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Abstract

We introduce a framework that provides quantitative explanations of statistical models
through the probabilistic assessment of input feature importance. The core idea comes
from utilizing the Dirichlet distribution to define the importance of input features and
learning it via approximate Bayesian inference. The learned importance has probabilistic
interpretation and provides the relative significance of each input feature to a model’s output,
additionally assessing confidence about its importance quantification. As a consequence of
using the Dirichlet distribution over the explanations, we can define a closed-form divergence
to gauge the similarity between learned importance under different models. We use this
divergence to study the feature importance explainability tradeoffs with essential notions in
modern machine learning, such as privacy and fairness. Furthermore, BIF can work on two
levels: global explanation (feature importance across all data instances) and local explanation
(individual feature importance for each data instance). We show the effectiveness of our
method on a variety of synthetic and real datasets, taking into account both tabular and image
datasets. The code can be found at https://anonymous.4open.science/r/BIF-45EF/

1 Introduction

The increasing spread of machine learning algorithms in a wide range of human domains prompt the public
and regulatory bodies to increase scrutiny on the requirements on algorithmic design (Voigt & Busschel
2017). Among them, explainability aims to provide a human interpretable reasoning for algorithmic decisions
(Goodman & Flaxman, 2016). Quantifying explainability is a difficult problem since numbers should describe
characteristics which are human interpretable. With the goal of gaining explainability, there has been a large
number of methods developed for explaining why machine learning models produce particular outputs (Ribeiro
et al., [2016a; |[Lundberg & Leel 2017b). However, the interpretation of the score is often not straightforward.
We tackle the problem of accurately assessing how relevant each of the data input feature is to a machine
learning model. We formulate the feature importance problem in an intuitive probabilistic framework where
the score signifies the relative importance of a feature compared to others. Besides, it is often overlooked how
explainability scores relate to other desirable properties of models such as privacy or fairness. The proposed
probabilistic interpretation in form of Dirichlet distribution allows closed-form KL-divergence to compare
probability distributions that describe explainability of different models.

Broadly speaking, there are two levels at which one could gain such input feature explainability. The first
level is global, where the goal is to identify the most relevant features for the entire dataset, that is each
data sample has the same hierarchy of features. However, when the data exhibit a large variability (e.g.
in the case of images), using global explanation methods is not suitable, as for each data sample different
features may be relevant. To overcome this limitation, the second level is local, where the goal is to identify
the most relevant features for each data instance separately (Shrikumar et all |[2017)). The current literature
proposes separate mechanisms for each of the approaches to feature explanations. The traditional feature
selection literature offers a large number of methods for global explanations (Hall, [1999; Hanchuan Peng et al.
2005} |Candes et al., |2016; |Guyon & Elisseeff] 2003} [Kira & Rendell, [1992) while newer methods concentrate
on instance-wise approaches (Chen et al.l 2018; [Yoon et al.l 2018). On the other hand, BIF is a common
framework which allows both for global and local explanation.
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Providing local explanations is challenging and requires backing by an external model. The current approaches
provide two ways for local explanations. The first group provides model-agnostic methods which rely on
the outputs of common machine learning models (e.g. Random Forest or XGBoost). The second group
concentrates on leveraging neural networks to build their own models which provide feature explanations.
BIF is a novel method that bridges both approaches, additionally providing a Bayesian perspective for feature
importance.

Thus, we introduce a framework called Bayesian importance of features (BIF) for gaining the explainability
of complex machine learning models both globally and locally with the following benefits:

e It models feature importance via Dirichlet distribution thus providing probabilistic interpretation
and relative weighing of the features.

e By means of Bayesian formulation, it provides the uncertainty measure of the assessed importance
values.

e The algorithm produces the distribution over the feature importance, which we exploit to quantify
the trade-offs between a model’s explainability in terms of the feature importance and other notions
such as privacy and fairness.

e As a unified framework, it can learn a global probability over features via a simple model linear in
the number of parameters, or apply neural networks to produce an instance-wise explanation.

e The proposed method is a flexible meta-algorithm which can work with any model through which we
can backpropagate.

2 Related Work

Feature selection, overall, is intended to reduce the number of data input variables to those that are the most
useful to a model in order to predict the target variable. The feature selection methods can be subdivided
in various ways, supervised and unsupervised methods, or wrapper (which evaluate subsets of variables to
maximize performance), filter (which evaluate the relationships between each input feature and the target) and
embedded (such as penalized regression or random forest) methods (Kuhn et al., [2013)). Feature importance,
the issue which we tackle in this work, belongs to the filter-type methods. Alternatively, we may also
distinguish two broad categories, feature-additive and feature-selection methods (Linardatos et al., [2021)).

Feature-additive methods provide importance of features per dimension, such that their sum matches a
quantity of interest, typically the model’s output. Two popular such methods are LIME (Ribeiro et al.,
2016b) and SHAP (Lundberg & Lee, 2017a). LIME assumes that any complex model is linear locally. It fits
a simple model around a single observation using new samples with permuted features, weighted according
to their proximity to the original. SHAP is based on the game-theoretical concept of the Shapley value
which assesses average marginal contribution of an input. SHAP, however, utilizes the reinterpretation from
(Charnes et al., [1988) where the score is a weighted linear combination of features. This approach provides a
local explanation by the level of deviation a given data sample gets from the global feature average. Both
LIME and SHAP provide a feature importance weight. Other notable feature additive approaches include
attribution-based methods (Ancona et al., |2017) such as Integrated Gradient (Sundararajan et al., [2017)),
Smoothgrad (Smilkov et al., 2017)).

On the other hand, feature-selection narrows down the set of features and finds a subset of input features
which produce a similar result to the case when the full set of input features is used. Two recent such models
are L2X (Chen et al., [2018)) and INVASE (Yoon et al.; [2018)). One notable difference from the classical feature
selection methods such as LASSO (Tibshirani, 1996)) is that these methods target instance-wise feature
selection and build their own neural network-based pipeline. L2X maximizes the mutual information between
subsets of features X and the response variable y, and approximates this quantity with a network which
produces binary feature samples learnt via continuous relaxation with the Gumbel-softmax trick. INVASE
(Yoon et al., |2018]) consists of three networks. The first network is a selector network which provides selection
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probabilities given each input feature. However, unlike in our model, the outputs of the selector network are
treated as separate Bernoulli variables and are not directly trained with the model’s output. The output of
the selector network is fed into two separate networks which form an actor-critic pair for feature selection.
Both of these methods produce binary output of k important features: L2X outputs a predetermined set of
important features while INVASE determines the k based on a threshold.

3 Problem formulation

Generally, feature importance assigns a score f € R to each feature in the input data D € RV*9 where S
denotes the number of features and N the number of data examples. For a given feature, the score can be
the same or differ for each data sample x € D, which is described by the two following concepts:

Global explanation: We assign a universal, S-dimensional vector of values f to the set of input features in
the dataset D. The value quantifies the relevance or importance of the feature for the entire dataset. In
particular, the vector f assigns a single, scalar-valued global score £/l to each feature j.

Local explanation: Every instance of data x,, is assigned a separate, S-dimensional feature importance vector
f,, and the importance vectors f,,, and f,, for two different data instances x,, and x,, need not be the same.

Moreover, feature importance is computed in relation to a model g. In other words, a feature is important
for a task indicated by a model in question, denoted by g, and thus we require a data-model tuple (D, g).
What comes next describes our method that provides probabilistic interpretation of both global and local
explanations.

4 Methods: Bayesian importance of features (BIF)

Consider a data-model tuple (D, g) such that the dataset D € RV*5 and g is any differentiable model. That
is, a model g is trained with an N-element dataset D = {x,,, y,}\_;, where x,, € R® is an input data sample,
Yn its label (either discrete or continuous) and S is the input dimension. The proposed method assesses the
importance of the set of S input features given the model g. We assume the model g to be fixed, that is the
parameters of g are not altered throughout the process of learning the importance of features. Subsequently,
we describe in detail how BIF works in both global and local setting.

4.1 BIF for global explanation

In the global feature explanations, we assign the importance for a feature across the entire dataset. For
example, in the task to predict future stroke, the database contains information about patients. In this case,
the heart pressure measurement is relevant across the dataset for all the patients while their income feature
may be less relevant. Feature importance assigns a numerical value that represents the importance of each
feature. Usually, the importance value is unbounded (Lundberg & Lee, 2017a) or binary. We define the
feature importance through a probability vector f, importance vector, which describes the relative weight of a
feature.

In the case of 0-1 interpretation of feature importance, the features which are deemed important are preserved
and those irrelevant are removed. This process can be seen as an element-wise (Hadamard) multiplication
of the binary importance vector and the data vector resulting in the new data sample which contains only
the relevant features. We follow a similar train of thought, however, in our case the importance weights
are continuous values between 0 and 1. The mechanism is illustrated in Fig. [I The importance vector f is
element-wise multiplied with the input data, f ® x which results in the new weighted input to the model g.

The provided interpretation allows for a more fine-grained analysis of the feature importance. Moreover, the
importance can be viewed as a contribution of a feature fl/! to the maximization of the objective function
given by the model g.

Loss function for global explanation Lg: Let Lg denote the loss for the method to obtain the global
feature importance. In this Bayesian approach, the data D is assumed to come from a probability distribution,
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Local (instance-wise) explanations

importance network model g

Figure 1: Global explanation (blue box). We define an importance vector, assumed to be Dirichlet distributed.
To learn the parameters of this distribution (denoted by all.. ‘a[s]), we element-wise multiply a sample of this
distribution (F, - 151y by input features (x, ... x5!}, which is fed into the model in question (denoted by g).
The model’s prediction y and the target determine the loss, used to update the parameters of Dirichlet distribution
through back-propagation (blue dotted line). Local explanation (black box). To gain instance-wise, local explanation,
we define an importance network, where the inputs are the input features (xm, s, xS D) and outputs follow Dirichlet
distributions. We learn the parameters of the importance network via back-propagation (black dotted line). Note that
the back-propagation does not affect the model in question and that we train either the importance vector or the
importance network depending on the application.

and we are interested in inferring this distribution, in particular, the distribution that maximizes the likelihood
of data D. We assume there exists a hidden (latent) variable f and we condition our observations on this
variable f. That is, we assume a parametrized model of joint distribution between the data ﬂﬂ and the
importance feature vector f. In principle, we want to maximize the log-likelihood of the data which is obtained
by integrating out the feature importance vector, log p(D) = log [ p(D, f)df. Under a neural network model,
directly integrating out f is intractable, therefore approximate inference is performed. We instead use a
distribution ¢(f), which approximates p(f|D), log [ p(D, f )%df . By using the Jensen inequality, we can
provide the lower bound for this expression in the form of:

/ 4(F) log p(DIE)df — Dic[g(£)]|p(E)]. (1)

This expression provides the lower bound to the data likelihood, p(D). The left-hand side is a cross-entropy
term obtained from the model g (e.g. neural network output) for a given sample f. The right-hand is the KL
divergence between the prior term and the approximate posterior. The negative lower bound becomes our
global loss function, L& which we minimize.

Parameterization. In order to perform approximate inference, we assume the following forms of distribution
of the importance vector f. The terms in L are defined as follows:

)

—
)

~—
I

Dir(fla)  (approximate posterior), (2)
p(f) = Dir(fla)  (prior) (3)

Both a and «g are parameter vectors of the Dirichlet distribution. We set the parameters ag to some
constant value and only optimize for . Assuming the Dirichlet distribution both for the posterior and the
prior allows us to obtain a closed-form KL-divergence in Eq. [l Thus, the objective function in Eq.[l| depends

1We preserve the notation D which is common in the literature, however, one should note that in the derivations D is an
equivalent notation for a sample x,. For the global case, we omit the index n for clarity.
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on the Dirichlet parameters a:
Lg(a) := —/Q(fla)logp(le)df+ D1 [q(f|a)||p(f|e)]- (4)

The crucial characteristic of the global explanation when computing the loss is that for two samples, x,, and
Xp, the importance vectors f,,, and f,, are sampled from the same parameters Dir(a) across the entire dataset.
In the above loss we use the likelihood of the model g (that is p(D|f) which is computed with the output of
the model g), but we do not alter the parameters of the model g (which we assume to be pre-trained with D).
We freeze its parameters, and only train the parameters of the feature importance vector f. The algorithm
for obtaining the global feature importance is summarized in Algorithm Eﬂ

Why Dirichlet? Dirichlet distribution describes a family of categorical distributions defined over a simplex,
and a sample of the Dirichlet distribution is a probability vector, where all elements of f are non-negative and
Zle il = 1. This property makes it natural to model a relative level of importance across different input
features. Moreover, the choice of Dirichlet distribution allows for the closed-form expression of KL-divergence.

4.2 Local or instance-wise explanation via Importance Network (IN)

Local explanations differ from the global ones in that feature importance is evaluated for each data instance.
In global explanation, we only produce a single vector f. Conversely, in the local setting, we produce an
importance matrix. To be precise, each data point x,, € D is assigned a vector f,, € [0,1]° indicating the
feature importance for that particular data point. Thus, while |D| = N, an importance matrix of size N x S
is generated. We summarize our algorithm in Algorithm [2] and provide the graphical depiction of this process
in Fig. [1| (black box).

Parameterization. In the case of local explanations, each of the importance vectors, f,, is also modelled by
the Dirichlet distribution with individual parameters a,,

q(f,) = Dir(f,|a,)  (approximate posterior) (5)
p(fn) = Dir(fu|ag)  (prior) (6)

where we set the parameters o the same for all x,,, as we do not have any prior knowledge on any particular
data instances.

Importance network. In the local explanations, we assign an importance vector f,, for each data instance
Xp,. To learn the mapping between the two, we resort to an additional model, an importance network (IN, E
parameterized by 8. The importance network maps a data instance x,, to a corresponding Dirichlet parameter
vector e, i.e., INg : X, — a,,. And following Eq. [0} we draw a corresponding feature importance f,, from
the Dirichlet distribution with the parameter «,,. Hence, the IN model can produce an individual feature
importance for each data instance (via Dirichlet parameters).

Loss function for local explanation L;: Similarly to the global case, we again use the lower bound
derived from Eq. [I]. However, in the local case, our new objective function becomes dependent on the
parameters of the importance network:

N
Lo=-) / q(£.16) log p(x, |f,)df, + Drcr[g(£.]0)|[p(fn] o)) (7)

During the training, we optimize for 8, the parameters of the importance network. Given a sample f,, (as
in ¢(£,]0)), we apply an element-wise multiplication, f,, o x,,, which is fed to the model in question g. The
model g then produces the conditional distribution and the corresponding loss, p(x,|f,). During learning as
in the global case, we do not update the parameters of g, but only update the parameters of the IN model.
Besides, ay is set to a fixed value.

20ur algorithm is general for any classification (both binary and multi-class) and regression tasks. However, in our experiments
we focus on the classification tasks.

3In our experiments, we use a multi-layer feed-forward network. Note that other types of networks are also possible, e.g.
convolutional neural networks can be more appropriate for image data.
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Algorithm 1 Global BIF

Require: Model in question g with fized weights
: for each train-mini-batch b do
Sample f as in Eq.
Compute g(f o x,,) for x,, € b
Update e by maximizing L¢ in Eq. [
end for
return Dirichlet parameters « for global explanation

Algorithm 2 Local BIF

Require: Model in question g with fized weights
1: for each train-mini-batch b do
2 Compute a, for each x,, using INg
3 Given a,, sample f,, from Eq. [f]
4: Compute g(f, o x,) for x, €
5 Update 6 of IN by max £y, in Eq.[7]
6: end for
7: return Importance network (IN) parameters @ which outputs local explanations e, for the input x,, in
test-mini-batch.

4.3 Optimization

During the optimization, computing the gradient of Eq. [4] and 7| with respect to ¢; requires obtaining the
gradients of the integral (the first term) and also the KL divergence term (the second term), as both depend
on the value of ¢;. The second term, the KL divergence between two Dirichlet distributions can be written
in closed form,

Dialail)Ip( 1)) = log TS5 1) — log T (Sia0) — S5 log T(du) + Silog Do) + 5 (5 — o) [1(6) = (5L u)]

where ¢; ; denotes the jth element of vector ¢, I' is the Gamma function and % is the digamma function.
However, computing the gradient of the first term in Eq. [ and [7] is not that straightforward. As described
in [Figurnov et al.| (2018), the usual reparameterization trick, i.e., replacing a probability distribution with
an equivalent parameterization of it by using a deterministic and differentiable transformation of some
fixed base distributiorﬂ is one option. For instance, in an attempt to find a reparameterization, one could

adopt the representation of a k-dimensional Dirichlet random variable, f; ~ Dir(f;|¢;), as a weighted sum of

Gamma random variables, f; ; = yj/(Zle yjr),y; ~ Gam(¢y ;,1) = y§¢l’j71) exp(—y;)/I'(¢1,;), where the

shape parameter of Gamma is ¢; ; and the scale parameter is 1. However, this does not allow us to detach
the randomness from the parameters as the parameter still appears in the Gamma distribution, hence one
needs to sample from the posterior every time the variational parameters are updated, which is costly and
time-consuming.

Existing methods suggest either explicitly or implicitly computing the gradients of the inverse CDF of the
Gamma distribution during training to decrease the variance of the gradients (e.g., Knowles| (2015a)), [Figurnov
et al.| (2018]), and [Jankowiak & Obermeyer| (2018)).

Sampling. In both objective functions, Eq. [I|and Eq. [7] in the left-hand side term (so called, cross-entropy
term) we need to evaluate an integral over f (or f,,). We do so by the Monte Carlo integration using Eq.
for the global setting and Eq. |§| for the local setting. The integral is evaluated for each data input x; (we use

4For instance, a Normal distribution for z with parameters of mean g and variance o2

2 = p + oe using a fixed base distribution € ~ N(0, 1).

can be written equivalently as
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here the k data index to describe both the global and the local case):

J
1
/ (fr.|ax ) 1og py (D|fr ) dfy, j; og p(Dfx. (), (8)

where the subscript (j) denotes the jth Monte Carlo sample f;, from the Dirichlet distribution ag. Following
(Knowles| |2015b)), we compute the gradients of the integral implicitly using the inverse CDF of the Gamma
distribution.

A point estimate. A computationally cheap approximation to the integral is using the analytic mean
expression of the Dirichlet random variables,

/ 4(F) log p(D|f)df|;_; ~ log p(DIF), (9)

where f = ﬁ Computing the point estimate does not require sampling and propagating gradients
[a73
d=1
through the samples, which significantly reduces the run time. In our experiments, we use both approximations

where the specifics on each approximation are included in the Supplementary material.

4.4 Divergence for measuring similarity under BIF

We are interested in measuring how similar feature importance is under two different models. We denote the
two Dirichlet distributions for feature importance obtained under the two models by p and ¢, respectively,
where p’s parameters are o = [all], ... al%]] and ¢’s are g = [plY,--- | pI*]).

The BIF’s output, the Dirichlet distribution is an exponential family distribution, which we can write in
terms of an inner product between the sufficient statistic T'(f) and the natural parameter n:

p(fla) = h(f) exp [(n(c), T(f)) — A(n)] (10)

where A(n) = log [ h(f) exp((n(a), T(f)))df is the log-partition function, and h(f) is the base measure. In
case of the Dirichlet distribution, the natural parameter equals the parameter () = «, yielding a canonical
form.

Under the exponential family distribution, popular divergence definitions such as the KL divergence Dxr.(p||q)
and the Bregman divergence B(g||p) can be expressed in terms of the log-partition function, its parameter,
and the expected sufficient statistic:

Di(pllg) = B(allp)

= A(n(a)) = A(n(B)) — (o = B, E,[T(£))), (11)
where E,[T'(f)] is the expected sufficient statistic under the distribution p. Under the Dirichlet distribution,
all of the three terms are in closed-form, where the log-partition function is defined by A(n(a)) = log'(ay) —
25:1 log (!, A(n(B)) = logT'(B) — 2321 log T'(Bl4), where T' denotes Gamma distribution, and each
coordinate of the expected sufficient statistic is defined by E,[T(f4)] = ¢(al¥) — 1/1(st al¥), where v is the
digamma function. This allows us to evaluate the KL divergence conveniently. We demonstrate how we
take advantage of having this easy-to-evaluate divergence in practice and examine the results under BIF in

Sec. (.3

5 Experiments

We perform the experiments on both synthetic and real-world datasets. The binary synthetic datasets are
meant to show the accuracy in selecting the appropriate features which were used to impact the label. The
real-world datasets consist of both binary and multi-class datasets, including tabular and image data, and
are meant to show broad applicability of the method. Finally, we present the need for well-tuned feature
importance probabilities in privacy vs. explainability trade-off. In the experiments, we use the state-of-the-art
benchmarks for comparison which allow for the instance-wise feature selection, that is L2X (Chen et al.,
2018), INVASE (Yoon et al., 2018), SHAP (Lundberg & Lee| |2017a)) and LIME (Ribeiro et al., [2016b)).
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5.1 Synthetic data

We first test our method on six synthetic datasets with the aim to identify the relevant features. We construct
a data vector x in such a way that it is a random variable vector, X = [X m xe . x [D]}, where the index
describes an input feature. The first four binary synthetic datasets contain a fixed set of relevant features to
test the global feature selection. Each data point consists of a 10-dimensional input feature X ~ N(0,I)
and the associated label that depends on a subset of its features in such a way that p(y = 1|/X) = = and

T+r
p(y = 0|X) = 7 where the particular 7 is defined by

« Synla: exp(XMHXPl)
e Synlb: (X[l]— 21,

* Syn2: eXP(Z( )2 —a),
o Syn3: exp(—100 sin (2X[7) 4 2| X B + X 4 exp(—X[10])),

In the remaining three datasets, we introduce an extra variable, X 'Y which selects which set of features
determine the label y, thus indirectly influencing the result, as well. As a result, a label y depends on an
alternating set of features which tests for local feature selection where a set of relevant features varies across
a dataset:

« Syn4: if X'l <0, sampled from Synla, else Syn2.
e Syn5: if X['] <0, sample from Synla, else Syn3.
« Syn6: if X' <0, sampled from Syn2, else Syn3.

Notice that the features of the two datasets do not overlap and we can uniquely distinguish the features
which generated a given sample. We generate 10,000 samples for each dataset, using 80% for training and the
rest for testing. Note that in case of Synl-3, these features are static (suitable for studying global feature
importance), while in the case of Syn4-6, the features are alternating (suitable for studying instance-wise
feature importance). We use the Matthews correlation coefficient (MCC) (Matthews| [1975) to assess how
well each method identified the relevant features.

Table [I] summarizes how each of the algorithms copes to uncover the ground truth important features in the
synthetic datasets. We include three variations of the proposed method, global selection described in Sec. [I.]
and two ways to compute local explanations described in Sec. The first one evaluates the full integral
through sampling (which we denote by samp), while the second one uses a point estimate (which we denote
by pe) computed analytically as a mean of the Dirichlet distribution parameters. In all of these variants, we
first pre-train a model g, and then feed it to our framework where we freeze the model parameters, and only
optimize the importance parameters. The proposed method excels particularly in the local setting, on a more
challenging datasets, where in all three datasets outperforms the existing methods by a substantial margin,
10-20 percentage points.

‘ Synla Synlb Syn2 Syn3 ‘ Syn4 Syn5 Syn6

BIF (global) 100 100 100  85.0 - - -
BIF (inst, samp) | 100 100 100 936 | 90.1 86.0 85.2
BIF (inst, pe) 100 100 100 829 | 840 79.0 85.6

L2X 100 100 100 95.1 66.0 64.5 73.8
INVASE 100 100 100 81.0 57.3 50.0 36.1
SHAP 98.8 99.6 98.9 93.2 59.1 59.0 49.3
LIME 100 100 100 279 29.8 34.5 19.5

Table 1: Synthetic datasets to detect ground truth features. The Synl-3 datasets consists of a fixed set of globally
invariant important features, while Syn 4-6 consists of varying sets of important features instance-wise. The average
over 5 runs is reported. The higher MCC (Matthews correlation coefficient), the better. In BIF, (inst, samp) means
instance-wise explanation with sampling, while (inst, pe) means that with point estimate.
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Uncertainty. In the experiment featuring synthetic datasets, we also verify how well BIF can estimate
the uncertainty of the importance values. While non-probabilitic methods provide only the point estimate,
Bayesian approach allows to estimate how confident the algorithm is about its output, in this case, the
feature importance value. Thus, Fig. 2 shows the posterior mean and variance of the importance vector. The
posterior variance stands for the confidence the BIF algorithm has about the learned feature importance. Fig.
2 shows the variance of two datasets, Syn2 which is easier and Syn3 which is harder to predict its label. BIF
consequently indicates the higher uncertainty for the harder dataset and lower for the easier dataset. This
information can be particularly helpful when assessing the confidence about the importance of each feature,
for example, it answers the question how probable it is that a given feature is the most important.

Discussion. In selecting feature selection method, it is worth considering their advantages and disadvantages.
The BIF global is a method whose number of parameters is linear in the number of features, however it works
only in the global setting. The local variants require an additional network which may however work better,
also in the global setting (by averaging the importance over all the data points). In terms of performance, the
sampling and point estimate BIF produce similar results, however the shortcoming of the point estimate is
that it produces the results with relatively high variance (see Supplementary materials for summary results).
On the other hand, sampling is more time-consuming due to evaluations required for each sample. It is
also worth discussing the effect of features on the label in synthetic datasets. In particular, Synla and
Syn2 datasets affect the label positively, while in Synlb there is a negative term, and in Syn3 the sine term
may affect the label negatively. In both cases, the features have been detected successfully to large extent.
Moreover, if we wish to know whether a feature affected the label positively or negatively, we may apply
leave-one-out method, and run the method with and without the given feature.

5.2 Real-world data

Tabular Data We consider credit (Cre)) (license: DbCL v1.0) and adult (Dua & Graff] 2017) datasets with
tabular input features and binary labels, and intrusion (Int) dataset with multi-class labels. Adult dataset
predicts whether income exceeds some income threshold a year based on census data, credit dataset classifies
applicants for credit availability, and the intrusion dataset classifies several types of burglaries.

This experiment consists of two parts. In the first part, we look for globally important features in the entire
dataset. In the second part, we perform local feature search. As there is no known ground truth about the
features, we evaluate the effectiveness of each method by selecting top k features which are deemed most
significant by a given method, and then perform the post-hoc classification task given only these k£ input
features (while removing the rest of the features). In the global setting, k features are fixed for the entire
dataset, while in the local setting each sample can select a different set of k features. In the experiments, we
standardize each feature to have a zero mean to mitigate the issue of out-of-distribution examples which
could occur in the case of non-zero mean real-world features.

BIF outputs a probability distribution which directly allows to identify top k features. On the other hand,
INVASE and L2X output binary decisions for feature importance. For global explanations, we average the

0.6
0.4 4
~
02/® ¢ 9 ° L% Figure 2: The illustration of the impor-
' tance values and uncertainty learnt by BIF
0.0 s & & © & & o for the two datasets with four important val-
1 2 3 4 & 6 7 8 9 10 11 ues, Syn2 (Top) and Syn3 (Bottom). The
0.6 algorithm is appropriately less certain about
0al® Syn3 (> o = 0.49) which consists of fea-
) ® m tures of varied importance (also less accu-
0.2 1 ° 2 rate) compared to Syn2 (3 o = 0.25).
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Adult Credit Intrusion
k 1 3 5 1 3 5 1 3 5

BIF 80.0 81.8 82,3 | 90.5 92.9 94.1 | 81.6 95.8 83.6
L2X 78.6 81.7 83.1 | 86.5 89.1 92.8 | 81.9 79.0 77.4

§ INVASE | 735 78,6 821 | 814 90.9 91.5 | 70.5 76.6 45.5
= SHAP 71.8 748 769 | 86.8 84.9 84.5 | 69.1 72.6 73.4

LIME 76 789  80.6 | 85.2 87.3 94.3 | 78.0 89.5 83.8

BIF 78.2 765 824 | 96.1 94.9 949 | 82.3 82.4 82.6
= L2X 65.5  77.2 80 82.6 92.2 95.2 | 39.3 59.9 81.1
:8 INVASE | 65.5 82.3 824 | 95.5 90.7 94.6 | 44.3 82.3 82.3
O SHAP 76.6 79.7 83.1|96.1 943 96.4 | 82.3 87.1 87.1

LIME 7.6 789 759 | 924 88.9 92.5 | 82.3 81.3 83.4

Table 2: Tabular datasets. Classification accuracy as a function of k selected features. Up: For gaining global
explainabiilty. Same features are selected for all the datapoints. Down: For gaining local (instance-wise) explainability.
A set of k features is selected for each data point separately.

k=1 k=2 k=3 k=4 k=5

BIF 0.788 0.937 0.973 0.98 0.981
L2X 0.633  0.761 0.84 0.871  0.864
INVASE 0.584 0.78 0.901 0915 0.905

Figure 3: Quantitative and qualitative performance of BIF and the corresponding benchmarks on the MNIST image
dataset. (Left) Post-hoc accuracy of MNIST classifier distinguishing digits 3 and 8 based on k number of (4x4)
selected patches. BIF outperforms other methods. (Right) Qualitative comparison of feature selection methods for 10
randomly selected instances of MNIST digits. The selected patches are highlighted in red and blue color. We show
results for LIME both with our pre-determined segmentation into 4x4 patches (a) and using its own segmentation of
the image pixels (b). BIF seems to particularly well include the differentiating curves between the digits 3 and 8 (see
first, third, and fifth digit 8).

output for all data points, thus creating global ranking of features in INVASE and L2X. For local explanations,
in case of L2X we can specify k relevant features. INVASE has no such option and thus, for the fairest
comparison, we use the selection probability given by the selector network as a proxy of importance score. In
the global case of LIME, we average the rankings for the individual instances.

To summarize the results shown in Table [2[ (classification accuracy averaged over five independent runs), we
note that BIF performs well in both tasks, with a bigger edge in global search. We find that local explanation
search is significantly more challenging than the global one, reflected in the lower classification accuracy. And
so although the results provide good insight into which features are important locally, one should proceed
with caution when relying on a subset of local features, especially in more risk-averse applications.

MNIST Data. Following (Chen et all 2018), we construct a dataset with two labels by gathering the 3
and 8 digit samples from MNIST (LeCun et al.,[2010) (license: CC BY-SA 3.0). We then train BIF, as well as
L2X and INVASE models to select 4x4 pixel patches as relevant features. As the inputs have a dimensionality
of 28x28, there are 49 features to choose from. To evaluate the quality of the selection, we first mask the test
set by setting all non-selected patches to 0 and then use a classifier which was trained on unmasked data to
compute the post-hoc accuracy on this modified test set. The post-hoc accuracies averaged over 5 runs are
shown in Fig. 3p for different numbers of k selected features.

The selection method differs between models. For BIF, we select the k£ most highly weighted patches and for
L2X, k is set in advance. INVASE is treated differently, as the number of selected features varies and can
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Figure 4: Privacy vs feature importance on Diabetes Readmission data (Rizvi et al. [2014). The x-axis indicates the
privacy level of a classifier (smaller ¢ means more privacy). Left: The classification accuracy (ROC) improves as the
privacy level decreases. Right: KL divergence between the feature importance distribution under the non-private
classifier and that under the private classifier at the level that x-axis indicates. The feature importance learned by
BIF at a stronger privacy (small €) has a larger divergence from the feature importance learned non-privately.

only be modified implicitly through the strength of the regularizer. So we tune the regularizer strength A to
different values such that the average number of selected features equals k. The A values we use are 100, 50,
23, 18.5 and 15.5 for k = 1,...,5. We also show the qualitative results of each method in Fig. 3p.

5.3 Divergence for comparing feature importance distributions.

As described in Sec. [l our method outputs the parameters of the Dirichlet distribution over the feature
importance. With the deliberate choice of Dirichlet distribution, we can obtain a closed-form distance metric
such as the KL divergence between two BIF’s learned Dirichlet distributions. We exploit this to study
trade-offs between important notions such as explainability, privacy, and fairness. In particular, we apply the
KL-divergence to describe the level of explainability sacrificed at the cost of increase in privacy of a classifier.
We show a similar experiment for the fairness trade-off in the supplementary materials.

We use the Diabetes Readmisison datasetﬂ (Rizvi et al.; |2014) (license: CCO 1.0) to train a private classifier.
We consider a private classifier using the differentially private stochastic gradient descent (DP-SGD) technique
(Abadi et all [2016), which perturbs the gradients during training to yield a classifier that guarantees a certain
level of privacy, that is, it ensures that we cannot recreate the data that the model has been trained on.
Fig. 4] (Left) shows how the classifier loses the accuracy measured in terms of the area under the curve as
we increase the privacy level. Different privacy levels introduce different levels of noise we induced to the
gradients during training (the higher €, the smaller the noise level, and € = 0o corresponds to the non-private
classifier). As the loss of accuracy is a known phenomenon, we aim to show a different effect, namely the
impact of noise on the possibility to explain the data in form of the difference between the feature distribution
without the noise and that when the noise is present at different levels.

The experiment shows two things. Firstly, as Fig. [l and the KL divergence chart of Fig. [6] demonstrate, the
relative differences in importance between features decrease as we increase the levels of noise. BIF-tuned
probabilities well reflect the intuition that as we increase privacy levels, the explainability in form of assessing
the correct distribution of feature importance decreases (e.g. the disparity between the top two features is
much smaller for the private setting when e = 0.1, than for the non-private setting when e = oc). In the
Supplementary material, we also include the analysis regarding the INVASE, which shows that this intuition
may not be exactly reflected in how features are selected. Secondly as Fig. [f] shows, even though the relative
differences may be obfuscated by the noise, even at high levels of privacy we may distinguish the most relevant
features, showing robustness of the feature selection ranking to the noise.

5We followed the data pre-processing given in https://www.kaggle.com/victoralcimed/diabetes-readmission-through-logistic-
regression
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6 Conclusion

BIF proposes a comprehensive Bayesian framework for feature importance based on the Dirichlet distribution.
The method works both in global and instanteneous settings, leveraging the benefits of neural networks. The
Bayesian perspective allows to assess the confidence about the feature importance. The diverse results prove
the method’s robustness and the learnt distributions over features can be useful to measure explainability in
a variety of applications.
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