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ABSTRACT

We study the problem of recovering a low-tubal-rank tensor X', € R™*"** from
noisy linear measurements under the t-product framework. A widely adopted
strategy involves factorizing the optimization variable as U * U, where U €
R™* 7%k followed by applying factorized gradient descent (FGD) to solve the re-
sulting optimization problem. Since the tubal-rank r of the underlying tensor X,
is typically unknown, this method often assumes r < R < n, a regime known as
over-parameterization. However, when the measurements are corrupted by some
dense noise (e.g., Gaussian noise), FGD with the commonly used spectral initial-
ization yields a recovery error that grows linearly with the over-estimated tubal-
rank R. To address this issue, we show that using a small initialization enables
FGD to achieve a nearly minimax optimal recovery error, even when the tubal-
rank R is significantly overestimated. Using a four-stage analytic framework, we
analyze this phenomenon and establish the sharpest known error bound to date,
which is independent of the overestimated tubal-rank R. Furthermore, we pro-
vide a theoretical guarantee showing that an easy-to-use early stopping strategy
can achieve the best known result in practice. All these theoretical findings are
validated through a series of simulations and real-data experiments.

1 INTRODUCTION

In recent years, the growing complexity and dimensionality of real-world data have highlighted the
limitations of traditional vector and matrix models. As a natural generalization, tensors provide a
more expressive framework to capture multi-dimensional correlations inherent in data arising from
applications such as hyperspectral imaging (Han et al.} 2025), dynamic video sequences (Han et al.,
2024), and sensor arrays (Rajesh & Chaturvedi, 2021; [Fu et al.| 2025). A common trait shared
across these applications is the underlying low-rank structure of the data when represented in tensor
form. Leveraging this property, a wide range of inverse problems can be effectively reformulated as
low-rank tensor recovery tasks. Notable examples include image inpainting (Zhang & Aeron, 2016;
Gilman et al.} 2022} [Yang et al.} 2022)), compressive imaging and video representation (Wang et al.,
2017; Baraniuk et al., 2017; Wang et al., 2018), background modeling from incomplete observations
(Cao et al., 2016} |Li et al., 2022 |Peng et al., 2022), and even advanced medical imaging techniques
such as computed tomography (Liu et al.||2024a)). The goal of low-rank tensor recovery is to recover
the target tensor X', from a few noisy measurements:

yi:<A1’7X*>+si; i:1>2--'ama (1)

where s; denotes the unknown noise. This model can be concisely represented as y = (X)) + s,
where M(X,) = [(A1, Xy), (A2, Xy), ..., (A, X)) Since X, is low-rank, the problem can
be solved via rank minimization:

m);n rank(X),s.t. ||y — DU(X)||2 < es, (2)

where rank(-) denotes the tensor rank function and €, denotes the noise level.

There are various tensor decomposition methods, such as CANDECOMP/PARAFAC decomposi-
tion (CP) (Carroll & Chang} |1970; Harshmanl, [1970)), Tucker decomposition (Tucker, [1966)), Tensor
Singular Value Decomposition (t-SVD)(Kilmer & Martin, 2011)), Tensor Train (Oseledets, |2011)),
and Tensor Ring (Zhao et al.| 2016), each leading to different definitions of tensor rank. In this
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work, we adopt the t-SVD along with its associated tubal-rank (Kilmer et al.l [2013). We adopt t-
SVD due to its use of circular convolution along the third dimension via the t-product, enabling it to
capture frequency-domain structures effectively (Wu et al., [2024). This capability makes it particu-
larly powerful for handling multi-dimensional data such as images and videos (He et al., [2024; |Wu
& Fanl 2024;|Wu et al., 2025; |Liu et al., | 2023). Furthermore, t-SVD guarantees an optimal low-rank
approximation, in a manner directly analogous to the Eckart—Young theorem for matrices (Eckart &
Young, [1936). Under the t-SVD framework, since problem (2) is NP-hard, a common approach is
to relax the tubal-rank constraint to the tensor nuclear norm. This reformulates the original problem
as a tubal tensor nuclear norm minimization. While this relaxation is theoretically sound, solving it
typically requires repeated t-SVD computations, which become increasingly expensive as the tensor
dimensions grow.

To address this issue, a more recent and popular approach is to adopt the tensor Burer—Monteiro
(BM) factorization, a higher-order extension of the matrix Burer—Monteiro method (Burer & Mon-
teiro, 2003). This technique represents the large tensor as the t-product of two smaller factor tensors,
thereby transforming the original problem into an optimization over the two factors, often minimiz-
ing an objective of the forrr{ﬁ

min
ueRnXRXk

) = ﬁ“y—m(u*uT)HQ, M(-) : RP¥XE Ly R 3)

where * denotes the tensor-tensor product. Factorized .(Gr———@
Gradient Descent and its variants can then be applied, sig- d &
nificantly reducing computational costs (Liu et al.,[2024b; 31

Karnik et al.,|2025)). However, such methods typically re-
quire prior knowledge of the tubal-rank r of the target ten-

sor, which is often unavailable in practice. As a result, it ]
is common to assume an estimated rank R > r, a setting »[¢
often referred to as the over-parameterized or over-rank t
case. However, in the case of noisy low-tubal-rank tensor
recovery, over-parameterization can lead to larger recov- .| N
ery errors. [Liu et al.|(2024b)) showed that the recovery er-
ror in the over-parameterized setting grows linearly with
the estimated tubal-rank R. When the tubal-rank is signif- [
icantly overestimated, the error can become substantial. R P A
Furthermore, FGD suffers from a severe slowdown in

convergence when the tubal-rank is overestimated. This
leads to an important question: In noisy low-tubal-rank
tensor recovery, is it possible to obtain an error bound
that depends only on the true tubal-rank r ?
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Figure 1: Comparison of training and
testing errors for Problem using
FGD with spectral vs. small initializa-
tion. The ground-truth tensor has tubal-
rank r = 2, overestimated rank R = 4,

By investigating this question further, we find that with
small initialization, factorized gradient descent con-
verges linearly to a nearly minimax optimal error only
relying on r, even when the tubal-rank is significantly
overestimated. ~ As shown in Figure 1, under over-
parameterization, FGD with spectral initialization yields
suboptimal recovery error, while FGD with small initial-
ization achieves the same error as in the exact tubal-rank
setting. However, as the algorithm continues to iterate,
the error gradually increases and eventually matches that
of spectral initialization. We provide a theoretical analy-

sizen = 20, k = 3, m = 5kr(2n — )
measurements, and noise o = 1072,
Spectral initialization follows |Liu et al.
(2024Db), while small initialization uses
a near-zero starting point. Training er-
ror is 7|y — MU +U ")||?, and test-

4m
ing erroris |[U U — X, |12/, |%.
“Baseline” denotes recovery under ex-
act rank R = r. Insets show early (first
500 iterations) vs. full error curves.

sis of this phenomenon and derive the best-known error bound to date. Furthermore, based on early
stopping and validation (Prechelt, |1998}; |Stone| [2018; Ding et al.| |2025)), we show that this error is
achievable and provide corresponding theoretical guarantees.

We summarize the main contributions of this paper as follows:
Tightest error upper bound We discover that with small initialization, FGD can achieve an error

'As in prior work, we assume that X', is a symmetry and positive semi-definite tensor. for detailed expla-

nation, please refer to DeﬁnitionE}
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which only depends on the exact tubal-rank in noisy, over-parameterized low-tubal-rank tensor re-
covery. We establish global convergence and the tightest error bound for FGD that depends only on
the true tubal-rank. This significantly improves upon previous results (Liu et al.| [2024b)). To the best
of our knowledge, this is the first error bound that is independent of the overestimated tensor rank.

Minimax lower bound and near-optimality. We derive an information-theoretic minimax lower
bound for noisy tubal-rank tensor recovery, showing that any estimator has mean square error at

least Q(%"z}) Comparing this lower bound with our upper bound demonstrates that our method is
nearly optimal; the remaining gaps are only due to constant factors and dependencies on the condi-
tion number K.

Attainable recovery error A validation-based early stopping method is applied to FGD to achieve
the error bound without any prior information about the target tensor. We theoretically show that
when the number of validation samples exceeds (’5(7“2/@8), the validation error matches the up-
per bound up to constants. On both synthetic and real datasets, we demonstrate that in the over-
parameterized setting, FGD (small initialization and validation-based early stopping) attains errors
comparable to those achieved with the exact-rank setting, and significantly outperforms spectral and
large random initializations.

1.1 RELATED WORKS

Non-convex low-tubal-rank tensor Typle 1: Comparison of several low-tubal-rank tensor recov-
recovery under t-SVD framework ¢y methods based on t-SVD. The noise vector s is assumed

Nonconvex low-tubal-rank tensor re- 4 consist of Gaussian random variables with zero mean and
covery methods under the t-SVD yariance o2.

framework can be broadly catego- methods rate  guarantee error
rized into two classes.  The first (Zhang et al| 2020) X v X
class aims to improve recovery ac- — - sub- o~
curacy by replacing the tubal tensor ~ (Liuetal,2024b) .~ local o (%)
nuclear norm with nonconvex surro- ——— - ;

gates. The second class focuses on (Karnik et al} 2025) linear global X
improving computational efficiency Ours linear global @) (%)

by decomposing a large tensor into
smaller factor tensors. We first discuss the methods in the first category. These approaches are de-
rived from the tubal tensor nuclear norm and include variants such as the t-Schatten-p norm (Kong
et al.,|2018)), weighted t-TNN (Mu et al.||2020), and partial sum of t-TNN (Jiang et al.| 2020). Other
methods employ nonconvex functions such as Geman or Laplace penalties in place of the tubal ten-
sor nuclear norm (Cai et al.| 2019; [ Xu et al., [2019)). It is worth noting that Wang et al.(Wang et al.,
2021)) proposed a generalized nonconvex framework that encompasses a wide range of non-convex
penalty functions. However, these methods still rely on repeated t-SVD computations, which are
computationally expensive, and often lack theoretical guarantees. The second category includes
factorization-based methods that decompose a large tensor into two or three smaller factor tensors,
followed by optimization techniques such as alternating minimization (Zhou et al.,[2017} |Liu et al.,
2019; He & Atia, [2023; [Wu et al.l [2025)), nonconvex tensor norms minimization (Du et al.l 2021}
Jiang et al., |2023b)), factorized gradient descent (Liu et al.| [2024b; Karnik et al} [2025)), scaled gra-
dient descent (Feng et al.l [2025; 'Wul [2025). Beyond these two main categories, there are also
approaches based on randomized low-rank approximation (Qin et al.| 2024)) and alternating projec-
tions (Q1u et al.,2022) for solving tensor recovery problems.

Over-parameterization in low rank tensor recovery Factorization-based methods typically re-
quire knowledge of the tensor rank. However, the true rank is often difficult to obtain in practice.
As a result, it is common to assume an estimated rank larger than the true one, a setting known as
over-parameterization. In matrix sensing, it has been shown that gradient descent can still achieve
the optimal solution under over-parameterization (Zhu et al.| 2018}, |Stoger & Soltanolkotabil 2021}
Soltanolkotabi et al.l 2025} Jiang et al.| [2023a}; |[Zhuo et al., 2024} Ding et al.| [2025). In contrast,
studies on over-parameterized settings in tensor recovery are relatively limited. Although many
methods have been proposed to estimate tensor rank, these methods are computationally expensive
and lack clear theoretical guarantees (Zhou & Cheung, 2019} [Shi et al., 2021} |[Zheng et al., [2023;
Zhu et al, [2025). Recently, Liu et al.| (2024b) investigated low-tubal-rank tensor recovery under
over tubal-rank and established local convergence guarantees and recovery error bounds for FGD,
where the error depends on the overestimated tubal-rank. Karnik et al.|(2025)) further proved global
convergence of FGD with small initialization under over tubal-rank, in the noiseless setting. In ad-
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dition, for Tucker decomposition, [Luo & Zhang| (2024) studied the over-parameterized setting in
tensor-on-tensor regression. However, in the presence of noise, its recovery error still depends on
the overestimated tensor rank. We compare our method with several closely related works, and the
results are summarized in Table[I]

2 PRELIMINARIES

The symbols y,y,Y ,Y are denoted as scalars, vectors, matrices, and tensors, respectively. Let
Y € R™X"*k be a third-order tensor. We refer to its entry at position (4,7,1) as Y(4, j,1), and
denote the [-th frontal slice by Y := Y(:,:, 1), following MATLAB-style indexing. The inner
product between two tensors I and Z is given by (¥, Z) = S°F_ (YD, ZD) where each Y !

and Z( are corresponding frontal slices.

For any tensor Y € R™*nxk jts Discrete Fourier Transform along the third mode yields R

Cm>nxk_Tn MATLAB syntax, we have Y = ££t(),[],3), and Y = ifft(Y,[],3). We denote
Y € C™F*Xnk a5 a block diagonal matrix of Y, i.e., Y = bdiag(Y) = diag(?m;?(z); o Y(k)).
The tensor-tensor product (t-product) of two tensors Z € R™*9** and Y € R7>*"*k js Z x Y ¢

Rm*nxk whose tubes are given (Z * V) (i, i) = 2:1 Z(i,p,:) *Y(p,i,:), where * denotes the

. . . . k
circular convolution operation, i.e., (x * y); = ijl T3Yi—j(mod k)-

For any tensor Y € C™*"*k _jts conjugate transpose ' € C™*™*F is computed by taking the
conjugate transpose of each frontal slice and reversing the order of slices 2 through £. The identity
tensor, represented by Z € R™*"™** s defined such that its first frontal slice corresponds to the
n X n identity matrix, while all subsequent frontal slices are comprised entirely of zeros. This can
be expressed mathematically as: IV = I,,,,,, I =0,1=2,3,...,k. A tensor @ € R"*nxk
is considered orthogonal if it satisfies the following condition: QT x Q= Q% QT =7.
Theorem 1 (t-SVD (Kilmer & Martin, 2011)). Let Y € R™*"¥* then it can be factored as Y =
Vy * Sy * W; where Vy € R™X™MXE Wy, ¢ Rk gre orthogonal tensors, and Sy €
R™*"*k js g f.diagonal tensor, i.e., all the frontal slices of Sy are diagonal matrix.

For Y € R™*™>k jts tubal-rank as rank; () is defined as the nonzero diagonal tubes of Sy, where

S+ is the f-diagonal tensor from the t-SVD of Y. That is rank,(Y) := #{i : Sy (i,,:) # 0}. And

its average rank is defined as rank,(Y) = 1 Zf rank(Y(l)). The condition number of a tensor

Y € R™Xn*k jg defined as k(Y) = U‘”_((??)),

and 01 (Y) > --+ > omin(Y) > 0 denotes the singular values of Y. For Y € R™*"*F its spectral
norm is denoted as || Y| := |bcirc(Y)|| = ||Y|; its frobenius norm is defined as | Y| :=

\/ 2250 Y (i, 4, 1)?; its tubal tensor nuclear norm is defined as ||Y|[. := 1Y | (Luet al || 2019).

where Y is the block diagonal matrix of tensor )

3  MAIN RESULTS

3.1 FACTORIZED GRADIENT DESCENT AND T-RIP

Firstly, we present the detailed update rule of the factorized gradient descent method for solving
problem : Uy ~ N(0,5), Unir = U =0 L0 (MU U] - X XT) = 5) w U,

where M (e) = Y €A and X, = X % X", x e Rk A common assumption for
analyzing the convergence of factorized gradient descent is the t-RIP, which is defined as follows:

Definition 1 (t-RIP (Zhang et al., [2021)). A linear map 9N : R™*xk 5 R™ s said to satisfy
(r,8) tensor Restricted Isometry Property (t-RIP ) for § € [0, 1] if for any tensor Y € R™*"*F with
tubal-rank < r, the following inequalities hold: (1 — 8)||Y||% < ||[D(P)[]>/m < (1 +6)]|Y||%.

The t-RIP condition has been shown to hold with high probability (Zhang et all 2021) if m >
rnk /62, provided that each measurement tensor .A; in the operator 91 has entries drawn indepen-
dently from a sub-Gaussian distribution with zero mean and variance 1. Note that this condition has
been extensively used in previous studies (Zhang et al.|[2020; [Liu et al.| |2024b}; Karnik et al., 2025)),

making it a natural and reasonable assumption in our setting.
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We decompose the FGD update as
DM 1 .
Ui =U—nU+U] —X,) U+ (3 - m) U, U —x,) *Ut—i—n-EDﬁ (s) *U;,

———
(a) (b):=E&

where J : R"*7xF _ R"XnXE denotes the identity map. Then the t-RIP condition and tensor
concentration bounds are applied to control terms (a) and (b) separately.
3.2 THEORETICAL GUARANTEES

We first establish theoretical guarantees for solving noisy low-tubal-rank tensor recovery via FGD
with small initialization.

Theorem 2. Assume the following assumptions hold: (1) the linear map 9 satisfies (2r + 1,6)
t-RIP with § < cx™4r=Y2; (2) the step size n < ck™*||X|[?; (3) the error term € := 19" (s)
satisfies ||E|| < ck™202,,(X); (4) each entry of the initial point Uy is i.i.d N(0, (’T;) With

min

all these assumptions, the following statements hold with probability at least 1 — ke R —
max{k(Ce)ft=r1 ke?},

2k2\/rn —10s7
1. When R = r, and the initialization scale satisfies o < V7 Tmin (X) - , then we
~ VE(RAn)K?2 C3

have

R 1 2,.3/2
[U; x U] — X, ||r < VrE?||E]], where § > —; (X)ln( eV )
'r/

\/Eaamin(X)

min
2. When r < R < 3r, and initialization scale « satisfies « <
2 —10.‘12

min { Zen(X) K%H‘EJ% T 2y then we have

(RAR)RZ (Ran)y—r)7 || x| 3T [ VE Zs ;

1 5
. 1 n2r: K| X2
[U; « U] — X, ||r < VrE?||E]], where &< —; In
! N0min(X) — \ E(RAN) —r)a?

3. When R > 3r, and the initialization scale satisfies « <

—10x2
) 3% 3% 2k2/n
min { Imin(X) r21]|E[|21 } L (- 267V , then we have
C3 )

(BAMKE? (Rn)—r) 7 ||| |21 [ VE (RAn

. 2|1 x||?
||Z/l£*1/l;r — X, ||lr < VrE2||E]|, where £ < Vs Xl )

1
no'min(x)2 . (k((R A Tl) - T)(R A TL)O[Q
Here, c, ¢, C3, €, C are fixed numerical constants, and we define R A n := min{R,n}, xk := r(X).

Remark 1. (Recovery error) Our final recovery error is \/Tk?||E||, which depends only on the
spectral norm of the noise term E, the condition number k of X, and the true tubal-rank r. We make
no specific assumptions on the distribution of the noise, requiring only that ||E|| < ck 202, (X).
This makes our result potentially applicable to a wide range of noise distributions. When the noise
is Gaussian noise, our bound reduces to that of (Liu et al., |2024b). However, a key difference is
that our error bound depends only on the true tubal-rank r, whereas the bound in|Liu et al.|(2024b))

depends on the overestimated tubal-rank R.

Then we present a theorem that characterizes the minimax error in the Gaussian noise case. Theorem
[3] establishes the fundamental statistical limit for low-tubal-rank tensor recovery. Specifically, for
any estimation procedure, the mean squared error cannot uniformly fall below order © (nrko?/m)
over tensors of tubal-rank at most 7. Furthermore, there exist parameter choices under which the
error attains this order with constant probability.

Theorem 3 (Minimax error). Suppose that the linear map 9(-) satisfies the (r,0) t-RIP, X, €
R™¥"%F s q full tubal-rank r tensor, and that s ~ N'(0, 0%1), then any estimator X .s; obeys

1 nrko? ok

Sup B[ X e — X} > sup B (|| — 2. > I ) 5
X, est *F_1+5 m 7X* est *F_2m(1+(5) el .
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With the minimax error under Gaussian noise, we further show that when s ~ A/ (0, 02), FGD with
small initialization converges to nearly optimal error.

Corollary 1. (Nearly minimax optimal error in Gaussian case) Under the assumptions of Theorem
() further assume that the entries of the noise vector s are Gaussian with zero mean and variance

2
o2, and that the number of measurements satisfies m > nkn‘*m. Then, with high probability,

4 2 ~
we have ||U; * L{ET — X, ||% < “Enon ywhere Uy is the same as TheoremEl

Remark 2. (Sample complexity) Our assumption on the number of measurements m mainly comes
from the t-RIP condition, which requires m > nkr /5. In this work, we rely only on the (2r + 1,0)
t-RIP, without depending on the overestimated tubal-rank R, which is consistent with the setting in
(Karnik et al.l2025). In contrast, requires the (4R, 0) t-RIP, leading to higher
sample complexity as the overestimated tubal-rank R increases. Note that this sampling complexity

is required only for theoretical guarantees; in practice, a much smaller sample size suffices, as
shown in Figure(d).

Remark 3. (Comparison with 024b)) Both this work and 2024Db) employ

factorized gradient descent algorithms to solve the low-tubal-rank tensor recovery problem. They
are the first to apply FGD to this problem and provided convergence and recovery error analyses.
However, our work differs significantly from them in several key aspects: (1) Initialization: They
relies on spectral initialization to obtain a sufficiently good starting point for its theoretical analysis.
In contrast, our method requires only a small random initialization to guarantee convergence. These
two initialization strategies lead to entirely different analytical frameworks and theoretical results.
(2) Convergence rate: In 2024D)), the convergence rate under over-parameterization is
sublinear, whereas our analysis shows that the convergence rate remains linear even in the over-
parameterized regime. (3) Recovery error: Their recovery error depends on the over-parameterized
tubal rank R, while ours depends only on the true tubal rank r. (4) Sampling complexity: They
require the measurement operator M to satisfy the (4R, 0) t-RIP condition, whereas we only require
M o satisfy the (2r + 1,0) t-RIP condition. As a result, the sampling complexity in
grows with the degree of over-parameterization, while our requirement remains mild and
independent of RR.

Remark 4. (Comparison with |[Karnik et al.| (2025)) Another related work is [Karnik et al (2023)),

which studies tubal tensor recovery under small initialization. Our work differs from theirs in sev-
eral key aspects. (1) Problem setting: While they focus on the implicit regularization effect of small
initialization, our goal is to provide theoretical guarantees for low-tubal-rank tensor recovery with
noise under small initialization. (2) Technical tools: First, their analysis splits the FGD trajectory
into only two stages—the spectral stage and the convergence stage, which does not allow a precise
characterization of the noise evolution. In contrast, we introduce a four-phase decomposition that
provides a much finer description of the trajectory, enabling us to track the effect of noise through-
out all stages. Second, they use the tubal-rank-induced tensor nuclear norm, whereas we use the
average-rank-induced version, which captures the tensor’s low-rank structure more effectively (see
for a detailed comparison). Consequently, directly extending their results to the
noisy tensor setting does not yield minimax-optimal recovery guarantees. (3) Theoretical results:
Our analysis requires less restrictive bounds on parameters. For example, the upper bound on the
initialization scale o in our Theorem 2 is significantly more relaxed than that in [|Karnik et al.|(2025)),
Theorem 3.1]. Moreover, their results are restricted to over-parameterized settings with R > 3r,
while our analysis covers both the exactly parameterized case R = r and the over-parameterized
case r < R < 3r, making our guarantees more comprehensive.

Remark 5. (Discussion with tubal-rank estimation methods) Over the past five years, many low-
tubal-rank tensor recovery methods with rank estimation strategies have been proposed
2021} [Zheng et al} 2023 [Zhu et all [2025). (1) Problem setting: Our goal is to achieve stable
recovery even when the specified tubal-rank upper bound exceeds the true tubal-rank, ensuring that
the error does not deteriorate as the upper bound increases. In contrast, tubal-rank estimation
methods aim to identify or approximate the true tubal-rank. (2) Noise models:
and considered rank estimation in the presence of sparse noise, while Zheng et al.|
focuses on fast and robust rank estimation in the noiseless setting. Our results apply to the
situation inthe presence of sub-Gaussian noise. (3) Theoretical guarantees: To the best of our
knowledge, the above works do not provide rank-independent error bounds under the t-SVD and
tubal-rank setting. Our main contribution is to establish such tubal-rank-independent guarantees
and demonstrate near-minimax statistical accuracy.
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3.3 PROOF SKETCH

Define the tensor column subspace of X as Vy € R™*7xk Consider the tensor V; * U, and the
corresponding t-SVD V3 * U; = Vi + S; + W, with W, € RE*"*k_And we denote W; | €
REX(n=7)xk a5 a tensor whose tensor column subspace is orthogonal to the column subspace of
W.. Then we can decompose U, into “signal term” and “over-parameterization term”:

T T
Uy =U Wi W] U W s W] | “)
—
signal term over-parameterization term

Through this decomposition, we can separately analyze the signal term and the over-
parameterization term. Specifically, we consider the following three quantities to study the con-
vergence behavior of FGD:

* omin(Us * W;): the magnitude of the signal term;
* ||« W, 1 ||: the magnitude of the over-parameterization term;

. ||V;L * Vi, «w, ||: the alignment between the column space of the signal and that of the
ground truth.

Then we divide the trajectory of FGD into four phases:

I. Alignment phase: At this stage, the column space of the signal term U; * W, gradually aligns
with that of the ground truth X', as indicated by the decreasing value of |V %1 * Vii,«w, ||. Both
OTmin (U * W) and || U, * W,_| || remain small due to the small initialization.

IL. Signal amplification phase: Here, o, (U * WW;) grows exponentially until it reaches at least
Omin (X)
V10

IIL. Local refinement phase:In this stage, using the decomposition (3), the error is decomposed as

lde U — X || S 4V U U — X+ [Usx W L.

, while ||U; * W,_| || remains nearly at the scale of the initialization.

The over-parameterization term |[U; * W | ||? remains small, while the in-subspace error ||V 3 *
U, *U] — X,)|| decreases rapidly, leading to the lowest recovery error.

IV. Overfitting phase: Eventually, the over-parameterization term ||Uf; « W, | | starts to grow,
which causes the overall error |[U; * U, — X, ||F to increase and approach the error of spectral
initialization.

The power of small initialization Through the above four-phase analysis, we can see that small
initialization plays a crucial role. Specifically, small initialization ensures that the signal term rapidly
increases while keeping the over-parameterization term at a small magnitude, thereby mitigating
the negative effects brought by over-parameterization. In particular, during Phase III, the over-
parameterization term ||, * Wy 1 ||? remains small, and |V * (U, * U] — X,)| converges
quickly. Moreover, due to the introduction of V x-, we have

Vi @ s U = X)||r < Vrl[Va = @< U = X)),
which ensures that the final recovery error is independent of the over tubal-rank R.

Remark 6. We assume that X , is symmetric and can be factorized as X, = X + X T, which aligns
with prior works (Liu et al.} |2024b; |Karnik et al.| 2025). Extending to the general asymmetric case
where X 45y € R™*nxk s factorized as L * RrR' requires several modifications. We provide a
brief discussion here, with more details deferred to the Appendix|[l| First, a symmetrization step is
needed to construct a symmetric tensor Xy, € Rt x(mtn) Xk qnd jts corresponding symmetric
model. Second, the trajectories of the two factor tensors are coupled, making it necessary to analyze
additional imbalance terms, an issue that does not arise in the symmetric setting.

Remark 7. (Comparison with (Ding et al.| 2025)) Our framework reduces to the matrix setting
when ng = 1: the t-product becomes matrix multiplication, tubal-rank becomes matrix rank, and
X =UxU" reduces to X = UU . In this special case, Theorem E] recovers the same qualitative
phenomenon reported for matrix FGD: small initialization and early stopping yield error bounds
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that do not deteriorate with the over-specified rank, as shown in literature (Ding et al.| |2025)).
However, extending the matrix setting to the tensor setting is nontrivial, one must address several
challenges unique to tensors, as discussed in Remark@

Remark 8. (Tensor specific challenges) First, in the matrix case, the range and the kernel are
complementary subspaces. This property no longer holds for third-order tubal tensors. If the true
tensor contains non-invertible tubes in its t-SVD, equivalently, if some frequency slices vanish in
the Fourier domain, then the range and kernel share common generators. As a result, the classical
decomposition of gradient updates into a “signal term” and a “over-parameterization term” fails
on these non-invertible tubes. This necessitates introducing a more refined notion of tensor condition
number to track the identifiable and unidentifiable components separately. Second, for the power
method, each frequency slice of a tubal tensor behaves like an independent matrix power iteration,
a known fact in the (Gleich et al., |2013). However, in gradient descent for tensor recovery, the
measurement operator and its adjoint couple information across all frequency slices. Consequently,
the update of any single slice depends on all other slices, making it impossible to analyze the slices
independently, as in the power method. Finally, in the matrix setting, |Candes & Plan|(2011)) has
already established the minimax error for noisy matrix sensing. To the best of our knowledge,
however, no such minimax error analysis exists for the tensor setting.

3.4 EARLY STOPPING VIA VALIDATION

Although Theoremprovides the sharpest known error bound, it is clear that the choice of  depends
on prior knowledge of X ,, which is often unavailable in practice. As shown in Figure 1, setting
t too small or too large can lead to increased error. A practical solution is to use validation to
determine when to stop the algorithm, a common technique in machine learning (Prechelt, [1998;
Stonel 2018}, Ding et al.| 2025)). Specifically, we randomly split the observed data {.A;, y; }'™, into
a training set (Yuain, Mirain) Of SiZ€ Myrain and a validation set (Yyar, Myar) of size my,. We then
perform gradient descent using the training set. After each iteration, we compute the validation loss
er = 1| yva — Mva (U * U] )||?. The final estimate is selected as f = arg min, e, and we output

U;+U tT as the recovered tensor. The full procedure is described in Algorithm 2| Appendix @

We then provide a theoretical guarantee showing that, when { = arg ming ;< €, the recovery
error ||[U; U] — X, || achieves the bound stated in Theorem

Theorem 4. Assume the same conditions as in Theorem except that (y,9N) is replaced

2 ~
by (Yurains DMuain)-  In addition, suppose that m,y > C %, and T be the max t in

Theorem [2} Assume that each entry of the noise vector s is independently sampled from the

Gaussian distribution N'(0,02). Define t = argminy<;<r ;. Then, with probability at least
4N\2
1 — 2T exp (_M) U x U] — X,||% < Onkrest,
train train

8

Remark 9. In Theorem we require Myin 2 nkr?k8. Substituting this into the condition m,, >

ma i, log T . 2 8 .. . T
& W we obtain m.y 2 1°k°logT. This is relatively small compared to My, making it

practically feasible. Experiments also show that a relatively small m.; suffices to achieve an error
close to that under the exact tubal-rank.

4 EXPERIMENTS

We present a series of experiments demonstrating that, under over-rank settings, using small initial-
ization combined with validation achieves recovery error comparable to that under exact parame-
terization. Compared to FGD with large random or spectral initialization (Liu et al., 2024b), our
method achieves the lowest recovery error, highlighting the unique effectiveness of small initializa-
tion. Additional simulation studies and real-data experiments are presented in Appendix [J}

Experiments settings We first generate a ground-truth tensor X, € R"*"** of tubal-rank r by
setting X, = X x X T, where X € R™"*F has entries independently drawn from a Gaussian
distribution A/(0,1). Next, we normalize the tensor by setting X, <+ X, /||X«||r. We sample
the measurement operator )T by selecting each entry independently from a Gaussian distribution
N(0,1). The noise vector s has entries independently drawn from N(0,c2). Finally, the obser-
vations are obtained via the measurement model y = MY(X,) + s. In all experiments, we set
m = 2C,nrk,and n = 30, k = 3, r = 3, myaq = 0.05m. For FGD with small initialization,
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Figure 2: Performance comparison under varying r, o, n, and m. Subfigure (a) illustrates the
recovery error of all methods under different over-rank values R, with parameters set as m = 10nrk,
n=30,0 =103, 7 = 0.1, and T = 5000. Subfigure (b) illustrates the error under varying noise
levels o, with m = 10nrk, n = 30, R = 3r, 7 = 0.1, and 7" = 5000. Subfigure (c) illustrates the
error as the problem dimension n changes, where m = 10nrk, R = 3r, n = 0.1, T = 20000, and
o = 1073, Subfigure (d) illustrates the performance under different numbers of measurements C,,,,
with m = 2C,,nrk, n = 30, R = 3r,n = 0.01, T = 20000, and o = 1073,

we set the initialization scale to o = 1071%. For FGD with spectral initialization, we follow the
same initialization procedure as in the original paper. For FGD with large initialization, we set the
initialization scale to o = 10, with its step size = 0.001 to prevent divergence. We use FGD with
the exact rank as a baseline method, where “Small random ini (best)” denotes the minimal error
obtained by FGD with small random initialization and “Small random ini (ES)” denotes the error

obtained by FGD with small random initialization using validation and early stopping. We use the

) Ut —X ][5

relative square error (RSE AL to evaluate the performance of different methods and all
*lIF

experiments are repeated 20 times.
Comparison of different initialization methods From Figure 2] we make these observations:

1. In all four settings, using small initialization yields the same minimum error as the baseline
method, which demonstrates its effectiveness. Moreover, by combining small initialization with
validation-based early stopping, we can achieve errors very close to the baseline without requiring
any prior knowledge of the target tensor. This supports the conclusions of Theorems.

2. For spectral initialization and large random initialization, the recovery error increases as the over-
estimated rank grows, and remains higher than that of small initialization. The error from large
random initialization is particularly high due to its slow convergence. However, in the experiment
shown in Figure [2](c) and (d), where the number of iterations is large enough, its error matches that
of spectral initialization.

3. As shown in Figure 2] (d), small initialization also significantly reduces sample complexity. Even
when m = 3nrk, it still achieves low error, clearly outperforming the other initialization methods.

Verify the validation and early stopping ap-
proach We verify the effectiveness of the vali- 1
dation and early stopping strategies. As shown
in Figure |3| (a), the relative recovery error is

g B

minimized when the validation loss reaches its 2 .}{@—————————] ;
lowest point, demonstrating the reliability of  * 5 oo
using validation loss as a stopping criterion. s
Figure [3] (b) shows that when too many sam- e 001@%
ples are used for validation, the recovery error B e N e are 4

terations Merain/ M

increases compared to the minimum achievable
error due to insufficient training data. Con- Figure 3: Validation of the algorithm with m =
versely, when too few samples (less than 5%) 10nrk, R = 3r, n = 30, 0 = 1073, n = 0.1.
are used for validation, the validation-based (a) Validation loss vs. RSE, with the blue dot
method may become unreliable, resulting in in- marking the minimum. (b) Error of the validation-
creased recovery error. Therefore, allocating based method compared with the minimum errors
5%—10% of the total samples for validation is of baseline and small-initialization under varying
a reasonable choice. Myrain-

Real data experiments on tensor completion
We conduct real-data experiments on the low-tubal-rank tensor completion problem. We consider
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Table 2: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels. “FGD-ES” denotes
FGD with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all
iterations. We write GTNN-HOP, 5 as GTNN for short.
p=0.2 p=03
Methods o =0.07 0c=0.1 o =0.07 0c=0.1
PSNRT RE| PSNRT RE| PSNRT RE] PSNRT RE]

TCTF 16.5892 0.3175 16.5484 03191 20.6744 0.2008 20.6335 0.2024
TNN 21.2692  0.1851 19.7672 0.2188 22.0592 0.1681 20.1682 0.2082
TC-RE 20.9288 0.1921 19.5480 0.2242 21.5387 0.1782 19.8376 0.2161
UTF 16.3227 03243 14.8770 0.3802 19.2245 0.2355 17.8283 0.2734
GTNN 22.1092 0.1675 20.3132 0.2051 23.1542 0.1481 21.1111 0.1867
FGD-ES  22.5912 0.1616 21.7977 0.1765 23.6579 0.1426 22.7157 0.1585
FGD-best 22.7438 0.1587 21.9268 0.1739 23.8422 0.1395 22.8550 0.1559

the problem of low-tubal-rank tensor completion under the Bernoulli observation model. Let the
target tensor be X, € R™*"2%"s with unknown tubal-rank r, where each entry is independently
observed with probability p. Denote the set of observed indices by Q C [n1] x [na] x [n3], and
define the observation operator as P (A) = 2 © A, where © denotes the Hadamard product. The
goal is to accurately recover the low-tubal-rank tensor X', from the partial and noisy observations
Pa(X,+S8,), where S, is assumed to be Gaussian noise with entries i.i.d sampled from Gaussian
distribution N'(0, 02) in this paper. Under the t-product framework, we adopt the Burer-Monteiro
factorization £ * R ', where £ € R™*Exns R c Rm2XExns  The recovery is formulated by
minimizing the following factorized loss function: f(L,R) = 2—1p I Pa(LxR" — X, — 802,

which can be optimized using gradient descent over (L, R).

Then we perform color image completion experiments on the Berkeley Segmentation Dataset
[2001). We randomly select 50 color images of size 481 x 321 x 3. We compare three
categories of methods: a convex approach: tubal tensor nuclear norm Minimization (TNN)
[2018), non-convex methods: UTF and GTNN-HOP (Wang et al [2024),
and rank estimation-based methods: TCTF and TC-RE (Shi et al 2021). We

use PSNR and RE as evaluation metrics, and for more detailed experiments settings, please refer to
Appendix @ The results, shown in Table 2, demonstrate that FGD with small initialization sig-
nificantly outperforms all other methods, while FGD with early stopping performs slightly worse
but remains acceptable. Therefore, even though the tensor completion problem does not require the
t-RIP assumption, FGD with small initialization still achieves the lowest reconstruction error. In
addition, we evaluate the sensitivity of the algorithm to different tubal ranks. As shown in Figure
[ choosing different values of R has only a minor effect on the recovery performance. There-
fore, when the true rank is unknown, selecting a slightly larger rank for recovery is a practical and
effective strategy. Moreover, experiments on video completion are presented in Appendix [I.2]

5 CONCLUSION

We propose a novel procedure, that is, factorized gradient de- ]
scent with small initialization, to solve the noisy low-tubal- 6} |

. vi\ J
rank tensor recovery problem. We prove that, even when the wl i /\r\ \ \ i l \ o
| [ \!/\/ \ \,

281

tubal-rank is overestimated, the recovery error still depends
only on the exact tubal-rank r, and is independent of the over-

PSNR (dB)
N

estimated tubal-rank R. This significantly improves upon the =

error bound in (Liu et al.} 2024b), and to the best of our knowl-  *'| M e
edge, is the first error bound for noisy low-tubal-rank tensor st o eees 0.
recovery that does not depend on the overestimated tubal-rank '

and is nearly minimax optimal. Moreover, we demonstrate
that this error bound can be achieved though a validation and 16 1ae Izmlag B %o
early stopping procedure , without requiring any prior knowl-

edge of the underlying tensor. Numerical experiments are fur- Figure 4: Validation of the sensitiv-

ther conducted to support our theoretical findings. ity of FGD to different tubal-ranks.

= = FGD-best, R=75
¢ = FGD-best, R=100
4 = FGD-best, R=125

v = FGD-best, R=150

10
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CONTENTS

A ORGANIZATION OF APPENDIX

The Appendix is organized as follows:

» Section [B]provides the statement on the use of large language models.

* Section[C|presents the reproducibility statement.

» Section [D]introduces additional preliminaries supporting the main theoretical results.
* Section [E] gives the detailed proof of Theorem [2]and Corollary [T}

* Section[F gives the detailed proof of Theorem 3]

* Section |G| gives the detailed proof of Theorem [4]

* Section[H]presents several technical lemmas together with their proofs.

* Section[[|discusses the extension to asymmetric case.

* Section[J]reports additional simulation results under various noise distributions, along with
real-data experiments.

B USE OF LARGE LANGUAGE MODELS

We used GPT-5 exclusively for language polishing and grammatical refinement of this manuscript.
The model was not involved in conceiving research ideas, developing algorithms, conducting exper-
iments, or analyzing results. The authors take full responsibility for the technical content, theoretical
contributions, and experimental findings presented in this work.

C REPRODUCIBILITY STATEMENT

All theoretical results in this paper are fully supported by detailed proofs provided in the appendix.
In addition, the code used for the experiments is included in the supplementary material to ensure
that all results reported in the paper can be reproduced.

D ADDITIONAL PRELIMINARIES

For two positive scalars z,y, x < y (or « 2 y) denotes that there exists a universal constant z > 0
such that x < zy (or x > zy), and x < y denotes that there exit two universal constants z1, zo > 0
such that z1x < y < z9x.

Definition 2 (Symmetry and positive semi-definite tensor). A three order tensor A € R™*"*F jg
called symmetry and positive semi-definite if it satisfies the following condition:

A" = A and AW positive semi-definite.

Definition 3 (Block diagonal matrix). For any tensor Y € R™*"*k we denote l_’: € (C”””j xnk gs a

block diagonal matrix with it’s i-th block on the diagonal as the i-th frontal slice Y ) of Y, i.e.,
v

Y (@)

Y =nbdiag(y) =

Y(ng)
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Definition 4 (Block circulant matrix (Kilmer & Martinl, [2011). For a three-order tensor A €
R™M*n2Xn3 e denote beirc(A) € R™"8 X123 gy jts block circulant matrix, i.e.,

A Alns) .. A@)

A®?) AD Lo AB)
bcirc(A) = . ) _ .

A(e) A=) A0

Definition 5 (The fold and unfold operations (Kilmer & Martin, 2011)). For a three-order tensor
A € R >Xn2Xns e have

unfold(A) = [A(l);A(Q); . ;A("3)]
fold(unfold(A)) = A.

Definition 6 (T-product(Kilmer & Martin, 2011)). For A € R™M*n2xns B ¢ RM2X9Xn3 the
product of A and B is C € RMX9%"3 je,

C=AxB=fold(bcirc(A) - unfold(B)).

The t-product can also be computed by Algorithm|[I]

Definition 7 (Identity tensor(Kilmer & Martin|, [2011). The identity tensor, represented by I &
R™*"*"s g defined such that its first frontal slice corresponds to the n X n identity matrix, while
all subsequent frontal slices are comprised entirely of zeros. This can be expressed mathematically
as:

T Isn, 7@ — 0,i=2,3,...,n3.

Definition 8 (Orthogonal tensor (Kilmer & Martin, [2011)). A tensor @ € R™*"*"s s considered
orthogonal if it satisfies the following condition:

0'+9=9+9"'=1T.

Definition 9 (F-diagonal tensor (Kilmer & Martinl 2011)). A tensor is called f-diagonal if each of
its frontal slices is a diagonal matrix.

Theorem 5 (t-SVD (Kilmer & Martin| 2011} |Lu et al.l [2018). Let A € R™*"2X"3 then it can be
factored as

A=Ux8xV,

where U € R™M*™Mxns ) ¢ R"2XN2XNs qre orthogonal tensors, and & € R™*"2X"s g g f-
diagonal tensor.

Definition 10 (Tubal-rank (Kilmer & Martinl 2011)). For A € R™*7"2Xn3 jt5 mbal-rank as
rank;(A) is defined as the nonzero diagonal tubes of S, where S is the f-diagonal tensor from
the t-SVD of A. That is

rank(A) := #{i : S(i,4,:) # 0}.

The t-SVD of a tensor Y € R™ ™% ag Y = Vy, x Sy, x W; In addition, we define Vy, as the
tensor-column subspace of Y, and V5, as its orthogonal complement, i.e., V; * Vyo = 0.

Based on the t-RIP condition, we introduce the following two definitions to facilitate our analysis.

16
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Algorithm 1 Tensor-Tensor Product

Input: Y € RM1>n2xns  Z ¢ Rn2xXnaxns,

Output: X =Y x Z € R xnaxns,
1: Compute Y = £££(Y,[],3) and Z = ££t(Z, [],3)
2: Compute each frontal slice of C by

T 70, 1—1,...,["3;1],
W (1)
X = ng + 1
2

conj()_((”?*_i"'m), 1= ’V -‘ +1,...,n3.

3: Compute X = ifft((X),][],3).

Definition 11. (S2S-t-RIP) A linear map M : R™"*k 5 R™ is said to satisfy the spectral-
to-spectral (r,d) tensor Restricted Isometry Property (t-RIP) [(r,8) S2S-t-RIP] if for all tensors
Y € R"*"%k with tubal-rank < r,

Definition 12. (S2N-t-RIP) A linear map M : R™*"*F — R™ s said to satisfy the spectral-to-
nuclear § tensor Restricted Isometry Property (t-RIP) [5-S2N-t-RIP] if for all tensors Y € R"*nxk

with tubal-rank < r,
MM
I(5- 2 @) < sl

Then, we provide the detailed pseudocode of Algorithm 2]described in Section

(3- 22 ) < s

Algorithm 2 Solving (3)) by FGD with early stopping
Input: Train data (Yiain, Main)» validation data (yya, Mya), initialization scale «, step size 7,
estimated tubal-rank R, iteration number T
Initialization: Initialize Uy, where each entry of Uy is iid. from
2
N(0, %)
1: fort =0toT — 1do
2: Ltt+1 = ut - %méain(mtrain(ut * utT) - ylrain) * ut
3:  Validation loss: e; = 5o ||yva — Ma Uy + U] )||?
4: end for
5: Output: U; where f = arg minj <;<7 €;.

E PROOF OF THEOREM 2]

In this section, we absorb the additional \/% factor into 91 for the convenience of presentation, i.e.,

A + A;//m. Thus, we have (1 = 0)[| Y| < [[9(Y)[]* < (1 + 9)[|V|[3-

E.1 ANALYSIS THE FOUR PHASES

Define the tensor column subspace of X as Vx € R™"*"**_Consider the tensor V; * U; and the
corresponding t-SVD V3 « U, = V; * Sy * W/ with W, € R™*F*k_And we denote W, | as
a tensor whose tensor column subspace is orthogonal to the column subspace of WW;. Then we can
decompose U, into “signal term” and “over-parameterization term”:

T T
Uy =U Wi W] U W s W] | )
—
signal term over-parameterization term

17
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Through this decomposition, we can separately analyze the signal term and the over-
parameterization term. Specifically, we consider the following three quantities to study the con-
vergence behavior of FGD:

* omin (U x W;): the magnitude of the signal term;

* ||« W, 1 ||: the magnitude of the over-parameterization term;

. ||V;L * Vu,«w,||: the alignment between the column space of the signal and that of the
ground truth.

Using these three indicators and the recovery error ||U; * thT — X,||F, we identify four phases in
the FGD trajectory and analyze them one by one.

E.1.1 PHASE I: ALIGNMENT PHASE

In the first phase, Lemma E] states that if the initialization scale is sufficiently small, and under
appropriate t-RIP conditions, step size constraints, and an upper bound on the noise spectral norm,
the signal term is nearly aligned with the column space of the ground truth tensor X',. At this stage,
both the magnitude of the signal term and that of the over-parameterization term remain small, but
the former is significantly larger than the latter.

Lemma 1. Fix a sufficiently small constant ¢ > 0. Let U € R"BXF be a random tubal tensor

2
with i.i.d. N(0,%) entries, and let ¢ € (0,1). Assume that M : Sk — R™ satisfies the

'R
01-S2R-t-RIP for some constant 61 > 0. Also, assume that

M=MMX+X )+ E=X+X" +Ex

with ||8£é)|| < 5)\7,(?@)(?@)1{) for each 1 < j < k, where 6 < cik™2 and ||E|| <
c1k™ 202, (X). LetUo = U where

min

C1r.2
CRAmX|? (2 T
o2 < k3/2n3/252  \ c3(R A n)3/22€ yR =3
€|l X2 2k2kn3/2\ " )
k32031212 \ cari/2e ifR<3r

Assume the step size satisfies 1 < cor 2|\ X|| 2. Then, with probability at least 1 — p where

_ [k(Ce)imH fke=?R fR>2r
T k€2 4 ke R ifR<2r

the following statement holds. After

1 242
: g | ryn if R > 3r
;o< ) nminigi<y o (X)) cze/(RAN)
e 1 262\/rn
— ] fR <3
nming <j<x o (X 0))2 n( cae ) 4 '

iterations, it holds that

Uy,

<3[x]|

o N
and for each 1 < j < k, we have
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where
22 10r*
eVk < ) ifR > 3r
ﬂ < C3€ R An
~ 2 10K2
vk <2“ ) if R < 3r
r
and
evk ifR>3r
Bz k
i if R < 3r.

Here, c1,co,c3 > 0 are absolute constants only depending on the choice of c. Moreover, C, ¢
absolute numerical constants.

E.1.2 PHASE II: SIGNAL AMPLIFICATION PHASE

In the second phase, building upon the results from the first phase, the tensor-column subspace of
the signal term remains well-aligned with that of the ground truth X, i.e., \V; L% Vuaow, ||
remains small. Meanwhile, the magnitude of the signal term, measured by Umin(V} * Uy), grows

exponentially. In contrast, the over-parameterization term ||U; * W, _| || stays small due to the small
initialization.

Lemma 2. Suppose that the step size satisfies 1 < c1Kk~
cm 202, (X), and M : RVXE s R™ satisfies (2r + 1,8) t-RIP for some constant 0 < § <

mln
n4f Set v € (0, ) and choose a number of iterations t, such that owin( Uy, * Wy, ) > 7. Also,
assume that ||[Uy, * Wy, 1| < 2, Uy,

<301, y < 225X and ([Vas * Vu, ow,, || <
cyf’zfor some small co > 0. Set

t; = min {t >t amm(vx xUy) > \/—»amm X)} , (6)

and , Then the following hold for all t € [t t1]:

1 1 t—t.
amin(v; . L{t) = 57 (1 + 87]Umin(X)2> (7)
[[U * WtA_” <2y (1 + 807702Umin(2\f')2)t7t* ®
U <3| and Vi * Viw, | < can™2, o)
wheret; —t, S : ln(%)

E.1.3 PHASE III: LOCAL REFINEMENT PHASE

Once the magnitude of the signal term amin(V; * U) exceeds %fox)

third phase. In this phase, the recovery error can be decomposed as

, the algorithm enters the

lde U — X |l S 4V WU — X+ [Usx W L.

Due to the small initialization, the over-parameterization term |[U, * W, | ||* grows slowly, while

the in-subspace error ||V 5 * (U U, — X,)|| decreases rapidly. Moreover, since V x € R"*"**,
we have . - . .
Va* U sUy — X)llr S Vrl[Va s U xU, — X)),

which explains why the final recovery error depends only on the true tubal-rank r, despite the over-
parameterization.

Lemma 3. Suppose that the assumptions in Lemmal[2| hold. If R > r, then for

. 1 N k|| X
E o (A2 (((Rm) = T)v) i
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Figure 5: Validation of the four-phase convergence analysis in Section 3.3. The left panel shows the
first 1,000 iterations; the right panel shows the full 10,000 iterations. The orange curve corresponds
to the orange axis on the right, and the blue curve corresponds to the blue axis on the left. Parameter
settings: n = 10, k = 3,r = 2, R = 10, m = 5knR, n = 0.1, noise standard deviation ¢ = 0.01,
and initialization scale o = 1077,

iterations it holds that
U« U] — X 5 X[ S Ve O((RAn) —r)3 A2 0] x| |1 4 rs? €5 (10)
if R =r, then for anyt > t,

U] = X X[ S V(L= 02 (X)) 4+ Vi€ (an

E.1.4 PHASE IV: OVERFITTING PHASE
The fourth stage is a natural continuation of the third. Consider the decomposition from Phase I1I:
lde U — X || S 4V U U — X+ [Usx W L.

In the fourth stage, the over-parameterization term |[U; * W, | || starts to grow, eventually domi-
nating the recovery error until it matches that of spectral initialization.

E.2 VALIDATE FOUR PHASE IN SECTION[3.3]

We conducted experiments to validate the four-phase convergence described in Section 3.3. As
shown in Figure 5} we observed that:

e In Phase 1, the column space of the signal term U, *x VW, gradually aligns with that of
the ground truth X', as indicated by the decreasing value of |V . * Vis,«w, . Both
Omin Uy * W) and |[U, * W, | || remain small due to the small initialization.

G'mir,(x)

* In Phase 2, omin (U * WW;) grows exponentially until it reaches at least T

, while
It = W, | || remains nearly at the scale of the initialization.

* In Phase 3, the over-parameterization term |[U; * W; | ||*> remains small, while the in-

subspace error ||V % * (U U, — X,)| decreases rapidly, leading to the lowest recovery
error.

« In Phase 4, the in-subspace error ||V * (U * U] — X,)|| continues to decrease, but
only very slightly, while the over-parameterization term |[U; * W, | || grows rapidly and

dominates the total recovery error, causing the overall error |[U, U, — X, || to increase.
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E.3 PROOF OF THEOREM 2|

Since the linear map D)1 satisfies (2r + 1,6) t-RIP, then by Lemma , M satisfies (2r,/2r6)
S2S-t-RIP. Therefore,

1€z = [1(3 = MDA+ XT) + 0 (s)]|
< V2ro[| X X T+ [[ 9 (s)|
<Nk tr2 ||X||2 + (|90 ()|

= \/§CH_2O'min(X)2 + |90 (s)]] (42

(a)
< \[265372o'min(x)2 + Cl"f72amin(x)2
< ek 2o min(X)?

where (a) use the assumption ||€]| < c;x 7202, (X).

min

Then Lemma|1]holds with probability at least 1 — ke ~¢% — max{k(Ce)R~"+1 ke2}. We then divide
the proof of Theoreminto three cases: R =r,r < R < 3r,and R > 3r.

E.3.1 CASEl1:R=r

In this case, by the results of Lemmal[T} the following statement holds: choose

2o lIXI2 [ 2x2kn??
~ 13/20,3/2 2 Garl/2

—15k2

and C~3 = C3€,

then after

2
L < 1 In (2/{ ~\/Tn>

™~ NOmin(X)? C3
iterations, it holds that

2o, |l < 31X and [V s * Vg, s, || < v (13)

foreach 1 < 5 < k, we have
af

-2

8

Oy (ut* * Wt*(j)) >

pM>—~

o (Ui Wi i) < Eap,

where
10k2
Egpg YE (2L
r r C3
—&/2

and é3 = ec3 = e c3. By taking

s i ()

we have y = a8 < %“A(:)) Also, we have

-2
K
U, * Wy, ]| < ?aﬁ < # < 2.

Therefore, the assumptions of Lemmas E] and E] hold, then we can use the results of Lemma 3 to
obtain:

24 *U:—X*XTHFSf(l—fmffim(x))t_“ +VrE?|E]l,
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for all t > ¢;, where

1 26k2/rn 1 Ormin (X)
t1 < t, t1 —te) < 1 — 1 14
T~ + ( ! ) ~ "flo'min(‘x')2 " ( C3 ) N no'rQnin(X) " ( v ) ( )
(a) 2 .
< 1 I K w/Ti”LUmm(X) (15)
no'min(X)Q CS(Xﬁ
(b 1 2,.3/2 (X
< 5 In <K" Ty omin )) , (16)
namin(x) \/EOZ

where (a) uses the fact that v = ‘1—6; (b) uses the fact that 8 > @
Then define 11 := 502, (X.) € (0,1). Using the fact that (1 — 11)® < e~#*, we have

Uy U] — X« X7 ||p < Vre M0 4 re?||E]].

E.3.2 CASE2:r< R<3r

The analysis for this case is almost the same way as that of the previous case, except that it relies on
a different result from Lemma 3, namely that when R > r, we have

[t x U] — X« XT||p S 72102 (R AR) —r)P /AP0 X110 4 ek €,

. L (sl
EE () (((Rm) - m) '

Taking the bound in Case 1 for ¢;, we have

o 1 aitdl

=ttt (he <) “
1 n1/27’5/2n2||X\|2

o (X) (k[(R Am) — r]a?) '

where

~
=~

(18)

To obtain the result [|U; + U] — X * X T[] < #?||€||, we need to ensure £~ 3/10r((R A n) —
7)3/4421/16) | x| |*1/16 < k2| |€||, which leads to

9 2 —10k
a§&35/21[(1%/\11)—r]_4/77°k:_1/2||X||_11/21H8||16/21 < “~\/7" ) ) (19)
C3
2
A 9 2 10k
Using the facts that v = 22 and 8 < vk ( ~ rn) , in order to satisfy the assumption
T C3
v < 762(2’(1%/\(5)) , we also need
. 2 —10x2
o< CoT O min (X) (2/{ ) rn) . 20)
K2(R An)Vk C3

Combining the bounds (T9) and (20), we obtain the bounds for « :

ownlX)___re Ve Y ()T g
\/E(R/\n)’fz’\/E[(R/\n)—r]4/7”XHH/21 Zs

a < min {
E.3.3 CASE3: R>3r
In this case, we also use the result from Lemma@ However, according to Lemmam the bounds for

t. and 3 are different.
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Specifically, we have

2
b < 1 T 2k%y/n
NCmin (X) cse/(RAN)

10x2
6@5556\/@<M> ,

c3e(R A n)

(22)

which implies

E<to+t, —te+t—1;

1 2/62\/5 1 (Umin(X)>
= In + In
nglnin(X)2 <036 (R/\ n)) namin(x)Q Y

(__nlx] )
T (X2 1 (((RA n) - r)v)

SR Y
NOmin (X)?2 E(RAn)—r)(RAT)Q2 )"

Using the relation v = 1a8 < %“/\(:;), we obtain
x 9 9 —10k2
a< Umln( ) . K \/{ﬁ (24)
VE(RAn)K2 \ é31/(RAn)

Moreover, according to the result of Lemma in order to obtain ||[U; * ng— — X« X" <K
we need to bound « as:

a S /€35/21[(R /\n) _ T]_4/75_1‘|XH_11/21||8H16/21
—10k2
5 (25)
(ig o 5 H35/21[(R/\n) _ 7“]_4/7||X||_11/21 1 2K \/ﬁ ’
vk \ &/ (RAN)

where (a) uses the upper bound for 3. Combining these two bounds , we obtain the bound
for o :

-10x7
) 35/21 16/21 2
Tnin (X) K32 |E || }( 26%/n ) e
C3

a < min { VER A2 VE| X121 (R An) — r]4/7 (RAn)

Therefore, we complete the proof of Theorem 2]

E.4 PROOF OF COROLLARY[]]

The proof of Corollary 1 follows directly from Theorem 2 combined with the spectral norm bound

of ||€||. Note that
(a) L (b
19 ()| S /0 < e PoRin(X), @7)

where (a) use the result in (Liu et al., 2024b); (b) use the assumption that m > nkxto?/02. (X).

Thus the assumption (3) in Theorem 2]is satisfied. Then we can directly use the results in Theorem

[2to get
nkro?k?
U] — 2 S el S P 28)

E.5 PROOF OF LEMMA[]]

Lemma 1 is proved based on [(Karnik et al.,[2025)), Lemma D.8 and Lemma D.9], with the substitu-
tion of M := D" MU X) by MM (X) + €, where £ = M (s).
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Lemma 4. Suppose that the linear map Dt : R"*"*k — R™ satisfies (2,6,) t-RIP and define t*
as

= min{j eEN: Uy — U] > ||zitj,1\|}.
Then forall 1 <t < t*, we have
()[3

M|

€] = lltde — Ue|| < 8(1+61)V/(RAn) U111+ nl| M.

Proof. The proof of this lemma builds upon [(Karnik et al,[2025), Lemma D.1]. By incorporating
the results from Lemma [14] and Lemma we can derive the theorem. Compared to [(Karnik
et al., 2025), Lemma D.1], this lemma leverages the 61-S2N-t-RIP and the inequality ||U;_1||r <

v (R An)|[U;-1]| to reduce the dependence on the third dimension k, leading to a tighter upper
bound on ||EY|. O

Lemma 5. Consider tensor M := DU M(X * X))+ E e Rk and U, := (T4 M) «Uo.
Let M € C™X" be the corresponding block diagonal matrix of the tensor M with the leading

eigenvector v, € C™, then we have
n( (ML o1 1y >
o> 8(1+61)+/(RAn) o3 |[U] |3

- 21n(1 + n||Ml])

Proof. The proof of this lemma can be obtained by incorporating the result of Lemma [] into the
proof of [(Karnik et al.| 2025)), Lemma D.2]. O

Lemma 6. Assume that Dt : R""*F — R™ satisfies the §,-S2N-t-RIP for some §; > 0. Also,
assume that

M=DMMX X )+ E=X X +MMAX+«X ) +E-X X"

Ex

with HEE?)H < 5)\T(X(J)X(]) ) foreach 1 < j < kand § < c1k?. Denote the t-SVD of M
as Vi * Sy * WL, then define L == V (i, 1 : 7,:) € Rk and define the initialization

Uy = ald with the scale parameter such that:

2 o o[ X|P? 262U
- RVEBRARIUIP \ c30min(VE *U)

where vi € C"™ is the leading eigenvector of matrix M € R™*1k,

4
. = —H
) mln{()’min(vz;*u),HuO ’Ulle}v

Assume that the learning rate 1) satisfies 1 < c3rx~2||X||~2, then after t, iterations with

. 1 | ( 26 U] )
NMmaxi <<k Or (Y(j) )2 C30min (Vz xU)
the following statements hold:
2

||ut* S'?’HXHv Hv.?c'i *vut**Wt* SCK:_
and for each 1 < j < k, we have
1
o, (th* * Wt*(j)) > Zaﬁ
: 2 (29)
J
< X
o, (Z/It* * Wi, 1 ) <3 af

2

where (3 satisfies amin(ﬁ *U) < B < omin (VZ *U) <W‘)

€30 min (VL *U)
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Proof. The proof of this lemma relies on the result of [(Karnik et al.| [2025)), Lemma D.7]. The first
condition in [(Karnik et al., 2025), Lemma D.7] is:

—(7) u
o max o (2, U] + 1€

1
V= o 7D ' NSy < cor’.
e @ V)
By the definition of 7, it is sufficient to show that
max o,41 (Z)U|| < 22 min 00(Z)om: (vT *u) (30)
1<j<k t — 2k21<j<k min YL
and . o)
u 3 . (7 T
ET < ﬁalrgnjlgkm(Zt )Omin (VL *L{) . @31

Since for Z; = (Z + n.M)! the transformation in the Fourier domain leads to the blocks
7?) _ (Id+ nﬂ(j))t’
combining the result of inequality leads to

. —(J) . ()
22Ul _ [pin or(Z: ) - L+ min, o (M) o)
T - N =709 '
c30min(V *U) 1?Ja§k07‘+1(zt ) 1+ nlrgjagkam(M )
Taking the logarithm on both sides of the inequality yields
. ()
1+n min o.(M™")
2 2 :
In (M) <tIn SRR (33)
c30min(V *U) 1+ nlrgfgkam(M )
Therefore, if we take ¢, as
. 7
1+ 7 min o.(M™")
2 2 -
o | (llul) /m @ )| ”
c30min(Ve *U) 1+ nlréljaéckarﬂ(M )
then condition (30) will be satisfied in each block in the Fourier domain. For notational simplicity,
we define
212U
¢:=In ("”J') . (35)
C3Umin(vﬂ * u)

Then we use Lemma [4] to show that the second condition, i.e., inequality (31)) is satisfied. To use
Lemma[d] we need to guarantee that ¢, < ¢*. As proved in Lemma[5] we have

o (MU ol
8(1401)y/(RAn)ad U] 2

t* > 36
= 2In(1 4 n||M]|) (36)
In order to guarantee ¢, < t*, we need to prove
n< (ML 1 1y >
1 8(1+6 RAN)a3||U]|3
& - (1481)/(RAn) a3 |[U|| 37)

2’ 21n(1 + n||M]|)

In 1+7]min1§j§kar(ﬁ(j))
1+nmax1<j<ko,.1 (M)

.. . 1+nming <j<por (Mu)) .
To prove this inequality, we first bound In(1 + n||M||)/In <1+nmax1§j§kar+1 i) > Using the

fact 1~fz <In(1 + z) < z, we have

(LM M+ mingg g0, (7))

o ——(3) = . ——(3) ()
Il( Lnming <;j<por (M) ) mlnlgjgkar(M )—maX1§j§k0T+1(M )

(38)

I+nmax1<j<ko,1(M?))
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Using the assumptions § < % and 1) < c3k~2||X||~? and the result of [(Karnik et al.,2025), Lemma
D.6], we have

L N2
MU+ im0, () A4 OITI () <A1<X“)>>
minlgjgkdr(ﬂ(j)) — maxlgjgko,url (MO)) (1 - (S))\T(T(])) HHXH
1+90 1. (@
< K2 1 1 —) < 52
<K 1—26( + c3( —&—5)%2) < BK%,

(39

where (a) uses the fact that § < 1/3 and ¢ is sufficiently small. Therefore, we have

In(1
In ( 1+nmin1§j§kor(M(J)) )
. D
1+nmax1<j<ko,r41 (M)
With this upper bound, we recall inequality
2 2
30min(V *U) 8(1 4 61)v/ (R A n)a?|U|?
which is equal to
9 20k2 —H _H
267 (U] oMo il @ M| - 12 v,
30w (VE *U) S(L+ 1) IR A M [P~ (14 61) /TR A m)a||P

(42)

where (a) uses the fact that ||LTOHU1 i,/ = ||HH1)1 |1, To prove inequality , we choose « as

—20k2 —H
2 22| ||| (M| - 12 v,
o’ < | ———— : (43)
c30min(V * U) (1+61)V/ (R An)[[U|?

With the fact that § < £ and || M| > Z||X|%, we set o smaller as

—2052 —H

2 22 (U] 1212 - 1A v ey

a < | ———— : 5 (44)
c3amin(vz *u) 16V (R/\n)||L{||

Thus t, < t* is satisfied, then the conditions in [(Karnik et al.| [2025)), Lemma D.7] hold. Therefore,
using the results of [(Karnik et al.|[2025), Lemma D. 7] we have

IER I < 8(L+ 00) v/ (B An) e U] (1 ]| M)

HMH
(a) o
< 12¢/(R /\n)mﬂuﬂ?’(l + M),

where (a) uses the fact that 6 < § and ||M|| > 2||X|? from [(Karnik et al., 2025), Lemma D.6].
Thus, using that Z\) = (Id + nM(J)) inequality (31) holds if

(45)

12¢/(R An) HMHHUH ML+nlMID™ < 55 mlnkor ((Idmﬂ(”)t*) O min (VZ *u),

(46)
which is equal to
T R2yRAmR2UE 1+l M])
Note that
Y T70)

Id+no. (M) (Id +no.(M"7"Y) )

—— - —exp | tiIn > exp (—3ts In(1 + n||M . (48)

(1 + [ M]])? (T4 nllM])? (=3t In(1 + | M|[*))
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1+nlgl,ir<lkm(ﬂ(j))
Using the definition of ¢,,i.e.,t. = |¢ / In =/= —5 and inequality (40), we have
1+n max ori1 (M)
SISk

1
2
exp (=3t In(1 + n||M|[})) > exp (—15¢K2) = (W) . (49)
CBUmin(v,c *u)

Combining inequalities and {@9), we choose

. o,

Omin (Vi xU) || X2 22!l — 15k

o < 5 ( )2 _ K2 [U| ' (50)
12¢/(R An)R2|[U| 3 c30min(V L *U)

With this «, inequality @ holds, and the condition of [(Karnik et al.,[2025)), Lemma D.7] is satis-
fied, leading to

(@)
Vs * Vi, || < 1400 +7) < w2, G

where (a) uses the assumptions that § < c¢;x~2 and < c3x~2||X||~2 and then sets the constants
c1 and c3 small enough. Moreover, for each 1 < j < k, using the results from [(Karnik et al., [2025)),
Lemma D.7], we have

Umin(ut * Wt (])) 2 aﬁ

-2

8

BN

(52)

al(l/lt *ij_(j)) Z Oéﬂ7

where 8 := min; <<y, ar(ZE”)amm(v; *U).

Then we prove the bounds for 8 and |[Uy, ||.

Consider 5 := min;<j<x oy (Zij))amin(vt « U). By the definition of 7§j) and inequality , we
have
(Lm0, (1) < exp (- In(1 + 50, (M) < exp (¢ In(L +5]lM])))
In(1
< exp | 2¢ max In(1 + il M) < exp (10¢K2)

1<j<k 4o, (M) (53)
10,41 (M)

102
_< 2wl )
CgO’min(vz * Ll)

holds forall 1 < j < k.

Then we have
2

9 10K
B < oun(VE+ 1) (W) . (54)
c30min(Vp *U)

Finally, we prove that |[U;_|| < 3||U||. By the definition of U, = Z;. * Uy + EY, we have

[the. ]| = ol Ze. 1] - |led]] + |IEE - (55)
By inequality (31)), we have
C3 C3 N H 77
1€ < 55 al|Zdllomin (VE+U) < 550l Zdllomin(VE)omax @) < ol 24|, (56)
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which leads to

[,

< 20|24 ||[ed][<2a(1 + ]| M) U]

2

(a) 262U
— datn(t. (1 -+ al MDY 20]u] ("J')
CgUmin(vE *Z/l)

()
< 2[[t]les

Tmin (VT: *U) |2 22| e (57)
12¢/(RAn)R2|[U|? 30 min (VL *U)

.—Ti 715112/2
= 25| o (VEVH) () < 3l
12 (R/\TL)FE2 C3Umin(vz*u)

where (a) uses inequality (53)); (b) uses the inequality (50). Lemma [I] can be obtained as a direct
consequence of Lemma@ and the proof strategy used in [(Karnik et al.| | 2025), Lemma D.9]. O

E.6 PROOF OF LEMMA[2]

Note that for t = t,, these four inequalities trivially hold using the assumptions. Before prove the
t + 1 case, we bound H(im*ﬂﬁ -7) (X « X —U, *U:) + 5” as:

lomrom —3) (X s X7 Uy <t ) +£|
<@ -3) (X=X~ U s Wi W] U] ) |
(DU —T) U s Wi =W/« U +]E]]
(a) SOVFIIX + X7 — Uy s Wox W] U] || + 81Uy » Wi« W] 5 U] || + [I€]]
<oV (1125 2T+ ity s Wi W] < U ||) + 61ty = We < W] s U] L+ I|E]|
= 0V ([IX|1P + [[Ue * WHlP) + 0|t « Wi« W/ U] ||+ €]
<OV (1K1 + [[U?) + 61Uy« Wi s W U]+ €]
(b) <6vr ([[XI1° + 91| X[1?) + 6((RAn) — )|ty s We L x W/ | < U || + €]
< 106v/rR 000 (X) + 6(RAn) — 7)[[Us Wi 1I]> + | |€]]
(€) <10c1k 2070 (X) +46((R A1) — 1)y (1 + 809ca0s, (X)) 4 1k 207, (X)
(d) <10c16 262, (X) +85((RAR) — )y 4omim (X)) + 17202, (X)

min min

(e) <40cik 202, (X),

min

(58)

where (a) uses the assumptions that % satisfies (r, §1/7) S2S-t-RIP and §-S2N-t-RIP; (b) follows
from the assumption ||U,|| < 3||X|| and |[U; * W, | * WL_ s U ||, < (RAnR) —7)|U

Wi 1 * V\)tT |k L{tT ||; (c) uses the assumptions § < Kfi/; and the induction hypothesis; (d) uses

C2Umin(x)
2R

the definition of ¢; and t.; (e) uses the assumption v < and chooses a sufficiently small

co. With this inequality, one can replace || (A" A — I) (X « X7 —U, * Ll;r) || in [(Karnik et al.,
2025), Lemma E.1-Lemma E.7] with || (D"t — J) (X « X —U, * U:) + £|| since they have
the same upper bound.

By choosing a sufficiently small c,, together with other assumptions in Lemma [2] we have the
assumptions in [(Karnik et al., 2025), Lemma E.6] satisfied, then we can directly use the result in
[(Karnik et al., 2025), Lemma E.6] to prove ||{U;11]] < 3||X||.
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Also, the assumptions in [(Karnik et al.| 2025), Lemma E.1] are satisfied, then we use the result of
[(Karnik et al.,[2025)), Lemma E.1] to prove the induction hypothesis :

Umin(v} *Upp1) > Umin(V; « U1 * Wiygr)

1
Z O’min(v; * utJrl) (1 + Znamin(x)z - namin(v; * ut)2>

1
> O—min(v;' * ut+1) (1 + Zno'min(x)2 — 0.1n0min(x)2)

1
> (Vi i) (14 gnoum()?) (59

1 1 1 b=t
> (1 S5 M0 min X o 1 S 19 min X 2
> (14 gromn(®7) - 5 (14 goown(27?)
(t+1)—t,
1 1 )
— 57 <1+ gnamm(X) ) .

This inequality implies that all singular values of V} * U1 are positive, and then together with
the assumptions of Lemma [2| and equation , the assumptions of [(Karnik et al.; |2025), Lemma
E.3] are satisfied. Then we can use the result of [(Karnik et al. 2025), Lemma E.3] to prove the
induction hypothesis (8):

[T Wi, |

I —0) —
< (1- 21w 0V Vw12 ) [ W

2| D)X+ XT Uy U] ) + €| [T Wi |

< (1= 7 493(1 + 80me202, (X)) + 9nean 2| X|2) [T s Wi |

2 I aaemy vam €)) (60)
+ 21 - 40¢1 K™ “Omin (X)7|[Uy * Wi 177

< (1 . 27772(1 + 807702031111()()) + 977020min(X)2) T = Wit

+ 807 - c1h 20 min (X)?| |m(j) I
(1 + 800 min(X)2) [T+ Wi |
27(1 + 8062770—min(x)2)t+17t* .

(3)

I
<
<

Ay
A»
Note that for any block diagonal matrix A = . ,we have || A|| < max; || 4;]].

Ay

Then we have |[Uy1 * Wip1, 1 || < max; [|[Ueq * Wt.H,L(j)H since Uz 1 * Wei1 1 is a block
diagonal matrix. Therefore we complete the proof of induction hypothesis (8).

Then we proceed to prove ||V * Vi, s, || < car™? via [(Karnik et al.; [2025), Lemma E.5].
Note that the assumptions in [(Karnik et al., [2025), Lemma E.5] are satisfied using the assumptions
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of Lemma 2] and the induction hypothesis (7)-(9).

T
||vX * vut+1*Wt+1 ||

< (1= Loumn(X))[Vi * Ve, ||+ 1500]| 00 = 3) (X 2T~y < U] ) +£|

+500n2\|x*xT — U+ U] |

<(1- 4omm )3)eak ™2 4 150m - 40c1 k202, (&) + 5000 (|| X |12 + |[U:]]*)?
<(1- gamm X)) cor™? 4 6000c, k202, (&) + 50002 (|| X )% + 9| X ?)?

= (1= P (X)) ear ™2 + 6000ci k202, (X) + 5000002 X |*

IN

(1-

IN

~ O min (X)?)eak™2 + 6000c1 k202, (X)) + 50000n - ¢ s~ 4| X |72 - || X4

IN

(
() + 500007¢1 £ 2Tmin (X)?

(1 - —omin(X) )Czli_2 + 6000c1nK™ 2Ux2mn

(X
(
(
~ O min (X)?)eak™2 + 6000c1 k202, (X) + 50000n - ¢y x| X 72 - || X4
(
(
(1— (

IN

4
7
4
7
(-7
7
4
Zamm X)2)cak ™2 + 56000n¢1 £~ 20min (X)2.

(61)
By taking a sufficiently small co, we have HV,TY * Vi, 1 sWiia || < car™2. Therefore, we complete
the induction proof.

E.7 PROOF OF LEMMA[3]

Using the definition of ¢; (equation (€)) and
1 1 it
Umln(vx * utl) 5 (1 + 8770min(X)2>

from Lemma 2} we have

1

1 1 b
~——7—O0min X > Omin v * u 1 . 1 + = Omin X 2) )
() 2 auia (Vi s t) 2 57 (14 G0 ()

8

which leads to

=

1Og ( Urnln ) a 16

2
ty =ty < < lo Omin(X) |, 62
! - log (1 + Sno'mm ) - namm )2 & (’Y\/ 10 ( )> (62)
2

where in (a), we use the fact that forO0 <z < 1.

log(l—i—w) <
Therefore, we bound ||{U;, * Wy, 1 || as

t1—1x

||ut1 * thvLH < 27 (1 + 807’020—min(x)2)
(a) . 128002
29, ( 2 amm(X)>

B v/ 10 Y 63
(? , ( 9 Umin(X)>1/64 (63)
= V10 Y

(2 3963/645,  (X)/64 < 347 80, (20)1/3,

where (a) follows from Equation ; (b) uses the assumption that co is chosen sufficiently small;
(c) uses the fact that oy, (X)) > 7.

Then we divide the proof of Lemma[3]into two cases: the exact-rank case and the over-parameterized
(over-rank) case.
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~ 1/4 7/4 . .
Over-rank case: Setf :=¢; + [ 300 __1n (16((1’;%)4) . Hf;”M ﬂ . We first state our induction

nﬂ,zmn(x)
hypothesis for t; <t < t:

Umin(x)
Omin (Ut * Wy) 2 Omin VT *Uy) > o 64
( t t) ( X t) \/E ( )
e = We || < (1+ 80mca0p, (X)) Uy, x W, L], (65)
|| < 3] &)l (66)
Vs * Vuoow, || < can™?, (67)
VR # (X XT = Uy = U])|| < 1001 — 5507, (X)) ]|X|P (68)
t

1 X2 l—i 2 (x))y—ti-l

+ 181X PIE > ( 500 min (X)) (69)

T=t1+1

When ¢ = 1, the inequalities (64), (66), and follow from Lemma[2] As for inequality (63)), it
holds when ¢t = t; obviously. When ¢ = ¢1, we have

[V (X% XT Uy, <UD = |[Vi# (X XT = Uy, s Wi, s W/ U]
<X+ X T + Uy, * We, s W] U] ||
(a)
<IN + (U [Pl 1P < 10122,
where (a) follows inequality (66). Next, we aim to prove that these inequalities also hold at step
t + 1. To do so, we need to bound the term H(i)ﬁ*ﬁﬁ -7 (X « X —U, *UZ) + EH as

| (DT 9m — 7) (x*xT ~u, *uj) e
(a) <105yrK202,,(X) +S((RAN) —7)|[Us « Wi L ||> + |||

(b) <101k~ 200, (X) + (R An) =) (1 + 80ncaop, (X)) |[Uy, + Wi, 1 |1?
+ 01H72012mn(x)

() <1001k 202, (X) + 95((R A n) = r)(1 + 80nea02, (X)X =)y g ()4 70
+ 1k 20%(X)

O(c2)

(d) <10c15202,,(X) +95((R A n) —r)( R 111 4)

16k((RAn) —71) ~7/4
+ Clﬁ_2012nin(x)
() <40cir20h:,(X),
where (a) uses the result of equation (58); (b) uses the induction hypothesis (65) and the assumption
of ||€][; (c) uses the results of and induction hypothesis ; (d) uses the definition of ¢; (e)
uses the assumption that ¢, are sufficiently small.

Therefore, the condition required for bound (64)), (66), and in Theorem E.1 (Karnik et al.| [20253)
is satisfied. We can thus invoke the corresponding result to conclude that inequalities (64), (66), and
also hold at iteration ¢ + 1.

Note that we have all singular values of V} *U 11 * VW, are positive using the induction hypothesis
@]), then we have the assumptions of [(Karnik et al., [2025), Lemma E.3] are satisfied. Therefore,
we use the result of [(Karnik et al.,[2025]), Lemma E.3] to prove the induction hypothesis @), which
is exactly the way as proving inequality (8). We directly present the result without detailed proof:

(U1 * Wepa || < (14 80cano;, ()71 [ty + W |- (71)
Then we proceed to prove inequality (69). Note that the condition in Lemmal[7)is satisfied since
(T — WD) (X« X7 — U, +U,)||

(72)
<6 (112 + X Uy W s WU ||+ U s Wa W] 5 UL )
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and 6 < —1=. Moreover, the other conditions of Lemma are satisfied using the induction hypoth-
esis (64), @, and (67). Therefore, we have
Vi (X5 2T —Uppr < Uy, )|

(a) n
< (1 — %Jmin(X)2) HV; * (X*XT —U, *U:)H

* %Umin(k'y”ut * Wy | * WIJ_ «U[ || + 187/ X | €]

b
(S) 10 (1 - ﬁnoamin(x)z) (1 o &Urznin(‘)(»titl||'JC'H2 (73)
+ () U s Wi s W] U] ||
t+1
I8 XIPE] D] (1= sison (X))
T=t1+1

where step (a) follows the result of Lemma 7} step (b) uses the induction hypothesis (69). Note that
inequality holds for ¢ + 1 if

1
[+ W s WL s Ul < (1= 002 (20)' 11X (74)

Using the relationship between operator norm and tubal tensor nuclear norm, we have

U We L s W/ s Uil < (RAR) = 7)[[Uy s W 1|

(a)

< ((RAR) = 7)(1 4 80ncao, (X)) Uy, + Wi, 1|

(b)

< I((RAN) =) (1+80ncaom; (X)) 1) 0 (X)V/457/
(75)

where (a) uses the induction hypothesis (65); (b) uses inequality (63)).

Combining Equations and (63), we note that the inequality holds if ¢3 is sufficiently small
and

Then we need to bound term ||U;, * Wy, 1

t—1t1
NAT/A 4 o (11 2 2
(R AR) = 1) omin (2)14 < (1= Zhomin(®)2) 1K)

.. . ~ / 7/4
This inequality holds so long ast <t =t; + {7102300()() In (Q((;Al:)_r) H’:7H/4

that In(1 + x) > %-. Therefore, we complete the induction of over-rank case.

)—‘ by using the fact

min

Then we proceed to prove the upper bound for || X « X T — U, « U] || r:

(a)
1+ XT U« U |p <AV x (X x XT —Up«UD)||p + U x Wi W] <UL L.

® -

< V(1 (X)X

- mo—min
! n
+ V| X[PIEN DY (1= sosom, (&)
T=t1+1
—3/4

(c) Iil/4 ||X||7/4
< X 2 2
e o I RV ]

SRR (R A ) — )22 4 /€,

(76)
where (a) uses the result of Lemma [8} (b) follows from inequalities and (74); (c) uses the
definition of .

Exact rank case: As R = r, we have U; = U; * W; % WtT and W, | = 0. Using a similar
approach as in the over-parameterized case, we can show that the induction hypotheses (64)-(67)
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hold for all ¢ > ¢;. For induction hypothesis (69), note that
UW, W/, W/ =0,
which implies that also holds for all ¢ > ¢;. Therefore, we conclude that:

e U =25 XT||p S VP(l = 02, (X)) "
t+1
-Vl XIPIIEN YD (1= gty an
T=t1+1
SV = o (X)) ViR €]

E.8 PROOF OF LEMMA 4

Lemma 7. Assume that the following assumptions hold:
[led:]] < 3] ]|
n < en” | X2
1 (78)
Omin u * W Z ——
( t t) \/E

Vs * Vi, || < cx™?

Jmin(X)

and
(T = M) (X« X T —U, U,

< cr2 (||X*X—ut*wt*wj*uj||+|\ut*wt,uwh*ut\|*),

(79)
where the constant ¢ > 0 is chosen small enough. Then it holds that

IVar (0 2T~ Uiy s U )| < (1= 5is0mn(X)?) Ve« (X5 2T Uy < u])|

+ %Umin(X)QHut * Wy | * WtT,J_ <UL ||+ 180] | X P|€|-
(80)

Proof of Lemmal7] In order to establish Lemma 4, we begin by introducing a key auxiliary lemma
and providing its proof.

Lemma 8. Under the assumptions of Lemma 4, the following inequalities hold:
[Vttt <ot |« s oo

H’X*XT U U]

‘ g4”’v}i w (X X7 —ut*uj)m n H’ut*wt,“w;*u,ﬁ

(81)

WX*XTfut*wt*wj*uj

‘§4H]v; f (XX — U, +U))

)
where ||-|| denotes tensor norms, such as spectral norm.

Proof. The first two inequalities are derived based on Lemma E.7 in (Karnik et al., |2025). By
leveraging the equivalence between matrix norms, we obtain the desired results by replacing the
Frobenius norm in Lemma E.7 with the spectral norm.

Next, we present the proof of the third inequality. We decompose X « X T U« W, x Wj * Z/ltT
as

VasVis (X« XT —U s Wi W, s U )+ Var sV (X XT U s Wi x W] U ).

Z, Z9
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For Z, we have

2=V sV + XX —Va s Vsl s Wi s W] < U]
(82)
QVX*VL*X*XT—VX*v;*ut*u:a

where (1) uses the fact that

VX*V;*MM¢J
=Vax s Ve [Ux Wi W] + W, 0 W] 5 U+« Wi s W] + U= Wy s W] T
:vx*v}*ut*Wt*wf*uf+vx*v}*ut*wt7L*wh *L{tT
:VX*V}*L{t*Wt*W:*UZ+VX*Vt*St*W:*Wt7L *WZL*U;
(83)
Therefore, we have
I1Z.] = Hvx*v}*x*)ﬁfvx*v;*ut*ujm < ‘HV}*(X*XT*UMU:)H‘-

Then we proceed to bound the term Zo,

1ol = [[Vaer # VEe (X5 2T —U Wi W] U ) 5 (Va5 Ve + Vi # V)

<[V # VR (R AT U W W] U] 4|

+H]vxi sV (X XT U s Wx W] U ) 5Vt % VL

(a)
<

H(X*XT—ut*uj)*vxm + H]v}L « Uy Wy s W] 5 U] Yy

)

Z3
(84)
where (a) using the facts that V; *Uyx W, | = 0and V; « Uy *L{tT = V; U x Wy *WfT *thT.
For term Z3, we have

WV;L *ut*wt*wj*uf*vxi

T T T T
- H‘vxm S Vi, * Vit o, < Uy = Wy s W] U] 5V 50

T T T -1 T T T T
= [VL. Vi, * (vx*vut*wt) SV Vi, * Vig o, U« Wy s W] U]« V51

< IVEs = Vel VR < View) | VE Vi, # Vi, # U s Wes W] U] 5V

T
_ ||VXLT* vut*Wf, H H’v; * ut % u;r % le
Umin(vx * Vut*wt)
T
_ ||vXJ_T* Vi, w, || ‘Hv; . (X X7 U, *U:) “ Vs
Umin(v)( * Vut*wt)

SQWVL* (X*XT—ut*uj)m.

(85)
Therefore, we have the third inequality holds. [

Based on the results of Lemma we proceed to prove Lemma We decompose X « X T Ui *
Z/ltT .1 into five terms by using the update formulation

Upoy =U + (DM (X« X T — U« U )+ E] + U, :
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XX U U,
= (Z—nqUy x U )5 ( X+ XT —U U] )« (T — U+ U,
K1

+ [T - (X« X — U« U] )+ E)x U+ U]

Ko
U« U+ [(T—DUM) (X« X —U U ) + €]

Ks
—PU U+ (X X U U U < U]

K4

— 2 (DU ( X« X T —U U] )+ E] s Uy U] « [T (X« XT —U, «U,] )+ E].

Ks

(86)

We now bound each of these terms separately.
Bounding /C;: We note that

Vs (T—nUy U ) 5 (X5 XT U« U )« (T — nhy U

=V (T —nU« U ) * Vs Vs (X« XT U, «U) % (T — Uy «U])
V(T — U U ) 5 Vs s Voo 5 (X x XT — U+ U ) 5 (T — iUy U]

=V (T = U« U )« Va s Vi # (X« X T = Uy« U] ) 5 (T -y xU,) (87)
s« Vi xUy s U] Vo x Voo s Uy x U (T U+ U,)

:(I—nv}*ut*uj*vx)*v}*(x*xT—ut*uj)*(z—nut*uj)
+n*V}*Ut*U:*VXL *V}L *ut*uf*(zfut*uf).

detail

Therefore, we obtain

IVE Kl = [VE * (T —itds « U ) 5 (X5 XT Uy U] ) % (T — dy + U]

n o T T T

< —_ — : -

- (1 40 mm(X>) [[Wa (X xX U, (88)
2
(X

+n"“$(0)|\ut*wm*wh*ut\|~

Bounding /C-: Note that

Vi *1Co|| = ||VE #[(T—DUD) (X« XT U, + U] )+ E] U, U] ||
< (10— o)X« 27—y U] )|+ |[VE €]

¢ .
<9 (@ — o) (2 2T — sy U] )| + VL <€) 1%

—

(2 9co, (U) (\|X*X—Ut*Wt*W:*U:||+ |\ut*wt¢*w§l *thH*)
9|V~ £ll|X]
< 90024, 0) (VR # (X X 2y 5 U]| + |y =+ Wi+ W] 2,11
9|V = £ll|X]P
(89)
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where (1) use the assumption ||L;|| < 3||X||; (2) use the assumption (79); (3) use the the result of

Lemma Taking a small constant ¢ > 0, we obtain

[V *[(T—DUM) (X« X —U, «U[ )+ E] U, « U] ||
1
< 50 (X) (Ve (X X = U U] )| + U= We =W/ 5 2ill)  (90)
+ 9|V * €[] X 2.

Bounding /C3: Similar to /Co, we have

[V * U Uy = [(T— DTM) (X« XT — U+ U] )+ E]|
1
< oo Tain(X) (IVa * (0 X — Uit )| + It x Wi x W] s ttill) O

+9|[Va = E]]|| X%

Bounding /C,: Note that

[V U s U «(X « XT —U U] ) U < U] ||
<M X« X T = U U |

§)
S =X — U, 1|

()
SN (IVE (X + 2T U U] )|+ U s W W] U] )

92)
where (1) uses the assumption |[U,|| < 3||X||; (2) uses the result of Lemma|8] Then combining the
assumption 7 < ck~2||X’|| 72, then we obtain

PIVE U s U]« (X5 X7 — U U ) 5 Uy < U] |

o2. (X
< g2 () VE e (X X7ttt + 7 g o, W] ],
200 1000 ) ©3)

Bounding /C5: Note that

(T (X + X7 — U+ U]
<X X U+ W s W] =W =W/ ) U] ||
+r -3 (X« X T —U, < U]
(a)
< (1125 X7~ Uy« W W] U]+ (U« Wi W] U])
Foen? (HX*XT U W W] U ||+ U+ WL *wLujn*)
<2 (|12« T~ U W W U] |+ U s Wi s WU L)
< 2 (112112 + [ty « Wil 2 + [[the = Wi, W] U]

b
< 2(1%[1* + 2l[Ue]*)

—~
=

(94)
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where (a) uses the assumption . (b) uses the assumption |[U; * W; | * W, DUl < U
Then we have

Vi« Ks|| = [[VE * [(OUD) (X« X7 —U «U )+ E] s Uy « U] « [T (X« X —U, «U/] )+ E]]|
< (o) (2« 27—ty <] )|+ EN]) - [l (11T 0) (X 2T sy U] )|+ 1€])

INE

4<|I/‘f*9\fT U Wes WU ||+ [[Uex We s W/ U/ ]+ ||«‘3||) [12d]* (1121 + 2lee | + €N

—
IN=

132 (12 = X7 Uy W s W] U] ||+ Uy s Wi W] <UL+ EN]) it

c)
1728 (IIVE (0 2T Uy U] 4 U= W WL 2] ||+ (1] k]

(95)
where (a) uses the result of Equation (94)); (b) uses the assumptions |[U;|| < 3[|X|| and ||€|| <
[|X]|%; (c) uses the result of Lemma Based on these results and the assumption 1 < cx~2|| X || 72,
we have

PV * (DM (X« X T — U« U ) + E] s Uy U « [(DVM) (X« X —U, U] ) + E]||

- n
< 1000 mm( )||VX*(X XT U, *uT)H_’_ 100 mm( )||ut*WtJ_*WtL *uT”*
N2
ooz (el

(96)
Combining the bounds of these five terms, we obtain

Vi (X6 X7~ Up s U )| < (1= Shoomin(X)?) (VR (X XT sy U]

200
* %"minmz\iut s Wi =W, U+ 18n]| X2 |€].
97)
O

F PROOF OF THEOREM 3]

The proof of the minimax error bound of the low-tubal-rank tensor recovery follows from the proof
of the matrix case in (Candes & Plan, [2011). We begin with a standard lemma that characterizes the
minimax risk for estimating a vector x € R" in the linear model

y=Ax+s 98)

where A € R™*™ and the entries of s are independently and identically distributed according to a
Gaussian distribution N/(0, o). For such a model, we have the following lemma that provides its
minimax error bound.

Lemma9. Let \;(AT A) be the eigenvalues of the matrix AT A. Then

inf sup E||& — ||}, = o trace (AT A)~ Z)\ (ATA) (99)

& peRrr

In particular, if one of the eigenvalues vanishes, then the minimax risk is unbounded.

Proof. We separate the argument into three parts: (A) a lower bound via Bayes risk, (B) an upper
bound attained by the ordinary least squares estimator in the nonsingular case.

(A) Lower bound (Bayes argument)
Fix 7 > 0 and consider the Gaussian prior  ~ A(0,72I,,). Under this prior the posterior covari-
ance matrix for & given y is

1 1 -1
Epost(T) = (;ATA + ﬁ[n)
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The Bayes risk (for the posterior-mean estimator) equals the trace of the posterior covariance:

RBayes (1) = Eg g ||z — Elz | y]||5 = tr (Spost (7))
- 1 v 1 (100)
o ; Nifo24+1/12 7 ; \i +02/72’

where we denote \;(A T A) as \; for convenience.
For any estimator & and any prior 7 we have the standard minimax/Bayes inequality
. ~ 2 . ~ 2
inf sup E[|& — x||* > inf EgrE[||& — 2||*] = Rpayes(7),
T g T

because the supremum over « is at least the average under any prior 7. Hence for every 7 > 0,

. ) . 1
1r@1fsupE||a:—:l:H2 ZU2ZT02/T2
x i=1 3

If some A; = 0 then the right-hand side equals +00 as 7 — oo (indeed the corresponding summand
isa?/(0+02/7%) = 72 — 00), so the minimax risk is infinite in that case. Otherwise, if all A; > 0,
send 7 — oo. For each fixed i the function 7 +— o2 /(\; + 0 /72) is monotone increasing in 7 and
converges to 02/)\; as 7 — 0o. By monotone convergence (or by continuity of finite sums) we
obtain

n

: ) _ )
inf supE[|¢ — @[* > lim Rpayes(7) = 0 ; o

(B) Upper bound (least squares achieves the bound).
Assume \; > 0 for all 7, i.e. rank(A) = n. Consider the ordinary least squares estimator

s =(ATA)1ATy.
Substituting y = Ax + s gives
Ty —x = (ATA)_lATS.
Since s ~ N(0,021,,), the error 1.5 — T is zero-mean Gaussian with covariance
E[(#1s —x)(@s —x) | = (ATA)TTAT (0°I,n)A(ATA) "  =0?(ATA)~.
Therefore the mean-square risk of @15 (for any fixed x) equals

n

. _ 1
E|#is — z|* = tr (62(AT A)~?) = o2 ; X
This shows
infsupE||& — x|* < supE||&rs — z|* = 0 i i
T g T i—1 )\z
Combining (A) and (B) yields the asserted identity. L]
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Then we proceed to prove the minimax error bound. Define the set of rank; r tensors as
D, = {X :rank;(X) = r, X € Rk
and the set of tensors of the form X’ = Y xR as
Dy ={X: X=Y*R, X e Rk YRV yTy=71}
Note that set D, is much larger than set Dy,. Therefore,
inf  sup  E[| Xy — X7 > inf  sup B[ Xy — X[} (101)

Xest Xirank, (X)=r Xest X:X=Y*R

For fixed orthogonal tensor Y, define the orthogonal projection tensor Py = Y * V', which
satisfies ’Pg, =Py, ’P; = P+ . Then fix the estimator X ., for any X € D+, we have:

|| X st _XH%“ =[Py * Xest — X + (T - Py) *XestH%«“
=[Py * Xest — X||r + |[(Z - Py) *XestH%
+2<Py *Xest —X, (I—Py) *Xest>

D \Py + Xew — Xl|r + (T = Py) * Xeutl[3,

(102)

where (a) use the fact that the tensor column subspaces of Py, * Xo5: — X and (T — Py) * Xest
are orthogonal, which implies that their inner product vanishes. Therefore, we can directly obtain

|| X cst *X”%* > [Py * Xest *XH% = ||y*yT * Xest *y*’RH%*

YT e~ R e
Let Rest = yT * X ost, then we have
nf  sup Ef|Xew — X[ 2 fnf sup B||Res —RI[f. (104)
Therefore, the minimax risk is lower bounded by that of estimating R from the data
y =My (vec(R)) + s, (105)

where My, : R™F — R™ and vec denotes the vectorization operator. Then we can apply the result
of Lemma 9] to show that the minimax risk is lower bounded by

rnk 2

. o
inf sup EHXest—XH%ZZX(

W S TR (106)
Xest X:rank, (xX)=r mymy)

Then we can bound the term by the following Lemma with t-RIP assumption.

Lemma 10. Let Y be ann x r X k orthonormal tensor, suppose that the linear map 9(+) satisfies
the (r,0) t-RIP, then all eigenvalues of My,My belong to the interval [m(1 — 0), m(1 + 0)].

Proof. By definition, we have

Amin (D My) = | (i%f” ) {vec(R), MMy (vec(R)))
vec F=
107
Amax (D My) = sup <vec (R), My, Mty (Vec(’R))> . (107
[l vec(R)||p=1

Note that
(R, M5,My (vee(R))) = [[My (vec(R))[|* = ||M(Y * R)||%,

then we can bound ||9(Y * R)||? by the (r, ) t-RIP
m(1 = 0)[[Y = RI[F <MY R <m(L+0)||Y R

Since ||Y *R||r = ||R||r = 1, then the eigenvalues of MT3,9Mty, is bounded by [m (1 —4), m(1+
0
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Combining the result of Lemma[I0]and Equation (T06), we have

k
- 2 1 nrko?

g
inf sup B[ Xew — X7 =D . > , (108)
—~ Ai(MyMy) — 1+6 m

Xest X:rank, (X)=r
which finishes the proof of the first inequality in Theorem 3]
Then we proceed to prove the second inequality in Theorem [3] We introduce a technical Lemma
firstly.

Lemma 11 (Lemma 3.14 in (Candes & Plan, 2011)). Suppose that x,y, A, s follow the linear
model , with s ~ N(0,02I), then

1
infsup P ( ||& — «||? > no?) >1-—e "6, 109
af s (16—l 2 grpne’) (10

With the result of Lemmas [T1} [T0] and the linear model
y = My (vec(R)) + 5, R € RV y e R™,
we can obtain
nrko?
sup IP( Xost — X% > > >1— e "R/6 (110)
X, rank, (X, )<r || ¢ *||F Qm(1+6)
which completes the proof of the second inequality.

G PROOF OF THEOREM [

Lemma 12. Suppose that each entry in the validation measurements A;, i € Ly is sampled from
independent identically sub-Gaussian distribution with zero mean and variance 1, and each e; is a
zero-mean Gaussian distribution with variance o2, where c1, co > 1 are some absolute constants.
And we also assume that tensors D1, Do, ..., D are independent of M1 and e. Then for any
Oval > 0,given my, > Gulog T "\ irh probability at least 1 — 2T exp —Comya162,

|||mval(Dt) +e||§7‘ - mval(HDtH%‘ + 0-2)’ < 5valmval(”DtH%“ =+ 02)7Vt = 17 "'7T7 (111)
where Cy, Cy > 0 are constants that may depend on ¢, and cs.

val

Proof. The proof of this lemma follows directly from Lemma D.1 in (Ding et al., 2025) , since
(A;, D)+e; is a sub-Gaussian random variable with zero mean and variance ||D||%.+ o, regardless
of whether A; and D are matrices or tensors. Therefore, the conclusion of Lemma D.1 applies
directly to this lemma. O

Lemma 13. Let { = argminj<i<7 |[Mya(D:) + €||2 and t = arg miny << ||D¢||r, under the

assumptions in Lemma[I2] we have

1+ 6va1

2§Val
1Dell < 5 o’

1- 5val

1Dyl |3 + (112)

- 5va1

Proof. Under the assumptions of Lemma[I2] we have

1

(1=6va) (|| Dy [F+0?) < m [[998a1(De)+el [ < (140w (1Dl | E40°), VE = 1,.., T, (113)

val
from the result of Lemma[I2] Then we have

1
D47 + 0% < ————||Mvar(Dy) + el |
'rnvad(1 - 5val)
1 T (114
< m\lmvm@z) tellr < 75— (IDillr + %),
which indicates 116 05
+ Oval val
D;l|% < D;||7 2, 115
|| t||F— 1_5val” tHF—’—l_évalU ( )
Therefore, we complete the proof of Lemma [
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With these two Lemmas, together with Theorem [2] we proceed to prove Theorem ] Replacing the
result of Lemmawith D;=U;* Uf;T —X,and D; = U; * Z/tt~T — X, we have

s 0 ol T 26 al
UpxU] = X5 < g« — &, 1% + —2L 52, 116
|[td7 + U; *HF—l_évalH ixU; AF+ 750 (116)
To achieve the error C' nk#ﬁ#, we need the bound %02, which requires § < % Taking
 nkrrt ' s .
0= 3%1’;“, then we can verify that el < 9.
4
1+ 6va1 N 1+ % . 3mtrain + nkrm‘l B 2nkrh‘/4
L= 0w 1 37:!?:’:4 3Mgrain — nkrr? E T — .
(@) 2nkrr?
<1+

nkret(3ret —1) = 7

where (a) uses the assumptions that m > nkr2x8. Therefore, combining the results of Theorem

Rlwe have
nkro?k?
;U] — x| <C—-—-.
Mtrain
m2. logT

train
(rnkr*)?

nkrrt
3Mtrain

with the assumption my, > C 12#’ we have my, > C

val

Moreover, combining

Therefore, the proof of Theorem [d]is completed.

H TECHNIQUE LEMMAS

Lemma 14. Suppose the linear map 9 : Rk — R™ satisfies (r+1,61) t-RIP with 6, € (0, 1),
then M also satisfies (7,/rd1) S28-1-RIP.

Proof. The proof of this lemma can be adapted from that of [(Karnik et al.| 2025)), Lemma G.2] by
introducing the inequality || Z||r < /7||Z]]. O
Lemma 15. Suppose the linear map M : R"*"*F — R™ satisfies (2, 62) t-RIP with 53 € (0,1),
then I also satisfies 63-S2N-t-RIP.

Proof. The proof of this lemma can be adapted from that of [(Karnik et al.| 2025]), Lemma G.3] by
introducing the inequality || Z||r < /7||Z]]. O
Lemma 16. For a tensor' Y € R™"*"*k with tubal-rank r, then we have

X[ < [|X|lr < VrllX]], (1] < r[]X]]. (118)

I EXTENSION TO THE GENERAL TENSOR

In this section, we provide a brief analysis for the extension to the asymmetric case by formulating
the asymmetric model into a symmetric model. We first present the asymmetric tensor sensing
model:

y:ma(x*)+sv (119)
where X, € Rmxn2xk gt (X) = [(By, X,), (Ba, X.), ..., (B;, X,)]. Under this asymmetric
model, we take an asymmetric factorization X = £« R ', £ € R *"*k R ¢ R"2*"k Then
we define the symmetric measurement tensors C; € R(n1+72)x(n1+n2)xk py.

1 0 B;
and the corresponding linear map € : R(n1+n2)x(nitn2)xk _y Rm yig

(€(X)); = (Ci, X).
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—}—Train error, spectral ini
— — Optimal test error
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Figure 6: Comparison of training and testing errors for Problem (I2I)) using FGD with spectral
vs. small initialization. The ground-truth tensor has tubal-rank » = 2, overestimated rank R = 4,
size n; = ng = 20, k = 3, m = 5kr(2n; — r) measurements, and noise o = 1073. Spectral
initialization follows (2024Db)), while small initialization uses a near-zero starting point.
Training error is 1 ||y —MY(L+R ")||?, and testing error is || L+ R " — X, ||%/|| X.||%. “Baseline”
denotes recovery under exact rank R = 7. Insets show early (first 500 iterations) vs. full error
curves.

Define

and

L L z _ L | L
Zt = \/§ |:Rt:| and Zt = \/§ |:_Rt:| .

With these definitions, we then transfer the asymmetric sensing model into a symmetric model:

\%Q(sym(.l’)) =M, (X) and %Q(Zt s 2] “ZxZ]) =M (L, xR)).

With this model, we have the following objective function:
ML R = S, — £+ R]) + 5] (121
Then we define the corresponding symmetric loss function:
(20 ) = JI€sym(X,) — 2y 2] + Zox 2) 48]

The gradient update of heym( 2+, zt) is

Zi = 20+ (@) (sym(X,) — 2y % 2] + Zix 2,) + € (V28)] % 2,

- - - - (122)
Zi = 20— (€ Q) (sym(X,) — Zy % 2] + 2% Z,) + € (V28)] x 2.

This formulation allows us to leverage some proof techniques from the symmetric case. However,

handling the imbalance introduced by the two factor tensors poses a significant challenge, and we

are actively investigating this issue. Encouragingly, our experimental result in Figure [6] shows that

the phenomenon described in this paper also persists in the asymmetric setting.
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J  ADDITIONAL EXPERIMENTS

J.1 SIMULATIONS ON DIFFERENT NOISE DISTRIBUTION

We conduct simulation experiments to verify that our theoretical results remain valid under vari-
ous noise distributions, not limited to Gaussian noise. The experimental setup is identical to that
in Section 6, except that we replace the Gaussian noise with two types of sub-exponential noise:
Laplace noise and exponential noise. We briefly introduce the two noise models considered in our
experiments:

» Laplace noise: The noise vector follows a Laplace distribution,

s ~ Laplace(p, b), f(s;) = ;bexp (_LS%;M) ’

which is a symmetric sub-exponential distribution with mean  and variance 2b2.
* Exponential noise: The noise vector follows an exponential distribution,
s~ EXP(A)7 f(sz) = )‘exp(fAsi)v x8; > 07

which is an asymmetric sub-exponential distribution with mean 1/ and variance 1/\2.

The results, shown in Figures [7] and [8] demonstrate that under both noise types, FGD with small
initialization achieves the same recovery error as in the exact tubal-rank case, even in the over-
parameterized regime. This confirms that the guarantee provided by Theorem 2 extends beyond
Gaussian distributions. Moreover, FGD with validation and early stopping yields errors that are very
close to those in the exact tubal-rank setting, further validating the effectiveness of this approach and
suggesting that the result in Theorem 3 can also be extended to sub-exponential noise.

10% T T T T T 10°
() Baseline
—3¥— Spectral ini
Large random ini 10 F 78
—}— small random ini (best) /1‘
10tk Small random ini (ES) St
[ o
. 10°F @ \§7
2 s i /
i} 5 e
: y 2
S S A
F 10°F & %
[ S
= F 10 2
® 5]
3 @
%
. 103F \ %“‘/
101k 4 3
%] ()~ Baseline
. —¥— Spectral ini
10°F Large random ini
G N —}— Small random ini (best)
e R s ~ (e v ini
T =+, aAx Small random ini (ES)
PR e m S e = ¢RI .
0 5 10 15 20 25 30 10% 103 10? 10t
over rank R b
(@) (b)

Figure 7: Performance comparison under varying R, b with Laplace noise with ¢ = 0. Subfigure (a)
illustrates the recovery error of all methods under different over-rank values R, with parameters set
asm = 5kr(2n —r),n = 30,b = 1073, = 0.1, and T = 5000. Subfigure (b) illustrates the error
under varying noise levels b, with m = 5kr(2n — r), n = 30, R = 3r, 7 = 0.1, and T' = 5000.

J.2  REAL-DATA EXPERIMENTS

In this section, we provide additional experimental details and results. We first present the algorithm
used for the tensor completion task, as shown in Algorithm 3] We then give the definitions of the
evaluation metrics, PSNR and relative error:

1212 ) REEEAR

L_||X - X,|]% [Xlllp

ninan3

PSNR = 10log; (
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Figure 8: Performance comparison under varying R, A with exponential noise. Subfigure (a) illus-
trates the recovery error of all methods under different over-rank values R, with parameters set as
m = 5kr(2n —r),n = 30,b = 1073, = 0.1, A = 1000 and T = 5000. Subfigure (b) illustrates
the error under varying noise levels A\, with m = 5kr(2n — r), n = 30, R = 3r, n = 0.1, and
T = 5000.

where X, is the ground truth and X is the estimated tensor. Next, we briefly introduce the baseline
methods used for comparison:

e TNN (Lu et al 2018): a classical convex method based on tubal tensor nuclear norm
minimization proposed by (), widely used in tensor completion.

* TCTF (Zhou et al.L[2017): a tensor factorization—based method with tubal-rank estimation,
designed to reduce computational cost.

e UTF (Du et al.| |2021): another tensor factorization method that replaces the tubal tensor
nuclear norm constraint with Frobenius-norm constraints on two factor tensors.

e TC-RE (Shi et al.}|2021)): a rank-estimation—based method that first estimates the tubal rank
and then performs tensor completion using truncated t-SVD.

* GTNN-HOP,, (Wang et al.,|2024): a method that replaces the traditional TNN soft thresh-
olding with a hybrid ordinary-/,, penalty for improved performance.

We conduct experiments on both color image completion and video completion tasks, and compare
our method with the above approaches.

Algorithm 3 Solving tensor completion by FGD with early stopping

Input: Train data IS%“““(é\f’ « + 8p), validation data ‘13"931(2\:' « + 85), initialization scale «, step
size 1, estimated tubal-rank R, iteration number T
Initialization: Initialize Ly, Ry, where each entry of Ly, Ry are iid. from
2

N0, 22).

I: fort =0to7T —1do

2 Lo =L = IPGUL R, — X, - 80) xR,

3 R =R —IPGN(L+ R, — X =8,) + Ly

2

4:  Validation loss: e; = % WL xR —X, - 8,) .
5: end for 5
6: Output: L; ’R;r where ¢ = arg mini<;<7 €.
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Table 3: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels. A higher PSNR
and smaller RE indicates better reconstruction quality.“FGD-ES” denotes FGD with early stopping,
while “FGD-best” refers to the minimum error achieved by FGD over all iterations.

p=20.3 p=04

Methods o =0.03 o =0.05 o =0.03 o =10.05
PSNRT RSE] PSNRT RSE] PSNRT RSE] PSNRT RSE]
UTF 7.8242 0276 73535  0.2884 6.8286  0.3112 5.5376  0.3559
TNN 20.211  0.0659 17.2288 0.0934 20.4965 0.0639 17.1281 0.0947
TC-RE 19.7102  0.0698 16.9971  0.096  19.7435 0.0698 16.4039 0.1029
GTNN-HOPy 3 19.6553 0.0706 16.1069  0.107  20.0091 0.068  16.268  0.1051
GTNN-HOPy s 20.2583 0.0659 16.8056 0.0987 20.5764 0.0636 16.8933 0.0978
FGD-ES 22.083 0.0529 21.02 0.0597 22.2876 0.0517 21.5831 0.0559
FGD-best 22.1411 0.0525 21.1517 0.0588 22.3001 0.0516 21.7213 0.0551

J.2.1 COLOR IMAGE COMPLETION EXPERIMENTS

We perform color image completion experiments on the Berkeley Segmentation Dataset
2001). We randomly select 50 color images of size 481 x 321 x 3 and set the sampling
rate as p and add Gaussian noise N'(0, 02). For TNN, UTF, TCTF, and GTNN-HOP, we adopt the
initialization schemes and hyperparameter settings as described in their original papers. The entry
”"FGD-best” refers to the highest PSNR obtained by FGD with small initialization, while "FGD-ES”
corresponds to the PSNR achieved using early stopping based on validation. For both settings, the
initialization scale is set to &« = 10~° and the step size is set to n = le — 3. The tubal-ranks of
FGD-ES, FGD-best and UTF are set to 100 for all images. The max iteration number is 2000. We
present in Figures P[I12]the PSNR and RE values of different methods on each image under various
model parameters ((p, o)). In addition, Figure|13|shows the visual reconstruction results.

We observe that FGD-best and FGD-ES achieve the best recovery performance in most cases. More-
over, when the noise level increases, the performance of other algorithms degrades significantly,
whereas FGD with small initialization is much less affected, highlighting the benefit of small initial-
ization.

J.2.2 VIDEO COMPLETION EXPERIMENTS

Beyond image completion, we also performed video completion experiments with Gaussian noise.
We randomly selected four videos from the YUV Video Sequences dataset E|, extracted the first 30
frames of each to form tensors of size 176 x 144 x 30, added Gaussian noise drawn from N(0, 02),
and again applied sampling rate p. Since TCTF performs bad in the low sampling rate case of
video completion, we replace it with GTNN-HOP s, a non-convex method with a sparsity-inducing
regularizer. For FGD-ES and FGD-best, the initialization scale is set to & = 107> and the step size
is set to 7 = 2e—4. The tubal-ranks of FGD-ES, FGD-best and UTF are set to 50 for all images. The
max iteration number is 4000. Tables [B}{7]report the PSNR and RE values of all methods on the four
videos, and Figure [T4] shows the reconstruction results of the first frame of the akiyo video for each
method. As can be seen, our method achieves the smallest relative recovery error and the highest
PSNR values. In addition, we evaluated the robustness of FGD-best and FGD-ES with respect to
the choice of the tubal rank R. The results, shown in the Figure@ demonstrate that both methods
are highly robust to the selection of IR across all four videos.

One potential issue is that gradient-based methods are sensitive to the condition number of the
underlying matrix or tensor, leading to slower convergence when the condition number is large.
Thus, developing methods that accelerate FGD while controlling the amplification of noise remains
an interesting direction for future research.

Zhttps://www.cnets.io/traces.cnets.io/trace.eas.asu.edu/yuv/index.html

45



Under review as a conference paper at ICLR 2026

=—0— FGD-ES —#— FGD-best TNN —%— GTNN —p—TCTF —<— UTF —Q—TC-RE‘

=0.20,0 = 0.07
30 P

/A

A
A
Y/ 53

,QPV,\ N\/V A P-\ N A NAY

PSNR (dB)
8

'«

'\ ’/ et /‘ PN NAA

Lol L L
10
DAY PP R AC N R DDyl P )P oD oD oD 2 P 1 L R R P

L |
YU X5 0A Q90 D

-
%
-
oy
s -
%
b
o -
o -
2 -

Image index
(@
—@— FGD-ES = FGD-best TNN —%— GTNN —p— TCTF —<4— UTF —e—Tc-RE\

p=020,0=0.07

A

—

0.4 \\ ‘ ,\ /\ \\ i /4\ /’ s \/\ ‘,\ / \ 4
Y Y A‘e\

AN AN
VA" A

A\ ay \;/ \,; \/\.A

_\\:;
A\A f

Relative Error (RE)
o
N

0.1

I 48 T . O O A B A O B A
YYD HO 0N DN RIPORDRRYPPPPRRRDD DD PO DD O gl 2P R R PP

Image index

(b)

Figure 9: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.2 and noise standard deviation o = 0.07.

Table 4: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels. A higher PSNR
and smaller RE indicates better reconstruction quality.“FGD-ES” denotes FGD with early stopping,
while “FGD-best” refers to the minimum error achieved by FGD over all iterations.

p=20.3 p=04

Methods o =10.03 o =0.05 o =0.03 o =0.05
PSNR1T RSE] PSNR{1T RSE] PSNRT RSE] PSNRT RSE]
TNN 20.7258 0.0613 17.4371 0.0895 21.0157 0.0592 17.3267 0.0906
TC-RE 19.928 0.0671 17.1895 0.0920 20.2059 0.0650 16.5464 0.0991
UTF 6.3467 0.3207 6.4038 0.3186 59414 0.3360 4.7523 0.3853
GTNN-HOP; 3 19.9438 0.0670 16.1328 0.1039 20.2975 0.0643 16.2845 0.1021
GTNN-HOPg ¢ 20.5461 0.0625 16.8126 0.0961 20.8648 0.0603 16.9083 0.0951
FGD-ES 23.2899 0.0456 21.6321 0.0552 23.8244 0.0429 22.3928 0.0501
FGD-best 23.4511 0.0448 21.8002 0.0541 23.8539 0.0427 22.5611 0.0496
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Figure 10: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.2 and noise standard deviation o = 0.1.

Table 5: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels for the “highway”
video. A higher PSNR and smaller RE indicates better reconstruction quality. “FGD-ES” denotes
FGD with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all

iterations.
p=20.3 p=04

Methods c=0.03 o = 0.05 c=10.03 o =0.05
PSNRT RSE] PSNRT RSE] PSNRT RSE] PSNRT RSE]
TNN 19.4802 0.0474 16.9433 0.0635 19.8369 0.0455 16.8423 0.0642
TC-RE 19.0227 0.0499 16.6549 0.0656 19.1568 0.0492 16.1336 0.0697
UTF 4.0060 0.2814 3.7117 0.2911 1.1904 0.3891 0.7714 0.4084
GTNN-HOPgy 3 19.3115 0.0483 16.1687 0.0694 19.7269 0.0461 16.3390 0.0680
GTNN-HOPy ¢ 19.8894 0.0452 16.8541 0.0641 20.2802 0.0432 16.9568 0.0634
FGD-ES 20.6667 0.0413 20.0041 0.0446 20.7364 0.0410 20.3462 0.0429
FGD-best 20.7000 0.0412 20.1063 0.0441 20.7278 0.0410 20.4994 0.0421
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Figure 11: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.3 and noise standard deviation o = 0.07.

Table 6: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels for the “suzie” video.
A higher PSNR and smaller RE indicates better reconstruction quality. “FGD-ES” denotes FGD
with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all itera-

tions.
p=20.3 p=04

Methods c=0.03 o = 0.05 c=10.03 o =0.05
PSNRT RSE] PSNRT RSE] PSNRT RSE] PSNRT RSE]
TNN 19.3458 0.0717 16.6844 0.0974 19.8125 0.0679 16.7441 0.0967
TC-RE 19.2177 0.0728 16.5983 0.0984 19.2186 0.0728 16.0643 0.1046
UTF 11.4879 0.1772 10.2100 0.2053 10.8456 0.1908 8.6211 0.2465
GTNN-HOPgy 3 19.0898 0.0738 15.7370 0.1086 19.5613 0.0699 15.9544 0.1059
GTNN-HOPy ¢ 19.6531 0.0692 16.4167 0.1005 20.0997 0.0657 16.5620 0.0988
FGD-ES 20.5670 0.0623 19.4874 0.0705 20.7175 0.0612 20.1540 0.0653
FGD-best 20.5947 0.0621 19.6263 0.0694 20.7445 0.0610 20.2629 0.0645
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Figure 12: Comparison of PSNR values and Relative Error across 50 images for different methods,
with sampling rate p = 0.3 and noise standard deviation o = 0.1.
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Figure 13: Comparison of the image recovery performance of different methods under varying
sampling rate p. The noise standard deviation 0 = 0.05. And 5% of the observed entries are used
for validation.
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Table 7: Comparison of different methods in terms of average Peak Signal-to-Noise Ratio (PSNR)
and average Relative Error (RE) under various sampling rates and noise levels for the “miss-america”
video. A higher PSNR and smaller RE indicates better reconstruction quality. “FGD-ES” denotes
FGD with early stopping, while “FGD-best” refers to the minimum error achieved by FGD over all
iterations.

p=03 p=04

Methods o =003 o =005 o =003 o =005
PSNRT RSE] PSNRT RSE] PSNRT RSE| PSNRT RSE]J
TNN 212922 0.0831 17.8503 0.1235 213210 0.0828 17.5991 0.1271
TC-RE 20.6724 0.0892 17.5455 0.1279 203926 0.0921 16.8711 0.1382
UTF 9.4560 0.3245 9.0886 03386 9.3371 03290 8.0055  0.3835

GTNN-HOPy 3 20.2760 0.0934 16.3891 0.1461 20.4505 0.0915 16.4938 0.1443
GTNN-HOPy 3 20.9446 0.0865 17.1388 0.1340 21.0611 0.0853 17.1462 0.1339
FGD-ES 23.8085 0.0622 22.9563 0.0686 23.8721 0.0617 23.4395 0.0649
FGD-best 23.8186 0.0621 23.0738 0.0677 23.8743 0.0617 23.5618 0.0640

Original  Observed UTF GTNN-HOP,; GTNN-HOP,;  TC-RE FGD-ES  FGD-best
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Figure 14: Comparison of the video recovery performance of different methods under varying sam-
pling rate p and noise standard deviation o for video “akiyo”. For FGD-ES, 5% of the observed
entries are used for validation.
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Figure 15: Evaluate the effect of different tubal-rank R on the performance of video completion.
Subfigure (a) shows the PSNR values of FGD-best on the four videos, and subfigure (b) shows the
corresponding RE values. Subfigure (c) reports the PSNR values of FGD-ES on the four videos,
while subfigure (d) presents the associated RE values.

51



	Introduction
	Related works

	Preliminaries
	Main results
	Factorized gradient descent and t-RIP
	Theoretical guarantees
	Proof sketch
	Early stopping via validation

	Experiments
	Conclusion
	Organization of Appendix
	Use of Large Language Models
	Reproducibility Statement
	Additional Preliminaries
	Proof of Theorem 2
	Analysis the four phases
	Phase I: Alignment phase
	Phase II: Signal amplification phase
	Phase III: Local refinement phase
	Phase IV: Overfitting phase

	Validate four phase in Section 3.3
	Proof of Theorem 2
	Case 1 :R= r
	Case 2 :r<R< 3r
	Case 3: R3r

	Proof of Corollary 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Theorem 3
	Proof of Theorem 4
	Technique Lemmas
	Extension to the general tensor
	Additional experiments
	Simulations on different noise distribution
	Real-data experiments
	Color image completion experiments
	Video completion experiments



