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Abstract

The first tabular foundation model, TabPFN, and its successor TabPFNv2 have
impacted tabular Al substantially, with dozens of methods building on it and
hundreds of applications across different use cases. This paper previews TabPFN-
2.5, the next generation of our tabular foundation model, built for datasets with up
to 50,000 data points and 2,000 features, a 20 x increase in data cells compared
to TabPFNv2. TabPFN-2.5 is now the leading method for the industry standard
benchmark TabArena (which contains datasets with up to 100,000 training data
points), substantially outperforming tuned tree-based models and matching the
accuracy of AutoGluon 1.4, a complex four-hour tuned ensemble that even includes
the previous TabPFNv2. Remarkably, default TabPFN-2.5 has a 100% win rate
against default XGBoost on small to medium-sized classification datasets (<10,000
data points, 500 features) and a 87% win rate on larger datasets up to 100K samples
and 2K features (85% for regression). For production use cases, we introduce
a new distillation engine that converts TabPFN-2.5 into a compact MLP or tree
ensemble, preserving most of its accuracy while delivering orders-of-magnitude
lower latency and plug-and-play deployment. This new release will immediately
strengthen the performance of the many applications and methods already built on
the TabPFN ecosystem.
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Figure 1: TabArena-Lite results on classification (left) and regression (right), restricted to datasets
with less than 10K training samples and 500 features. Note that tuning for TabPFN-2.5 is only
based on 60 random configs compared to 200 for the baselines. The vertical dotted line stands for
AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble of models including TabPFNv2 [39].

!"The list of contributors can be found in Appendix
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1 Introduction

Tabular data is ubiquitous, forming the backbone of decision-making in countless domains, from
finance to healthcare. For decades, traditional tabular machine learning—built on gradient-boosted
trees [26, 91}, 157]], random forests [1], and linear or additive models—has been the workhorse of
applied data science. Yet these methods remain limited: they require extensive dataset-specific tuning,
often provide uncalibrated or unreliable uncertainty estimates without significant modification, and
lack the generalization and transferability of modern foundation models.

Tabular foundation models (TFMs) offer a new paradigm. They address these limitations by pretrain-
ing on large synthetic distributions of tabular tasks and performing inference via in-context learning
instead of gradient descent. They are training-free predictors meta-trained to yield strong calibra-
tion, without the need for time-consuming and labor-intensive hyperparameter tuning necessary for
gradient-boosted trees. Their strong generalization makes them particularly attractive for data-scarce
domains.

Our initial release, TabPFNv1 [49] served as a proof-of-concept that a transformer could learn
a Bayesian-like inference algorithm, though it was limited to small (up to 1k samples), clean,
numerical-only data. Our successor, TabPFNv2 [50]], scaled this idea into a practical model for
datasets up to 10,000 samples. TabPFNv2 handles the messy and heterogeneous data seen in the real
world—including categorical features, missing values, and outliers.

This paper describes the next release of TabPFN: TabPFN-2.5. Our key contributions are:

* SOTA Performance: In a forward pass, TabPFN-2.5 outperforms tuned tree-based models (like
XGBoost and CatBoost) and matches the accuracy of AutoGluon 1.4 tuned for 4 hours—a complex
ensemble that includes all previous methods, even TabPFNv2.

» Improved Scalability: We scale the power of in-context learning to datasets of up to 50,000
samples (5x increase over TabPFNv2) and 2,000 features (4x increase), making TFMs viable
for a much wider range of real-world problems || While TabPFN-2.5 was designed for up to
50,000 rows, we note that this limit is not strict and report strong results on benchmarks with up to
100,000 training samples.

* Fast Inference: We dramatically improve inference speed. We introduce TabPFN-as-
MLP/TreeEns, a proprietary output engine, that yields an MLP or tree ensemble, combining
most of TabPFN’s accuracy with low-latency inference and easy deployment.

2 Model Overview

TabPFN-2.5 follows the same general design as TabPFNv2 but introduces deeper architectures, richer
synthetic priors, and new calibration and inference modules. We summarize the key changes here.

Data. We improved our prior data generation substantially, broadened the set of distributions and
scaled up to more data points and more features, while keeping the prediction tasks difficult. Like the
original TabPFNv2, TabPFN-2.5 is trained purely on synthetically generated data. We also release a
version that is fine-tuned on real data following Real-TabPFN [435]]. It is trained on a curated corpus of
43 real-world tabular datasets sourced from OpenML and Kaggle, deduplicated against all internal
benchmarks and the full TabArena suite. We refer to this version as Real-TabPFN-2.5, and report
strong improvement in Figures[[]and[2] See Appendix [K]for details on training and deduplication.

Architecture. We follow the alternating-attention transformer design of TabPFNv2, which attends
across both data points and features to achieve permutation invariance, but introduces some changes:

* We increase the network depth from 12 to 18 layers for our regression model and 24 layers for our
classification model.

'In exploratory runs, classification datasets up to ~160k rows x 500 features and regression datasets up to
~85k x 500 features fit into memory on an NVIDIA H100 (80 GB) using FP16 and FlashAttention-3. These
configurations are outside our validated range and not included in reported benchmarks.



* We simultaneously increase the feature group size (the number of features being embedded
together), which allows for faster training and inference. We use a group size of 3 for TabPFN-2.5,
compared to 2 for TabPFNv2.

* For our regression models, we found a small improvement by replacing the linear encoder used in
TabPFNV2 by a 2-layer MLP.

* Finally, we add 64 additional “thinking” rows to the input dataset of TabPFN-2.5, which are
learned during pretraining. Inspired by results from the LLM literature [[76} 46], these rows give
additional computational capacity to the model and can also act as attention sinks to help the
model ignore other rows [33]].

Other core components from TabPFNv2—feature/sample dual attention, caching separation of
training/test context, and positional feature embeddings—remain unchanged.

Preprocessing. We aggregate predictions across multiple dataset permutations and feature trans-
formations to enhance robustness and generalization. In the updated TabPFN-2.5 configuration,
additional feature transformations are introduced to enhance robustness against outlier-prone feature
distributions and to increase the diversity among the individual estimators. Specifically, we combine
robust scaling and soft clipping (following [S1]) with quantile transformations and standard scaling
to balance stability and sensitivity across features. Following TabPFNv2, we also include singular
value decomposition (SVD) components as additional features in some of the estimators, capturing
high-energy directions of variance that provide complementary global structure information.

Hyperparameter Tuning of TabPFN with TabPFN. TabPFN’s hyperparameter space spans
architectural, training, and prior-data parameters, making exhaustive grid search computationally
infeasible. To explore this space efficiently, we adopted a surrogate-based optimization strategy.
We first trained ~ 100 models on a broad but sparse grid of hyperparameter configurations drawn
from plausible prior ranges and evaluated them on a curated in-house validation suite, producing
a compact set of hyperparameter—performance pairs. With ~ 50 hyperparameters and only 100
datapoints, direct interpolation was prone to overfitting. We therefore used a regression model
well-suited for data-scarce structured prediction—our previous TabPFNv2 model—as a surrogate
to predict validation performance over a denser grid of 10,000 configurations. This self-referential
“TabPFN-tunes-TabPFN” strategy efficiently surfaced promising regions of the search space for full,
compute-intensive training runs.

Tuning custom metrics. TabPFN-2.5 adds new post-processing capabilities that enhance both
calibration and metric-specific optimization. Our framework now supports tuning the classifier’s deci-
sion threshold, enabling direct optimization of metrics beyond accuracy—such as the F1-score—by
adjusting the operating point to the desired trade-off between precision and recall. For multiclass
classification, it allows to apply temperature scaling to the final softmax outputs to improve probability
calibration. This threshold tuning procedure can yield substantial performance improvements (see
Appendix [H). Unless otherwise noted, however, all classification results in this report are computed
using uncalibrated, default scores, without temperature scaling or threshold tuning.

Reducing inference costs. Despite being a larger model than TabPFNv2, TabPFN-2.5 is between
1x and 2.3x faster thanks to optimized preprocessing and larger feature groups, as shown in Figure [I9]
in the appendix. We found additional speed gains in the adoption of FlashAttention-3 [102] and
parallel evaluation across multiple GPUs.

Creating fast, deployable models. We also developed a proprietary distillation engine that can

output a MLP or tree model that has very low latency and memory footprint for making predictions,
and can be seamlessly integrated into existing production pipelines. See Appendix[G.3]

3 Experimental Results

We demonstrate state-of-the-art performance on the industry standard benchmark TabArena [40].
We follow the paper’s recommendation to benchmark on “TabArena-Lite”, which is a cheaper but



representative version of the full benchmark using only one test fold. The benchmark contains a set
of 51 datasets selected from 1053 to be representative of real-world tabular data.

Appendix [F] gives detailed results on TabArena-Lite, showing the pairwise win rates of the different
models, and comparing TabPFN-2.5 to other foundation models like TabICL [92]], TabDPT [72]] or
LimiX [128]. Appendices[G]to[J]report additional results using our own benchmarking framework,
our advances to reduce inference latency, and new state-of-the-art performance for causal machine
learning.

Pushing the limit on small to medium-sized datasets. Figure[I]shows results for TabPFN-2.5 on
TabArena-Lite with up to 10,000 data points and 500 features, demonstrating that TabPFN-2.5, in a
forward pass, outperforms the wide range of existing tabular prediction methods. On classification,
TabPFN-2.5 in a forward pass outperforms AutoGluon 1.4, an ensemble tuned for four hours and
including best other methods (even TabPFNv2). Using our Real-TabPFN-2.5 variant fine-tuned on
real datasets (deduplicated from TabArena datasets) widens the lead even further. On the other hand,
our regression model benefits much more from tuning and outperforms AutoGluon 1.4 after being
tuned for 60 configurations.

Scaling to larger datasets. Figure[2|shows a similar experiment on all the TabArena datasets, with
up to 100,000 data points and 2,000 features, clearly ranking TabPFN-2.5 as the best default model,
and outperforming (for regression datasets) or approaching (for classification datasets) AutoGluon
1.4 (tuned for 4 hours) when tuned. Again, we highlight the very strong default performance of
Real-TabPFN-2.5 on these larger classification datasets, beating in one forward pass any other tuned
and ensembled model.
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Figure 2: TabArena-Lite results on classification (left) and regression (right), evaluated on all
datasets, going up to 100K training rows and 2K features. Note that tuning for TabPFN-2.5 is only
based on 60 random configs compared to 200 for the baselines, and that we removed the "dt-pfn"
option from our tuning search space for the 4 largest datasets in the benchmark to reduce the tuning
time. The vertical dotted line stands for AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble
of models including TabPFNv2 [39].

4 Conclusion

We are excited about this release. Taken together, our experiments demonstrate that TabPFN-2.5 sets
a new state-of-the-art for tuning-free tabular models. Built for datasets up to 50,000 rows and 2,000
features, TabPFN-2.5 matches the performance of complex 4-hour-tuned ensembles - ensembles that
even include our previous TabPFNv2 - and in a forward pass outperforms any other tuned model on
the unrestricted public TabArena benchmark (which contains datasets with up to 100,000 training
data points).



5 Limitations

The next step is scaling to datasets with millions of rows. We are actively developing new techniques -
including retrieval, fine-tuning, and novel architectures - and anticipate that systems based on Tabular
Foundation Models (TFMs) will define state-of-the-art performance for datasets with millions of data
points very soon.

Our broader vision beyond this release is to tackle the entire stack of problems with tabular-like
data, including time series, multimodal tabular data, causal inference, unsupervised tasks, integration
of domain knowledge and decision support, ultimately building the core intelligence engine for
reasoning over structured and multimodal data.
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Distribution & Product

Clara Cornu, Lilly Charlotte Wehrhahn, Alessandro Bonetto, Sauraj Gambhir

B TabPFN Use Case Overview

TabPFNv2 has been applied to a broad set of use cases. We now list close to 100 published use cases
across different industries.

Healthcare and Life Sciences

We collected 51 published TabPFN use cases in this area, by far more than in any other area;
we attribute this partly to the scarcity of data in healthcare and life sciences, and partly to the
open publishing culture in this area. Use cases span oncology, neurology, cardiology, psychiatry,
nephrology, and pharmacology. Applications include diagnosis, prognosis, and treatment response
prediction from multimodal clinical, imaging, and omics data, often under severe data scarcity.

1.

10.

11.

12.

13.

14.

TabPFN was applied to distinguish cancer patients from healthy individuals using immune
system profiles from peripheral blood, facilitating predictions of immunotherapy responses
[90]. Link

. A machine learning model employing TabPFN was developed for non-invasive diagnostic

prediction of minimal change disease in patients with nephrotic syndrome, utilizing clinical
biomarkers [79]. Link

. TabPFN was integrated into a system for analyzing T-cell receptor repertoires combined

with clinical biomarkers to forecast immunotherapy outcomes in cancer patients, as explored
by researchers at BostonGene [37]]. |[Link

. TabPFN enabled early detection of stillbirth risks through analysis of cardiotocography data,

supporting improved prenatal care [8]. Link

. Predictive modeling for postoperative outcomes following anterior cervical corpectomy

utilized TabPFN to assess patient demographics and surgical parameters [54]. Link

. A hybrid model incorporating TabPFN was introduced to predict dementia progression in

Parkinson’s disease patients, handling small datasets and missing values effectively [[109].
Link

. A machine learning model based on TabPFN was developed to predict 90-day unfavorable

outcomes in stroke patients with distal vessel occlusions using CT perfusion imaging [535].
Link

. TabPFN was utilized in chemoproteomics for identifying small-molecule fragment-protein

interactions, aiding ligand discovery in drug development [82]. Link

. TabPEN facilitated the prediction of non-invasive ventilation outcomes in patients with acute

hypoxemic respiratory failure, supporting early identification of treatment failures [[126].
Link

An interpretable Transformer-based model leveraging TabPFN was created to predict in-
travenous immunoglobulin resistance in pediatric patients with Kawasaki disease [21].
Link

TabPFN was employed in visual representation techniques for prostate cancer diagnosis,
converting clinical biomarkers and symptom data into formats suitable for analysis [38]].
Link

TabPFN was used to combine clinical, MR morphological, and delta-radiomics features to
predict lymphovascular invasion in invasive breast cancer patients [64]. Link

TabPFN is proposed to predict mental health trajectories through digital phenotyping,
enabling proactive and personalized interventions in precision psychiatry [119]. Link

TabPFN contributed to cardiovascular disease risk stratification using clinical features from
a large patient cohort, incorporating interpretability techniques [[17]. Link
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TabPFN outperformed traditional machine learning models for early prediction of acute
kidney injury in hospitalized patients, demonstrating generalizability across datasets [124].
Link

TabPFN was integrated into a framework for predicting postoperative mobility and discharge
destinations in older adults using sensor data [59]]. [Link

TabPEN supported the prediction of infant temperament from maternal mental health data,
aiding early identification of at-risk infants [7]. Link

TabPFN was employed to characterize clinical risk profiles for complications in type 2
diabetes mellitus patients, focusing on neuropathy and retinopathy [68]. |[Link

TabPFN was extended with a longitudinal-to-cross-sectional transformation to forecast
Alzheimer’s disease progression on neuroimaging datasets [35]]. Link

TabPFN supported uncertainty calibration evaluation in medical data using variational
techniques [94]. Link

TabPFN was applied to predict tumor response to chemotherapy in cholangiocarcinoma
patients using RNA expression landscapes [62]]. [Link

TabPFN was incorporated into a generative model framework for tasks like data augmenta-
tion and imputation in biomedicine [71]]. [Link

TabPFN facilitated the prediction of gallstone malignancy risks through analysis of associ-
ated disease factors [18]]. Link

TabPFN was used in classifying tuberculosis treatment outcomes based on clinical and
sociodemographic data from national registries [13]. Link

TabPFN contributed to early prediction of gestational diabetes using cell-free DNA and
genetic scores from early pregnancy blood samples [31]]. Link

TabPFN was used for predicting schizophrenia based on sense of agency features, emphasiz-
ing interpretability [85]]. Link

TabPFN was integrated into a physiologically based pharmacokinetic model for predicting
dissolution and absorption of amorphous solid dispersions in drug development [[130]. Link

TabPFN enabled classification of respiratory diseases from sound data, addressing clinical
spectrum diversity [36]. Link

TabPFN was applied to small-data tabular learning in drug discovery, handling data scarcity
and distribution shifts [27]]. [Link

TabPFN facilitated prediction of coronary heart disease risk in patients with cardiovascular-
kidney-metabolic syndrome, optimizing evaluation in small samples [131]]. Link

TabPFN was used to predict success of allogeneic stem cell mobilization in donors, aiding
transplant therapies [5]. Link

TabPFN contributed to predicting manual strength using anthropometric data, focusing on
accuracy and interpretability [84]. Link

TabPFN supported uncertainty-guided model selection for biomolecule efficacy prediction,
enhancing ensemble optimization in drug discovery, as studied at GSK [63]]. Link

TabPFN was utilized in a multitask deep learning framework for optimizing in vitro fertil-
ization decisions, including embryo transfer and pregnancy prediction [[129]. Link

TabPFN enabled a framework for early Long COVID detection through causal gene identifi-
cation and interpretability [89]]. Link

TabPFN was used in a foundation model approach for neoadjuvant therapy recommendations
in breast cancer, integrating multi-omics data [[114]]. Link

Recent work has demonstrated explainable machine learning pipelines for coronary artery
disease stratification from routine clinical data [[107]]. |Link

TabPFN facilitated prediction of recurrence and progression in oral potentially malignant
disorder patients post-surgery [4]]. Link

TabPFN supported prediction of occult lymph node metastasis in non-small cell lung cancer
patients treated with stereotactic ablative radiotherapy [122]]. Link
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40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

TabPFN was used in stroke diagnosis, addressing dataset imbalance and model interpretabil-
ity for clinical decisions [75]]. [Link

TabPFN was integrated into a multimodal thesis framework for clinical predictions using
tabular and phenotypic data from large-scale projects [LL10]]. Link

TabPFN was used to predict diabetes-related hypo- and hyperglycemia during hemodialysis
using continuous glucose monitoring data, facilitating improved patient management [43]].
Link

TabPFN was applied to enhance diagnosis of hypervascular thyroid nodules using multi-
modal ultrasound features [[121]]. Link

TabPFN was integrated with radiomics and clinical features to predict endovascular treatment
success in femoropopliteal chronic total occlusions, supporting interventional planning [[113]].
Link

TabPFN was applied to CorvisST biomechanical indices to classify corneal disorders,
improving diagnostic accuracy in ophthalmology [[15]. Link

TabPFN was incorporated into a non-invasive sleep staging framework using respiratory
sound features, advancing passive sleep monitoring [28]]. Link

TabPFN supported prediction of vancomycin blood concentrations to optimize antimicrobial
dosing strategies in clinical practice [66]. Link

TabPFN was used to predict negative self-rated oral health in adults, identifying risk factors
for targeted public-health interventions [9]. Link

TabPFN was extended to very high-dimensional feature spaces to enable robust analysis of
biomedical data, improving stability and interpretability in clinical applications [60]]. Link

TabPFN predicted gastrointestinal bleeding risk in pediatric Henoch—Schonlein purpura
patients, supporting early clinical intervention [22]. |[Link

TabPFN was used as the pre-trained backbone (embeddings + in-context learning) for silica
nanoparticle cellular toxicity prediction [2]. Link

Financial Services, Banking, and Insurance

While we have seen strong customer interest in this area, this is not reflected by the relatively few
published use cases (only 3) we managed to collect; we attribute this to the domain’s competitive
nature and disinclination to publish.

1.

2.

3.

TabPFN was applied to usage-based premium calculations in actuarial science, leveraging
driving behavior data from IoT devices [16]]. [Link

TabPFN facilitated cross-selling of health insurance products through deep learning analysis
of customer data [29]]. [Link

TabPFN was used in corporate bond recovery rate prediction for credit risk management
[78]]. Link

Energy and Ultilities

We collected 15 use cases focused on environmental forecasting (algal blooms, wildfire, rainfall),
renewable-energy nowcasting, process/asset optimization across water, oil & gas, and materials.

1.

2.

3.

4.

TabPFN was employed to predict river algal blooms through multi-classification of
chlorophyll-a concentrations, aiding water management [125]]. Link

TabPFN facilitated wildfire propagation prediction in Canadian conifer forests, classifying
fire types for environmental risk assessment [58]]. Link

TabPFN was integrated into a machine learning framework for optimizing energy consump-
tion at wastewater treatment plants [99]. Link

TabPFN supported rainfall forecast post-processing using historical error patterns from
environmental data [3]]. [Link
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10.

11.

12.

13.

14.

15.

. TabPFN enabled solar forecast error adjustment, particularly during rapid weather changes,

as developed by Open Climate Fix [42]. Link

. TabPFN was applied to predict ash fusibility in high-alkali coal for improved energy produc-

tion [20]. Link

. TabPFN contributed to predicting Henry coefficients for alkanes in zeolites, aiding hydroiso-

merization in sustainable fuel production [105]]. Link

. TabPFEN facilitated shape-selectivity modeling in zeolites for long-chain alkane hydroiso-

merization, optimizing catalyst design [104]]. Link

. TabPFN was used in an integrated framework for estimated ultimate recovery prediction

and fracturing optimization in shale gas reservoirs [24]. Link

TabPFN supported core data augmentation for enhanced reservoir parameter prediction in
oil and gas exploration [80]. [Link

TabPFN was employed to optimize energy performance in multistage centrifugal pumps
through entropy generation analysis [117]. Link

TabPFN contributed to physics-informed regression for evaluating solar-reflective materials
in facade temperature modeling [25]]. Link

TabPFN was applied to generate advanced global heat flow maps at 0.2° resolution, inte-
grating high-resolution geophysical data to improve geothermal resource modeling [81]].
Link

TabPFN contributed to FuelCast, standardizing benchmarks for ship fuel consumption
prediction and improving efficiency in maritime operations [112]. |[Link

TabPFN was used as the main supervised classifier to automatically identify thunderstorm
ground enhancements from particle detector and environmental measurements [[10]]. Link

Manufacturing and Industrial

We collected 12 diverse use cases including anomaly detection, predictive maintenance, physics-aware
optimization—spanning IIoT security, rotating machinery, semiconductor testing, geotechnical/opti-
cal sensing, machining, battery thermal modeling, and concrete mix design.

1.

10.

TabPFN enabled early fault classification in rotating machinery, addressing data scarcity in
industrial scenarios [[74]. Link

. TabPFN facilitated microcontroller performance prediction, aiding semiconductor screening

with minimal supervision, as studied at Infineon Technologies [[14]. Link

. TabPFN was applied to caisson inclination prediction in ultra-deep construction, combining

data denoising techniques [47]]. Link

. TabPFN supported event classification in phase-sensitive optical time-domain reflectometry

systems for distributed fiber sensing [67]]. Link

. TabPFN was integrated into an adaptive ensemble for intrusion detection in Industrial

Internet of Things networks [97]. Link

. TabPFN enabled a random forest-based framework for attack recognition in Internet of

Things networks, improving interpretability [65]]. Link

. TabPFN facilitated geotechnical site characterization for predicting soil strength and imput-

ing mechanical parameters [98]]. Link

. TabPFN was used in cryogenic-assisted abrasive waterjet machining for improving surface

integrity in titanium alloys [19]]. Link

. TabPEN supported in-context learning for thermal behavior prediction in nano-phase change

materials for battery systems [[103]. Link

TabPFN was applied to explainable strength evaluation in multicomponent concrete mixtures
[118]. Link
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11.

12.

TabPFN was integrated into a multimodal fusion framework linking microstructure to friction
behavior in martensitic stainless steel, improving wear resistance in materials engineering
applications [53]]. Link

TabPFN supported multiscale modeling to predict soil salinity in arid farmland, advancing
sustainable agricultural management in regions such as Xinjiang [[123]]. Link

Other Industries

We collected 19 further heterogeneous TabPFN applications spanning geoscience, forensic science,
agriculture, materials, and engineering domains—ranging from microbiome classification and lu-
nar regolith analysis to soil property modeling, crop yield and phenology forecasting, fuel-blend
optimization, and spatial regression.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

TabPFN was modified for microbiome data classification in metagenomics, matching species
abundance patterns with synthetic priors [88]]. Link

. TabPFN enabled lunar regolith analysis for classifying meteorite compositions from spectral

data [87]. Link

. TabPFN facilitated winter wheat yield forecasting in agricultural regions by integrating

climate and remote sensing data [70]]. Link

. TabPFN was applied to flood impact assessment on housing prices by geographic areas

[LO8]]. Link:

. TabPFN showed the strongest performance on 31 predictive soil modeling datasets contain-

ing 30 to 460 samples [12]. Link

. TabPFN was applied to shallow natural gas hazard prediction in tunnel construction [132].

Link

. TabPFN supported automated feature engineering for energy consumption forecasting in

domain-specific applications [6]. Link

. TabPFN enabled Australian rice phenology prediction using remote sensing and weather

data for crop management [52]]. |[Link

. TabPFN was applied to a multi-stage framework for predicting fuel blend properties through

automated feature engineering [32]. Link

TabPFN enabled kriging prior regression for incorporating spatial context in soil mapping
predictions [[1O1]]. Link

TabPFN was applied to predicting electric vehicle crash severity using deep learning models
[106]. Link

TabPFN enhanced clone-type recognition across programming languages through metrics-
driven analysis, improving stability and interpretability in software engineering [86]. Link

TabPFN was used to predict biomass-derived hard carbon performance in sodium-ion
batteries, facilitating material selection for energy storage systems [23]]. Link

TabPFN informed the development of Tablmpute, enabling efficient zero-shot imputation
for missing tabular data and improving preprocessing pipelines [41]. Link

TabPFN, alongside TabICL and related foundation models, was evaluated for intrusion
detection, improving cybersecurity performance in IoT networks [44]]. Link

TabPFN supported continual learning for tabular data streams in resource-constrained
environments [120]. Link

TabPFN contributed to assessing robustness of language models for data fitting under
irrelevant variations [|69]]. Link

TabPFN was used in forensic science to advance biogeographical ancestry predictions [48].
Link

TabPFN was used as a benchmark model for predicting avocado alternate bearing from
Sentinel-2 and climate features [93]]. Link
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Healthcare and Life Sciences

We collected 51 published TabPFN use cases in this area, by far more than in any other area;
we attribute this partly to the scarcity of data in healthcare and life sciences, and partly to the
open publishing culture in this area. Use cases span oncology, neurology, cardiology, psychiatry,
nephrology, and pharmacology. Applications include diagnosis, prognosis, and treatment response
prediction from multimodal clinical, imaging, and omics data, often under severe data scarcity.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

TabPFN was applied to distinguish cancer patients from healthy individuals using immune
system profiles from peripheral blood, facilitating predictions of immunotherapy responses
[90]. Link

. A machine learning model employing TabPFN was developed for non-invasive diagnostic

prediction of minimal change disease in patients with nephrotic syndrome, utilizing clinical
biomarkers [79]. Link

. TabPFN was integrated into a system for analyzing T-cell receptor repertoires combined

with clinical biomarkers to forecast immunotherapy outcomes in cancer patients, as explored
by researchers at BostonGene [37]]. |[Link

. TabPFN enabled early detection of stillbirth risks through analysis of cardiotocography data,

supporting improved prenatal care [§]]. |[Link

. Predictive modeling for postoperative outcomes following anterior cervical corpectomy

utilized TabPFN to assess patient demographics and surgical parameters [54]. Link

. A hybrid model incorporating TabPFN was introduced to predict dementia progression in

Parkinson’s disease patients, handling small datasets and missing values effectively [[109].
Link

. A machine learning model based on TabPFN was developed to predict 90-day unfavorable

outcomes in stroke patients with distal vessel occlusions using CT perfusion imaging [535].
Link

. TabPFN was utilized in chemoproteomics for identifying small-molecule fragment-protein

interactions, aiding ligand discovery in drug development [|82]]. ILink

. TabPFN facilitated the prediction of non-invasive ventilation outcomes in patients with acute

hypoxemic respiratory failure, supporting early identification of treatment failures [[126].
Link

An interpretable Transformer-based model leveraging TabPFN was created to predict in-
travenous immunoglobulin resistance in pediatric patients with Kawasaki disease [21]].
Link

TabPFN was employed in visual representation techniques for prostate cancer diagnosis,
converting clinical biomarkers and symptom data into formats suitable for analysis [38].
Link

TabPFN was used to combine clinical, MR morphological, and delta-radiomics features to
predict lymphovascular invasion in invasive breast cancer patients [64]]. Link

TabPFEN is proposed to predict mental health trajectories through digital phenotyping,
enabling proactive and personalized interventions in precision psychiatry [119]. Link

TabPFN contributed to cardiovascular disease risk stratification using clinical features from
a large patient cohort, incorporating interpretability techniques [17]]. Link

TabPFN outperformed traditional machine learning models for early prediction of acute
kidney injury in hospitalized patients, demonstrating generalizability across datasets [124].
Link

TabPFN was integrated into a framework for predicting postoperative mobility and discharge
destinations in older adults using sensor data [59]]. |[Link

TabPFN supported the prediction of infant temperament from maternal mental health data,
aiding early identification of at-risk infants [7]]. Link

TabPFN was employed to characterize clinical risk profiles for complications in type 2
diabetes mellitus patients, focusing on neuropathy and retinopathy [68]. |[Link
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38.
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43.

TabPFN was extended with a longitudinal-to-cross-sectional transformation to forecast
Alzheimer’s disease progression on neuroimaging datasets [35]]. Link

TabPFN supported uncertainty calibration evaluation in medical data using variational
techniques [94]). Link

TabPFN was applied to predict tumor response to chemotherapy in cholangiocarcinoma
patients using RNA expression landscapes [62]]. |[Link

TabPFN was incorporated into a generative model framework for tasks like data augmenta-
tion and imputation in biomedicine [71]]. |Link:

TabPFN facilitated the prediction of gallstone malignancy risks through analysis of associ-
ated disease factors [[18]]. Link

TabPFN was used in classifying tuberculosis treatment outcomes based on clinical and
sociodemographic data from national registries [[13]. Link

TabPFN contributed to early prediction of gestational diabetes using cell-free DNA and
genetic scores from early pregnancy blood samples [31]]. Link

TabPFN was used for predicting schizophrenia based on sense of agency features, emphasiz-
ing interpretability [85]]. Link

TabPFN was integrated into a physiologically based pharmacokinetic model for predicting
dissolution and absorption of amorphous solid dispersions in drug development [130]. Link

TabPFN enabled classification of respiratory diseases from sound data, addressing clinical
spectrum diversity [36]. Link

TabPFN was applied to small-data tabular learning in drug discovery, handling data scarcity
and distribution shifts [27]]. Link

TabPFN facilitated prediction of coronary heart disease risk in patients with cardiovascular-
kidney-metabolic syndrome, optimizing evaluation in small samples [131]]. Link

TabPFN was used to predict success of allogeneic stem cell mobilization in donors, aiding
transplant therapies [S]]. Link

TabPFN contributed to predicting manual strength using anthropometric data, focusing on
accuracy and interpretability [84]. Link

TabPFN supported uncertainty-guided model selection for biomolecule efficacy prediction,
enhancing ensemble optimization in drug discovery, as studied at GSK [63]]. Link

TabPFN was utilized in a multitask deep learning framework for optimizing in vitro fertil-
ization decisions, including embryo transfer and pregnancy prediction [129]]. Link

TabPFN enabled a framework for early Long COVID detection through causal gene identifi-
cation and interpretability [89]]. Link

TabPFN was used in a foundation model approach for neoadjuvant therapy recommendations
in breast cancer, integrating multi-omics data [114]]. Link

Recent work has demonstrated explainable machine learning pipelines for coronary artery
disease stratification from routine clinical data [[107]]. Link

TabPFEN facilitated prediction of recurrence and progression in oral potentially malignant
disorder patients post-surgery [4]]. Link

TabPFN supported prediction of occult lymph node metastasis in non-small cell lung cancer
patients treated with stereotactic ablative radiotherapy [122]. [Link

TabPFN was used in stroke diagnosis, addressing dataset imbalance and model interpretabil-
ity for clinical decisions [75]. Link

TabPFN was integrated into a multimodal thesis framework for clinical predictions using
tabular and phenotypic data from large-scale projects [110]. Link

TabPFN was used to predict diabetes-related hypo- and hyperglycemia during hemodialysis
using continuous glucose monitoring data, facilitating improved patient management [43]].
Link

TabPFN was applied to enhance diagnosis of hypervascular thyroid nodules using multi-
modal ultrasound features [[121]]. Link
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50.

51.

TabPFN was integrated with radiomics and clinical features to predict endovascular treatment
success in femoropopliteal chronic total occlusions, supporting interventional planning [[113].
Link

TabPFN was applied to CorvisST biomechanical indices to classify corneal disorders,
improving diagnostic accuracy in ophthalmology [[15]. Link

TabPFN was incorporated into a non-invasive sleep staging framework using respiratory
sound features, advancing passive sleep monitoring [28]]. Link

TabPFN supported prediction of vancomycin blood concentrations to optimize antimicrobial
dosing strategies in clinical practice [66]]. Link

TabPFN was used to predict negative self-rated oral health in adults, identifying risk factors
for targeted public-health interventions [9]. Link

TabPFN was extended to very high-dimensional feature spaces to enable robust analysis of
biomedical data, improving stability and interpretability in clinical applications [60]]. Link

TabPFN predicted gastrointestinal bleeding risk in pediatric Henoch—Schonlein purpura
patients, supporting early clinical intervention [22]. |Link

TabPFN was used as the pre-trained backbone (embeddings + in-context learning) for silica
nanoparticle cellular toxicity prediction [2]. Link

Financial Services, Banking, and Insurance

While we have seen strong customer interest in this area, this is not reflected by the relatively few
published use cases (only 3) we managed to collect; we attribute this to the domain’s competitive
nature and disinclination to publish.

1.

2.

3.

TabPFN was applied to usage-based premium calculations in actuarial science, leveraging
driving behavior data from IoT devices [16]]. Link

TabPFN facilitated cross-selling of health insurance products through deep learning analysis
of customer data [29]]. Link

TabPFN was used in corporate bond recovery rate prediction for credit risk management
[78]]. Link

Energy and Utilities

We collected 15 use cases focused on environmental forecasting (algal blooms, wildfire, rainfall),
renewable-energy nowcasting, process/asset optimization across water, oil & gas, and materials.

1.

TabPFN was employed to predict river algal blooms through multi-classification of
chlorophyll-a concentrations, aiding water management [[125]]. Link

. TabPFEN facilitated wildfire propagation prediction in Canadian conifer forests, classifying

fire types for environmental risk assessment [S8]]. Link

. TabPFN was integrated into a machine learning framework for optimizing energy consump-

tion at wastewater treatment plants [99]. Link

. TabPFN supported rainfall forecast post-processing using historical error patterns from

environmental data [3]. Link

. TabPFN enabled solar forecast error adjustment, particularly during rapid weather changes,

as developed by Open Climate Fix [42]. Link

. TabPFN was applied to predict ash fusibility in high-alkali coal for improved energy produc-

tion [20]. Link

. TabPEN contributed to predicting Henry coefficients for alkanes in zeolites, aiding hydroiso-

merization in sustainable fuel production [105]]. Link

. TabPFEN facilitated shape-selectivity modeling in zeolites for long-chain alkane hydroiso-

merization, optimizing catalyst design [104]]. Link
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10.

11.

12.

13.

14.

15.

. TabPFN was used in an integrated framework for estimated ultimate recovery prediction

and fracturing optimization in shale gas reservoirs [24]]. Link

TabPFN supported core data augmentation for enhanced reservoir parameter prediction in
oil and gas exploration [80]. Link

TabPFN was employed to optimize energy performance in multistage centrifugal pumps
through entropy generation analysis [[117]. Link

TabPFN contributed to physics-informed regression for evaluating solar-reflective materials
in facade temperature modeling [25]]. Link

TabPFN was applied to generate advanced global heat flow maps at 0.2° resolution, inte-
grating high-resolution geophysical data to improve geothermal resource modeling [81]].
Link

TabPFN contributed to FuelCast, standardizing benchmarks for ship fuel consumption
prediction and improving efficiency in maritime operations [[112]. Link

TabPFN was used as the main supervised classifier to automatically identify thunderstorm
ground enhancements from particle detector and environmental measurements [10]]. Link

Manufacturing and Industrial

We collected 12 diverse use cases including anomaly detection, predictive maintenance, physics-aware
optimization—spanning IIoT security, rotating machinery, semiconductor testing, geotechnical/opti-
cal sensing, machining, battery thermal modeling, and concrete mix design.

1.

10.

11.

12.

TabPFN enabled early fault classification in rotating machinery, addressing data scarcity in
industrial scenarios [74]]. Link

. TabPFN facilitated microcontroller performance prediction, aiding semiconductor screening

with minimal supervision, as studied at Infineon Technologies [[14]]. Link

. TabPFN was applied to caisson inclination prediction in ultra-deep construction, combining

data denoising techniques [47]. Link

. TabPEN supported event classification in phase-sensitive optical time-domain reflectometry

systems for distributed fiber sensing [67]]. Link

. TabPFN was integrated into an adaptive ensemble for intrusion detection in Industrial

Internet of Things networks [97]. Link

. TabPFN enabled a random forest-based framework for attack recognition in Internet of

Things networks, improving interpretability [65]. Link

. TabPFN facilitated geotechnical site characterization for predicting soil strength and imput-

ing mechanical parameters [98]]. Link

. TabPFN was used in cryogenic-assisted abrasive waterjet machining for improving surface

integrity in titanium alloys [19]]. Link

. TabPEN supported in-context learning for thermal behavior prediction in nano-phase change

materials for battery systems [[103]]. Link

TabPFN was applied to explainable strength evaluation in multicomponent concrete mixtures
[118]. Link

TabPFN was integrated into a multimodal fusion framework linking microstructure to friction
behavior in martensitic stainless steel, improving wear resistance in materials engineering
applications [S3]]. Link

TabPFN supported multiscale modeling to predict soil salinity in arid farmland, advancing
sustainable agricultural management in regions such as Xinjiang [[123]]. Link
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Other Industries

We collected 19 further heterogeneous TabPFN applications spanning geoscience, forensic science,
agriculture, materials, and engineering domains—ranging from microbiome classification and lu-
nar regolith analysis to soil property modeling, crop yield and phenology forecasting, fuel-blend
optimization, and spatial regression.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

TabPFN was modified for microbiome data classification in metagenomics, matching species
abundance patterns with synthetic priors [88]]. Link

. TabPFN enabled lunar regolith analysis for classifying meteorite compositions from spectral

data [87]. Link

. TabPFN facilitated winter wheat yield forecasting in agricultural regions by integrating

climate and remote sensing data [[70]. Link

. TabPFN was applied to flood impact assessment on housing prices by geographic areas

[LO8]]. Link:

. TabPFN showed the strongest performance on 31 predictive soil modeling datasets contain-

ing 30 to 460 samples [12]]. Link

. TabPFN was applied to shallow natural gas hazard prediction in tunnel construction [132].

Link

. TabPFN supported automated feature engineering for energy consumption forecasting in

domain-specific applications [6]. Link

. TabPFN enabled Australian rice phenology prediction using remote sensing and weather

data for crop management [52]]. |[Link

. TabPFN was applied to a multi-stage framework for predicting fuel blend properties through

automated feature engineering [32]]. Link

TabPFN enabled kriging prior regression for incorporating spatial context in soil mapping
predictions [1O1]]. Link

TabPFN was applied to predicting electric vehicle crash severity using deep learning models
[106]. Link

TabPFN enhanced clone-type recognition across programming languages through metrics-
driven analysis, improving stability and interpretability in software engineering [86]. Link

TabPFN was used to predict biomass-derived hard carbon performance in sodium-ion
batteries, facilitating material selection for energy storage systems [23]]. Link

TabPFN informed the development of Tablmpute, enabling efficient zero-shot imputation
for missing tabular data and improving preprocessing pipelines [41]. Link

TabPFN, alongside TabICL and related foundation models, was evaluated for intrusion
detection, improving cybersecurity performance in IoT networks [44]]. Link

TabPFN supported continual learning for tabular data streams in resource-constrained
environments [120]]. Link

TabPFN contributed to assessing robustness of language models for data fitting under
irrelevant variations [69]. Link

TabPFN was used in forensic science to advance biogeographical ancestry predictions [48]].
Link

TabPFN was used as a benchmark model for predicting avocado alternate bearing from
Sentinel-2 and climate features [93]]. Link

C License and Availability

We release TabPFN-2.5 under our TABPFN-2.5 License v1.0 designed to be permissive for
research and internal evaluation. It explicitly allows testing, evaluation, and internal benchmarking,
so an organization can download the model and run preliminary assessments on its own datasets.
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The key restriction is that the model, its derivatives, and its outputs cannot be used for any commercial
or production purpose. This includes, but is not limited to, revenue-generating products, compet-
itive benchmarking for procurement, client deliverables, or using the model’s results for internal
commercial decision-making.

For production use cases, we offer a Commercial Enterprise License. This provides access to our
proprietary high-speed inference engine, dedicated support, integration tooling, and other internal
models.

Please contact us at sales @priorlabs.ai for commercial licensing inquiries. The full non-commercial
mode license text can be found at https://huggingface.co/Prior-Labs/tabpfn_2_5/blob/
main/LICENSE.

C.1 Cloud API

We provide a managed TabPFN-2.5 cloud endpoint, which runs on our optimized GPU infrastructure.
This is the recommended option for users who do not have a dedicated local GPU or for those who
wish to use TabPFN commercially without purchasing a full on-premise license.

The API is accessible via a simple Python SDKE] (pip install tabpfn-client) or a standard
REST API, allowing for integration into both non-commercial and commercial applications.

D The TabPFN Ecosystem

Figure [3|provides a minimal user workflow through components in the TabPFN-Extensions ecosys-
tem.

<o) >
O v ®

Figure 3: A minimal user workflow through components in the TabPFN-Extensions ecosystem.

E How to Get Optimal Fit + Predict Speed from TabPFN-2.5

To achieve good performance, we recommend the following:

* Use a dedicated GPU or GPUs: We recommend NVIDIA H100 or A100 GPUs. Any dedicated
GPU supported by PyTorch is compatible, but some models may not have enough memory for
larger datasets or perform slowly. Integrated GPUs, MPS (Apple Silicon), and CPUs are also
supported, but are only suitable for small datasets.

» Use multiple GPUs: For larger datasets, fit + predict time can be dramatically reduced by paralleliz-
ing inference over several GPUs. To enable this, set the device parameter of TabPFNClassifier
and TabPFNRegressor.

e Use batch inference: Unless the fitted-model cache is enabled (see below), the model is retrained
each time .predict () is called. This means that it is much faster to make a prediction for all
your test points in a single .predict () call. If you run out of memory, split the test points into
batches of 1000 to 10000 and call .predict () for each batch.

* Use PyTorch 2.8 or above: TabPFN-2.5 also supports earlier versions of PyTorch, but these may
have lower performance.

’The Python client SDK is available on PyPL: https://github.com/PriorLabs/TabPFN-client
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Figure 4: TabPFN-2.5 clearly outperforms TabPFNv2. We show here the normalized performance
of TabPFN-2.5 and TabPFNv2 for each dataset of the TabPFNv2 subset on TabArena. TabPFN-2.5
often performs much better and is never much worse.

» For small datasets, enable the fitted-model cache: This is an experimental feature that trains and
stores the model during . fit (), making subsequent .predict () calls fast by using a KV-Cache.
It is enabled by setting the fit_mode parameter of TabPFNClassifier and TabPFNRegressor
to fit_with_cache. However, with this setting classification models will consume approximately
6.1 KB of GPU memory and 48.8 KB of CPU memory per cell in the training dataset (regression
models about 25% less), thus it is currently only suitable for small training datasets. For larger
datasets and CPU-based inference, we recommend the TabPFN-as-MLP/Tree output engine.

* If speed is important for your application, you may consider optimizing the memory_saving_mode
and n_preprocessing_jobs parameters of TabPFNClassifier and TabPFNRegressor. See
the code documentation for further information.

Figure[T7]in the appendix shows the inference latency you can expect for three common models of
GPU, when using one or four GPUs. It also shows the maximum dataset size that fits in memory for
each GPU.

F Detailed TabArena Results

In addition to the results shown in Section [3] we also report the pairwise winrates of different models
on TabArena in Figure[5(for TabPFNv2 compatible datasets with less than 10k rows and 500 features)
and Figure[6] (all datasets up to 100k training rows and 2k features).

We also compare our TabPFN-2.5 model to other foundation models in more detail below. In Figure
we show that TabPFN-2.5 outperforms TabICL when we restrict TabArena to only datasets for
which TabICL is designed, and in Figure 8] we show much better performance when compared to
LimiX’s results on datasets with less than 50,000 samples and 2,000 features, which corresponds to
the datasets on which the TabArena maintainers could run LimiX at the time of writing (see this link).

G Additional Internal Benchmark Details

G.1 Performance on Internal Benchmarks

A diverse internal benchmark. In addition to the public TabArena benchmark, we built our own
benchmarking framework using proprietary data. It includes over 100 use cases from healthcare,
finance, insurance, retail and manufacturing. This benchmark focuses on comparing to gradient-
boosted decision tree libraries that are frequently used in industry (XGBoost [26], CatBoost [91]],
LightGBM [57]), both in their default version and tuned for one hour. In all cases, we show the
results of three standard gradient-boosted tree libraries (LightGBM, XGBoost and CatBoost). We
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Figure 5: TabArena-Lite pairwise win rates on classification (left) and regression (right), restricted
to TabPFNv2 compatible datasets (less than 10K training samples and 500 features). Note that
tuning for TabPFN-2.5 is only based on 60 random configs compared to 200 for the baselines.
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Figure 6: TabArena-Lite pairwise win rates on classification (left) and regression (right), evaluated
on all datasets (up to 100k training samples and 2K features). Note that tuning for TabPFN-2.5 is
only based on 60 random configs compared to 200 for the baselines.
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Figure 7: Comparison with TabICL [92]. In this plot, we show the performance of TabPFN-2.5
and TabICL on a TabArena-lite subset compatible with TabICL, restricting to classification datasets
with less than 500 features. On this subset for which TabICL is designed, we see that TabPFN-2.5
significantly outperforms TabICL.
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Figure 8: Comparison with LimiX [128]. In this plot, we show the performance of TabPFN-2.5 and
LimiX on datasets from TabArena-Lite with less than 50,000 training samples and less than 2,000
features, which corresponds to the datasets on which the TabArena maintainers could run LimiX at
the time of writing (see this link). On this subset, we see that TabPFN-2.5 significantly outperforms
LimiX. Note that these results are still unverified by the original authors at the time of writing and
thus not included in the main paper results.

tune all of the baselines for 1hr, using random search on the established search spaces from [50].
TabPFN is tuned using our AutoTabPFN system, resulting in a tuned and ensembled model.

TabPFN-2.5 shows strong results up to 50,000 samples and 2,000 features. Figure[9]and Figure
show results on our internal benchmark for classification and regression datasets with up to 50,000
data points and 500 features. We can see on these figures that TabPFN outperforms in one forward
pass all our tuned baselines. In Section [G] we also show strong results on datasets with 500 to
2,000 features, and provide more details on how we normalize the performance of each model across
datasets.

G.2 Measuring TabPFN-2.5 Training and Inference Speed

Figure [11| shows how TabPFN-2.5 classification speed scales with training set size, when using
one or four GPUs, as we vary the number of rows and columns in the dataset. The time measured
includes both the time to process the training rows (equivalent to the combination of “training” a
classical ML model) and “prediction” time on test rows. We can observe the expected scaling
in O(r? min(c, 500) + r min(c, 500)?), where r is the number of rows and c is the number of

29


https://github.com/autogluon/tabarena/pull/208

Normalized Accuracy Normalized ROC AUC

0.8

0.8

Wilcoxon p < 0.0001 : Wilcoxon p < 0.0001 1
0.7

06 os CatBoost stronge S 08

0.6

n £ H
" =
0.5 H P 5 2
o &) £ o6 ®o 206 R
= z =3 o84 S q X
0.4 & 0.4 M RS z PP - ]
- = y o . 5
0.3 & § © § [ S04 ° 0,00 S04 3 o 8
N £ 8 of %
0.2 < © 0.2 ° TabPFNV2.5 stronger © TabPFNv2.5 stronger
o (8] - @ 0.2 4 02
5 - o g
0.1 4
%o
0.0 0.0 0.0+ 0.0 +
00 02 04 06 08 L0 00 02 04 06 08 10
[0 Tuned (1h) @B Defat [ Tuned (1h) @A Default TabPFN-2.5 (default) TabPFN-2.5 (default)

Figure 9: Results from our internal benchmark on classification datasets with up to 50,000 data
points. More details on the normalization is available in Appendix[G] In the scatter plots (right), each
point represents a different dataset from our internal benchmark, and the axes measure the normalized
performance of TabPFN-2.5 and CatBoost (either default or tuned for 1 hour) on this dataset.
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Figure 10: Results from our internal benchmark on regression datasets with up to 50,000 data
points. More details on the normalization is available in Appendix[G] In the scatter plots (right), each
point represent a different dataset from our internal benchmark, and the axis measure the normalized
performance of TabPFN-2.5 and CatBoost (either default or tuned for 1 hour) on this dataset

columns, due to dual attention over rows and capped per-estimator feature subsampling at 500
features. Section [J] contains results for regression, performance on common models of GPU, for
reference, and a measurement of the speedup from TabPFNv2. The inference speed reported here
reflects the latency of the full in-context learning model.

G.3 Fast Inference with TabPFN-2.5-as-MLP

To improve deployment flexibility, we developed a proprietary distillation engine that, given a
training data set, outputs a multi-layer perceptron (TabPFN-2.5-as-MLP) or tree ensemble classifier
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Figure 11: Time taken, in seconds, to fit TabPFN-2.5 classification models on various training set
sizes, and then make predictions on 500 test rows. Figure[T7]in Section[E]reports results for regression,
alongside performance on A100 and T4 GPUs.
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Figure 12: TabPFN-as-MLP still outperforms tree-based models while having much faster
inference speed than TabPFN. For baseline, light blue represents performance when tuned for 1 hour,
and darker blue default performance. For TabPFN, we report default performance.

(TabPFN-2.5-as-TreeEns) whose performance is close to the one of TabPFN on this benchmark (see
Figure[T2). In contrast to TabPFN, this resulting MLP or tree ensemble classifier is dataset-specific,
does not perform in-context learning, takes as input a single data point, and has very low latency and
memory footprint for making predictions. It can also be seamlessly integrated into existing production
pipelines, including those constrained by latency, interpretability, or regulatory requirements that
hinder a change in the class of models being deployed. This increases TabPFN-2.5’s practical use in
real-world decision systems. Other types of models could easily be supported.

We benchmark TabPFN-2.5-as-MLP against tuned LightGBM, XGBoost, and CatBoost models, as
well as the standard TabPFN-2.5 model, on our curated collection of internal open source datasets
with less than 10k data points. Figure[I2]illustrates representative test-split performance. Empirically,
TabPFN-2.5-as-MLP offers competitive accuracy while reducing inference cost, making it attractive
for high-throughput or resource-constrained deployment scenarios.

G.4 Details on the normalization

For benchmarking, we normalize scores per dataset to enable averaging and clearer comparison
across datasets, ensuring that differences in dataset difficulty do not bias comparisons. For each
dataset, we linearly scale scores between 0 (worse model on this dataset) and 1 (best model). For each
model, the default and tuned versions are considered as two different models for the normalization.
Bar heights show the mean normalized performance, and error bars denote the standard error of the
mean (SEM) across datasets, reflecting uncertainty from dataset variability.

G.5 Additional results on many features

In Figure[I3] we show results on an internal set of datasets containing from 500 to 2,000 features
showing strong default performance.

H Results with Tuned Decision Thresholds

Starting with TabPFN-2.5, our framework supports tuning the decision threshold to optimize for
specific metrics. Figure T4 quantifies the performance gains that this procedure can yield, illustrating
substantial improvement in F1-score for several imbalanced datasets when tuning the threshold.
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Figure 13: TabPFN-2.5 default performs well up to 2,000 features. In our internal benchmark
on datasets from 500 features to 2,000 features, we can see that for both classification (left) and
regression (right), the default TabPFN-2.5 outperforms any other default model and is better than any

tuned single model for regression.

I TabPFN for Causal Inference

RealCause Benchmark. To systematically evaluate TabPFN’s potential as a causal estimator, we
leverage the RealCause benchmark [[77]], a semi-synthetic benchmark which begins with real-world
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randomized control trial (RCT) data and synthetically creates observable confounding effectsﬂ

measure the Precision in Estimating Heterogeneous Effects (PEHE), which corresponds to the root-

3Descriptions of the ACIC-2016, THDP, and Lalonde-PSID and Lalonde-CPS datasets are provided in

Appendix Table 2}
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Figure 14: F1-score sometimes improves substantially by decision threshold tuning. The plot
shows the difference in F1-score (macro) between a model with an optimized decision threshold and
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procedure for metric-specific optimization.
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Figure 15: PFN-based CATE estimators domi-

nate RealCause, outperforming specialized tree-
and deep-learning-based methods for causal in-
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Figure 16: Improvements in base model predic-
tive performance transfer to improved perfor-
mance in CATE estimation. Our new model,

TabPFN-2.5, is the strongest choice of base
model for all meta-learners.

ference. Choice of propensity and outcome
model is important for CATE estimation.

mean-squared error between predicted and RealCause’s ground-truth CATE valuesﬂ In Figure
we show that PFN-based methods for CATE-estimation dominate the leaderboard, occupying the
first seven positions. TabPFN-2.5 applied as a T-Learner, a simple two-model approach that fits a
separate model to the treatment and control observations, achieves the strongest overall performance,
outperforming specialized tree- and deep-learning-based methods [115]. We also observe in Figure[16]
that for each of our three meta-learners, TabPFN-2.5 performs better out-of-the-box than TabPFNv2
and HP(ﬂ This result shows that improvements in base model predictive performance transfer to the
problem of causal inference.

Foundation Models for Causal Inference. While we show strong results in unconfounded settings,
real-world causal inference often involves imperfect data and latent confounders. A growing line of
work aims to pre-train PFNs explicitly for causal reasoning—for example, predicting interventional
outcomes or learning causal structures directly [[11} 134, 73195, [100]. We view this as one of the most
exciting frontiers for foundation models: extending TabPFN’s reasoning from predicting what is to
inferring what would happen if, and ultimately, understanding why.

J Supplementary Inference Time Details

Figure[T7)shows the inference latency you can expect for three common models of GPUs. Figure[I8]
shows that the time scales linearly with the number of test rows. Figure[T9]compares the fit + training
time of TabPFN-2.5 vs TabPFNv2, showing that TabPFN-2.5 is significantly faster, showing between
1x and 2.3x speedup depending on the dataset size.

K Data Contamination and Deduplication for Real-TabPFN-2.5

To ensure fair evaluation and eliminate data contamination, we implemented an enhanced multi-tiered
deduplication and filtering pipeline for Real-TabPFN-2.5. While based on the methodology used for
Real-TabPFN [45], the process was extended to deduplicate the training datasets against all internal
benchmarks, our curated in-house validation suite, and the public TabArena benchmark [40]. Our
deduplication procedure combines automated cross-referencing of dataset identifiers, feature schemas,
and row- and column-level hashes with manual metadata inspection to ensure that no training dataset

*For a description of the CATE estimation task and common estimators, please refer to Appendix E
SHyperparameter optimization is run for 60 seconds on an H100 per propensity and outcome model using
FLAML [116].
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Figure 17: Time taken, in seconds, to train TabPFN-2.5 models on various training set sizes, and
then make predictions on 500 test rows, using three common models of NVIDIA GPU: T4 15GB,
A100 SXM 40GB, H100 SXM 80GB. Performance is shown for 100, 300, and 500 features. Datasets
with more than 500 features have the same performance as datasets with 500, as each estimator will
subsample to 500 features. Incomplete lines indicate that the GPU had insufficient memory for that
dataset size.
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Figure 18: The time taken by TabPFN-2.5 to train and predict scales linearly in the test set size,

shown here for a classification model trained on datasets of 500 rows x 10 features, 5,000 rows x
100 features, and 20,000 rows x 500 features. Measured on one H100 GPU.
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Figure 19: TabPFN-2.5 is significantly faster than TabPFNv2. Comparison of the time taken to fit
+ predict TabPFN-2.5 vs TabPFNV2 on different number of rows and features. Measured for 100 test
points on 1 H100, using the same number of estimators (8). Note that this is measured using the v2
and v2.5 versions available on the latest release of the TabPFN package, and thus is on top of the
performance improvements since the original release of TabPFNv2.

overlaps with, or is derived from, any evaluation dataset. Datasets failing these criteria were excluded
from the final training corpus.

K.1 Training Datasets

The following table lists the datasets curated for fine-tuning, along with their sources and access
links.

Name Source
artificial-characters OpenML
BNG(breast-w) OpenML
BNG(tic-tac-toe) OpenML
connect_4 OpenML
eeg-eye-state OpenML
Employee-Turnover-at-TECHCO OpenML
eye_movements OpenML
FOREX_eurpln-hour-High OpenML
gas-drift OpenML
higgs OpenML
Intersectional-Bias-Assessment-(Training-Data) OpenML
law-school-admission-binary OpenML
Medical-Appointment OpenML
microaggregation2 OpenML
fried OpenML
mushroom OpenML
NewspaperChurn OpenML
nursery OpenML
WBCA(tt OpenML
Internet Firewall Data OpenML
aam_avaliacao_dataset Kaggle
Air Traffic Data Kaggle
ansible-defects-prediction Kaggle
AV Healthcare Analytics II Kaggle
Candidate Selection Kaggle
Cardio Disease Kaggle
Classification - Crop Damages in India (2015-2019) Kaggle
CSGO Round Winner Classification Kaggle
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https://www.openml.org/search?type=data&sort=runs&status=active&id=1459
https://www.openml.org/search?type=data&status=active&id=251
https://www.openml.org/search?type=data&status=active&id=137
https://www.openml.org/d/40668
https://www.openml.org/search?type=data&sort=runs&status=active&id=1471
https://openml.org/search?type=data&status=active&id=43551
https://openml.org/search?type=data&status=active&id=1044
https://www.openml.org/search?type=data&status=active&id=41787&sort=runs
https://www.openml.org/search?type=data&sort=runs&status=active&id=1476
https://openml.org/search?type=data&status=active&id=23512
https://openml.org/search?type=data&status=active&id=44201
https://openml.org/search?type=data&status=active&id=43904
https://openml.org/search?type=data&status=active&id=43617
https://www.openml.org/search?type=data&status=active&id=41671&sort=runs
https://www.openml.org/search?type=data&sort=runs&id=901&status=active
https://www.openml.org/search?type=data&status=active&id=43923&sort=runs
https://openml.org/search?type=data&status=active&id=44226
https://openml.org/search?type=data&status=active&id=1568
https://www.openml.org/search?type=data&status=active&id=46676&sort=runs
https://www.openml.org/search?type=data&sort=runs&id=43039&status=active
https://www.kaggle.com/datasets/himselfthedecker/aam-avaliacao-dataset
https://www.kaggle.com/datasets/rohanshetty678/air-traffic-data
https://www.kaggle.com/datasets/stefadp/ansibledefectsprediction
https://www.kaggle.com/datasets/nehaprabhavalkar/av-healthcare-analytics-ii
https://www.kaggle.com/datasets/tarunchilkur/client
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/datasets/aniketng21600/crop-damage-information-in-india
https://www.kaggle.com/datasets/christianlillelund/csgo-round-winner-classification

Name Source

Flower Type Prediction Machine Hack Kaggle
Horse Racing - Tipster Bets Kaggle
How severe the accident could be Kaggle
hr-comma-sep Kaggle
ip-network-traffic-flows-labeled-with-87-apps Kaggle
Janatahack cross-sell prediction Kaggle
L&T Vehicle Loan Default Prediction Kaggle
League of Legends Diamond Games (First 15 Minutes) Kaggle
Richter’s Predictor Modeling Earthquake Damage Kaggle
Server Logs - Suspicious Kaggle
Sloan Digital Sky Survey DR14 Kaggle
Sloan Digital Sky Survey DR16 Kaggle
Term Deposit Prediction Data Set Kaggle
trajectory-based-ship-classification Kaggle
Travel Insurance Kaggle

L. Details on Causal Inference Results

Causal Inference Most real-world decision problems ultimately hinge on causal ques-
tions—understanding what would happen if we intervened, rather than merely observing correlations.
Estimating Conditional Average Treatment Effects (CATEs) is one of the central ways to answer
these “what-if”” questions: how would an individual’s outcome change if a treatment were applied
versus withheld?

Unconfounded Settings. Many causal inference methods require unconfoundedness, which broadly
states that there are no features not included in the dataset that influence both the treatment variable
and the outcome [96]. While recent studies have begun to challenge the validity and verifiability of
this assumption [56, 93], there are presently a wide variety of causal inference methods designed for
the unconfounded setting [30, [83].

Importance of Base Model. Recent empirical findings have shown that when unconfoundedness
holds, CATE estimation can be framed as an AutoML problem [111]], as many CATE estimators
require a choice of classification or regression model to approximate the likelihood (propensity) of
a treatment and an outcome given an individual’s features. Parallel studies [127}95] have shown
that TabPFN is an especially strong choice for meta-learners such as the X-, T-, and S-Learner [61],
hypothesizing that its strong performance in tabular prediction transfers to the problem of causal
inference.

Table 2: Description of causal inference datasets in the RealCause benchmark.
Characteristic ACIC-2016 IHDP Lalonde-CPS Lalonde-PSID

Realizations 10 100 100 100
Samples 4,802 747 16,177 2,675
Features 58 25 8 8
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https://www.kaggle.com/datasets/vpkprasanna/flower-type-prediction-machine-hack
https://www.kaggle.com/datasets/gunner38/horseracing/data
https://www.kaggle.com/datasets/kanuriviveknag/road-accidents-severity-dataset
https://www.kaggle.com/datasets/pankeshpatel/hrcommasep
https://www.kaggle.com/datasets/jsrojas/ip-network-traffic-flows-labeled-with-87-apps
https://www.kaggle.com/datasets/pawan2905/jantahack-cross-sell-prediction
https://www.kaggle.com/datasets/mamtadhaker/lt-vehicle-loan-default-prediction
https://www.kaggle.com/datasets/benfattori/league-of-legends-diamond-games-first-15-minutes
https://www.kaggle.com/code/franciscoescobar/richter-s-predictor-modeling-earthquake-damage
https://www.kaggle.com/datasets/kartikjaspal/server-logs-suspicious
https://www.kaggle.com/datasets/lucidlenn/sloan-digital-sky-survey
https://www.kaggle.com/datasets/muhakabartay/sloan-digital-sky-survey-dr16
https://www.kaggle.com/datasets/brajeshmohapatra/term-deposit-prediction-data-set
https://www.kaggle.com/datasets/danielamigo/trajectorybasedshipclassification/data
https://www.kaggle.com/datasets/mhdzahier/travel-insurance
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