower
bound for noisy tubal-rank tensor recovery, showing that any estimator has mean square error at
least Ω(nrkσ

2

m ). Comparing this lower bound with our upper bound demonstrates that our method is
nearly optimal; the remaining gaps are only due to constant factors and dependencies on the condi-
tion number κ.
Attainable recovery error A validation-based early stopping method is applied to FGD to achieve
the error bound without any prior information about the target tensor. We theoretically show that
when the number of validation samples exceeds Õ(r2κ8), the validation error matches the up-
per bound up to constants. On both synthetic and real datasets, we demonstrate that in the over-
parameterized setting, FGD (small initialization and validation-based early stopping) attains errors
comparable to those achieved with the exact-rank setting, and significantly outperforms spectral and
large random initializations.

1.1 RELATED WORKS

Table 1: Comparison of several low-tubal-rank tensor recov-
ery methods based on t-SVD. The noise vector s is assumed
to consist of Gaussian random variables with zero mean and
variance σ2.

methods rate guarantee error
(Zhang et al., 2020) % ✓ %

(Liu et al., 2024b) sub-
linear local Õ

(
nkRσ2

m

)
(Karnik et al., 2025) linear global %

Ours linear global Õ
(

nkrσ2

m

)

Non-convex low-tubal-rank tensor
recovery under t-SVD framework
Nonconvex low-tubal-rank tensor re-
covery methods under the t-SVD
framework can be broadly catego-
rized into two classes. The first
class aims to improve recovery ac-
curacy by replacing the tubal tensor
nuclear norm with nonconvex surro-
gates. The second class focuses on
improving computational efficiency
by decomposing a large tensor into
smaller factor tensors. We first discuss the methods in the first category. These approaches are de-
rived from the tubal tensor nuclear norm and include variants such as the t-Schatten-p norm (Kong
et al., 2018), weighted t-TNN (Mu et al., 2020), and partial sum of t-TNN (Jiang et al., 2020). Other
methods employ nonconvex functions such as Geman or Laplace penalties in place of the tubal ten-
sor nuclear norm (Cai et al., 2019; Xu et al., 2019). It is worth noting that Wang et al.(Wang et al.,
2021) proposed a generalized nonconvex framework that encompasses a wide range of non-convex
penalty functions. However, these methods still rely on repeated t-SVD computations, which are
computationally expensive, and often lack theoretical guarantees. The second category includes
factorization-based methods that decompose a large tensor into two or three smaller factor tensors,
followed by optimization techniques such as alternating minimization (Zhou et al., 2017; Liu et al.,
2019; He & Atia, 2023; Wu et al., 2025), nonconvex tensor norms minimization (Du et al., 2021;
Jiang et al., 2023b), factorized gradient descent (Liu et al., 2024b; Karnik et al., 2025), scaled gra-
dient descent (Feng et al., 2025; Wu, 2025). Beyond these two main categories, there are also
approaches based on randomized low-rank approximation (Qin et al., 2024) and alternating projec-
tions (Qiu et al., 2022) for solving tensor recovery problems.
Over-parameterization in low rank tensor recovery Factorization-based methods typically re-
quire knowledge of the tensor rank. However, the true rank is often difficult to obtain in practice.
As a result, it is common to assume an estimated rank larger than the true one, a setting known as
over-parameterization. In matrix sensing, it has been shown that gradient descent can still achieve
the optimal solution under over-parameterization (Zhu et al., 2018; Stöger & Soltanolkotabi, 2021;
Soltanolkotabi et al., 2025; Jiang et al., 2023a; Zhuo et al., 2024; Ding et al., 2025). In contrast,
studies on over-parameterized settings in tensor recovery are relatively limited. Although many
methods have been proposed to estimate tensor rank, these methods are computationally expensive
and lack clear theoretical guarantees (Zhou & Cheung, 2019; Shi et al., 2021; Zheng et al., 2023;
Zhu et al., 2025). Recently, Liu et al. (2024b) investigated low-tubal-rank tensor recovery under
over tubal-rank and established local convergence guarantees and recovery error bounds for FGD,
where the error depends on the overestimated tubal-rank. Karnik et al. (2025) further proved global
convergence of FGD with small initialization under over tubal-rank, in the noiseless setting. In ad-
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dition, for Tucker decomposition, Luo & Zhang (2024) studied the over-parameterized setting in
tensor-on-tensor regression. However, in the presence of noise, its recovery error still depends on
the overestimated tensor rank. We compare our method with several closely related works, and the
results are summarized in Table 1.

2 PRELIMINARIES

The symbols y,y,Y ,Y are denoted as scalars, vectors, matrices, and tensors, respectively. Let
Y ∈ Rm×n×k be a third-order tensor. We refer to its entry at position (i, j, l) as Y(i, j, l), and
denote the l-th frontal slice by Y (l) := Y(:, :, l), following MATLAB-style indexing. The inner
product between two tensors Y and Z is given by ⟨Y ,Z⟩ =

∑k
l=1⟨Y (l),Z(l)⟩, where each Y (l)

and Z(l) are corresponding frontal slices.

For any tensor Y ∈ Rm×n×k, its Discrete Fourier Transform along the third mode yields Y ∈
Cm×n×k. In MATLAB syntax, we have Y = fft(Y , [ ], 3), and Y = ifft(Y , [ ], 3). We denote

Y ∈ Cmk×nk as a block diagonal matrix of Y , i.e., Y = bdiag(Y) = diag(Y
(1)

;Y
(2)

; ...;Y
(k)

).

The tensor-tensor product (t-product) of two tensors Z ∈ Rm×q×k and Y ∈ Rq×n×k is Z ∗ Y ∈
Rm×n×k, whose tubes are given (Z ∗Y)(i, i′) =

∑q
p=1 Z(i, p, :) ∗Y(p, i′, :), where ∗ denotes the

circular convolution operation, i.e., (x ∗ y)i =
∑k

j=1 xjyi−j(mod k).

For any tensor Y ∈ Cm×n×k, its conjugate transpose Y⊤ ∈ Cn×m×k is computed by taking the
conjugate transpose of each frontal slice and reversing the order of slices 2 through k. The identity
tensor, represented by I ∈ Rn×n×k, is defined such that its first frontal slice corresponds to the
n × n identity matrix, while all subsequent frontal slices are comprised entirely of zeros. This can
be expressed mathematically as: I(1) = In×n, I(l) = 0, l = 2, 3, . . . , k. A tensor Q ∈ Rn×n×k

is considered orthogonal if it satisfies the following condition: Q⊤ ∗Q = Q ∗Q⊤ = I.
Theorem 1 (t-SVD (Kilmer & Martin, 2011)). Let Y ∈ Rm×n×k, then it can be factored as Y =
VY ∗ SY ∗W⊤

Y where VY ∈ Rm×m×k, WY ∈ Rn×n×k are orthogonal tensors, and SY ∈
Rm×n×k is a f-diagonal tensor, i.e., all the frontal slices of SY are diagonal matrix.

For Y ∈ Rm×n×k, its tubal-rank as rankt(Y) is defined as the nonzero diagonal tubes of SY , where
SY is the f-diagonal tensor from the t-SVD of Y . That is rankt(Y) := #{i : SY(i, i, :) ̸= 0}. And

its average rank is defined as ranka(Y) = 1
k

∑k
i rank(Y

(i)
). The condition number of a tensor

Y ∈ Rm×n×k is defined as κ(Y) = σ1(Y )

σmin(Y )
, where Y is the block diagonal matrix of tensor Y

and σ1(Y ) ≥ · · · ≥ σmin(Y ) > 0 denotes the singular values of Y . For Y ∈ Rm×n×k, its spectral
norm is denoted as ∥Y∥ := ∥bcirc(Y)∥ = ∥Y ∥; its frobenius norm is defined as ∥Y∥F :=√∑

i,j,l Y(i, j, l)2; its tubal tensor nuclear norm is defined as ||Y ||∗ := 1
k ||Y ||∗(Luet al., 2019).

3 MAIN RESULTS

3.1 FACTORIZED GRADIENT DESCENT AND T-RIP

Firstly, we present the detailed update rule of the factorized gradient descent method for solving
problem (3): U0 ∼ N (0, α2

R ), U t+1 = U t − η · 1
mM∗

(
M(U t ∗ U⊤

t −X ∗X⊤)− s
)
∗ U t,

where M∗(e) =
∑m

i=1 eiAi and X ⋆ = X ∗ X⊤, X ∈ Rn×r×k. A common assumption for
analyzing the convergence of factorized gradient descent is the t-RIP, which is defined as follows:

Definition 1 (t-RIP (Zhang et al., 2021)). A linear map M : Rn×n×k → Rm is said to satisfy
(r, δ) tensor Restricted Isometry Property (t-RIP ) for δ ∈ [0, 1] if for any tensor Y ∈ Rn×n×k with
tubal-rank ≤ r, the following inequalities hold: (1− δ)||Y ||2F ≤ ||M(Y)||2/m ≤ (1 + δ)||Y ||2F .

The t-RIP condition has been shown to hold with high probability (Zhang et al., 2021) if m ≳
rnk/δ2, provided that each measurement tensor Ai in the operator M has entries drawn indepen-
dently from a sub-Gaussian distribution with zero mean and variance 1. Note that this condition has
been extensively used in previous studies (Zhang et al., 2020; Liu et al., 2024b; Karnik et al., 2025),
making it a natural and reasonable assumption in our setting.
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We decompose the FGD update as

U t+1 = U t−η(U t∗U⊤
t −X ⋆)∗U t+η

(
I−M∗M

m

)
(U t ∗ U⊤

t −X ⋆)︸ ︷︷ ︸
(a)

∗U t+η · 1
m
M∗(s)︸ ︷︷ ︸
(b):=E

∗U t,

where I : Rn×n×k → Rn×n×k denotes the identity map. Then the t-RIP condition and tensor
concentration bounds are applied to control terms (a) and (b) separately.

3.2 THEORETICAL GUARANTEES

We first establish theoretical guarantees for solving noisy low-tubal-rank tensor recovery via FGD
with small initialization.
Theorem 2. Assume the following assumptions hold: (1) the linear map M satisfies (2r + 1, δ)
t-RIP with δ ≤ cκ−4r−1/2; (2) the step size η ≤ cκ−4||X ||2; (3) the error term E := 1

mM∗(s)

satisfies ||E|| ≤ cκ−2σ2
min(X ); (4) each entry of the initial point U0 is i.i.d N (0, α2

R ). With
all these assumptions, the following statements hold with probability at least 1 − ke−c̃R −
max{k(C̃ϵ)R−r+1, kϵ2},

1. When R = r, and the initialization scale satisfies α ≲
√
rσmin(X )√
k(R∧n)κ2

(
2κ2
√
rn

c̃3

)−10κ2

, then we

have

||U t̂ ∗ U
⊤
t̂ −X ⋆||F ≲

√
rκ2||E||, where t̂ ≳

1

ησ2
min(X )

ln

(
κ2r3/2

√
n√

kασmin(X )

)
.

2. When r < R < 3r, and initialization scale α satisfies α ≲

min

{
σmin(X )
(R∧n)κ2 ,

κ
35
21 ||E||

16
21

((R∧n)−r)
4
7 ||X ||

11
21

}
r√
k

(
2κ2
√
rn

c̃3

)−10κ2

, then we have

||U t̂ ∗ U
⊤
t̂ −X ⋆||F ≲

√
rκ2||E||, where t̂ ≍ 1

ησ2
min(X )

ln

(
n

1
2 r

5
2κ2||X ||2

k((R ∧ n)− r)α2

)
.

3. When R ≥ 3r, and the initialization scale satisfies α ≲

min

{
σmin(X )
(R∧n)κ2 ,

κ
35
21 ||E||

16
21

((R∧n)−r)
4
7 ||X ||

11
21

}
1√
k

(
2κ2
√
n

c̃3
√
(R ∧ n)

)−10κ2

, then we have

||U t̂ ∗ U
⊤
t̂ −X ⋆||F ≲

√
rκ2||E||, where t̂ ≍ 1

ησmin(X )2
ln

( √
nκ2||X ||2

k((R ∧ n)− r)(R ∧ n)α2

)
.

Here, c, c̃, c̃3, ϵ, C̃ are fixed numerical constants, and we define R ∧ n := min{R,n}, κ := κ(X ).

Remark 1. (Recovery error) Our final recovery error is
√
rκ2||E||, which depends only on the

spectral norm of the noise term E , the condition number κ of X , and the true tubal-rank r. We make
no specific assumptions on the distribution of the noise, requiring only that ||E|| ≤ cκ−2σ2

min(X ).
This makes our result potentially applicable to a wide range of noise distributions. When the noise
is Gaussian noise, our bound reduces to that of (Liu et al., 2024b). However, a key difference is
that our error bound depends only on the true tubal-rank r, whereas the bound in Liu et al. (2024b)
depends on the overestimated tubal-rank R.

Then we present a theorem that characterizes the minimax error in the Gaussian noise case. Theorem
3 establishes the fundamental statistical limit for low-tubal-rank tensor recovery. Specifically, for
any estimation procedure, the mean squared error cannot uniformly fall below order Θ(nrkσ2/m)
over tensors of tubal-rank at most r. Furthermore, there exist parameter choices under which the
error attains this order with constant probability.
Theorem 3 (Minimax error). Suppose that the linear map M(·) satisfies the (r, δ) t-RIP, X ⋆ ∈
Rn×n×k is a full tubal-rank r tensor, and that s ∼ N (0, σ2I), then any estimator X est obeys

sup
X⋆

E||X est −X ⋆||2F ≥
1

1 + δ

nrkσ2

m
, sup

X⋆

P
(
||X est −X ⋆||2F ≥

nrkσ2

2m(1 + δ)

)
≥ 1− e−

nrk
16 .

5
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With the minimax error under Gaussian noise, we further show that when s ∼ N (0, σ2), FGD with
small initialization converges to nearly optimal error.
Corollary 1. (Nearly minimax optimal error in Gaussian case) Under the assumptions of Theorem
2, further assume that the entries of the noise vector s are Gaussian with zero mean and variance
σ2, and that the number of measurements satisfies m ≳ nkκ4 σ2

σ4
min(X )

. Then, with high probability,

we have ∥U t̂ ∗ U
⊤
t̂ −X ⋆∥2F ≲ nkrκ4σ2

m , where Û t is the same as Theorem 2.
Remark 2. (Sample complexity) Our assumption on the number of measurements m mainly comes
from the t-RIP condition, which requires m ≳ nkr/δ2. In this work, we rely only on the (2r + 1, δ)
t-RIP, without depending on the overestimated tubal-rank R, which is consistent with the setting in
(Karnik et al., 2025). In contrast, (Liu et al., 2024b) requires the (4R, δ) t-RIP, leading to higher
sample complexity as the overestimated tubal-rank R increases. Note that this sampling complexity
is required only for theoretical guarantees; in practice, a much smaller sample size suffices, as
shown in Figure 2 (d).
Remark 3. (Comparison with (Liu et al., 2024b)) Both this work and (Liu et al., 2024b) employ
factorized gradient descent algorithms to solve the low-tubal-rank tensor recovery problem. They
are the first to apply FGD to this problem and provided convergence and recovery error analyses.
However, our work differs significantly from them in several key aspects: (1) Initialization: They
relies on spectral initialization to obtain a sufficiently good starting point for its theoretical analysis.
In contrast, our method requires only a small random initialization to guarantee convergence. These
two initialization strategies lead to entirely different analytical frameworks and theoretical results.
(2) Convergence rate: In (Liu et al., 2024b), the convergence rate under over-parameterization is
sublinear, whereas our analysis shows that the convergence rate remains linear even in the over-
parameterized regime. (3) Recovery error: Their recovery error depends on the over-parameterized
tubal rank R, while ours depends only on the true tubal rank r. (4) Sampling complexity: They
require the measurement operator M to satisfy the (4R, δ) t-RIP condition, whereas we only require
M to satisfy the (2r + 1, δ) t-RIP condition. As a result, the sampling complexity in (Liu et al.,
2024b) grows with the degree of over-parameterization, while our requirement remains mild and
independent of R.
Remark 4. (Comparison with Karnik et al. (2025)) Another related work is Karnik et al. (2025),
which studies tubal tensor recovery under small initialization. Our work differs from theirs in sev-
eral key aspects. (1) Problem setting: While they focus on the implicit regularization effect of small
initialization, our goal is to provide theoretical guarantees for low-tubal-rank tensor recovery with
noise under small initialization. (2) Technical tools: First, their analysis splits the FGD trajectory
into only two stages—the spectral stage and the convergence stage, which does not allow a precise
characterization of the noise evolution. In contrast, we introduce a four-phase decomposition that
provides a much finer description of the trajectory, enabling us to track the effect of noise through-
out all stages. Second, they use the tubal-rank-induced tensor nuclear norm, whereas we use the
average-rank-induced version, which captures the tensor’s low-rank structure more effectively (see
(Lu et al., 2019) for a detailed comparison). Consequently, directly extending their results to the
noisy tensor setting does not yield minimax-optimal recovery guarantees. (3) Theoretical results:
Our analysis requires less restrictive bounds on parameters. For example, the upper bound on the
initialization scale α in our Theorem 2 is significantly more relaxed than that in [Karnik et al. (2025),
Theorem 3.1]. Moreover, their results are restricted to over-parameterized settings with R ≥ 3r,
while our analysis covers both the exactly parameterized case R = r and the over-parameterized
case r < R < 3r, making our guarantees more comprehensive.

Remark 5. (Discussion with tubal-rank estimation methods) Over the past five years, many low-
tubal-rank tensor recovery methods with rank estimation strategies have been proposed (Shi et al.,
2021; Zheng et al., 2023; Zhu et al., 2025). (1) Problem setting: Our goal is to achieve stable
recovery even when the specified tubal-rank upper bound exceeds the true tubal-rank, ensuring that
the error does not deteriorate as the upper bound increases. In contrast, tubal-rank estimation
methods aim to identify or approximate the true tubal-rank. (2) Noise models: Shi et al. (2021)
and Zhu et al. (2025) considered rank estimation in the presence of sparse noise, while Zheng et al.
(2023) focuses on fast and robust rank estimation in the noiseless setting. Our results apply to the
situation inthe presence of sub-Gaussian noise. (3) Theoretical guarantees: To the best of our
knowledge, the above works do not provide rank-independent error bounds under the t-SVD and
tubal-rank setting. Our main contribution is to establish such tubal-rank-independent guarantees
and demonstrate near-minimax statistical accuracy.
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3.3 PROOF SKETCH

Define the tensor column subspace of X as VX ∈ Rn×r×k. Consider the tensor V⊤
X ∗ U t and the

corresponding t-SVD V⊤
X ∗ U t = Vt ∗ St ∗W⊤

t with Wt ∈ RR×r×k. And we denote Wt,⊥ ∈
RR×(n−r)×k as a tensor whose tensor column subspace is orthogonal to the column subspace of
Wt. Then we can decompose U t into “signal term” and “over-parameterization term”:

U t = U t ∗Wt ∗W⊤
t︸ ︷︷ ︸

signal term

+U t ∗Wt,⊥ ∗W⊤
t,⊥︸ ︷︷ ︸

over-parameterization term

. (4)

Through this decomposition, we can separately analyze the signal term and the over-
parameterization term. Specifically, we consider the following three quantities to study the con-
vergence behavior of FGD:

• σmin(U t ∗Wt): the magnitude of the signal term;
• ∥U t ∗Wt,⊥∥: the magnitude of the over-parameterization term;

• ∥V⊤
X⊥ ∗ VUt∗Wt

∥: the alignment between the column space of the signal and that of the
ground truth.

Then we divide the trajectory of FGD into four phases:

I. Alignment phase: At this stage, the column space of the signal term U t ∗Wt gradually aligns
with that of the ground truth X ⋆, as indicated by the decreasing value of ∥V⊤

X⊥ ∗ VUt∗Wt
∥. Both

σmin(U t ∗Wt) and ∥U t ∗Wt,⊥∥ remain small due to the small initialization.

II. Signal amplification phase: Here, σmin(U t ∗Wt) grows exponentially until it reaches at least
σmin(X )√

10
, while ∥U t ∗Wt,⊥∥ remains nearly at the scale of the initialization.

III. Local refinement phase:In this stage, using the decomposition (5), the error is decomposed as

∥U t ∗ U⊤
t −X ⋆∥ ≤ 4∥V⊤

X ∗ (U t ∗ U⊤
t −X ⋆)∥+ ∥U t ∗Wt,⊥∥2.

The over-parameterization term ∥U t ∗Wt,⊥∥2 remains small, while the in-subspace error ∥V⊤
X ∗

(U t ∗ U⊤
t −X ⋆)∥ decreases rapidly, leading to the lowest recovery error.

IV. Overfitting phase: Eventually, the over-parameterization term ∥U t ∗Wt,⊥∥ starts to grow,
which causes the overall error ∥U t ∗ U⊤

t − X ⋆∥F to increase and approach the error of spectral
initialization.

The power of small initialization Through the above four-phase analysis, we can see that small
initialization plays a crucial role. Specifically, small initialization ensures that the signal term rapidly
increases while keeping the over-parameterization term at a small magnitude, thereby mitigating
the negative effects brought by over-parameterization. In particular, during Phase III, the over-
parameterization term ∥U t ∗Wt,⊥∥2 remains small, and ∥V⊤

X ∗ (U t ∗ U⊤
t − X ⋆)∥ converges

quickly. Moreover, due to the introduction of VX , we have

∥V⊤
X ∗ (U t ∗ U⊤

t −X ⋆)∥F ≤
√
r∥V⊤

X ∗ (U t ∗ U⊤
t −X ⋆)∥,

which ensures that the final recovery error is independent of the over tubal-rank R.

Remark 6. We assume that X ⋆ is symmetric and can be factorized as X ⋆ = X ∗X⊤, which aligns
with prior works (Liu et al., 2024b; Karnik et al., 2025). Extending to the general asymmetric case
where X asym ∈ Rm×n×k is factorized as L ∗R⊤ requires several modifications. We provide a
brief discussion here, with more details deferred to the Appendix I. First, a symmetrization step is
needed to construct a symmetric tensor X sym ∈ R(m+n)×(m+n)×k and its corresponding symmetric
model. Second, the trajectories of the two factor tensors are coupled, making it necessary to analyze
additional imbalance terms, an issue that does not arise in the symmetric setting.

Remark 7. (Comparison with (Ding et al., 2025)) Our framework reduces to the matrix setting
when n3 = 1: the t-product becomes matrix multiplication, tubal-rank becomes matrix rank, and
X = U ∗ U⊤ reduces to X = UU⊤. In this special case, Theorem 2 recovers the same qualitative
phenomenon reported for matrix FGD: small initialization and early stopping yield error bounds

7
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that do not deteriorate with the over-specified rank, as shown in literature (Ding et al., 2025).
However, extending the matrix setting to the tensor setting is nontrivial, one must address several
challenges unique to tensors, as discussed in Remark 8.

Remark 8. (Tensor specific challenges) First, in the matrix case, the range and the kernel are
complementary subspaces. This property no longer holds for third-order tubal tensors. If the true
tensor contains non-invertible tubes in its t-SVD, equivalently, if some frequency slices vanish in
the Fourier domain, then the range and kernel share common generators. As a result, the classical
decomposition of gradient updates into a “signal term” and a “over-parameterization term” fails
on these non-invertible tubes. This necessitates introducing a more refined notion of tensor condition
number to track the identifiable and unidentifiable components separately. Second, for the power
method, each frequency slice of a tubal tensor behaves like an independent matrix power iteration,
a known fact in the (Gleich et al., 2013). However, in gradient descent for tensor recovery, the
measurement operator and its adjoint couple information across all frequency slices. Consequently,
the update of any single slice depends on all other slices, making it impossible to analyze the slices
independently, as in the power method. Finally, in the matrix setting, Candes & Plan (2011) has
already established the minimax error for noisy matrix sensing. To the best of our knowledge,
however, no such minimax error analysis exists for the tensor setting.

3.4 EARLY STOPPING VIA VALIDATION

Although Theorem 2 provides the sharpest known error bound, it is clear that the choice of t̂ depends
on prior knowledge of X ⋆, which is often unavailable in practice. As shown in Figure 1, setting
t̂ too small or too large can lead to increased error. A practical solution is to use validation to
determine when to stop the algorithm, a common technique in machine learning (Prechelt, 1998;
Stone, 2018; Ding et al., 2025). Specifically, we randomly split the observed data {Ai, yi}mi=1 into
a training set (ytrain,Mtrain) of size mtrain and a validation set (yval,Mval) of size mval. We then
perform gradient descent using the training set. After each iteration, we compute the validation loss
et =

1
4 ||yval −Mval(U t ∗ U⊤

t )||2. The final estimate is selected as ť = argmint et, and we output
U ť ∗ U⊤

ť as the recovered tensor. The full procedure is described in Algorithm 2, Appendix D.

We then provide a theoretical guarantee showing that, when ť = argmin1≤ť≤T et, the recovery
error ||U ť ∗ U⊤

ť −X ⋆||F achieves the bound stated in Theorem 2.

Theorem 4. Assume the same conditions as in Theorem 2, except that (y,M) is replaced
by (ytrain,Mtrain). In addition, suppose that mval ≥ C1

m2
train log T

(rnkκ4)2 , and T be the max t̂ in
Theorem 2. Assume that each entry of the noise vector s is independently sampled from the
Gaussian distribution N (0, σ2). Define ť = argmin1≤t≤T et. Then, with probability at least

1− 2T exp
(
−C2(nkrκ

4)2mval

m2
train

)
, ||U ť ∗ U⊤

ť −X ⋆||2F ≤ C nkrσ2κ4

mtrain
.

Remark 9. In Theorem 2, we require mtrain ≳ nkr2κ8. Substituting this into the condition mval ≥
C1

m2
train log T

(rnkκ4)2 , we obtain mval ≳ r2κ8 log T . This is relatively small compared to mtrain, making it
practically feasible. Experiments also show that a relatively small mval suffices to achieve an error
close to that under the exact tubal-rank.

4 EXPERIMENTS

We present a series of experiments demonstrating that, under over-rank settings, using small initial-
ization combined with validation achieves recovery error comparable to that under exact parame-
terization. Compared to FGD with large random or spectral initialization (Liu et al., 2024b), our
method achieves the lowest recovery error, highlighting the unique effectiveness of small initializa-
tion. Additional simulation studies and real-data experiments are presented in Appendix J.
Experiments settings We first generate a ground-truth tensor X ⋆ ∈ Rn×n×k of tubal-rank r by
setting X ⋆ = X ∗ X⊤, where X ∈ Rn×r×k has entries independently drawn from a Gaussian
distribution N (0, 1). Next, we normalize the tensor by setting X ⋆ ← X ⋆/||X ⋆||F . We sample
the measurement operator M by selecting each entry independently from a Gaussian distribution
N (0, 1). The noise vector s has entries independently drawn from N (0, σ2). Finally, the obser-
vations are obtained via the measurement model y = M(X ⋆) + s. In all experiments, we set
m = 2Cmnrk, and n = 30, k = 3, r = 3, mval = 0.05m. For FGD with small initialization,

8
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Figure 2: Performance comparison under varying r, σ, n, and m. Subfigure (a) illustrates the
recovery error of all methods under different over-rank values R, with parameters set as m = 10nrk,
n = 30, σ = 10−3, η = 0.1, and T = 5000. Subfigure (b) illustrates the error under varying noise
levels σ, with m = 10nrk, n = 30, R = 3r, η = 0.1, and T = 5000. Subfigure (c) illustrates the
error as the problem dimension n changes, where m = 10nrk, R = 3r, η = 0.1, T = 20000, and
σ = 10−3. Subfigure (d) illustrates the performance under different numbers of measurements Cm,
with m = 2Cmnrk, n = 30, R = 3r, η = 0.01, T = 20000, and σ = 10−3.

we set the initialization scale to α = 10−10. For FGD with spectral initialization, we follow the
same initialization procedure as in the original paper. For FGD with large initialization, we set the
initialization scale to α = 10, with its step size η = 0.001 to prevent divergence. We use FGD with
the exact rank as a baseline method, where “Small random ini (best)” denotes the minimal error
obtained by FGD with small random initialization and “Small random ini (ES)” denotes the error
obtained by FGD with small random initialization using validation and early stopping. We use the
relative square error (RSE) ||Ut∗U⊤

t −X⋆||2F
||X⋆||2F

to evaluate the performance of different methods and all
experiments are repeated 20 times.
Comparison of different initialization methods From Figure 2, we make these observations:
1. In all four settings, using small initialization yields the same minimum error as the baseline
method, which demonstrates its effectiveness. Moreover, by combining small initialization with
validation-based early stopping, we can achieve errors very close to the baseline without requiring
any prior knowledge of the target tensor. This supports the conclusions of Theorems.
2. For spectral initialization and large random initialization, the recovery error increases as the over-
estimated rank grows, and remains higher than that of small initialization. The error from large
random initialization is particularly high due to its slow convergence. However, in the experiment
shown in Figure 2 (c) and (d), where the number of iterations is large enough, its error matches that
of spectral initialization.
3. As shown in Figure 2 (d), small initialization also significantly reduces sample complexity. Even
when m = 3nrk, it still achieves low error, clearly outperforming the other initialization methods.
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Figure 3: Validation of the algorithm with m =
10nrk, R = 3r, n = 30, σ = 10−3, η = 0.1.
(a) Validation loss vs. RSE, with the blue dot
marking the minimum. (b) Error of the validation-
based method compared with the minimum errors
of baseline and small-initialization under varying
mtrain.

Verify the validation and early stopping ap-
proach We verify the effectiveness of the vali-
dation and early stopping strategies. As shown
in Figure 3 (a), the relative recovery error is
minimized when the validation loss reaches its
lowest point, demonstrating the reliability of
using validation loss as a stopping criterion.
Figure 3 (b) shows that when too many sam-
ples are used for validation, the recovery error
increases compared to the minimum achievable
error due to insufficient training data. Con-
versely, when too few samples (less than 5%)
are used for validation, the validation-based
method may become unreliable, resulting in in-
creased recovery error. Therefore, allocating
5%–10% of the total samples for validation is
a reasonable choice.

Real data experiments on tensor completion
We conduct real-data experiments on the low-tubal-rank tensor completion problem. We consider
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Table 2: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels. “FGD-ES” denotes
FGD with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all
iterations. We write GTNN-HOP0.3 as GTNN for short.

Methods
p = 0.2 p = 0.3

σ = 0.07 σ = 0.1 σ = 0.07 σ = 0.1
PSNR ↑ RE ↓ PSNR ↑ RE ↓ PSNR ↑ RE ↓ PSNR ↑ RE ↓

TCTF 16.5892 0.3175 16.5484 0.3191 20.6744 0.2008 20.6335 0.2024
TNN 21.2692 0.1851 19.7672 0.2188 22.0592 0.1681 20.1682 0.2082

TC-RE 20.9288 0.1921 19.5480 0.2242 21.5387 0.1782 19.8376 0.2161
UTF 16.3227 0.3243 14.8770 0.3802 19.2245 0.2355 17.8283 0.2734

GTNN 22.1092 0.1675 20.3132 0.2051 23.1542 0.1481 21.1111 0.1867
FGD-ES 22.5912 0.1616 21.7977 0.1765 23.6579 0.1426 22.7157 0.1585
FGD-best 22.7438 0.1587 21.9268 0.1739 23.8422 0.1395 22.8550 0.1559

the problem of low-tubal-rank tensor completion under the Bernoulli observation model. Let the
target tensor be X⋆ ∈ Rn1×n2×n3 with unknown tubal-rank r, where each entry is independently
observed with probability p. Denote the set of observed indices by Ω ⊆ [n1] × [n2] × [n3], and
define the observation operator as PΩ(A) = Ω⊙A, where ⊙ denotes the Hadamard product. The
goal is to accurately recover the low-tubal-rank tensor X ⋆ from the partial and noisy observations
PΩ(X ⋆+Sn), where Sn is assumed to be Gaussian noise with entries i.i.d sampled from Gaussian
distribution N (0, σ2) in this paper. Under the t-product framework, we adopt the Burer–Monteiro
factorization L ∗R⊤, where L ∈ Rn1×R×n3 ,R ∈ Rn2×R×n3 . The recovery is formulated by
minimizing the following factorized loss function: f(L,R) = 1

2p ||PΩ(L ∗R⊤ −X ⋆ − Sn)||2F ,
which can be optimized using gradient descent over (L,R).

Then we perform color image completion experiments on the Berkeley Segmentation Dataset (Mar-
tin et al., 2001). We randomly select 50 color images of size 481 × 321 × 3. We compare three
categories of methods: a convex approach: tubal tensor nuclear norm Minimization (TNN) (Lu
et al., 2018), non-convex methods: UTF (Du et al., 2021) and GTNN-HOP (Wang et al., 2024),
and rank estimation-based methods: TCTF (Zhou et al., 2017) and TC-RE (Shi et al., 2021). We
use PSNR and RE as evaluation metrics, and for more detailed experiments settings, please refer to
Appendix J.2. The results, shown in Table 2, demonstrate that FGD with small initialization sig-
nificantly outperforms all other methods, while FGD with early stopping performs slightly worse
but remains acceptable. Therefore, even though the tensor completion problem does not require the
t-RIP assumption, FGD with small initialization still achieves the lowest reconstruction error. In
addition, we evaluate the sensitivity of the algorithm to different tubal ranks. As shown in Figure
4, choosing different values of R has only a minor effect on the recovery performance. There-
fore, when the true rank is unknown, selecting a slightly larger rank for recovery is a practical and
effective strategy. Moreover, experiments on video completion are presented in Appendix J.2.

5 CONCLUSION
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Figure 4: Validation of the sensitiv-
ity of FGD to different tubal-ranks.

We propose a novel procedure, that is, factorized gradient de-
scent with small initialization, to solve the noisy low-tubal-
rank tensor recovery problem. We prove that, even when the
tubal-rank is overestimated, the recovery error still depends
only on the exact tubal-rank r, and is independent of the over-
estimated tubal-rank R. This significantly improves upon the
error bound in (Liu et al., 2024b), and to the best of our knowl-
edge, is the first error bound for noisy low-tubal-rank tensor
recovery that does not depend on the overestimated tubal-rank
and is nearly minimax optimal. Moreover, we demonstrate
that this error bound can be achieved though a validation and
early stopping procedure , without requiring any prior knowl-
edge of the underlying tensor. Numerical experiments are fur-
ther conducted to support our theoretical findings.
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CONTENTS

A ORGANIZATION OF APPENDIX

The Appendix is organized as follows:

• Section B provides the statement on the use of large language models.
• Section C presents the reproducibility statement.
• Section D introduces additional preliminaries supporting the main theoretical results.
• Section E gives the detailed proof of Theorem 2 and Corollary 1.
• Section F gives the detailed proof of Theorem 3.
• Section G gives the detailed proof of Theorem 4.
• Section H presents several technical lemmas together with their proofs.
• Section I discusses the extension to asymmetric case.
• Section J reports additional simulation results under various noise distributions, along with

real-data experiments.

B USE OF LARGE LANGUAGE MODELS

We used GPT-5 exclusively for language polishing and grammatical refinement of this manuscript.
The model was not involved in conceiving research ideas, developing algorithms, conducting exper-
iments, or analyzing results. The authors take full responsibility for the technical content, theoretical
contributions, and experimental findings presented in this work.

C REPRODUCIBILITY STATEMENT

All theoretical results in this paper are fully supported by detailed proofs provided in the appendix.
In addition, the code used for the experiments is included in the supplementary material to ensure
that all results reported in the paper can be reproduced.

D ADDITIONAL PRELIMINARIES

For two positive scalars x, y, x ≲ y (or x ≳ y) denotes that there exists a universal constant z > 0
such that x ≤ zy (or x ≥ zy), and x ≍ y denotes that there exit two universal constants z1, z2 > 0
such that z1x ≤ y ≤ z2x.

Definition 2 (Symmetry and positive semi-definite tensor). A three order tensor A ∈ Rn×n×k is
called symmetry and positive semi-definite if it satisfies the following condition:

A⊤ = A, and A(i)
is positive semi-definite.

Definition 3 (Block diagonal matrix). For any tensor Y ∈ Rm×n×k, we denote Ȳ ∈ Cmk×nk as a
block diagonal matrix with it’s i-th block on the diagonal as the i-th frontal slice Ȳ (i) of Ȳ , i.e.,

Ȳ = bdiag(Ȳ) =


Ȳ (1)

Ȳ (2)

. . .
Ȳ (n3)

 .
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Definition 4 (Block circulant matrix (Kilmer & Martin, 2011)). For a three-order tensor A ∈
Rn1×n2×n3 , we denote bcirc(A) ∈ Rn1n3×n2n3 as its block circulant matrix, i.e.,

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 .

Definition 5 (The fold and unfold operations (Kilmer & Martin, 2011)). For a three-order tensor
A ∈ Rn1×n2×n3 , we have

unfold(A) = [A(1);A(2); · · · ;A(n3)]

fold(unfold(A)) = A.

Definition 6 (T-product(Kilmer & Martin, 2011)). For A ∈ Rn1×n2×n3 , B ∈ Rn2×q×n3 , the t-
product of A and B is C ∈ Rn1×q×n3 , i.e.,

C = A ∗B = fold(bcirc(A) · unfold(B)).

The t-product can also be computed by Algorithm 1.

Definition 7 (Identity tensor(Kilmer & Martin, 2011)). The identity tensor, represented by I ∈
Rn×n×n3 , is defined such that its first frontal slice corresponds to the n × n identity matrix, while
all subsequent frontal slices are comprised entirely of zeros. This can be expressed mathematically
as:

I(1) = In×n, I(i) = 0, i = 2, 3, . . . , n3.

Definition 8 (Orthogonal tensor (Kilmer & Martin, 2011)). A tensor Q ∈ Rn×n×n3 is considered
orthogonal if it satisfies the following condition:

Q⊤ ∗Q = Q ∗Q⊤ = I.

Definition 9 (F-diagonal tensor (Kilmer & Martin, 2011)). A tensor is called f-diagonal if each of
its frontal slices is a diagonal matrix.

Theorem 5 (t-SVD (Kilmer & Martin, 2011; Lu et al., 2018)). Let A ∈ Rn1×n2×n3 , then it can be
factored as

A = U ∗ S ∗ V⊤,

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal tensors, and S ∈ Rn1×n2×n3 is a f-
diagonal tensor.

Definition 10 (Tubal-rank (Kilmer & Martin, 2011)). For A ∈ Rn1×n2×n3 , its tubal-rank as
rankt(A) is defined as the nonzero diagonal tubes of S, where S is the f-diagonal tensor from
the t-SVD of A. That is

rankt(A) := #{i : S(i, i, :) ̸= 0}.

The t-SVD of a tensor Y ∈ Rn×r×k as Y = VY ∗ SY ∗W⊤
Y . In addition, we define VY as the

tensor-column subspace of Y , and VY⊥ as its orthogonal complement, i.e., V⊤
Y ∗ VY⊥ = 0.

Based on the t-RIP condition, we introduce the following two definitions to facilitate our analysis.
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Algorithm 1 Tensor-Tensor Product
Input: Y ∈ Rn1×n2×n3 , Z ∈ Rn2×n4×n3 .
Output: X = Y ∗Z ∈ Rn1×n4×n3 .

1: Compute Ȳ = fft(Y , [], 3) and Z̄ = fft(Z, [], 3)
2: Compute each frontal slice of C̄ by

X̄(i) =


Ȳ(i) Z̄(i), i = 1, . . . ,

⌈
n3 + 1

2

⌉
,

conj
(
X̄(n3−i+2)

)
, i =

⌈
n3 + 1

2

⌉
+ 1, . . . , n3.

3: Compute X = ifft( ¯(X ), [], 3).

Definition 11. (S2S-t-RIP) A linear map M : Rn×n×k → Rm is said to satisfy the spectral-
to-spectral (r, δ) tensor Restricted Isometry Property (t-RIP) [(r, δ) S2S-t-RIP] if for all tensors
Y ∈ Rn×n×k with tubal-rank ≤ r,∥∥∥∥(I−M∗M

m

)
(Y)

∥∥∥∥ ≤ δ||Y ||.

Definition 12. (S2N-t-RIP) A linear map M : Rn×n×k → Rm is said to satisfy the spectral-to-
nuclear δ tensor Restricted Isometry Property (t-RIP) [δ-S2N-t-RIP] if for all tensors Y ∈ Rn×n×k

with tubal-rank ≤ r, ∥∥∥∥(I−M∗M

m

)
(Y)

∥∥∥∥ ≤ δ||Y ||∗.

Then, we provide the detailed pseudocode of Algorithm 2 described in Section 3.4.

Algorithm 2 Solving (3) by FGD with early stopping
Input: Train data (ytrain,Mtrain), validation data (yval,Mval), initialization scale α, step size η,
estimated tubal-rank R, iteration number T
Initialization: Initialize U0, where each entry of U0 is i.i.d. from
N (0, α2

R ).
1: for t = 0 to T − 1 do
2: U t+1 = U t − η

mM∗
train(Mtrain(U t ∗ U⊤

t )− ytrain) ∗ U t

3: Validation loss: et = 1
2m ||yval −Mval(U t ∗ U⊤

t )||2
4: end for
5: Output: U ť where ť = argmin1≤t≤T et.

E PROOF OF THEOREM 2

In this section, we absorb the additional 1√
m

factor into M for the convenience of presentation, i.e.,
Ai ← Ai/

√
m. Thus, we have (1− δ)||Y ||2F ≤ ||M(Y)||2 ≤ (1 + δ)||Y ||2F .

E.1 ANALYSIS THE FOUR PHASES

Define the tensor column subspace of X as VX ∈ Rn×r×k. Consider the tensor V⊤
X ∗ U t and the

corresponding t-SVD V⊤
X ∗ U t = Vt ∗ St ∗W⊤

t with Wt ∈ Rr×R×k. And we denote Wt,⊥ as
a tensor whose tensor column subspace is orthogonal to the column subspace of Wt. Then we can
decompose U t into “signal term” and “over-parameterization term”:

U t = U t ∗Wt ∗W⊤
t︸ ︷︷ ︸

signal term

+U t ∗Wt,⊥ ∗W⊤
t,⊥︸ ︷︷ ︸

over-parameterization term

. (5)
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Through this decomposition, we can separately analyze the signal term and the over-
parameterization term. Specifically, we consider the following three quantities to study the con-
vergence behavior of FGD:

• σmin(U t ∗Wt): the magnitude of the signal term;

• ∥U t ∗Wt,⊥∥: the magnitude of the over-parameterization term;

• ∥V⊤
X⊥ ∗ VUt∗Wt

∥: the alignment between the column space of the signal and that of the
ground truth.

Using these three indicators and the recovery error ||U t ∗ U⊤
t −X ⋆||F , we identify four phases in

the FGD trajectory and analyze them one by one.

E.1.1 PHASE I: ALIGNMENT PHASE

In the first phase, Lemma 1 states that if the initialization scale is sufficiently small, and under
appropriate t-RIP conditions, step size constraints, and an upper bound on the noise spectral norm,
the signal term is nearly aligned with the column space of the ground truth tensor X ⋆. At this stage,
both the magnitude of the signal term and that of the over-parameterization term remain small, but
the former is significantly larger than the latter.

Lemma 1. Fix a sufficiently small constant c > 0. Let U ∈ Rn×R×k be a random tubal tensor
with i.i.d. N (0, α2

R ) entries, and let ϵ ∈ (0, 1). Assume that M : Sn×n×k → Rm satisfies the
δ1-S2R-t-RIP for some constant δ1 > 0. Also, assume that

M := M∗M(X ∗X⊤) + E = X ∗X⊤ + EX

with ∥E(j)
X ∥ ≤ δλr(X

(j)
(X (j)

)H) for each 1 ≤ j ≤ k, where δ ≤ c1κ
−2 and ∥E∥ ≤

c1κ
−2σ2

min(X ). Let U0 = U where

α2 ≲


ϵ(R ∧ n)∥X∥2

k3/2n3/2κ2

(
2κ2kn3/2

c3(R ∧ n)3/2ϵ

)−15κ2

if R ≥ 3r

ϵ∥X∥2

k3/2n3/2κ2

(
2κ2kn3/2

c3r1/2ϵ

)−15κ2

if R < 3r

Assume the step size satisfies η ≤ c2κ
−2∥X∥−2. Then, with probability at least 1− p where

p =

{
k(C̃ϵ)R−2r+1 + ke−c̃R if R ≥ 2r

kϵ2 + ke−c̃R if R < 2r

the following statement holds. After

t∗ ≲


1

ηmin1≤j≤k σr(X̄(j))2
ln

(
2κ2
√
n

c3ϵ
√
(R ∧ n)

)
if R ≥ 3r

1

ηmin1≤j≤k σr(X̄(j))2
ln

(
2κ2
√
rn

c3ϵ

)
if R < 3r

iterations, it holds that
∥U t∗∥ ≤ 3∥X∥

∥V⊤
X⊥ ∗ U t∗ ∗W∗∥ ≤ ϵκ−2

and for each 1 ≤ j ≤ k, we have

σr

(
U t∗ ∗Wt∗

(j)
)
≥ 1

4
αβ

σ1

(
U t∗ ∗Wt∗,⊥

(j)
)
≤ κ−2

8
αβ
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where

β ≲


ϵ
√
k

(
2κ2
√
n

c3ϵ
√
R ∧ n

)10κ2

if R ≥ 3r

ϵ
√
k

r

(
2κ2
√
rn

c3ϵ

)10κ2

if R < 3r

and

β ≳

ϵ
√
k if R ≥ 3r

ϵ
√
k

r
if R < 3r.

Here, c1, c2, c3 > 0 are absolute constants only depending on the choice of c. Moreover, C̃, c̃ are
absolute numerical constants.

E.1.2 PHASE II: SIGNAL AMPLIFICATION PHASE

In the second phase, building upon the results from the first phase, the tensor-column subspace of
the signal term remains well-aligned with that of the ground truth X ⋆, i.e., ||V⊤

X⊥ ∗ VUt∗Wt ||
remains small. Meanwhile, the magnitude of the signal term, measured by σmin(V⊤

X ∗ U t), grows
exponentially. In contrast, the over-parameterization term ||U t ∗Wt,⊥|| stays small due to the small
initialization.
Lemma 2. Suppose that the step size satisfies η ≤ c1κ

−2∥X∥−2 for some small c1 > 0, ||E|| ≤
c1κ

−2σ2
min(X ), and M : Rn×n×k → Rm satisfies (2r + 1, δ) t-RIP for some constant 0 < δ ≤

c1
κ4

√
r

. Set γ ∈ (0, 1
2 ), and choose a number of iterations t∗ such that σmin(U t∗ ∗Wt∗) ≥ γ. Also,

assume that ∥U t∗ ∗Wt∗,⊥∥ ≤ 2γ, ∥U t∗∥ ≤ 3∥X∥, γ ≤ c2σmin(X )
κ2R , and ∥V⊤

X⊥ ∗ VUt∗∗Wt∗
∥ ≤

c2κ
−2 for some small c2 > 0. Set

t1 = min

{
t ≥ t∗ : σmin(V⊤

X ∗ U t) ≥
1√
10

σmin(X )

}
, (6)

and , Then the following hold for all t ∈ [t∗, t1]:

σmin(V⊤
X ∗ U t) ≥

1

2
γ

(
1 +

1

8
ησmin(X )2

)t−t∗

(7)

∥U t ∗Wt,⊥∥ ≤ 2γ
(
1 + 80ηc2σmin(X )2

)t−t∗ (8)

∥U t∥ ≤ 3∥X∥ and ∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ c2κ
−2, (9)

where t1 − t∗ ≲ 1
ησ2

min
ln(σmin

γ ).

E.1.3 PHASE III: LOCAL REFINEMENT PHASE

Once the magnitude of the signal term σmin(V⊤
X ∗ U t) exceeds σmin(X )√

10
, the algorithm enters the

third phase. In this phase, the recovery error can be decomposed as

∥U t ∗ U⊤
t −X ⋆∥ ≤ 4∥V⊤

X ∗ (U t ∗ U⊤
t −X ⋆)∥+ ∥U t ∗Wt,⊥∥2.

Due to the small initialization, the over-parameterization term ||U t ∗Wt,⊥||2 grows slowly, while
the in-subspace error ||V⊤

X ∗ (U t ∗U⊤
t −X ⋆)|| decreases rapidly. Moreover, since VX ∈ Rn×r×k,

we have
∥V⊤

X ∗ (U t ∗ U⊤
t −X ⋆)∥F ≤

√
r∥V⊤

X ∗ (U t ∗ U⊤
t −X ⋆)∥,

which explains why the final recovery error depends only on the true tubal-rank r, despite the over-
parameterization.
Lemma 3. Suppose that the assumptions in Lemma 2 hold. If R > r, then for

t̂ ≍ 1

ησmin(X )2
ln

(
κ||X ||

((R ∧ n)− r)γ

)
+ t1
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(a)

Phase 4：Overfitting phasePhase 1-3

(b)

Figure 5: Validation of the four-phase convergence analysis in Section 3.3. The left panel shows the
first 1,000 iterations; the right panel shows the full 10,000 iterations. The orange curve corresponds
to the orange axis on the right, and the blue curve corresponds to the blue axis on the left. Parameter
settings: n = 10, k = 3, r = 2, R = 10, m = 5knR, η = 0.1, noise standard deviation σ = 0.01,
and initialization scale α = 10−7.

iterations it holds that

||U t̂ ∗ U
⊤
t̂ −X ∗X⊤||F ≲

√
rκ−3/16((R ∧ n)− r)3/4γ21/16||X ||11/16 +

√
rκ2||E||·; (10)

if R = r, then for any t ≥ t1,

||U t ∗ U⊤
t −X ∗X⊤||F ≲

√
r(1− η

400
σ2
min(X ))t−t1 +

√
rκ2||E||. (11)

E.1.4 PHASE IV: OVERFITTING PHASE

The fourth stage is a natural continuation of the third. Consider the decomposition from Phase III:

∥U t ∗ U⊤
t −X ⋆∥ ≤ 4∥V⊤

X ∗ (U t ∗ U⊤
t −X ⋆)∥+ ∥U t ∗Wt,⊥∥2.

In the fourth stage, the over-parameterization term ||U t ∗Wt,⊥||2 starts to grow, eventually domi-
nating the recovery error until it matches that of spectral initialization.

E.2 VALIDATE FOUR PHASE IN SECTION 3.3

We conducted experiments to validate the four-phase convergence described in Section 3.3. As
shown in Figure 5, we observed that:

• In Phase 1, the column space of the signal term U t ∗Wt gradually aligns with that of
the ground truth X ⋆, as indicated by the decreasing value of ∥V⊤

X⊥ ∗ VUt∗Wt
∥. Both

σmin(U t ∗Wt) and ∥U t ∗Wt,⊥∥ remain small due to the small initialization.

• In Phase 2, σmin(U t ∗Wt) grows exponentially until it reaches at least σmin(X )√
10

, while
∥U t ∗Wt,⊥∥ remains nearly at the scale of the initialization.

• In Phase 3, the over-parameterization term ∥U t ∗Wt,⊥∥2 remains small, while the in-
subspace error ∥V⊤

X ∗ (U t ∗U⊤
t −X ⋆)∥ decreases rapidly, leading to the lowest recovery

error.

• In Phase 4, the in-subspace error ∥V⊤
X ∗ (U t ∗ U⊤

t − X ⋆)∥ continues to decrease, but
only very slightly, while the over-parameterization term ∥U t ∗Wt,⊥∥ grows rapidly and
dominates the total recovery error, causing the overall error ∥U t ∗U⊤

t −X ⋆∥F to increase.
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E.3 PROOF OF THEOREM 2

Since the linear map M satisfies (2r + 1, δ) t-RIP, then by Lemma 14, M satisfies (2r,
√
2rδ)

S2S-t-RIP. Therefore,

||EX || = ||(I−M∗M)(X ∗X⊤) +M∗(s)||
≤
√
2rδ||X ∗X⊤||+ ||M∗(s)||

≤
√
2r · cκ−4r−1/2 · ||X ||2 + ||M∗(s)||

=
√
2cκ−2σmin(X )2 + ||M∗(s)||

(a)

≤
√
2cκ−2σmin(X )2 + c1κ

−2σmin(X )2

≲ cκ−2σmin(X )2

(12)

where (a) use the assumption ||E|| ≤ c1κ
−2σ2

min(X ).

Then Lemma 1 holds with probability at least 1−ke−c̃R−max{k(C̃ϵ)R−r+1, kϵ2}. We then divide
the proof of Theorem 2 into three cases: R = r, r < R < 3r, and R ≥ 3r.

E.3.1 CASE 1 :R = r

In this case, by the results of Lemma 1, the following statement holds: choose

α2 ≲
∥X∥2

k3/2n3/2κ2

(
2κ2kn3/2

c̃3r1/2

)−15κ2

and c̃3 = c3ϵ,

then after

t∗ ≲
1

ησmin(X )2
ln

(
2κ2
√
rn

c̃3

)
iterations, it holds that

||U t∗ || ≤ 3||X || and ||VX⊥ ∗ VUt∗∗Wt∗
|| ≤ cκ−2 (13)

for each 1 ≤ j ≤ k, we have

σr

(
U t∗ ∗Wt∗

(j)
)
≥ 1

4
αβ

σ1

(
U t∗ ∗Wt∗,⊥

(j)
)
≤ κ−2

8
αβ,

where
√
k

r
≲ β ≲

√
k

r

(
2κ2
√
nr

c̃3

)10κ2

and c̃3 = ϵc3 = e−c̃/2c3. By taking

α ≲

√
rσmin(X )√
k(R ∧ n)κ2

(
2κ2
√
rn

c̃3

)−10κ2

,

we have γ = 1
4αβ ≲ c2σmin(X )

κ2(R∧n) . Also, we have

||U t∗ ∗Wt∗,⊥|| ≤
κ−2

8
αβ ≤ γ

2κ2
≤ 2γ.

Therefore, the assumptions of Lemmas 2 and 3 hold, then we can use the results of Lemma 3 to
obtain:

||U t ∗ U⊤
t −X ∗X⊤||F ≲

√
r(1− η

400
σ2
min(X ))t−t1 +

√
rκ2||E||,
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for all t ≥ t1, where

t1 ≲ t∗ + (t1 − t∗) ≲
1

ησmin(X )2
ln

(
2κ2
√
rn

c̃3

)
+

1

ησ2
min(X )

ln

(
σmin(X )

γ

)
(14)

(a)

≲
1

ησmin(X )2
ln

(
κ2
√
rnσmin(X )

c̃3αβ

)
(15)

(b)

≲
1

ησmin(X )2
ln

(
κ2r3/2

√
nσmin(X )√
kα

)
, (16)

where (a) uses the fact that γ = αβ
4 ; (b) uses the fact that β ≳

√
k
r .

Then define µ := η
400σ

2
min(X ⋆) ∈ (0, 1). Using the fact that (1− µ)s ≤ e−µs, we have

||U t ∗ U⊤
t −X ∗X⊤||F ≲

√
re−µ(t−t1) +

√
rκ2||E||.

E.3.2 CASE 2 :r < R < 3r

The analysis for this case is almost the same way as that of the previous case, except that it relies on
a different result from Lemma 3, namely that when R > r, we have

||U t̂ ∗ U
⊤
t̂ −X ∗X⊤||F ≲ κ−3/16r1/2((R ∧ n)− r)3/4γ21/16||X ||11/16 +

√
rκ2||E||,

where

t̂ ≍ t1 +
1

ησmin(X )2
ln

(
κ||X ||

((R ∧ n)− r)γ

)
.

Taking the bound in Case 1 for t1, we have

t̂ ≍ (t1 − t∗) + t∗ +
1

ησmin(X )2
ln

(
κ||X ||

((R ∧ n)− r)γ

)
(17)

≍ 1

ησ2
min(X )

ln

(
n1/2r5/2κ2||X ||2

k[(R ∧ n)− r]α2

)
. (18)

To obtain the result ||U t̂ ∗ U
⊤
t̂ − X ∗ X⊤|| ≲ κ2||E||, we need to ensure κ−3/16r((R ∧ n) −

r)3/4γ21/16||X ||11/16 ≤ κ2||E||, which leads to

α ≲ κ35/21[(R ∧ n)− r]−4/7rk−1/2||X ||−11/21||E||16/21
(
2κ2
√
rn

c̃3

)−10κ2

. (19)

Using the facts that γ = αβ
4 and β ≲

√
k

r

(
2κ2
√
rn

c̃3

)10κ2

, in order to satisfy the assumption

γ ≲ c2σmin(X )
κ2(R∧n) , we also need

α ≲
c2rσmin(X )

κ2(R ∧ n)
√
k

(
2κ2
√
rn

c̃3

)−10κ2

. (20)

Combining the bounds (19) and (20), we obtain the bounds for α :

α ≲ min

{
rσmin(X )√
k(R ∧ n)κ2

,
rκ35/21||E||16/21√

k[(R ∧ n)− r]4/7||X ||11/21

}(
2κ2
√
rn

c̃3

)−10κ2

(21)

E.3.3 CASE 3: R ≥ 3r

In this case, we also use the result from Lemma 3. However, according to Lemma 1, the bounds for
t∗ and β are different.
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Specifically, we have

t∗ ≲
1

ησmin(X )2
ln

(
2κ2
√
n

c3ϵ
√

(R ∧ n)

)

ϵ
√
k ≲ β ≲ ϵ

√
k

(
2κ2
√
n

c3ϵ(R ∧ n)

)10κ2

,

(22)

which implies

t̂ ≍ t∗ + t1 − t∗ + t̂− t1

≍ 1

ησmin(X )2
ln

(
2κ2
√
n

c3ϵ
√

(R ∧ n)

)
+

1

ησmin(X )2
ln

(
σmin(X )

γ

)
+

1

ησmin(X )2
ln

(
κ||X ||

((R ∧ n)− r)γ

)
≍ 1

ησmin(X )2
ln

( √
nκ2||X ||2

k((R ∧ n)− r)(R ∧ r)α2

)
.

(23)

Using the relation γ = 1
4αβ ≲ c2σmin(X )

κ2(R∧n) , we obtain

α ≲
σmin(X )√
k(R ∧ n)κ2

(
2κ2
√
n

c̃3
√

(R ∧ n)

)−10κ2

(24)

Moreover, according to the result of Lemma 3, in order to obtain ||U t̂ ∗U
⊤
t̂ −X ∗X⊤|| ≲ κ2||E||,

we need to bound α as:

α ≲ κ35/21[(R ∧ n)− r]−4/7β−1||X ||−11/21||E||16/21

(a)→ α ≲ κ35/21[(R ∧ n)− r]−4/7||X ||−11/21 1

ϵ
√
k

(
2κ2
√
n

c̃3
√
(R ∧ n)

)−10κ2

,
(25)

where (a) uses the upper bound for β. Combining these two bounds (24) (25), we obtain the bound
for α :

α ≲ min

{
σmin(X )√
k(R ∧ n)κ2

,
κ35/21||E||16/21√

k||X ||11/21[(R ∧ n)− r]4/7

}(
2κ2
√
n

c̃3
√
(R ∧ n)

)−10κ2

. (26)

Therefore, we complete the proof of Theorem 2.

E.4 PROOF OF COROLLARY 1

The proof of Corollary 1 follows directly from Theorem 2 combined with the spectral norm bound
of ||E||. Note that

||M∗(s)||
(a)

≲

√
nk

m
σ

(b)

≤ cκ−2σ2
min(X ), (27)

where (a) use the result in (Liu et al., 2024b); (b) use the assumption that m ≳ nkκ4σ2/σ2
min(X ).

Thus the assumption (3) in Theorem 2 is satisfied. Then we can directly use the results in Theorem
2 to get

||U t̂ ∗ U
⊤
t̂ −X ⋆||2F ≲ rκ4||E||2 ≲

nkrσ2κ4

m
. (28)

E.5 PROOF OF LEMMA 1

Lemma 1 is proved based on [(Karnik et al., 2025), Lemma D.8 and Lemma D.9], with the substitu-
tion ofM := M∗M(X ) by M∗M(X ) + E , where E = M∗(s).
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Lemma 4. Suppose that the linear map M : Rn×n×k → Rm satisfies (2, δ1) t-RIP and define t∗

as
t∗ = min

{
j ∈ N : ||Ũ j−1 − U j−1|| ≥ ||Ũ j−1||

}
.

Then for all 1 ≤ t ≤ t∗, we have

||EU
t || = ||U t − Ũ t|| ≤ 8(1 + δ1)

√
(R ∧ n)

α3

||M||
||U ||3(1 + η||M||)3t.

Proof. The proof of this lemma builds upon [(Karnik et al., 2025), Lemma D.1]. By incorporating
the results from Lemma 14 and Lemma 15, we can derive the theorem. Compared to [(Karnik
et al., 2025), Lemma D.1], this lemma leverages the δ1-S2N-t-RIP and the inequality ||U j−1||F ≤√

(R ∧ n)||U j−1|| to reduce the dependence on the third dimension k, leading to a tighter upper
bound on ∥EU

t ∥.

Lemma 5. Consider tensor M := M∗M(X ∗X⊤)+E ∈ Rn×n×k and Ũ t := (I+ηM)t ∗U0.
Let M ∈ Cnk×nk be the corresponding block diagonal matrix of the tensor M with the leading
eigenvector v1 ∈ Cnk, then we have

t∗ ≥

 ln
(

||M||·||U0
H
v1||l2

8(1+δ1)
√

(R∧n)α3||U ||3

)
2 ln(1 + η||M||)

 .

Proof. The proof of this lemma can be obtained by incorporating the result of Lemma 4 into the
proof of [(Karnik et al., 2025), Lemma D.2].

Lemma 6. Assume that M : Rn×n×k → Rm satisfies the δ1-S2N-t-RIP for some δ1 > 0. Also,
assume that

M := M∗M(X ∗X⊤) + E = X ∗X⊤ +M∗M(X ∗X⊤) + E −X ∗X⊤︸ ︷︷ ︸
EX

with ||E(j)

X || ≤ δλr(X
(j)

X
(j)H

) for each 1 ≤ j ≤ k and δ ≤ c1κ
2. Denote the t-SVD of M

as VM ∗ SM ∗W⊤
M, then define L := VM(:, 1 : r, :) ∈ Rn×r×k, and define the initialization

U0 = αU with the scale parameter such that:

α2 ≤ c||X ||2

12
√
(R ∧ n)κ2||U ||3

(
2κ2||U ||3

c3σmin(V⊤
L ∗ U)

)−48κ2

min
{
σmin(V⊤

L ∗ U), ||U0
H
v1||l2

}
,

where v1 ∈ Cnk is the leading eigenvector of matrixM∈ Rnk×nk.

Assume that the learning rate η satisfies η ≤ c3κ
−2||X ||−2, then after t∗ iterations with

t∗ ≍
1

ηmax1≤j≤k σr(X
(j)

)2
ln

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)
the following statements hold:

||U t∗ || ≤ 3||X ||, ||VX⊥ ∗ VUt∗∗Wt∗
|| ≤ cκ−2

and for each 1 ≤ j ≤ k, we have

σr

(
U t∗ ∗Wt∗

(j)
)
≥ 1

4
αβ

σr

(
U t∗ ∗Wt∗,⊥

(j)
)
≤ κ−2

8
αβ

(29)

where β satisfies σmin(V⊤
L ∗ U) ≤ β ≤ σmin(V⊤

L ∗ U)

(
2κ2||U ||3

c3σmin(V⊤
L∗U)

)10κ2

.
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Proof. The proof of this lemma relies on the result of [(Karnik et al., 2025), Lemma D.7]. The first
condition in [(Karnik et al., 2025), Lemma D.7] is:

γ :=

α max
1≤j≤k

σr+1(Z
(j)

t )||U ||+ ||EU
t ||

min
1≤j≤k

σr(Zt
(j)

)
· 1

σmin

(
V⊤

L ∗ U
) ≤ c2κ

2.

By the definition of γ, it is sufficient to show that

max
1≤j≤k

σr+1(Z
(j)

t )||U || ≤ c3
2κ2

min
1≤j≤k

σr(Zt
(j)

)σmin

(
V⊤

L ∗ U
)

(30)

and
||EU

t || ≤
c3
2κ2

α min
1≤j≤k

σr(Zt
(j)

)σmin

(
V⊤

L ∗ U
)
. (31)

Since for Zt = (I + ηM)t the transformation in the Fourier domain leads to the blocks

Z
(j)

t = (Id+ ηM
(j)

)t,

combining the result of inequality (30) leads to

2κ2||U ||
c3σmin(V⊤

L ∗ U)
≤

min
1≤j≤k

σr(Zt
(j)

)

max
1≤j≤k

σr+1(Z
(j)

t )
=

 1 + η min
1≤j≤k

σr(M
(j)

)

1 + η max
1≤j≤k

σr+1(M
(j)

)


t

. (32)

Taking the logarithm on both sides of the inequality yields

ln

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)
≤ t ln

 1 + η min
1≤j≤k

σr(M
(j)

)

1 + η max
1≤j≤k

σr+1(M
(j)

)

 . (33)

Therefore, if we take t∗ as

t∗ :=

ln
(

2κ2||U ||
c3σmin(V⊤

L ∗ U)

)/
ln

 1 + η min
1≤j≤k

σr(M
(j)

)

1 + η max
1≤j≤k

σr+1(M
(j)

)


 , (34)

then condition (30) will be satisfied in each block in the Fourier domain. For notational simplicity,
we define

ϕ := ln

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)
. (35)

Then we use Lemma 4 to show that the second condition, i.e., inequality (31) is satisfied. To use
Lemma 4, we need to guarantee that t∗ ≤ t∗. As proved in Lemma 5, we have

t∗ ≥

 ln
(

||M||·||U0
H
v1||l2

8(1+δ1)
√

(R∧n)α3||U ||3

)
2 ln(1 + η||M||)

 . (36)

In order to guarantee t∗ ≤ t∗, we need to prove

ϕ

ln

(
1+ηmin1≤j≤kσr(M

(j)
)

1+ηmax1≤j≤kσr+1(M
(j)

)

) ≤ 1

2
·
ln

(
||M||·||U0

H
v1||l2

8(1+δ1)
√

(R∧n)α3||U ||3

)
2 ln(1 + η||M||)

. (37)

To prove this inequality, we first bound ln(1 + η||M||)/ ln
(

1+ηmin1≤j≤kσr(M
(j)

)

1+ηmax1≤j≤kσr+1(M
(j)

)

)
. Using the

fact x
1+x ≤ ln(1 + x) ≤ x, we have

ln(1 + η||M||)

ln

(
1+ηmin1≤j≤kσr(M

(j)
)

1+ηmax1≤j≤kσr+1(M
(j)

)

) ≤ ||M||(1 + ηmin1≤j≤kσr(M
(j)

)

min1≤j≤kσr(M
(j)

)−max1≤j≤kσr+1(M
(j)

)
. (38)
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Using the assumptions δ ≤ 1
3 and η ≤ c3κ

−2||X ||−2 and the result of [(Karnik et al., 2025), Lemma
D.6], we have

||M||(1 + ηmin1≤j≤kσr(M
(j)

)

min1≤j≤kσr(M
(j)

)−max1≤j≤kσr+1(M
(j)

)
≤ (1 + δ)||T ||

(1− δ)λr(T
(j)

)

1 + c3(1 + δ)

(
λ1(X

(j)
)

κ||X ||

)2


≤ κ2 1 + δ

1− 2δ
(1 + c3(1 + δ)

1

κ2
)
(a)

≤ 5κ2,

(39)
where (a) uses the fact that δ ≤ 1/3 and c3 is sufficiently small. Therefore, we have

ln(1 + η||M||)

ln

(
1+ηmin1≤j≤kσr(M

(j)
)

1+ηmax1≤j≤kσr+1(M
(j)

)

) ≤ 5κ2. (40)

With this upper bound, we recall inequality (37)

20κ2 · ln

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)
≤ ln

(
||M|| · ||U0

H
v1||l2

8(1 + δ1)
√
(R ∧ n)α3||U ||3

)
, (41)

which is equal to(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)20κ2

≤ ||M|| · ||U0
H
v1||l2

8(1 + δ1)
√

(R ∧ n)α3||U ||3
(a)
=

||M|| · ||UH
v1||l2

8(1 + δ1)
√
(R ∧ n)α2||U ||3

,

(42)
where (a) uses the fact that ||U0

H
v1||l2/α = ||UH

v1||l2 . To prove inequality (42), we choose α as

α2 ≤

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)−20κ2

· ||M|| · ||UH
v1||l2

8(1 + δ1)
√
(R ∧ n)||U ||3

(43)

With the fact that δ ≤ 1
3 and ||M|| ≥ 2

3 ||X ||
2, we set α smaller as

α2 ≤

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)−20κ2

· ||X ||
2 · ||UH

v1||l2
16
√

(R ∧ n)||U ||3
. (44)

Thus t∗ ≤ t∗ is satisfied, then the conditions in [(Karnik et al., 2025), Lemma D.7] hold. Therefore,
using the results of [(Karnik et al., 2025), Lemma D.7], we have

||EU
t∗ || ≤ 8(1 + δ1)

√
(R ∧ n)

α3

||M||
||U ||3(1 + η||M||)3t∗

(a)

≤ 12
√
(R ∧ n)

α3

||M||
||U ||3(1 + η||M||)3t∗ ,

(45)

where (a) uses the fact that δ ≤ 1
3 and ||M|| ≥ 2

3 ||X ||
2 from [(Karnik et al., 2025), Lemma D.6].

Thus, using that Z
(j)

t = (Id+ ηM
(j)

)t, inequality (31) holds if

12
√
(R ∧ n)

α3

||M||
||U ||3(1 + η||M||)3t∗ ≤ c3

2κ2
min

1≤j≤k
σr

(
(Id+ ηM

(j)
)t∗
)
σmin

(
V⊤

L ∗ U
)
,

(46)
which is equal to

α2 ≤ c3
σmin

(
V⊤

L ∗ U
)
||X ||2

12
√
(R ∧ n)κ2||U ||3

· (Id+ ησr(M
(j)

))t∗

(1 + η||M||)3t∗
. (47)

Note that

Id+ ησr(M
(j)

)

(1 + η||M||)3t∗
= exp

(
t∗ ln

(
(Id+ ησr(M

(j)
))

(1 + η||M||)3

))
≥ exp (−3t∗ ln(1 + η||M||3)). (48)
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Using the definition of t∗, i.e., t∗ =

⌈
ϕ

/
ln

(
1+η min

1≤j≤k
σr(M

(j)
)

1+η max
1≤j≤k

σr+1(M
(j)

)

)⌉
and inequality (40), we have

exp (−3t∗ ln(1 + η||M||3)) ≥ exp (−15ϕκ2) =

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)−15κ2

. (49)

Combining inequalities (47) and (49), we choose

α2 ≤ c3
σmin

(
V⊤

L ∗ U
)
||X ||2

12
√
(R ∧ n)κ2||U ||3

·

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)−15κ2

. (50)

With this α, inequality (31) holds, and the condition of [(Karnik et al., 2025), Lemma D.7] is satis-
fied, leading to

||V⊤
V⊥ ∗ VUt∗Wt

||
(a)

≤ 14(δ + γ) ≤ cκ−2, (51)

where (a) uses the assumptions that δ ≤ c1κ
−2 and η ≤ c3κ

−2||X ||−2 and then sets the constants
c1 and c3 small enough. Moreover, for each 1 ≤ j ≤ k, using the results from [(Karnik et al., 2025),
Lemma D.7], we have

σmin(U t ∗Wt
(j)

) ≥ 1

4
αβ

σ1(U t ∗Wt,⊥
(j)

) ≥ κ−2

8
αβ,

(52)

where β := min1≤j≤k σr(Z
(j)

t )σmin(V⊥
L ∗ U).

Then we prove the bounds for β and ||U t∗ ||.

Consider β := min1≤j≤k σr(Z
(j)

t )σmin(V⊥
L ∗ U). By the definition of Z

(j)

t and inequality (40), we
have

(1 + ησr(M
(j)

))t∗ ≤ exp (t∗ ln(1 + ησr(M
(j)

))) ≤ exp (t∗ ln(1 + η||M||))

≤ exp

2ϕ max
1≤j≤k

ln(1 + η||M||)
1+ησr(M

(j)
)

1+ησr+1(M
(j)

)

 ≤ exp (10ϕκ2)

=

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)10κ2

(53)

holds for all 1 ≤ j ≤ k.

Then we have

β ≤ σmin(V⊤
L ∗ U)

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)10κ2

. (54)

Finally, we prove that ||U t∗ || ≤ 3||U ||. By the definition of U t∗ = Zt∗ ∗ U0 + EU
t∗ , we have

||U t∗ || = α||Zt∗ || · ||U ||+ ||E
U
t∗ ||. (55)

By inequality (31), we have

||EU
t || ≤

c3
2κ2

α||Zt||σmin

(
V⊤

L ∗ U
)
≤ c3

2κ2
α||Zt||σmin(VH

L )σmax(U) ≤ α||Zt||||U ||, (56)
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which leads to

||U t∗ || ≤ 2α||Zt||||U ||≤2α(1 + η||M||)t∗ ||U ||

= 2α ln(t∗(1 + η||M||))||U ||
(a)

≤ 2α||U ||
(

2κ2||U ||
c3σmin(V⊤

L ∗ U)

)10κ2

(b)

≤ 2||U ||c3

√√√√σmin

(
V⊤

L ∗ U
)
||X ||2

12
√
(R ∧ n)κ2||U ||3

·

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)−15κ2/2

= 2c3||X ||

√√√√σmin

(
V⊤

L ∗ U
)

12
√
(R ∧ n)κ2

·

(
2κ2||U ||

c3σmin(V⊤
L ∗ U)

)−15κ2/2

≤ 3||U ||,

(57)

where (a) uses inequality (53); (b) uses the inequality (50). Lemma 1 can be obtained as a direct
consequence of Lemma 6 and the proof strategy used in [(Karnik et al., 2025), Lemma D.9].

E.6 PROOF OF LEMMA 2

Note that for t = t∗, these four inequalities trivially hold using the assumptions. Before prove the
t+ 1 case, we bound

∥∥∥(M∗M− I)
(
X ∗X⊤ − U t ∗ U⊤

t

)
+ E

∥∥∥ as:

|| (M∗M− I)
(
X ∗X⊤ − U t ∗ U⊤

t

)
+ E||

≤|| (M∗M− I)
(
X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t

)
||

+ || (M∗M− I) (U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t )||+ ||E||

(a) ≤δ
√
r||X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ δ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗ + ||E||

≤ δ
√
r
(
||X ∗X⊤||+ ||U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||
)
+ δ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗ + ||E||

= δ
√
r
(
||X ||2 + ||U t ∗Wt||2

)
+ δ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗ + ||E||

≤ δ
√
r
(
||X ||2 + ||U t||2

)
+ δ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗ + ||E||

(b) ≤δ
√
r
(
||X ||2 + 9||X ||2

)
+ δ((R ∧ n)− r)||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||+ ||E||

≤ 10δ
√
rκ2σ2

min(X ) + δ((R ∧ n)− r)||U t ∗Wt,⊥||2 + ||E||
(c) ≤10c1κ−2σ2

min(X ) + 4δ((R ∧ n)− r)γ2(1 + 80ηc2σ
2
min(X ))2(t−t∗) + c1κ

−2σ2
min(X )

(d) ≤ 10c1κ
−2σ2

min(X ) + 8δ((R ∧ n)− r)γ7/4σmin(X )1/4 + c1κ
−2σ2

min(X )

(e) ≤ 40c1κ
−2σ2

min(X ),
(58)

where (a) uses the assumptions that M satisfies (r, δ
√
r) S2S-t-RIP and δ-S2N-t-RIP; (b) follows

from the assumption ||U t|| ≤ 3||X || and ||U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t ||∗ ≤ ((R ∧ n) − r)||U t ∗

Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t ||; (c) uses the assumptions δ ≤ c1

κ4
√
r

and the induction hypothesis; (d) uses

the definition of t1 and t∗; (e) uses the assumption γ ≤ c2σmin(X )
κ2R and chooses a sufficiently small

c2. With this inequality, one can replace || (A∗A− I)
(
X ∗X⊤ − U t ∗ U⊤

t

)
|| in [(Karnik et al.,

2025), Lemma E.1-Lemma E.7] with || (M∗M− I)
(
X ∗X⊤ − U t ∗ U⊤

t

)
+ E|| since they have

the same upper bound.

By choosing a sufficiently small c2, together with other assumptions in Lemma 2, we have the
assumptions in [(Karnik et al., 2025), Lemma E.6] satisfied, then we can directly use the result in
[(Karnik et al., 2025), Lemma E.6] to prove ||U t+1|| ≤ 3||X ||.
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Also, the assumptions in [(Karnik et al., 2025), Lemma E.1] are satisfied, then we use the result of
[(Karnik et al., 2025), Lemma E.1] to prove the induction hypothesis (7):

σmin(V⊤
X ∗ U t+1) ≥ σmin(V⊤

X ∗ U t+1 ∗Wt+1)

≥ σmin(V⊤
X ∗ U t+1)

(
1 +

1

4
ησmin(X )2 − ησmin(V⊤

X ∗ U t)
2

)
≥ σmin(V⊤

X ∗ U t+1)

(
1 +

1

4
ησmin(X )2 − 0.1ησmin(X )2

)
≥ σmin(V⊤

X ∗ U t+1)

(
1 +

1

8
ησmin(X )2

)
≥
(
1 +

1

8
ησmin(X )2

)
· 1
2
γ

(
1 +

1

8
ησmin(X )2

)t−t∗

=
1

2
γ

(
1 +

1

8
ησmin(X )2

)(t+1)−t∗

.

(59)

This inequality implies that all singular values of V⊤
X ∗ U t+1 are positive, and then together with

the assumptions of Lemma 2 and equation (58), the assumptions of [(Karnik et al., 2025), Lemma
E.3] are satisfied. Then we can use the result of [(Karnik et al., 2025), Lemma E.3] to prove the
induction hypothesis (8):

||U t+1 ∗Wt+1,⊥
(j)||

≤
(
1− η

2
||U t ∗Wt,⊥

(j)||2 + 9η||V⊤
X⊥ ∗ VUt∗Wt

(j)

|| · ||X ||2
)
||U t ∗Wt,⊥

(j)||

+ 2η||(M∗M− I)(X ∗X⊤ − U t ∗ U⊤
t ) + E|| · ||U t ∗Wt,⊥

(j)||

≤
(
1− η

2
· 4γ2(1 + 80ηc2σ

2
min(X )) + 9ηc2κ

−2||X ||2
)
||U t ∗Wt,⊥

(j)||

+ 2η · 40c1κ−2σmin(X )2||U t ∗Wt,⊥
(j)||

≤
(
1− 2ηγ2(1 + 80ηc2σ

2
min(X )) + 9ηc2σmin(X )2

)
||U t ∗Wt,⊥

(j)||

+ 80η · c1κ−2σmin(X )2||U t ∗Wt,⊥
(j)||

≤ (1 + 80c2ησmin(X )2)||U t ∗Wt,⊥
(j)||

≤ 2γ(1 + 80c2ησmin(X )2)t+1−t∗ .

(60)

Note that for any block diagonal matrix A =


A1

A2

. . .
An

, we have ||A|| ≤ maxi ||Ai||.

Then we have ||U t+1 ∗Wt+1,⊥|| ≤ maxj ||U t+1 ∗Wt+1,⊥
(j)|| since U t+1 ∗Wt+1,⊥ is a block

diagonal matrix. Therefore we complete the proof of induction hypothesis (8).

Then we proceed to prove ||V⊤
X ∗ VUt+1∗Wt+1

|| ≤ c2κ
−2 via [(Karnik et al., 2025), Lemma E.5].

Note that the assumptions in [(Karnik et al., 2025), Lemma E.5] are satisfied using the assumptions

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

of Lemma 2 and the induction hypothesis (7)-(9).

||V⊤
X ∗ VUt+1∗Wt+1

||

≤ (1− η

4
σmin(X )2)||V⊤

X ∗ VUt∗Wt
||+ 150η|| (M∗M− I)

(
X ∗X⊤ − U t ∗ U⊤

t

)
+ E||

+ 500η2||X ∗X⊤ − U t ∗ U⊤
t ||2

≤ (1− η

4
σmin(X )2)c2κ

−2 + 150η · 40c1κ−2σ2
min(X ) + 500η2(||X ||2 + ||U t||2)2

≤ (1− η

4
σmin(X )2)c2κ

−2 + 6000c1ηκ
−2σ2

min(X ) + 500η2(||X ||2 + 9||X ||2)2

= (1− η

4
σmin(X )2)c2κ

−2 + 6000c1ηκ
−2σ2

min(X ) + 50000η2||X ||4

≤ (1− η

4
σmin(X )2)c2κ

−2 + 6000c1ηκ
−2σ2

min(X ) + 50000η · c1κ−4||X ||−2 · ||X ||4

≤ (1− η

4
σmin(X )2)c2κ

−2 + 6000c1ηκ
−2σ2

min(X ) + 50000η · c1κ−4||X ||−2 · ||X ||4

≤ (1− η

4
σmin(X )2)c2κ

−2 + 6000c1ηκ
−2σ2

min(X ) + 50000ηc1κ
−2σmin(X )2

≤ (1− η

4
σmin(X )2)c2κ

−2 + 56000ηc1κ
−2σmin(X )2.

(61)
By taking a sufficiently small c2, we have ||V⊤

X ∗VUt+1∗Wt+1
|| ≤ c2κ

−2. Therefore, we complete
the induction proof.

E.7 PROOF OF LEMMA 3

Using the definition of t1 (equation (6)) and

σmin(V⊤
X ∗ U t1) ≥

1

2
γ

(
1 +

1

8
ησmin(X )2

)t1−t∗

from Lemma 2, we have

1√
10

σmin(X ) ≥ σmin(V⊤
X ∗ U t1) ≥

1

2
γ

(
1 +

1

8
ησmin(X )2

)t1−t∗

,

which leads to

t1 − t∗ ≤
log
(

2
γ
√
10
σmin(X )

)
log
(
1 + 1

8ησmin(X )2
) (a)

≤ 16

ησmin(X )2
log

(
2

γ
√
10

σmin(X )

)
, (62)

where in (a), we use the fact that 1
log(1+x) ≤

2
x for 0 < x < 1.

Therefore, we bound ||U t1 ∗Wt1,⊥|| as

||U t1 ∗Wt1,⊥|| ≤ 2γ
(
1 + 80ηc2σmin(X )2

)t1−t∗

(a)

≤ 2γ

(
2√
10
· σmin(X )

γ

)1280c2

(b)

≤ 2γ

(
2√
10
· σmin(X )

γ

)1/64

(c)

≤ 3γ63/64σmin(X )1/64 ≤ 3γ7/8σmin(X )1/8,

(63)

where (a) follows from Equation (62); (b) uses the assumption that c2 is chosen sufficiently small;
(c) uses the fact that σmin(X ) ≥ γ.

Then we divide the proof of Lemma 3 into two cases: the exact-rank case and the over-parameterized
(over-rank) case.
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Over-rank case: Set t̂ := t1+
⌈

300
ησ2

min(X )
ln
(

κ1/4

16((R∧n)−r) ·
||X ||7/4
γ7/4

)⌉
. We first state our induction

hypothesis for t1 ≤ t ≤ t̂ :

σmin(U t ∗Wt) ≥ σmin(V⊤
X ∗ U t) ≥

σmin(X )√
10

, (64)

||U t ∗Wt,⊥|| ≤ (1 + 80ηc2σ
2
min(X ))t−t1 ||U t1 ∗Wt1,⊥||, (65)

||U t|| ≤ 3||X ||, (66)

||V⊤
X⊥ ∗ VUt∗Wt

|| ≤ c2κ
−2, (67)

||V⊤
X ∗ (X ∗X

⊤ − U t ∗ U⊤
t )|| ≤ 10(1− η

400
σ2
min(X ))t−t1 ||X ||2 (68)

+ 18η||X ||2||E||
t∑

τ=t1+1

(1− η

200
σ2
min(X ))τ−t1−1. (69)

When t = t1, the inequalities (64), (66), and (67) follow from Lemma 2. As for inequality (65), it
holds when t = t1 obviously. When t = t1, we have

||V⊤
X ∗ (X ∗X

⊤ − U t1 ∗ U
⊤
t1)|| = ||V

⊤
X ∗ (X ∗X

⊤ − U t1 ∗Wt1 ∗W
⊤
t1 ∗ U

⊤
t1)||

≤ ||X ∗X⊤||+ ||U t1 ∗Wt1 ∗W
⊤
t1 ∗ U

⊤
t1 ||

≤ ||X ||2 + ||U t1 ||2||Wt1 ||2
(a)

≤ 10||X ||2,
where (a) follows inequality (66). Next, we aim to prove that these inequalities also hold at step
t+ 1. To do so, we need to bound the term

∥∥∥(M∗M− I)
(
X ∗X⊤ − U t ∗ U⊤

t

)
+ E

∥∥∥ as

|| (M∗M− I)
(
X ∗X⊤ − U t ∗ U⊤

t

)
+ E||

(a) ≤ 10δ
√
rκ2σ2

min(X ) + δ((R ∧ n)− r)||U t ∗Wt,⊥||2 + ||E||
(b) ≤10c1κ−2σ2

min(X ) + δ((R ∧ n)− r)(1 + 80ηc2σ
2
min(X ))2(t−t1)||U t1 ∗Wt1,⊥||2

+ c1κ
−2σ2

min(X )

(c) ≤ 10c1κ
−2σ2

min(X ) + 9δ((R ∧ n)− r)(1 + 80ηc2σ
2
min(X ))2(t̂−t1)γ7/4σmin(X )1/4

+ c1κ
−2σ2

min(X )

(d) ≤ 10c1κ
−2σ2

min(X ) + 9δ((R ∧ n)− r)

(
κ1/4

16k((R ∧ n)− r)
· ||X ||

7/4

γ7/4

)O(c2)

+ c1κ
−2σ2

min(X )

(e) ≤ 40c1κ
−2σ2

min(X ),

(70)

where (a) uses the result of equation (58); (b) uses the induction hypothesis (65) and the assumption
of ||E||; (c) uses the results of (63) and induction hypothesis (65); (d) uses the definition of t̂; (e)
uses the assumption that c2 are sufficiently small.

Therefore, the condition required for bound (64), (66), and (67) in Theorem E.1 (Karnik et al., 2025)
is satisfied. We can thus invoke the corresponding result to conclude that inequalities (64), (66), and
(67) also hold at iteration t+ 1.

Note that we have all singular values of V⊤
X ∗U t+1 ∗Wt are positive using the induction hypothesis

(64), then we have the assumptions of [(Karnik et al., 2025), Lemma E.3] are satisfied. Therefore,
we use the result of [(Karnik et al., 2025), Lemma E.3] to prove the induction hypothesis (65), which
is exactly the way as proving inequality (8). We directly present the result without detailed proof:

||U t+1 ∗Wt+1|| ≤ (1 + 80c2ησ
2
min(X ))t+1−t1 ||U t ∗Wt||. (71)

Then we proceed to prove inequality (69). Note that the condition (79) in Lemma 7 is satisfied since

||(I−M ∗M)(X ∗X⊤ − U t ∗ U t)||

≤ δ
(
||X ∗X − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||∗
) (72)
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and δ ≤ c1
κ4

√
r

. Moreover, the other conditions of Lemma 7 are satisfied using the induction hypoth-
esis (64), (66), and (67). Therefore, we have

||V⊤
X ∗ (X ∗X

⊤ − U t+1 ∗ U⊤
t+1)||

(a)

≤
(
1− η

200
σmin(X )2

)
||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||

+
η

100
σmin(X )2||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||+ 18η||X ||2||E||

(b)

≤ 10
(
1− η

200
σmin(X )2

)
(1− η

400
σ2
min(X ))t−t1 ||X ||2

+
η

100
σmin(X )2||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||

+ 18η||X ||2||E||
t+1∑

τ=t1+1

(1− η

200
σ2
min(X ))τ−t1−1,

(73)

where step (a) follows the result of Lemma 7; step (b) uses the induction hypothesis (69). Note that
inequality (69) holds for t+ 1 if

||U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U t||∗ ≤

1

4
(1− η

400
σ2
min(X ))t−t1 ||X ||2. (74)

Using the relationship between operator norm and tubal tensor nuclear norm, we have

||U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U t||∗ ≤ ((R ∧ n)− r)||U t ∗Wt,⊥||2

(a)

≤ ((R ∧ n)− r)(1 + 80ηc2σ
2
min(X ))2(t−t1)||U t1 ∗Wt1,⊥||2

(b)

≤ 9((R ∧ n)− r)(1 + 80ηc2σ
2
min(X ))2(t−t1)σmin(X )1/4γ7/4

(75)
where (a) uses the induction hypothesis (65); (b) uses inequality (63).

Then we need to bound term ||U t1 ∗Wt1,⊥||.
Combining Equations (75) and (63), we note that the inequality (74) holds if c2 is sufficiently small
and

9((R ∧ n)− r)γ7/4σmin(X )1/4 ≤
(
1− η

350
σmin(X )2

)t−t1
||X ||2

This inequality holds so long as t ≤ t̂ = t1 +
⌈

300
ησ2

min(X )
ln
(

κ1/4

9((R∧n)−r)
||X ||7/4
γ7/4

)⌉
by using the fact

that ln(1 + x) ≥ x
1−x . Therefore, we complete the induction of over-rank case.

Then we proceed to prove the upper bound for ||X ∗X⊤ − U t ∗ U⊤
t ||F :

||X ∗X⊤ − U t ∗ U⊤
t ||F

(a)

≤ 4||V⊤
X ∗ (X ∗X

⊤ − U t̂ ∗ U
⊤
t̂ )||F + ||U t̂ ∗W t̂,⊥ ∗W

⊤
t̂,⊥ ∗ U

⊤
t̂ ||∗

(b)

≲
√
r(1− η

400
σ2
min(X ))t̂−t1 ||X ||2

+
√
rη||X ||2||E||

t̂∑
τ=t1+1

(1− η

200
σ2
min(X ))τ−t1−1

(c)

≲
√
r

(
κ1/4

9((R ∧ n)− r)

||X ||7/4

γ7/4

)−3/4

||X ||2 +
√
rκ2||E||

≲ κ−3/16r1/2((R ∧ n)− r)3/4γ21/16||X ||11/16 ++
√
rκ2||E||,

(76)
where (a) uses the result of Lemma 8; (b) follows from inequalities (69) and (74); (c) uses the
definition of t̂.

Exact rank case: As R = r, we have U t = U t ∗Wt ∗W⊤
t and Wt,⊥ = 0. Using a similar

approach as in the over-parameterized case, we can show that the induction hypotheses (64)-(67)
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hold for all t ≥ t1. For induction hypothesis (69), note that

U tWt,⊥W⊤
t,⊥W

⊤
t = 0,

which implies that (69) also holds for all t ≥ t1. Therefore, we conclude that:

||U t ∗ U⊤
t −X ∗X⊤||F ≲

√
r(1− η

400
σ2
min(X ))t−t1

+
√
rη||X ||2||E||

t+1∑
τ=t1+1

(1− η

200
σ2
min(X ))τ−t1−1

≲
√
r(1− η

400
σ2
min(X ))t−t1 +

√
rκ2||E||.

(77)

E.8 PROOF OF LEMMA 4

Lemma 7. Assume that the following assumptions hold:

||U t|| ≤ 3||X ||
η ≤ cκ−2||X ||−2

σmin(U t ∗Wt) ≥
1√
10

σmin(X )

||V⊤
X⊥ ∗ VU∗Wt || ≤ cκ−2

(78)

and

||(I−M ∗M)(X ∗X⊤ − U t ∗ U t)||

≤ cκ−2
(
||X ∗X − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||∗
)
,

(79)
where the constant c > 0 is chosen small enough. Then it holds that

||V⊤
X ∗ (X ∗X

⊤ − U t+1 ∗ U⊤
t+1)|| ≤

(
1− η

200
σmin(X )2

)
||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||

+
η

100
σmin(X )2||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||+ 18η||X ||2||E||.

(80)

Proof of Lemma 7. In order to establish Lemma 4, we begin by introducing a key auxiliary lemma
and providing its proof.

Lemma 8. Under the assumptions of Lemma 4, the following inequalities hold:∣∣∣∣∣∣∣∣∣V⊤
X⊥ ∗ U t ∗ U⊤

t

∣∣∣∣∣∣∣∣∣ ≤ 3
∣∣∣∣∣∣∣∣∣V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )
∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣X ∗X⊤ − U t ∗ U⊤
t

∣∣∣∣∣∣∣∣∣ ≤ 4
∣∣∣∣∣∣∣∣∣V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )
∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U

⊤
t

∣∣∣∣∣∣∣∣∣ ≤ 4
∣∣∣∣∣∣∣∣∣V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )
∣∣∣∣∣∣∣∣∣ ,

(81)
where |||·||| denotes tensor norms, such as spectral norm.

Proof. The first two inequalities are derived based on Lemma E.7 in (Karnik et al., 2025). By
leveraging the equivalence between matrix norms, we obtain the desired results by replacing the
Frobenius norm in Lemma E.7 with the spectral norm.

Next, we present the proof of the third inequality. We decompose X ∗X⊤ −U t ∗Wt ∗W⊤
t ∗U

⊤
t

as

VX ∗ V⊤
X ∗ (X ∗X

⊤ − U t ∗Wt ∗W⊤
t ∗ U

⊤
t )︸ ︷︷ ︸

Z1

+VX⊥ ∗ V⊤
X⊥ ∗ (X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t )︸ ︷︷ ︸

Z2

.
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For Z1, we have

Z1 = VX ∗ V⊤
X ∗X ∗X

⊤ − VX ∗ V⊤
X ∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t

(1)
= VX ∗ V⊤

X ∗X ∗X
⊤ − VX ∗ V⊤

X ∗ U t ∗ U⊤
t ,

(82)

where (1) uses the fact that

VX ∗ V⊤
X ∗ U t ∗ U⊤

t

= VX ∗ V⊤
X ∗ [U t ∗Wt ∗W⊤

t +Wt,⊥ ∗W⊤
t,⊥] ∗ [U t ∗Wt ∗W⊤

t + U t ∗Wt,⊥ ∗W⊤
t,⊥]

⊤

= VX ∗ V⊤
X ∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t + VX ∗ V⊤

X ∗ U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t

= VX ∗ V⊤
X ∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t + VX ∗ Vt ∗ St ∗W⊤

t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t

= VX ∗ V⊤
X ∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t .

(83)
Therefore, we have

|||Z1||| =
∣∣∣∣∣∣∣∣∣VX ∗ V⊤

X ∗X ∗X
⊤ − VX ∗ V⊤

X ∗ U t ∗ U⊤
t

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣V⊤
X ∗ (X ∗X

⊤ − U t ∗ U⊤
t )
∣∣∣∣∣∣∣∣∣ .

Then we proceed to bound the term Z2,

|||Z2||| =
∣∣∣∣∣∣∣∣∣VX⊥ ∗ V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U

⊤
t ) ∗ (VX ∗ V⊤

X + VX⊥ ∗ V⊤
X⊥)

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣VX⊥ ∗ V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U

⊤
t ) ∗ VX

∣∣∣∣∣∣∣∣∣
+
∣∣∣∣∣∣∣∣∣VX⊥ ∗ V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U

⊤
t ) ∗ VX⊥ ∗ V⊤

X⊥

∣∣∣∣∣∣∣∣∣
(a)

≤
∣∣∣∣∣∣∣∣∣(X ∗X⊤ − U t ∗ U⊤

t ) ∗ VX

∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣V⊤
X⊥ ∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t ∗ VX⊥

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Z3

,

(84)
where (a) using the facts that V⊤

X ∗U t∗Wt,⊥ = 0 and V⊤
X ∗U t∗U⊤

t = V⊤
X ∗U t∗Wt∗W⊤

t ∗U
⊤
t .

For term Z3, we have∣∣∣∣∣∣∣∣∣V⊤
X⊥ ∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t ∗ VX⊥

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣∣V⊤

X⊥ ∗ VUt∗Wt
∗ V⊤

Ut∗Wt
∗ U t ∗Wt ∗W⊤

t ∗ U
⊤
t ∗ VX⊥

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣V⊤
X⊥ ∗ VUt∗Wt

∗
(
V⊤

X ∗ V
⊤
Ut∗Wt

)−1

∗ V⊤
X ∗ VUt∗Wt

∗ V⊤
Ut∗Wt

∗ U t ∗Wt ∗W⊤
t ∗ U

⊤
t ∗ VX⊥

∣∣∣∣∣∣∣∣∣∣∣∣
≤ ||V⊤

X⊥ ∗ VUt∗Wt || · ||(V
⊤
X ∗ VUt∗Wt)

−1||
∣∣∣∣∣∣∣∣∣V⊤

X ∗ VUt∗Wt ∗ V
⊤
Ut∗Wt

∗ U t ∗Wt ∗W⊤
t ∗ U

⊤
t ∗ VX⊥

∣∣∣∣∣∣∣∣∣
=
||V⊤

X⊥ ∗ VUt∗Wt
||

σmin(V⊤
X ∗ VUt∗Wt

)

∣∣∣∣∣∣∣∣∣V⊤
X ∗ U t ∗ U⊤

t ∗ VX⊥

∣∣∣∣∣∣∣∣∣
=
||V⊤

X⊥ ∗ VUt∗Wt ||
σmin(V⊤

X ∗ VUt∗Wt
)

∣∣∣∣∣∣∣∣∣V⊤
X ∗

(
X ∗X⊤ − U t ∗ U⊤

t

)
∗ VX⊥

∣∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣∣V⊤
X ∗

(
X ∗X⊤ − U t ∗ U⊤

t

)∣∣∣∣∣∣∣∣∣ .
(85)

Therefore, we have the third inequality holds.

Based on the results of Lemma 8, we proceed to prove Lemma 7. We decompose X ∗X⊤−U t+1 ∗
U⊤

t+1 into five terms by using the update formulation

U t+1 = U t + η[(M∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E] ∗ U t :
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X∗X⊤ − U t+1 ∗ U⊤
t+1

= (I − ηU t ∗ U⊤
t ) ∗ (X ∗X

⊤ − U t ∗ U⊤
t ) ∗ (I − ηU t ∗ U⊤

t )︸ ︷︷ ︸
K1

+ η [(I−M∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E] ∗ U t ∗ U⊤

t︸ ︷︷ ︸
K2

+ ηU t ∗ U t ∗ [(I−M∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E]︸ ︷︷ ︸

K3

− η2 U t ∗ U⊤
t ∗ (X ∗X

⊤ − U t ∗ U⊤
t ) ∗ U t ∗ U⊤

t︸ ︷︷ ︸
K4

− η2 [(M∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E] ∗ U t ∗ U⊤

t ∗ [(M
∗M)(X ∗X⊤ − U t ∗ U⊤

t ) + E]︸ ︷︷ ︸
K5

.

(86)

We now bound each of these terms separately.
Bounding K1: We note that

V⊤
X ∗ (I − ηU t ∗ U⊤

t ) ∗ (X ∗X
⊤ − U t ∗ U⊤

t ) ∗ (I − ηU t ∗ U⊤
t )

= V⊤
X ∗ (I − ηU t ∗ U⊤

t ) ∗ VX ∗ V⊤
X ∗ (X ∗X

⊤ − U t ∗ U⊤
t ) ∗ (I − ηU t ∗ U⊤

t )

+ V⊤
X ∗ (I − ηU t ∗ U⊤

t ) ∗ VX⊥ ∗ V⊤
X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤

t ) ∗ (I − ηU t ∗ U⊤
t )

= V⊤
X ∗ (I − ηU t ∗ U⊤

t ) ∗ VX ∗ V⊤
X ∗ (X ∗X

⊤ − U t ∗ U⊤
t ) ∗ (I − ηU t ∗ U⊤

t )

+ η ∗ V⊤
X ∗ U t ∗ U⊤

t ∗ VX⊥ ∗ V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ (I − U t ∗ U⊤
t )

= (I − ηV⊤
X ∗ U t ∗ U⊤

t ∗ VX ) ∗ V⊤
X ∗ (X ∗X

⊤ − U t ∗ U⊤
t ) ∗ (I − ηU t ∗ U⊤

t )

+ η ∗ V⊤
X ∗ U t ∗ U⊤

t ∗ VX⊥ ∗ V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ (I − U t ∗ U⊤
t ).

(87)

detail

Therefore, we obtain

||V⊤
X ∗K1|| = ||V⊤

X ∗ (I − ηU t ∗ U⊤
t ) ∗ (X ∗X

⊤ − U t ∗ U⊤
t ) ∗ (I − ηU t ∗ U⊤

t )||

≤
(
1− η

40
σ2
min(X )

)
||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||

+ η
σ2
min(X )

400
||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||.

(88)

Bounding K2: Note that

||V⊤
X ∗K2|| = ||V⊤

X ∗ [(I−M∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E] ∗ U t ∗ U⊤

t ||

≤
(
||(I−M∗M)(X ∗X⊤ − U t ∗ U⊤

t )||+ ||V
⊤
X ∗ E||

)
||U t||2

(1)

≤ 9
(
||(I−M∗M)(X ∗X⊤ − U t ∗ U⊤

t )||+ ||V
⊤
X ∗ E||

)
||X ||2

(2)

≤ 9cσ2
min(U)

(
||X ∗X − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||∗
)

+ 9||V⊤
X ∗ E||||X ||2

(3)

≤ 9cσ2
min(U)

(
||V⊤

X ∗ (X ∗X − U t ∗ U⊤
t )||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||∗
)

+ 9||V⊤
X ∗ E||||X ||2

(89)
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where (1) use the assumption ||U t|| ≤ 3||X ||; (2) use the assumption (79); (3) use the the result of
Lemma 8. Taking a small constant c > 0, we obtain

||V⊤
X ∗ [(I−M∗M)(X ∗X⊤ − U t ∗ U⊤

t ) + E] ∗ U t ∗ U⊤
t ||

≤ 1

1000
σ2
min(X )

(
||V⊤

X ∗ (X ∗X − U t ∗ U⊤
t )||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||∗
)

+ 9||V⊤
X ∗ E||||X ||2.

(90)

Bounding K3: Similar to K2, we have

||V⊤
X ∗ U t ∗ U t ∗ [(I−M∗M)(X ∗X⊤ − U t ∗ U⊤

t ) + E]||

≤ 1

1000
σ2
min(X )

(
||V⊤

X ∗ (X ∗X − U t ∗ U⊤
t )||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U t||∗
)

+ 9||V⊤
X ∗ E||||X ||2.

(91)

Bounding K4: Note that

||V⊤
X ∗ U t ∗ U⊤

t ∗(X ∗X
⊤ − U t ∗ U⊤

t ) ∗ U t ∗ U⊤
t ||

≤||U t||4||X ∗X⊤ − U t ∗ U⊤
t ||

(1)

≲ ||X ||4||X ∗X⊤ − U t ∗ U⊤
t ||

(2)

≲ ||X ||4
(
||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||+ ||U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t ||
)
,

(92)
where (1) uses the assumption ||U t|| ≤ 3||X ||; (2) uses the result of Lemma 8. Then combining the
assumption η ≤ cκ−2||X ||−2, then we obtain

η2||V⊤
X ∗ U t ∗ U⊤

t ∗ (X ∗X
⊤ − U t ∗ U⊤

t ) ∗ U t ∗ U⊤
t ||

≤ η

200
σ2
min(X )||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||+ η
σ2
min(X )

1000
||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||.

(93)

Bounding K5: Note that

||(M∗M)(X ∗X⊤ − U t ∗ U⊤
t )||

≤ ||X ∗X⊤ − U t ∗ (Wt ∗W⊤
t +Wt,⊥ ∗W⊤

t,⊥) ∗ U
⊤
t ||

+ ||(M∗M− I)(X ∗X⊤ − U t ∗ U⊤
t )||

(a)

≤
(
||X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥U
⊤
t ||
)

+ cκ−2
(
||X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥U
⊤
t ||∗

)
≤ 2

(
||X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥U
⊤
t ||∗

)
≤ 2

(
||X ||2 + ||U t ∗Wt||2 + ||U t ∗Wt,⊥ ∗W⊤

t,⊥U
⊤
t ||∗

)
(b)

≤ 2
(
||X ||2 + 2||U t||2

)
,

(94)
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where (a) uses the assumption (79); (b) uses the assumption ||U t ∗Wt,⊥ ∗W⊤
t,⊥U

⊤
t || ≤ ||U t||2.

Then we have

||V⊤
X ∗K5|| = ||V⊤

X ∗ [(M
∗M)(X ∗X⊤ − U t ∗ U⊤

t ) + E] ∗ U t ∗ U⊤
t ∗ [(M

∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E]||

≤
(
||(M∗M)(X ∗X⊤ − U t ∗ U⊤

t )||+ ||E||
)
· ||U t||2 ·

(
||(M∗M)(X ∗X⊤ − U t ∗ U⊤

t )||+ ||E||
)

(a)

≤ 4
(
||X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗ + ||E||

)
||U t||2

(
||X ||2 + 2||U t||2 + ||E||

)
(b)

≤ 432
(
||X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U
⊤
t ||+ ||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗ + ||E||

)
||U t||4

(c)

≤ 1728
(
||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||+ ||U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U

⊤
t ||∗ + ||E||

)
||U t||4,

(95)
where (a) uses the result of Equation (94); (b) uses the assumptions ||U t|| ≤ 3||X || and ||E|| ≤
||X ||2; (c) uses the result of Lemma 8. Based on these results and the assumption η ≤ cκ−2||X ||−2,
we have

η2||V⊤
X ∗ [(M

∗M)(X ∗X⊤ − U t ∗ U⊤
t ) + E] ∗ U t ∗ U⊤

t ∗ [(M
∗M)(X ∗X⊤ − U t ∗ U⊤

t ) + E]||

≤ η

1000
σ2
min(X )||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||+
η

400
σ2
min(X )||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||∗

+
η

400
σ2
min(X )||E||.

(96)
Combining the bounds of these five terms, we obtain

||V⊤
X ∗ (X ∗X

⊤ − U t+1 ∗ U⊤
t+1)|| ≤

(
1− η

200
σmin(X )2

)
||V⊤

X ∗ (X ∗X
⊤ − U t ∗ U⊤

t )||

+
η

200
σmin(X )2||U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U
⊤
t ||+ 18η||X ||2||E||.

(97)

F PROOF OF THEOREM 3

The proof of the minimax error bound of the low-tubal-rank tensor recovery follows from the proof
of the matrix case in (Candes & Plan, 2011). We begin with a standard lemma that characterizes the
minimax risk for estimating a vector x ∈ Rn in the linear model

y = Ax+ s (98)

where A ∈ Rm×n and the entries of s are independently and identically distributed according to a
Gaussian distribution N (0, σ2). For such a model, we have the following lemma that provides its
minimax error bound.
Lemma 9. Let λi(A

⊤A) be the eigenvalues of the matrix A⊤A. Then

inf
x̂

sup
x∈Rn

E||x̂− x||2l2 = σ2 trace
(
(A⊤A)−1

)
=
∑
i

σ2

λi(A⊤A)
. (99)

In particular, if one of the eigenvalues vanishes, then the minimax risk is unbounded.

Proof. We separate the argument into three parts: (A) a lower bound via Bayes risk, (B) an upper
bound attained by the ordinary least squares estimator in the nonsingular case.

(A) Lower bound (Bayes argument)
Fix τ > 0 and consider the Gaussian prior x ∼ N (0, τ2In). Under this prior the posterior covari-
ance matrix for x given y is

Σpost(τ) =
( 1

σ2
A⊤A+

1

τ2
In

)−1

.
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The Bayes risk (for the posterior-mean estimator) equals the trace of the posterior covariance:

RBayes(τ) := Ex,y

∥∥x− E[x | y]
∥∥2
2
= tr

(
Σpost(τ)

)
=

n∑
i=1

1

λi/σ2 + 1/τ2
= σ2

n∑
i=1

1

λi + σ2/τ2
,

(100)

where we denote λi(A
⊤A) as λi for convenience.

For any estimator x̂ and any prior π we have the standard minimax/Bayes inequality

inf
x̂

sup
x

E∥x̂− x∥2 ≥ inf
x̂

Ex∼πE
[
∥x̂− x∥2

]
= RBayes(τ),

because the supremum over x is at least the average under any prior π. Hence for every τ > 0,

inf
x̂

sup
x

E∥x̂− x∥2 ≥ σ2
n∑

i=1

1

λi + σ2/τ2
.

If some λi = 0 then the right-hand side equals +∞ as τ →∞ (indeed the corresponding summand
is σ2/( 0+σ2/τ2) = τ2 →∞), so the minimax risk is infinite in that case. Otherwise, if all λi > 0,
send τ →∞. For each fixed i the function τ 7→ σ2/(λi + σ2/τ2) is monotone increasing in τ and
converges to σ2/λi as τ → ∞. By monotone convergence (or by continuity of finite sums) we
obtain

inf
x̂

sup
x

E∥x̂− x∥2 ≥ lim
τ→∞

RBayes(τ) = σ2
n∑

i=1

1

λi
.

(B) Upper bound (least squares achieves the bound).
Assume λi > 0 for all i, i.e. rank(A) = n. Consider the ordinary least squares estimator

x̂LS = (A⊤A)−1A⊤y.

Substituting y = Ax+ s gives

x̂LS − x = (A⊤A)−1A⊤s.

Since s ∼ N (0, σ2Im), the error x̂LS − x is zero-mean Gaussian with covariance

E
[
(x̂LS − x)(x̂LS − x)⊤

]
= (A⊤A)−1A⊤(σ2Im)A(A⊤A)−1 = σ2(A⊤A)−1.

Therefore the mean-square risk of x̂LS (for any fixed x) equals

E∥x̂LS − x∥2 = tr
(
σ2(A⊤A)−1

)
= σ2

n∑
i=1

1

λi
.

This shows

inf
x̂

sup
x

E∥x̂− x∥2 ≤ sup
x

E∥x̂LS − x∥2 = σ2
n∑

i=1

1

λi
.

Combining (A) and (B) yields the asserted identity.
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Then we proceed to prove the minimax error bound. Define the set of rankt r tensors as

Dr = {X : rankt(X ) = r, X ∈ Rn×n×k},

and the set of tensors of the form X = Y ∗R as

DY = {X : X = Y ∗R, X ∈ Rn×r×k, Y ∈ Rn×r×k, Y⊤ ∗Y = I}.

Note that set Dr is much larger than set DY . Therefore,

inf
X est

sup
X :rankt(X )=r

E||X est −X ||2F ≥ inf
X est

sup
X :X=Y∗R

E||X est −X ||2F . (101)

For fixed orthogonal tensor Y , define the orthogonal projection tensor PY = Y ∗ Y⊤, which
satisfies P2

Y = PY ,P⊤
Y = PY . Then fix the estimator X est, for any X ∈ DY , we have:

||X est −X ||2F = ||PY ∗X est −X + (I −PY) ∗X est||2F
= ||PY ∗X est −X ||F + ||(I −PY) ∗X est||2F
+ 2⟨PY ∗X est −X , (I −PY) ∗X est⟩

(a)
= ||PY ∗X est −X ||F + ||(I −PY) ∗X est||2F ,

(102)

where (a) use the fact that the tensor column subspaces of PY ∗X est −X and (I −PY) ∗X est

are orthogonal, which implies that their inner product vanishes. Therefore, we can directly obtain

||X est −X ||2F ≥ ||PY ∗X est −X ||2F = ||Y ∗Y⊤ ∗X est −Y ∗R||2F
= ||Y⊤ ∗X est −R||2F .

(103)

Let Rest = Y⊤ ∗X est, then we have

inf
X est

sup
X :X=U∗R

E||X est −X ||2F ≥ inf
Rest

sup
R

E||Rest −R||2F . (104)

Therefore, the minimax risk is lower bounded by that of estimating R from the data

y = MY(vec(R)) + s, (105)

where MY : Rrnk → Rm and vec denotes the vectorization operator. Then we can apply the result
of Lemma 9 to show that the minimax risk is lower bounded by

inf
X est

sup
X :rankt(X )=r

E||X est −X ||2F ≥
rnk∑
i

σ2

λi(M
∗
YMY)

. (106)

Then we can bound the term (106) by the following Lemma with t-RIP assumption.
Lemma 10. Let Y be an n× r× k orthonormal tensor, suppose that the linear map M(·) satisfies
the (r, δ) t-RIP, then all eigenvalues of M∗

YMY belong to the interval [m(1− δ),m(1 + δ)].

Proof. By definition, we have

λmin(M
∗
YMY) = inf

|| vec(R)||F=1

〈
vec(R),M∗

YMY(vec(R))
〉

λmax(M
∗
YMY) = sup

|| vec(R)||F=1

〈
vec(R),M∗

YMY(vec(R))
〉
.

(107)

Note that
⟨R,M∗

YMY(vec(R))⟩ = ||MY(vec(R))||2 = ||M(Y ∗R)||2,
then we can bound ||M(Y ∗R)||2 by the (r, δ) t-RIP

m(1− δ)||Y ∗R||2F ≤ ||M(Y ∗R)||2 ≤ m(1 + δ)||Y ∗R||2F .

Since ||Y ∗R||F = ||R||F = 1, then the eigenvalues of M∗
YMY is bounded by [m(1− δ),m(1+

δ)].
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Combining the result of Lemma 10 and Equation (106), we have

inf
X est

sup
X :rankt(X )=r

E||X est −X ||2F ≥
rnk∑
i

σ2

λi(M
∗
YMY)

≥ 1

1 + δ

nrkσ2

m
, (108)

which finishes the proof of the first inequality in Theorem 3.

Then we proceed to prove the second inequality in Theorem 3. We introduce a technical Lemma
firstly.
Lemma 11 (Lemma 3.14 in (Candes & Plan, 2011)). Suppose that x,y,A, s follow the linear
model (98), with s ∼ N (0, σ2I), then

inf
x̂

sup
x∈Rn

P
(
||x̂− x||2 ≥ 1

2||A||2
nσ2

)
≥ 1− e−n/16. (109)

With the result of Lemmas 11, 10 and the linear model
y = MY(vec(R)) + s, R ∈ Rn×r×k, y ∈ Rm,

we can obtain

sup
X⋆:rankt(X⋆)≤r

P
(
||X est −X ⋆||2F ≥

nrkσ2

2m(1 + δ)

)
≥ 1− e−nrk/16, (110)

which completes the proof of the second inequality.

G PROOF OF THEOREM 4

Lemma 12. Suppose that each entry in the validation measurements Ai, i ∈ Ival is sampled from
independent identically sub-Gaussian distribution with zero mean and variance 1, and each ei is a
zero-mean Gaussian distribution with variance σ2, where c1, c2 ≥ 1 are some absolute constants.
And we also assume that tensors D1, D2, ...,DT are independent of Mval and eval. Then for any
δval > 0,given mval ≥ C1 log T

δ2val
, with probability at least 1− 2T exp−C2mvalδ

2,∣∣||Mval(Dt) + e||2F −mval(||Dt||2F + σ2)
∣∣ ≤ δvalmval(||Dt||2F + σ2),∀t = 1, ..., T, (111)

where C1, C2 ≥ 0 are constants that may depend on c1 and c2.

Proof. The proof of this lemma follows directly from Lemma D.1 in (Ding et al., 2025) , since
⟨Ai,D⟩+ei is a sub-Gaussian random variable with zero mean and variance ∥D∥2F +σ2, regardless
of whether Ai and D are matrices or tensors. Therefore, the conclusion of Lemma D.1 applies
directly to this lemma.

Lemma 13. Let ť = argmin1≤t≤T ||Mval(Dt) + e||2 and t̂ = argmin1≤t≤T ||Dt||F , under the
assumptions in Lemma 12, we have

||Dť||2F ≤
1 + δval
1− δval

||Dt̂||
2
F +

2δval
1− δval

σ2. (112)

Proof. Under the assumptions of Lemma 12, we have

(1−δval)(||Dt||2F+σ2) ≤ 1

mval
||Mval(Dt)+e||2F ≤ (1+δval)(||Dt||2F+σ2),∀t = 1, ..., T, (113)

from the result of Lemma 12. Then we have

||Dt̂||
2
F + σ2 ≤ 1

mval(1− δval)
||Mval(Dt̂) + e||2F

≤ 1

mval(1− δval)
||Mval(Dt̂) + e||2F ≤

1 + δval
1− δval

(||Dt̂||
2
F + σ2),

(114)

which indicates
||Dt̂||

2
F ≤

1 + δval
1− δval

||Dt̂||
2
F +

2δval
1− δval

σ2. (115)

Therefore, we complete the proof of Lemma 13.
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With these two Lemmas, together with Theorem 2, we proceed to prove Theorem 4. Replacing the
result of Lemma 13 with Dť = U ť ∗ U⊤

ť −X ⋆ and Dt̂ = U t̂ ∗ U
⊤
t̂ −X ⋆, we have

||U ť ∗ U⊤
ť −X ⋆||2F ≤

1 + δval
1− δval

||U t̂ ∗ U
⊤
t̂ −X ⋆||2F +

2δval
1− δval

σ2. (116)

To achieve the error C nkrσ2κ4

m , we need the bound 2δ
1−δσ

2, which requires δ ≤ nkrκ4

3mtrain
. Taking

δ = nkrκ4

3mtrain
, then we can verify that 1+δval

1−δval
≤ 2 :

1 + δval
1− δval

=
1 + nkrκ4

3mtrain

1− nkrκ4

3mtrain

=
3mtrain + nkrκ4

3mtrain − nkrκ4
= 1 +

2nkrκ4

3mtrain − nkrκ4

(a)

≤ 1 +
2nkrκ4

nkrκ4(3rκ4 − 1)
≤ 2,

(117)

where (a) uses the assumptions that m ≳ nkr2κ8. Therefore, combining the results of Theorem
2,we have

||U t̂ ∗ U
⊤
t̂ −X ⋆||2F ≤ C

nkrσ2κ4

mtrain
.

Moreover, combining nkrκ4

3mtrain
with the assumption mval ≥ C1

log T
δ2val

, we have mval ≥ C1
m2

train log T
(rnkκ4)2 .

Therefore, the proof of Theorem 4 is completed.

H TECHNIQUE LEMMAS

Lemma 14. Suppose the linear map M : Rn×n×k → Rm satisfies (r+1, δ1) t-RIP with δ1 ∈ (0, 1),
then M also satisfies (r,

√
rδ1) S2S-t-RIP.

Proof. The proof of this lemma can be adapted from that of [(Karnik et al., 2025), Lemma G.2] by
introducing the inequality ||Z||F ≤

√
r||Z||.

Lemma 15. Suppose the linear map M : Rn×n×k → Rm satisfies (2, δ2) t-RIP with δ2 ∈ (0, 1),
then M also satisfies δ2-S2N-t-RIP.

Proof. The proof of this lemma can be adapted from that of [(Karnik et al., 2025), Lemma G.3] by
introducing the inequality ||Z||F ≤

√
r||Z||.

Lemma 16. For a tensor Y ∈ Rn×n×k with tubal-rank r, then we have

||X || ≤ ||X ||F ≤
√
r||X ||, ||X ||∗ ≤ r||X ||. (118)

I EXTENSION TO THE GENERAL TENSOR

In this section, we provide a brief analysis for the extension to the asymmetric case by formulating
the asymmetric model into a symmetric model. We first present the asymmetric tensor sensing
model:

y = Ma(X ⋆) + s, (119)

where X ⋆ ∈ Rn1×n2×k, Ma(X ) = [⟨B1,X ⋆⟩, ⟨B2,X ⋆⟩, ..., ⟨Bi,X ⋆⟩]. Under this asymmetric
model, we take an asymmetric factorization X = L ∗R⊤, L ∈ Rn1×r×k, R ∈ Rn2×r×k. Then
we define the symmetric measurement tensors Ci ∈ R(n1+n2)×(n1+n2)×k by:

Ci :=
1√
2

(
0 Bi

B⊤
i 0

)
(120)

and the corresponding linear map C : R(n1+n2)×(n1+n2)×k → Rm via

(C(X ))i = ⟨Ci,X ⟩.
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Figure 6: Comparison of training and testing errors for Problem (121) using FGD with spectral
vs. small initialization. The ground-truth tensor has tubal-rank r = 2, overestimated rank R = 4,
size n1 = n2 = 20, k = 3, m = 5kr(2n1 − r) measurements, and noise σ = 10−3. Spectral
initialization follows Liu et al. (2024b), while small initialization uses a near-zero starting point.
Training error is 1

2 ||y−M(L∗R⊤)||2, and testing error is ||L∗R⊤−X ⋆||2F /||X ⋆||2F . “Baseline”
denotes recovery under exact rank R = r. Insets show early (first 500 iterations) vs. full error
curves.

Define

sym(X ) :=

[
0 X

X⊤ 0

]
and

Zt :=
1√
2

[
Lt

Rt

]
and Z̃t :=

1√
2

[
Lt

−Rt

]
.

With these definitions, we then transfer the asymmetric sensing model into a symmetric model:

1√
2
C(sym(X )) = Ma(X ) and

1√
2
C(Zt ∗Z⊤

t − Z̃t ∗ Z̃
⊤
t ) = Ma(Lt ∗R⊤

t ).

With this model, we have the following objective function:

h(Lt,Rt) =
1

2
||M(X ⋆ −Lt ∗R⊤

t ) + s||2 (121)

Then we define the corresponding symmetric loss function:

hsym(Zt, Z̃t) =
1

4
||C(sym(X ⋆)−Zt ∗Z⊤

t + Z̃t ∗ Z̃t) +
√
2s||2.

The gradient update of hsym(Zt, Z̃t) is

Zt+1 = Zt + η[(C∗C)(sym(X ⋆)−Zt ∗Z⊤
t + Z̃t ∗ Z̃t) + C∗(

√
2s)] ∗Zt

Z̃t+1 = Z̃t − η[(C∗C)(sym(X ⋆)−Zt ∗Z⊤
t + Z̃t ∗ Z̃t) + C∗(

√
2s)] ∗ Z̃t.

(122)

This formulation allows us to leverage some proof techniques from the symmetric case. However,
handling the imbalance introduced by the two factor tensors poses a significant challenge, and we
are actively investigating this issue. Encouragingly, our experimental result in Figure 6 shows that
the phenomenon described in this paper also persists in the asymmetric setting.
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J ADDITIONAL EXPERIMENTS

J.1 SIMULATIONS ON DIFFERENT NOISE DISTRIBUTION

We conduct simulation experiments to verify that our theoretical results remain valid under vari-
ous noise distributions, not limited to Gaussian noise. The experimental setup is identical to that
in Section 6, except that we replace the Gaussian noise with two types of sub-exponential noise:
Laplace noise and exponential noise. We briefly introduce the two noise models considered in our
experiments:

• Laplace noise: The noise vector follows a Laplace distribution,

s ∼ Laplace(µ, b), f(si) =
1

2b
exp

(
−|si − µ|

b

)
,

which is a symmetric sub-exponential distribution with mean µ and variance 2b2.
• Exponential noise: The noise vector follows an exponential distribution,

s ∼ Exp(λ), f(si) = λ exp(−λsi), xsi ≥ 0,

which is an asymmetric sub-exponential distribution with mean 1/λ and variance 1/λ2.

The results, shown in Figures 7 and 8, demonstrate that under both noise types, FGD with small
initialization achieves the same recovery error as in the exact tubal-rank case, even in the over-
parameterized regime. This confirms that the guarantee provided by Theorem 2 extends beyond
Gaussian distributions. Moreover, FGD with validation and early stopping yields errors that are very
close to those in the exact tubal-rank setting, further validating the effectiveness of this approach and
suggesting that the result in Theorem 3 can also be extended to sub-exponential noise.
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Figure 7: Performance comparison under varying R, b with Laplace noise with µ = 0. Subfigure (a)
illustrates the recovery error of all methods under different over-rank values R, with parameters set
as m = 5kr(2n− r), n = 30, b = 10−3, η = 0.1, and T = 5000. Subfigure (b) illustrates the error
under varying noise levels b, with m = 5kr(2n− r), n = 30, R = 3r, η = 0.1, and T = 5000.

J.2 REAL-DATA EXPERIMENTS

In this section, we provide additional experimental details and results. We first present the algorithm
used for the tensor completion task, as shown in Algorithm 3. We then give the definitions of the
evaluation metrics, PSNR and relative error:

PSNR = 10 log10

(
||X ⋆||2∞

1
n1n2n3

||X̂ −X ⋆||2F

)
, RE =

||X̂ −X ⋆||F
|X ⋆|||F

,
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Figure 8: Performance comparison under varying R, λ with exponential noise. Subfigure (a) illus-
trates the recovery error of all methods under different over-rank values R, with parameters set as
m = 5kr(2n − r), n = 30, b = 10−3, η = 0.1, λ = 1000 and T = 5000. Subfigure (b) illustrates
the error under varying noise levels λ, with m = 5kr(2n − r), n = 30, R = 3r, η = 0.1, and
T = 5000.

where X ⋆ is the ground truth and X̂ is the estimated tensor. Next, we briefly introduce the baseline
methods used for comparison:

• TNN (Lu et al., 2018): a classical convex method based on tubal tensor nuclear norm
minimization proposed by (), widely used in tensor completion.

• TCTF (Zhou et al., 2017): a tensor factorization–based method with tubal-rank estimation,
designed to reduce computational cost.

• UTF (Du et al., 2021): another tensor factorization method that replaces the tubal tensor
nuclear norm constraint with Frobenius-norm constraints on two factor tensors.

• TC-RE (Shi et al., 2021): a rank-estimation–based method that first estimates the tubal rank
and then performs tensor completion using truncated t-SVD.

• GTNN-HOPp (Wang et al., 2024): a method that replaces the traditional TNN soft thresh-
olding with a hybrid ordinary-lp penalty for improved performance.

We conduct experiments on both color image completion and video completion tasks, and compare
our method with the above approaches.

Algorithm 3 Solving tensor completion by FGD with early stopping

Input: Train data Ptrain
Ω (X ⋆ + Sn), validation data Pval

Ω (X ⋆ + Sn), initialization scale α, step
size η, estimated tubal-rank R, iteration number T
Initialization: Initialize L0,R0, where each entry of L0,R0 are i.i.d. from
N (0, α2

R ).
1: for t = 0 to T − 1 do
2: Lt+1 = Lt − η

pP
train
Ω (Lt ∗R⊤

t −X ⋆ − Sn) ∗Rt

3: Rt+1 = Rt − η
pP

train
Ω (Lt ∗R⊤

t −X ⋆ − Sn)
⊤ ∗Lt

4: Validation loss: et = 1
2p

∥∥∥Pval
Ω (Lt ∗R⊤

t −X ⋆ − Sn)
∥∥∥2
F

5: end for
6: Output: Lť ∗R⊤

ť where ť = argmin1≤t≤T et.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 3: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels. A higher PSNR
and smaller RE indicates better reconstruction quality.“FGD-ES” denotes FGD with early stopping,
while “FGD-best” refers to the minimum error achieved by FGD over all iterations.

Methods
p = 0.3 p = 0.4

σ = 0.03 σ = 0.05 σ = 0.03 σ = 0.05
PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓

UTF 7.8242 0.276 7.3535 0.2884 6.8286 0.3112 5.5376 0.3559
TNN 20.211 0.0659 17.2288 0.0934 20.4965 0.0639 17.1281 0.0947

TC-RE 19.7102 0.0698 16.9971 0.096 19.7435 0.0698 16.4039 0.1029
GTNN-HOP0.3 19.6553 0.0706 16.1069 0.107 20.0091 0.068 16.268 0.1051
GTNN-HOP0.6 20.2583 0.0659 16.8056 0.0987 20.5764 0.0636 16.8933 0.0978

FGD-ES 22.083 0.0529 21.02 0.0597 22.2876 0.0517 21.5831 0.0559
FGD-best 22.1411 0.0525 21.1517 0.0588 22.3001 0.0516 21.7213 0.0551

J.2.1 COLOR IMAGE COMPLETION EXPERIMENTS

We perform color image completion experiments on the Berkeley Segmentation Dataset (Martin
et al., 2001). We randomly select 50 color images of size 481 × 321 × 3 and set the sampling
rate as p and add Gaussian noise N (0, σ2). For TNN, UTF, TCTF, and GTNN-HOP, we adopt the
initialization schemes and hyperparameter settings as described in their original papers. The entry
”FGD-best” refers to the highest PSNR obtained by FGD with small initialization, while ”FGD-ES”
corresponds to the PSNR achieved using early stopping based on validation. For both settings, the
initialization scale is set to α = 10−5 and the step size is set to η = 1e − 3. The tubal-ranks of
FGD-ES, FGD-best and UTF are set to 100 for all images. The max iteration number is 2000. We
present in Figures 9-12 the PSNR and RE values of different methods on each image under various
model parameters ((p, σ)). In addition, Figure 13 shows the visual reconstruction results.

We observe that FGD-best and FGD-ES achieve the best recovery performance in most cases. More-
over, when the noise level increases, the performance of other algorithms degrades significantly,
whereas FGD with small initialization is much less affected, highlighting the benefit of small initial-
ization.

J.2.2 VIDEO COMPLETION EXPERIMENTS

Beyond image completion, we also performed video completion experiments with Gaussian noise.
We randomly selected four videos from the YUV Video Sequences dataset 2, extracted the first 30
frames of each to form tensors of size 176× 144× 30, added Gaussian noise drawn fromN (0, σ2),
and again applied sampling rate p. Since TCTF performs bad in the low sampling rate case of
video completion, we replace it with GTNN-HOP0.6, a non-convex method with a sparsity-inducing
regularizer. For FGD-ES and FGD-best, the initialization scale is set to α = 10−5 and the step size
is set to η = 2e−4. The tubal-ranks of FGD-ES, FGD-best and UTF are set to 50 for all images. The
max iteration number is 4000. Tables 3-7 report the PSNR and RE values of all methods on the four
videos, and Figure 14 shows the reconstruction results of the first frame of the akiyo video for each
method. As can be seen, our method achieves the smallest relative recovery error and the highest
PSNR values. In addition, we evaluated the robustness of FGD-best and FGD-ES with respect to
the choice of the tubal rank R. The results, shown in the Figure 15, demonstrate that both methods
are highly robust to the selection of R across all four videos.

One potential issue is that gradient-based methods are sensitive to the condition number of the
underlying matrix or tensor, leading to slower convergence when the condition number is large.
Thus, developing methods that accelerate FGD while controlling the amplification of noise remains
an interesting direction for future research.

2https://www.cnets.io/traces.cnets.io/trace.eas.asu.edu/yuv/index.html
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Figure 9: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.2 and noise standard deviation σ = 0.07.

Table 4: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels. A higher PSNR
and smaller RE indicates better reconstruction quality.“FGD-ES” denotes FGD with early stopping,
while “FGD-best” refers to the minimum error achieved by FGD over all iterations.

Methods
p = 0.3 p = 0.4

σ = 0.03 σ = 0.05 σ = 0.03 σ = 0.05
PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓

TNN 20.7258 0.0613 17.4371 0.0895 21.0157 0.0592 17.3267 0.0906
TC-RE 19.928 0.0671 17.1895 0.0920 20.2059 0.0650 16.5464 0.0991

UTF 6.3467 0.3207 6.4038 0.3186 5.9414 0.3360 4.7523 0.3853
GTNN-HOP0.3 19.9438 0.0670 16.1328 0.1039 20.2975 0.0643 16.2845 0.1021
GTNN-HOP0.6 20.5461 0.0625 16.8126 0.0961 20.8648 0.0603 16.9083 0.0951

FGD-ES 23.2899 0.0456 21.6321 0.0552 23.8244 0.0429 22.3928 0.0501
FGD-best 23.4511 0.0448 21.8002 0.0541 23.8539 0.0427 22.5611 0.0496
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Figure 10: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.2 and noise standard deviation σ = 0.1.

Table 5: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels for the “highway”
video. A higher PSNR and smaller RE indicates better reconstruction quality. “FGD-ES” denotes
FGD with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all
iterations.

Methods
p = 0.3 p = 0.4

σ = 0.03 σ = 0.05 σ = 0.03 σ = 0.05
PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓

TNN 19.4802 0.0474 16.9433 0.0635 19.8369 0.0455 16.8423 0.0642
TC-RE 19.0227 0.0499 16.6549 0.0656 19.1568 0.0492 16.1336 0.0697

UTF 4.0060 0.2814 3.7117 0.2911 1.1904 0.3891 0.7714 0.4084
GTNN-HOP0.3 19.3115 0.0483 16.1687 0.0694 19.7269 0.0461 16.3390 0.0680
GTNN-HOP0.6 19.8894 0.0452 16.8541 0.0641 20.2802 0.0432 16.9568 0.0634

FGD-ES 20.6667 0.0413 20.0041 0.0446 20.7364 0.0410 20.3462 0.0429
FGD-best 20.7000 0.0412 20.1063 0.0441 20.7278 0.0410 20.4994 0.0421
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Figure 11: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.3 and noise standard deviation σ = 0.07.

Table 6: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels for the “suzie” video.
A higher PSNR and smaller RE indicates better reconstruction quality. “FGD-ES” denotes FGD
with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all itera-
tions.

Methods
p = 0.3 p = 0.4

σ = 0.03 σ = 0.05 σ = 0.03 σ = 0.05
PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓

TNN 19.3458 0.0717 16.6844 0.0974 19.8125 0.0679 16.7441 0.0967
TC-RE 19.2177 0.0728 16.5983 0.0984 19.2186 0.0728 16.0643 0.1046

UTF 11.4879 0.1772 10.2100 0.2053 10.8456 0.1908 8.6211 0.2465
GTNN-HOP0.3 19.0898 0.0738 15.7370 0.1086 19.5613 0.0699 15.9544 0.1059
GTNN-HOP0.6 19.6531 0.0692 16.4167 0.1005 20.0997 0.0657 16.5620 0.0988

FGD-ES 20.5670 0.0623 19.4874 0.0705 20.7175 0.0612 20.1540 0.0653
FGD-best 20.5947 0.0621 19.6263 0.0694 20.7445 0.0610 20.2629 0.0645

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Image index

10

15

20

25

30

P
S

N
R

 (
dB

)
FGD-ES FGD-best TNN GTNN TCTF UTF TC-RE

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Image index

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e 
E

rr
or

 (
R

E
)

FGD-ES FGD-best TNN GTNN TCTF UTF TC-RE

(b)

Figure 12: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.3 and noise standard deviation σ = 0.1.

Figure 13: Comparison of the image recovery performance of different methods under varying
sampling rate p. The noise standard deviation σ = 0.05. And 5% of the observed entries are used
for validation.
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Table 7: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels for the “miss-america”
video. A higher PSNR and smaller RE indicates better reconstruction quality. “FGD-ES” denotes
FGD with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all
iterations.

Methods
p = 0.3 p = 0.4

σ = 0.03 σ = 0.05 σ = 0.03 σ = 0.05
PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓ PSNR ↑ RSE ↓

TNN 21.2922 0.0831 17.8503 0.1235 21.3210 0.0828 17.5991 0.1271
TC-RE 20.6724 0.0892 17.5455 0.1279 20.3926 0.0921 16.8711 0.1382

UTF 9.4560 0.3245 9.0886 0.3386 9.3371 0.3290 8.0055 0.3835
GTNN-HOP0.3 20.2760 0.0934 16.3891 0.1461 20.4505 0.0915 16.4938 0.1443
GTNN-HOP0.3 20.9446 0.0865 17.1388 0.1340 21.0611 0.0853 17.1462 0.1339

FGD-ES 23.8085 0.0622 22.9563 0.0686 23.8721 0.0617 23.4395 0.0649
FGD-best 23.8186 0.0621 23.0738 0.0677 23.8743 0.0617 23.5618 0.0640

ObservedOriginal UTF TNN TC-RE FGD-bestFGD-ESGTNN-HOP0.3 GTNN-HOP0.6

Figure 14: Comparison of the video recovery performance of different methods under varying sam-
pling rate p and noise standard deviation σ for video ”akiyo”. For FGD-ES, 5% of the observed
entries are used for validation.
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Figure 15: Evaluate the effect of different tubal-rank R on the performance of video completion.
Subfigure (a) shows the PSNR values of FGD-best on the four videos, and subfigure (b) shows the
corresponding RE values. Subfigure (c) reports the PSNR values of FGD-ES on the four videos,
while subfigure (d) presents the associated RE values.
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