
Don’t Abandon the Primary Key: A
High-Synchronization and Robust Virtual
Primary Key Scheme for Watermarking

Relational Databases

Ke Yang1,2,3, Shuguang Yuan1,2,3, Jing Yu1,2,3, Yuyang Wang1,2,3,
Tengfei Yang4, and Chi Chen1,2,3(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
chenchi@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Key Laboratory of Cyberspace Security Defense, Beijing, China
4 National Computer Network Emergency Response Technical Team/Coordination

Center of China, Beijing, China

Abstract. A relational database is an infrastructure that manages and
shares structured data. To safeguard the copyrights of data within such
databases, database watermarking is an effective technique. Most water-
marking schemes rely on the primary key (PK) to locate and embed
watermarks, which preserves high watermark synchronization during
detection. However, these schemes become invalid once PK is erased or
changed. To avoid this vulnerability, virtual primary key (VPK) schemes
are proposed to replace PK. Nevertheless, duplicate values in virtual pri-
mary keys compromise synchronization. Besides, current VPK schemes
fail to utilize the primary key, even when it remains unchanged. This
strategy decreases detection accuracy in many cases. In addition, we
find an attribute name attack. It is a common challenge of existing water-
marking schemes, which distort the link between detected attributes and
watermarked attributes. In this paper, we propose a high-synchronization
and robust VPK scheme. It introduces a classifier to maintain the original
order and number of attributes to resist attribute name attacks. To resist
primary key erasure or change and mitigate synchronization problems, it
generates distinct virtual primary keys. Moreover, to improve detection
accuracy, our watermarking scheme integrates the primary key when it
remains unchanged. Experiments demonstrate that our scheme achieves
high watermark synchronization. It is robust against various attacks,
even when 98% of tuples or over half of the attributes are distorted. It
is also practical in terms of data distortion and overhead.

Keywords: Relational databases · Watermarking · Virtual primary
key

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. Katsikas et al. (Eds.): ICICS 2024, LNCS 15057, pp. 289–309, 2025.
https://doi.org/10.1007/978-981-97-8801-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8801-9_15&domain=pdf
https://doi.org/10.1007/978-981-97-8801-9_15


290 K. Yang et al.

1 Introduction

Relational databases continue to be the preferred data storage solution for a
majority of enterprises and applications, owing to their stability, maturity, and
ease of maintenance. In the context of the current digital era, driven by advances
in cloud computing and big data technology, the demand for data sharing in these
databases has increased significantly. Data copyright of relational databases is
then becoming a significant concern.

Database watermarking techniques protect copyright by embedding water-
mark information into preprocessed relational databases before sharing, and
extracting it to prove ownership if needed. Watermark detection and extraction
require the provision of all correct secret parameters set by the database owner.
The process of aligning the detected watermark with the embedded watermark
is referred to as watermark synchronization.

Most watermarking schemes (denoted as PK schemes) rely on the primary
key to select, embed, and detect each mark of watermark. Considering the
uniqueness of primary key, each mark is more likely to be chosen uniformly, facil-
itating high watermark synchronization. These schemes assume that the primary
key of the relational database cannot be erased or changed since the primary
key contains valuable information, and changing it will render the database less
useful from the user’s point of view [1]. Nevertheless, there is a vulnerability.
These schemes cannot perform the watermarking process without primary key.
Attackers might bypass watermark detection by erasing or changing the primary
key (denoted as primary key attacks) if they disregard its information.

To avoid the vulnerability, virtual primary key (VPK) schemes have been pro-
posed. These schemes are robust against primary key attacks by providing new
values for watermarking instead of primary key. They generate virtual primary
keys using non-primary key attributes [3,12,14,21,22], or pseudo-random select-
ing values in tuples to construct new ones [4,7–9,19]. However, these schemes face
synchronization problems [8]. The redundancy of the set of virtual primary keys
causes a nonuniform distribution of chosen marks, affecting the embedding qual-
ity and the scheme’s robustness. For example, consider a set of virtual primary
keys {11, 22, 22, 22, 22, 33, 33}, where each unique virtual primary key selects a
distinct mark. It is observed that the virtual primary key 22 selects and embeds
a mark four times, whereas 11 embeds only once. Therefore, the mark selected by
11 is more likely to be distorted, rendering the watermark incomplete. Besides,
existing VPK schemes fail to utilize the primary key, which results in synchro-
nization problems even when it remains unchanged. This decreases detection
accuracy in many cases.

All these watermarking schemes aim to protect copyright and resist attacks.
The existing literature primarily discusses subset attacks (distortion of tuples),
attribute attacks, and additive (re-watermarking) attacks [15,17,26]. While
attribute attacks typically involve altering attribute columns by deletion, inser-
tion, or shuffling, we also identify a significant risk from attacks on attribute
names, which have not yet been considered in existing schemes. Such attacks
can bypass watermark detection because many schemes embed and detect water-



A High-Synchronization and Robust Virtual Primary Key Scheme 291

marks based on the original order of attributes. This order depends on the
attribute names. For instance, attacks such as substituting, deleting, or shuf-
fling attribute names can bypass watermark detection without modifying the
data values.

Fig. 1. Schematic of the general PK/VPK and our schemes. Blue and yellow cells
represent the selected PK and generated VPK, respectively, used to locate and embed
watermarks (indicated by red numbers). Our scheme uses both PK and VPK for water-
marking and employs a classifier to label attributes to resist attribute name attacks.
(Color figure online)

In this paper, we introduce attribute name attacks and mix-match attribute
attacks, and propose a novel virtual primary key scheme that achieves high
watermark synchronization and robustness. The scheme can resist the primary
key, subset, and attribute attacks. Our scheme also exhibits high watermark
capacity, reversibility, and enhanced practicality compared to the benchmarks.
Figure 1 illustrates watermarking a database by the general PK/VPK scheme
and our scheme. The contributions of this paper are as follows:

– We extend attribute attacks with attribute name attacks and mix-match
attribute attacks. To resist these attacks, we train a classifier for attribute
classification and attribute name recognition, which is used to maintain the
original order and number of attributes.

– A novel virtual primary key scheme is proposed, which resists primary key
attacks and mitigates synchronization problems. Specifically, it generates dis-
tinct virtual primary keys for locating and embedding marks.

– The proposed watermarking algorithm integrates primary key to guarantee
high watermark synchronization when the primary key remains unchanged.

– Our algorithm performs comprehensive experiments to assess its robustness,
distortion, and overhead. Compared to both VPK schemes (RRWC [3], M
[19], HRW [7]) and PK schemes (AHK [1], RDMT [16], S2R2W [18]), our
algorithm achieves stronger robustness, even when 98% of tuples or over half
of the attributes are distorted.

The rest of this paper is organized as follows: Sect. 2 introduces previous
related works. Section 3 shows an overview of our scheme. Section 4 details the
process of the scheme. Section 5 presents the performance. Finally, Sect. 6 con-
cludes our work with a prospect of future work.



292 K. Yang et al.

2 Related Works

To protect the copyrights of databases, the first relational database watermark-
ing scheme was proposed by Agrawal and Kiernan [1]. This scheme applies
the primary key to decide which bit of the Least Significant Bits (LSB) from
the selected attribute to be marked. While the algorithm is robust to subset
attacks, it embeds a meaningless watermark. Subsequent studies [10,20,25] have
enhanced the scheme, extending its use to fingerprints, embedding meaningful
watermarks, and enabling reversibility. Sion et al. [24] proposed a statistical-
based watermarking scheme to survive attacks while preserving data quality. The
watermarks are embedded into actual data distribution properties (as opposed
to [1] directly into the LSB of data). Subsequent studies [5,6,11,13,16,23] also
studied the embedding method under a data distortion constraint. Optimization
techniques, difference expansion, histogram shift, and other techniques are used
to embed watermarks. Li et al. [18] analyzed attribute semantics and introduced
two semantic-based watermarking schemes for numeric and non-numeric data.

The first virtual primary key (VPK) scheme was proposed by Agrawal and
Kiernan [1] that considered their algorithm without primary key. Some schemes
use non-primary key attributes for watermarking, which can be regarded as VPK
schemes. Sebé et al. [22] proposed a watermarking scheme to preserve means and
variances without applying primary key. The algorithm is performed repeatedly
to embed a watermark to every attribute to address the attribute attacks. Odeh
and Al-Haj [21] chose the ‘Time’ field to embed the watermark. Kamran and
Farooq [14] ranked attributes for watermarking by assessing their classification
potential and used Particle Swarm Optimization (PSO) to create a watermark
that maintains statistical integrity. Chai et al. [3] assumed that some attributes
are important and cannot be destroyed, and the watermark is embedded in oth-
ers. Li et al. [19] proposed VPK schemes, including S-Scheme, E-Scheme, and
M-Scheme. These schemes create virtual primary keys and locate the attribute
values to be embedded by pseudo-random selecting attributes in tuples. These
schemes do not depend on the primary key and the order of attributes. However,
they introduced serious synchronization problems. [4,7–9] continued this study.
Chang et al. [4] proposed a virtual primary key watermarking algorithm for tex-
tual relation. Gort et al. [7] proposed a novel method for decreasing duplicated
values of virtual primary keys, but the algorithm is more vulnerable to attribute
attacks than previous works. Gort et al. [8] introduced a high-quality virtual
primary key generation principle and a VPK scheme under the principle. Gort
et al. [9] proposed double fragmentation of a watermark by using the redun-
dancy in the set of virtual primary keys, improving watermark synchronization.
Nevertheless, the approach relies on tuple order; thus, subset attacks are ignored.

Research into watermarking schemes invariably includes an evaluation of
watermark attacks. Kamran et al. [15] broadly classified these attacks as A1

(Insertion attacks), A2 (Deletion attacks), A3 (Alteration attacks), A4 (Multi-
faceted attacks), A5 (Additive (Re-watermarking) attacks), which the A1 ∼ A3

are attacks on the tuples (records) of database relations. Kamran et al. [17] men-
tioned attacks like substitution, addition, alteration, vertical partition, invertibil-



A High-Synchronization and Robust Virtual Primary Key Scheme 293

ity, and Mix-Match, which contain the attacks on attributes (vertical partition).
Yuan et al. [26] classifies basic attacks, including subset attacks (insertion attack,
alteration attack, deletion attack) and attribute attacks.

3 Scheme Overview

3.1 Notations

In this section, the notations used in this paper are shown in Table. 1.

Table 1. Notations

Notation Description Notation Description

D Original database relation PK Primary key

Ds Suspicious database relation VPK Virtual primary key

DW Watermarked database relation LSB Least significant bit

t tuples of database relation LSBF LSB fraction

AD Numeric attributes of D Ks Secret key

A Numeric attributes for watermark embedding W Watermark

C Candidate attributes for V PK generation Wr Recovered watermark

C′ Candidate attributes of Ds after analyzing ζ Watermark length

ΦC Concatenated candidate attribute values γ Embedding density

ΦC′ Concatenated candidate attribute values of Ds ξ Length of LSB

3.2 Process Overview

In this paper, our virtual primary key scheme for watermarking database rela-
tions will be used for the data owner’s copyright verification of the shared
database. Our scheme is divided into two parts: Watermark Embedding Process
and Watermark Detection Process. Figure 2 illustrates the process overview.

Watermark Embedding Process. (i) In data preprocessing, it trains a
classifier for attribute classification and recognition. This classifier is then uti-
lized to maintain the original order and number of attributes, thereby mitigating
attribute name attacks. (ii) After data preprocessing, it generates more distinct
virtual primary keys than the existing literature, mitigating the synchronization
problems. (iii) Then, two types of Embedding are performed: Logical Embedding
and Physical Embedding. Logical Embedding applies the virtual primary keys
to generate embedding records, which allows detecting watermarks using vir-
tual primary key when suffering from primary key attacks. Physical Embedding
applies primary key to embed and detect marks when primary key is available.
In addition, a record table is generated to store auxiliary information for water-
mark detection. It will decide where and how to locate and extract marks. After



294 K. Yang et al.

Fig. 2. Process Overview

embedding, the database relation Dw can be shared with the public. Thus, our
embedding scheme owns the advantages of PK and VPK schemes, addressing
synchronization problems and being robust against primary key attacks.

Watermark Detection Process. Before detecting the watermark for the
suspicious database relation Ds, our scheme will analyze Ds. It determines
whether or not to use the classifier to restore the attribute labels, and thereby
maintain the original order and number of attributes. Furthermore, combining
different locating methods, i.e., using the primary key and virtual primary key, it
applies the record table for locating watermarked tuples. After that, the water-
mark is extracted using the reverse watermark embedding process.

3.3 Threat Model

The considered scenario involves two parties in the threat model: the defender,
who is the data owner, and the attacker, a malicious user distributing data with-
out authorization. The defender holds the copyright of the database relation and
embeds a watermark before sharing it. The attacker may attack the watermarked
database relation to remove the watermark. The scenario is shown in Fig. 3.

Defender’s Assumption. The defender confidentially sets the secret parame-
ters, a secret key Ks, and watermark information W . The defender employs the
watermarking scheme to embed the watermark in database relation D, and can
control the robustness and data distortion by parameters. During watermark
detection, the defender can obtain the suspicious database relation Ds and use
the watermarking scheme to extract watermarks for copyright verification.

Attacker’s Goal. The attacker aims to remove the watermark while maintain-
ing the data quality required for their purpose. The attacker then profits by
selling databases without authorization or providing paid data access services
(e.g., Paid APIs).



A High-Synchronization and Robust Virtual Primary Key Scheme 295

Fig. 3. Threat Scenario

Attacker’s Capabilities. The attacker is aware that the database relation may
contain a watermark and can modify the database as desired. The attacker can
access the watermarking scheme but can not access the defender’s secret param-
eters and secret key. In order to evade the copyright verification of database
relation by the defender, the attacker may apply subset, additive, primary key,
attribute attacks (including attribute name attacks and mix-match attribute
attacks), alone or in combination, to remove the watermark.

4 Proposed Watermarking Scheme

In this section, we will detail attribute name attacks and the virtual primary
key watermarking algorithm.

4.1 Attribute Attacks Extension

In this paper, we propose attribute name attacks and mix-match attribute
attacks. We rename the current attribute attacks as attribute column attacks.
Thus, attribute attacks can be classified into three types.

Attribute Column Attacks can be partially resisted by existing watermark-
ing schemes (conscious or unconscious). They can be further mitigated by pre-
serving the original order of attributes. Note that the primary key attacks consti-
tute a form of attribute column attack, resulting in erroneous watermark detec-
tion in schemes reliant on the primary key.

Attribute Name Attacks can be divided into attribute name shuffling, dele-
tion and substitution, which will affect the original order of attributes. These
attacks can invalidate watermarking schemes that rely on the order of the



296 K. Yang et al.

attributes in watermark detection (e.g., most PK schemes, and part of VPK
schemes [3,7,14,21,22]). Several VPK schemes [8,19] can resist these attacks
due to the constructed virtual primary key, and the selected attributes to embed
the watermark do not depend on the attribute order.

Mix-Match Attribute Attacks are combinations of attribute column attacks
and attribute name attacks. These attacks are more complex and can affect both
the original order and the number of attributes. Even these schemes [8,19] can
not resist all attacks in mix-match attribute attacks.

To our knowledge, none of the existing watermarking schemes have fully
addressed all the proposed attacks. The attackers can simply apply attribute
name attacks to bypass watermark detection without modifying the data. We
will further analyze the impact of these attacks on the existing watermarking
schemes in the Sect. 5.

4.2 Data Preprocessing and Classifier Training

To enhance our scheme’s resistance to the attribute attacks discussed in Sect. 4.1,
we assign labels to attribute names and introduce a multi-classification task. This
task aims to classify attributes and restore their labels (attribute names) in any
database relation suspected of such attacks, preserving the original attribute
order and count. Importantly, classifiers are utilized as an auxiliary measure only
when subject to attribute name attacks. Datasets unaffected by these attacks do
not require classifiers for attribute label restoration during detection. To train
the classifier for the database relation D, data preprocessing is performed first.

Suppose the database relation D has a primary key attribute PK and numeric
attributes AD = {AD

0 , AD
1 , ..., AD

n−1}, the relation can be represented as D =
{PK,AD}. The symbol AD

i can be regarded as a label of ith attribute. We
then choose each attribute’s minimum, maximum, mean, variance, skewness,
kurtosis, entropy, and label (symbol) as the feature vector to train the classifier.
We apply random sampling, noise addition, and other operations to the tuples
of D to create multiple datasets. Subsequently, feature extraction is conducted
on these datasets to augment the training sample size, enhancing the classifier’s
generalization ability. In this paper, because the novelty of classification is not
our contribution, we use the Random Forest [2] Classifier of scikit-learn to train
the classifier. The classifier is then used to classify the attributes of the suspicious
database relation Ds and restore the labels of the attributes. We tested the model
using the datasets in Sect. 5, which includes both the watermarked and the post-
attack watermarked datasets as test sets, achieving an accuracy of 96%.

During prediction, the attributes that do not belong to the original database
may be misclassified. To address this problem, our scheme sets a threshold τ on
the prediction probabilities of labels for the classifier to determine whether the
classification result is reliable. This can mitigate the risk of erroneous watermark
detection due to misclassification. To verify the effectiveness of τ , we selected
numerical attributes from other real-world datasets and employed classifiers to



A High-Synchronization and Robust Virtual Primary Key Scheme 297

calculate prediction probabilities. The highest prediction probabilities for mis-
classification labels are around 50%, while most of the highest prediction proba-
bilities of the attributes of the test set are above 80%. Thus, users can empirically
set τ to trade off misclassification and false negatives.

4.3 Virtual Primary Key Generation

In this proposed scheme, The attributes AD of database relation D(PK,AD)
are divided vertically into two parts A and C, where AD = A + C. The data
owner secretly selects several attributes C = {C0, C1, ..., Cν−1} as the candiate
attributes for virtual primary key generation. The remaining attributes A =
{A0, A1, ..., Aμ−1} are used to embed the watermark.

The virtual primary key generation method is shown in Algorithm 1. In
order to reduce the number of duplicate values, we concatenate the candidate
attribute values t.C with their corresponding labels, using a concatenation func-
tion ϕ(a, b) = a ◦ b, where ◦ is the concatenation operator. These concatenated
values are represented as ΦC as the input of the algorithm. In the lines 2-6, All
possible combinations of the elements e in ΦC are generated and then hashed
using a common one-way hash function H(·) to generate the virtual primary
keys. The virtual primary key vpk associated with its corresponding element e
is then stored in a dictionary vpk dict with e as the key.

Algorithm 1. vpk generation
Input: ΦC
Output: vpk dict
1: Initialize Dictionary vpk dict with keys as elements of ΦC and empty sets as values
2: for r from 1 to Len(ΦC) do
3: for each combination c of size r from ΦC do
4: for each element e in combination c do
5: vpk = H(c)
6: vpk dict[e].append(vpk)

7: return vpk dict

In this way, multiple virtual primary keys can be constructed in a tuple,
increasing the total count and the number of unique values of virtual primary
keys. Therefore, watermark capacity is increased, and synchronization problems
are mitigated. The database relation may suffer from attribute column deletion.
As long as the C or A are not entirely deleted, the watermark can be extracted
using the virtual primary key.

4.4 Watermark Embedding

Watermarking schemes that utilize the primary key are known for high syn-
chronization. Therefore, when the primary key is available, its use in watermark



298 K. Yang et al.

detection can enhance the practicality of the virtual primary key scheme. The
proposed VPK scheme aims to integrate the primary key for watermarking. To
achieve this, three critical considerations must be addressed in the watermark
embedding process: 1) The selection of the watermark position for a tuple t
should not be linked to the primary or virtual primary keys; 2) The embed-
ding of the watermark using both the primary key and virtual primary key
must not interfere with each other, preventing the detection of incorrect marks;
3) Integrating watermarking with the primary key should avoid excessive data
distortion, as significant distortion can compromise the scheme’s usability.

Algorithm 2. watermark embedding
Input: D, Ks, C, A, W , ζ, LSBF
Output: DW

1: function WM Embed(D, Ks, C, A, W , ζ, LSBF )
2: for each t ∈ D do
3: if H(Ks ◦ t.PK) mod γ �= 0 then
4: Continue
5: t.Aw0 , t.Aw1 ←Select values according to Eq.(1)
6: vpk dict = vpk generation(ΦC)
7: idx = H(Ks ◦ t.PK) mod ζ
8: leb dict = LOGICAL EMBED(vpk dict, idx, Ks, ζ)
9: x dict = PHYSICAL EMBED(t.A, idx, W , Ks, LSBF )

10: record {t.PK, leb dict, x dict} into record table

11: return DW

12: function Logical Embed(vpk dict, idx, Ks, W , ζ)
13: Initialize Dictionary leb dict with keys of vpk dict as keys and an empty binary

string as value
14: for e, vpks in vpk dict do
15: for each vpk in vpks do
16: idx′ = H(Ks ◦ vpk) mod ζ
17: if W [idx] == W [idx′] then
18: leb dict[e].join(‘0’)
19: else
20: leb dict[e].join(‘1’)

return leb dict
21: function Physical Embed(t.A, idx, W , Ks, LSBF )
22: Initialize Dictionary x dict to record t.Awi and the change of t.Awi

23: for each t.Awi in {t.Aw0 , t.Aw1} do
24: ξ = ROUND(Len(t.Awi) × LSBF )
25: bitIndex = H(Ks ◦ Len(t.Awi)) mod ξ
26: Set the bit in LSB of t.Awi to W [idx] according to bitIndex
27: Set a marker ch = True if t.Awi changed else ch = False
28: x dict[t.Awi ◦ Awi ] = ch

return x dict

The watermark embedding process is shown in Algorithm 2. In this paper, we
integrate watermarking with primary key that embeds the watermark into the



A High-Synchronization and Robust Virtual Primary Key Scheme 299

least significant bit (LSB) of attribute values. This algorithm alters the bit-level
values with minimal data distortion and ensures high watermark synchroniza-
tion. To satisfy the first consideration, two attribute values for a tuple t are
selected to embed a watermark bit according to Eq.(1).

H(t.A) = {H(Ks ◦ t.A0),H(Ks ◦ t.A1), ...,H(Ks ◦ t.Aμ−1)}
t.Aw0 = min(H(t.A)), t.Aw1 = min(H(t.A) \ {t.Aw1})

(1)

Each attribute value of t.A is hashed with secret key Ks, and the two smallest
values are selected for watermark embedding. The algorithm’s security hinges
on the one-way hash function and the secret key; the watermark remains secure
as long as Ks is not disclosed. The rationale for selecting these two values will
be detailed in the Watermark Detection Sect. 4.5.

The watermark embedding process is divided into two parts: Logical Embed-
ding and Physical Embedding, in order to satisfy the second and third con-
siderations. Watermark bits selected by primary key are physically embedded,
while those selected by virtual primary key are logically embedded. The rea-
son for applying Logical Embedding is the proposed scheme generates multiple
virtual primary keys per tuple. Physically embedding watermark bits selected
by virtual primary keys would result in significant data distortion. Line 7 of
Algorithm 2 selects the position idx of a watermark bit from the watermark W
through t.PK, Ks, and the length ζ of W . Then, line 8 performs the Logical
Embedding according to W [idx] and the virtual primary keys. The detail about
Logical Embedding is shown in the function LOGICAL EMBED. This function
first initializes a dictionary leb dict for logical embedding: leb dict utilizes the
same keys as vpk dict, establishing a direct mapping between the two. For each
key in leb dict, the corresponding value is initialized as an empty binary string,
whose length is determined by the number of values (vpks) associated with that
key in vpk dict. After that, each vpk for each key e in the vpk dict is traversed to
select the bit position idx′ from the watermark W using vpk. Then, comparing
W [idx′] with W [idx], if the two bits are the same, the logical embedding bit
is 0; otherwise, it is 1. The logical embedding bit is then stored sequentially in
the binary string of the leb dict. Therefore, each character of the string can be
mapped to a vpk. Line 9 performs the Physical Embedding. The detail about
Physical Embedding is shown in the function PHYSICAL EMBED. W [idx] is
embedded into the LSB of the attribute value t.Awi

according to the bitIndex.
Noting that the length ξ of LSB is not fixed, it is computed according to Eq.(2).

ξ = ROUND(Len(t.Awi
) × LSBF ) (2)

The length of LSB is proportional to the length of the attribute value t.Awi

and the least significant bit fraction (LSBF). In this way, each t.Awi
own its

corresponding ξ. Thus, the watermark bits are embedded in distinct positions
for different attribute values. The bitIndex is computed according to Eq.(3).

bitIndex = H(Ks ◦ Len(t.Awi
)) mod ξ (3)



300 K. Yang et al.

During embedding, the change to t.Awi
is stored in a dictionary x dict, with keys

formed by concatenating t.Awi
and its label Awi

. A record comprising t.PK,
leb dict, and x dict is then stored in a record table. This table is kept locally as
metadata by the data owner and provided for watermark detection when needed
for copyright verification. After traversing the database, it is watermarked.

4.5 Watermark Detection

Watermarked database relation DW is used for sharing. However, most sharing
channels are insecure, and DW may face various modifications and attacks. Data
owners need to verify the copyright of the suspicious database Ds. Detecting the
embedded watermark W in Ds serves as essential proof of copyright.

In the proposed scheme, an initial analysis of Ds is required before watermark
detection. This analysis determines if Ds has undergone attribute attacks and if
a classifier is needed to restore attribute labels. And finalize the availability of
C and A, along with the primary key attributes. After analysis, the candidate
attributes of Ds are denoted as C′.

During the watermark detection process, the crux is locating the correct
watermarked tuples. Each tuple t of Ds is traversed to match the record r in
the record table. According to the analysis, matches will be divided into the
following two cases: primary key is available, and primary key is unavailable.

– The Primary Key is Available: If the primary key t.PK matches a record
r, and at least one of the elements of the x dict.key of r equals the corre-
sponding t.Awi

◦ Awi
in t, then tuple t is identified as a watermarked entity

and subsequently employed in the extraction of watermark bits.
– The Primary Key is Unavailable: False-matched problems need to be

considered. If matching process relies solely on C′ to align with leb dict.key
in record table, it may result in false matching tuples (the more candidate
attributes affect, the more records may falsely match). To minimize false-
matched tuples, matching x dict.key to the corresponding t.Awi

◦ Awi
in t is

essential. Only tuple t that t.C′ and t.Awi
◦ Awi

match a record can extract
the watermark. The purpose of selecting two attribute values for embedding
is to mitigate the false-matched problems. Despite the possibility that this
matching method may miss some watermarked tuples, the integrity of the
watermark can still be preserved. This is because our scheme’s ample and
distinct virtual primary keys ensure watermark redundancy.

The given examples of the two cases are shown in Table. 2 and Table. 3.
The pseudocode of watermark detection is shown in Algorithm 3. The algo-

rithm first matches the record table to locate the record r corresponding to
the tuple t. Line 5 selects the t.Awi

for watermark extraction only if the
x dict[t.Awi

◦Awi
] of r is true, which ensures that the extracted bits are definitely

the correct embedded watermark bits. Therefore, our scheme obviates the need
for iterating through all tuples and employing a majority voting mechanism to
restore the correct watermark. The algorithm terminates once the watermark Wr



A High-Synchronization and Robust Virtual Primary Key Scheme 301

Table 2. Matching Process if Primary Key is Available

Matched PK Awi of x dict t.Awi of x dict t.Awi of tuple t Located water-
marked tuple

9 Aw0 , Aw1 7,3 7,3 True

12 Aw0 , Aw1 24,5 22,7 False

37 Aw0 , Aw1 13,2 13,3 True

Table 3. Matching Process if Primary Key is Unavailable

ΦC′ ΦC of leb dict Awi of x dict t.Awi

of x dict
]t.Awiof tuple t Located water-

marked tuple

234◦Ci 234◦Ci,32◦Cj Aw0 , Aw1 7,3 7,3 True

256◦Ci 256◦Ci,54◦Cj Aw0 , Aw1 24,5 22,7 False

197◦Ci 197◦Ci,69◦Cj Aw0 , Aw1 13,2 13,3 False

Algorithm 3. watermark detection
Input: Ds, Ks, C′, A, ζ, LSBF , record table
Output: Wr

1: for each tuple t in Ds do
2: if Wr is recovered then
3: Break
4: Query the record table to locate r
5: Select t.Awi where r.x dict[t.Awi ◦ Awi ] = True
6: ξ = ROUND(Len(t.Awi) × LSBF )
7: bitIndex = H(Ks ◦ Len(t.Awi)) mod ξ
8: Gain the bit b in LSB of t.Awi according to bitIndex
9: if PK attribute is available then

10: idx = H(Ks ◦ t.PK) mod ζ
11: if Wr[idx] is empty, set Wr[idx] = b

12: vpk dict = vpk generation(r.leb dict.keys)
13: for each element e in ΦC′ do
14: for each vpk in vpk dict[e] do
15: idx′ = H(Ks ◦ vpk) mod ζ
16: if Wr[idx′] is empty, do the following steps
17: leb str = r.leb dict[e]
18: leb ←Map the vpk′ to the corresponding position in leb str
19: if leb == 0 then
20: Wr[idx′] = b
21: else
22: Wr[idx′] = ¬b

23: return Wr



302 K. Yang et al.

has been successfully recovered. Lines 6-8 locate the watermark bit b in the LSB
of t.Awi

according to the bitIndex. If the primary key is available, the algorithm
will compute the idx and set the Wr[idx] to b. Lines 9-18 show the watermark
extraction by virtual primary keys. The vpk dict is generated according to the
leb dict.keys of r. ΦC′ is calculated according to C′. For each element in ΦC′ ,
traversing each vpk in vpk dict[e] and map the vpk to the corresponding posi-
tion in r.leb dict[e] to get the logical embedding bit leb. If leb is 0, the Wr[idx′]
is set to b, otherwise it is set to ¬b. It is worth noting that the watermarked
values can be restored to their original value by ch = True and the bitIndex in
record table. Thus, the proposed scheme is reversible.

5 Performance Experiment Results

In this section, we design experiments to validate the proposed scheme’s perfor-
mance, focusing on attack robustness, overhead, and data distortions.

Experiments were conducted on a computer with a 1.9GHz CPU and 16GB
of RAM, running Windows 11. The Forest Cover Type1 dataset is used to
perform experiments, which has 581,012 tuples, each with 55 attributes. We
added an extra attribute ID as the primary key and then chose the first ten
numerical attributes and one categorical attribute for experiments. To test the
robustness of our algorithm under demanding conditions, we used settings of
LSBF = 0.3 and γ = 200. Thus, around 2900 tuples are selected by the algo-
rithm for watermarking. To ensure comparability, we adjusted parameters in
benchmark watermark algorithms to maintain a similar count of watermarked
tuples. We randomly selected 2 numerical attributes and 1 categorical attribute
{Aspect,Hillshade Noon,Cover Type} as candidate attributes C.

Attack resistance is quantified using the Correction Factor (CF), which rep-
resents detection accuracy by comparing the binary watermark string extracted
from the suspect database to the original at the embedding stage. CF is cal-
culated as CF =

∑ζ−1
i=0 W [i]⊕Wr[i]

ζ × 100%, where i represents the ith bit of the
watermark string. A CF near or at 100% confirms the copyright of the suspected
database, demonstrating the efficacy of the watermark detection algorithm.

5.1 Robustness Verification

Results of Virtual Primary Key Watermarking Algorithm. As a VPK
scheme, the proposed algorithm is compared with Chai’s [3] scheme (denoted by
RRWC) and M-scheme of Li’s [19] scheme (denoted by M) and Gort’s scheme
[7] which based on M (denoted by HRW). In this section, attacks are performed,
and the primary key attribute is assumed to be unavailable by default.

To assess synchronization problems [8], we compared our scheme’s number
of virtual primary keys (VPKs) and unique VPK values with the benchmark
schemes. Furthermore, Let ωi be the actual times that each watermark bit W [i]

1 Forest CoverType: http://kdd.ics.uci.edu/databases/covertype/covertype.html.

http://kdd.ics.uci.edu/databases/covertype/covertype.html


A High-Synchronization and Robust Virtual Primary Key Scheme 303

is embedded (i = 0, ..., ζ), and ωmax = max ωi, ωmin = min ωi. We use ωmax

and ωmin to measure the robustness of the algorithm. The smaller the ωmin

and ωmax, the more easily the marked bits are corrupted by users’ conscience
updates or various attacks by attackers. Table. 4 shows the results of the number
of VPK/UniqueVPK/ωmax/ωmin values of algorithms.

Table 4. The number of VPK/Unique VPK/ωmax/ωmin of algorithm.

AlgorithmVPK Unique VPK ωmax ωmin

Proposal 34761 3340 2331 689

M 3191 83 1326 0

HRW 2872 1181 161 33

RRWC 2906 2904 78 78

Table 4 indicates that our scheme generates more (and unique) virtual pri-
mary keys compared to the benchmarks, enhancing watermark capacity and
mitigating synchronization problems. It is worth noting that the RRWC uses
the Euclidean Distance CalDistance(t) of tuple t’s important attributes as a
virtual primary key. RRWC groups the database by tuples and embeds a mark
in each group, achieving ωmax = ωmin.

We then performed subset and attribute column attacks on the database
marked by our algorithm and the benchmarks. Preserving the original attribute
order during watermark detection neutralizes shuffling and insertion attacks and
equates attribute substitution to deletion. Thus, our experiments concentrated
on attribute deletion attacks. The results of the CF are shown in Figure. 4.

Fig. 4. Results of algorithms against subset and attribute deletion attacks.

As observed, the CF of our algorithm, RRWC, and HRW remain over 95%,
even if 95% of tuples are deleted. The CF of M is below 90% at the beginning
because its ωmin = 0, indicating the significant synchronization problem leads to
incomplete watermark embedding. Subset insertion and alternation only slightly
affect our proposal, RRWC, and M. However, the CF of HRW steeply decreases
when over 60% of tuples are altered. This is caused by major data modifications
that disrupt the consistency between the virtual primary keys used in detection



304 K. Yang et al.

and embedding, leading to incorrect watermark bits recovery. Our algorithm
outperforms M, HRW, and RRWC in attribute column deletion. The CF is still
close to 100% when over half of the attributes are deleted. Nevertheless, with
the deletion of 7 attributes, the CF of our algorithm exhibits a slow upward
trend due to disruptions in tuple locating, which increases false matches. HRW
is susceptible to severe attribute attacks, again due to the generation of incorrect
virtual primary keys during detection. Moreover, the CF of RRWC drops to zero
when important attributes are affected, failing to resist attribute attacks.

The robustness of algorithms against multifaceted attacks (subset attacks
combined with attribute column attacks) was evaluated, as shown in Fig. 5.
Our algorithm is still robust compared to the benchmarks. However, when over
80% of tuples are deleted and more than 5 attribute columns are affected, the
CF significantly decreases. This indicates the challenge of fully mitigating the
impact of a missing primary key on watermark synchronization.

Fig. 5. Results of algorithms against multifaceted attack.

Attribute name attacks are invalid for our algorithm since the classifier
restores attribute labels, and maintains their order and count. M is also immune
to these attacks because it does not rely on the order of attributes. However,
HRW and RRWC rely on the original order of attributes, and such attacks dis-
rupt their watermark detection process.

The resistance of our algorithm to mix-match attribute attacks, facilitated by
the classifier, is shown in Fig. 6. HRW and RRWC, vulnerable to attribute name
attacks, cannot withstand these attacks. For M, the effects of combined attribute
name and deletion/substitution attacks align with those from sole attribute dele-
tion attacks. However, when attribute name attacks are combined with insertion
attacks, impacting both the order and number of attributes, M struggles to
maintain the original attribute count, resulting in a decreased CF.

Results with Primary Key Watermarking Algorithm. Given that our
scheme integrates watermarking with the primary key, we compared it to PK
schemes to evaluate its performance when primary key is available. Our scheme is
compared with the Agrawal-Kiernan’s [1] scheme (denoted by AHK), Kamran’s
[16] scheme (denoted by RDMT) and Li’s [18] scheme (denoted by S2R2W).



A High-Synchronization and Robust Virtual Primary Key Scheme 305

Fig. 6. Results of algorithms against mix-match attribute attacks.

Subset and attribute deletion attacks are performed the same in Sect. 5.1.
Figure 7 shows the results of the experiments. Our algorithm slightly outperforms
benchmark schemes in resistance to these attacks, thanks to its dual use of
primary and virtual primary keys for watermark detection when the primary
key is available. This allows our scheme to extract more marks than traditional
PK schemes, thus enhancing its robustness. We can see that PK schemes like
AHK and RDMT are vulnerable to attribute column deletion attacks.

Fig. 7. Results of algorithms against subset and attribute deletion attacks.

Fig. 8. Results of algorithms against multifaceted attack.

Figure. 8 illustrates the robustness of algorithms against multifaceted attacks.
Our algorithm remains robust, maintaining a CF of 90% despite the deletion
of 7 attributes and over 95% of tuples. Insertion and alternation attacks with
attribute attacks only slightly affect the CF. This desirable behavior is attributed
to the vast marks embedded during the embedding process, as well as the record



306 K. Yang et al.

table storing auxiliary information to exclude false detection. S2R2W also shows
improved performance compared with AHK and RDMT but is slightly less effec-
tive than our proposal. RDMT shows a steep decrease in CF due to attribute
attacks destroying the once-for-all constraints, and the CF of AHK decreases as
the number of affected attributes and tuples increases.

In addition, it is worth noting that these benchmark algorithms can not resist
attribute name attacks, as do the mix-match attribute attacks, because they all
rely on the original order of attributes.

5.2 Usability Verification

Data Distortions. Data distortions between the original and watermarked
datasets are measured using statistical values like mean difference (Δμ) and
standard deviation difference (Δσ) of each marked attribute, shown in Table. 5.
One can easily notice that the Δμ and Δσ are small enough to be undetectable,
suggesting that our proposed scheme minimally impacts data availability.

Table 5. Distortions introduced in the attributes.

Attribute Δμ Δσ

Elevation -1.89e-4 2.33e-4

Slope -1.6e-4 7.98e-05

Horizontal Distance To Hydrology 1.31e-4 -2.57e-4

Vertical Distance To Hydrology 1.39e-4 -6.24e-6

Horizontal Distance To Roadways 1.08e-4 -4.66e-7

Hillshade 9am 8.9e-5 8.56e-5

Hillshade 3pm -9.8e-5 2.78e-5

Horizontal Distance To Fire Points 4.6e-5 1.81e-4

Overhead. Two experiments in Fig. 9 assess the computational costs of water-
mark embedding and detection across different numbers of tuples on selected
configurations and datasets. Disk read and write operations are excluded from
execution times. Our scheme shows lower execution times compared to bench-
marks, and its detection time is shorter than the embedding time because the
detection process stops once the watermark is successfully recovered. Execution
times increase with the number of tuples. For 0 ≤ tuples ≤ 500000, our scheme,
AHK, and RDMT have execution times under 1 s, whereas RRWC, HRW, M,
and S2W2R exhibit longer execution times.



A High-Synchronization and Robust Virtual Primary Key Scheme 307

Fig. 9. Execution times of algorithms.

6 Conclusion

In this paper, attribute name attacks and mix-match attribute attacks are intro-
duced, and a virtual primary key scheme is proposed. In order to resist the
introduced attacks, the scheme introduces a classifier to maintain the original
order and number of attributes. Our scheme generates ample and unique virtual
primary keys for resisting primary key attacks and mitigating synchronization
problems. The scheme integrates watermarking with the primary key to ensure
high detection accuracy when the primary key is available. The results of our
performance experiments on a real-world dataset substantiate our claims. The
scheme features high watermark synchronization and capacity, robustness, and
reversibility. These characteristics make it practical in various scenarios.

In future research, we aim to optimize the watermark embedding method by
incorporating data distribution properties. Additionally, we plan to extend the
scheme to include categorical and non-numeric data.

Acknowledgments. This work was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences, Grant No. XDB0690303.

References

1. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: VLDB’02: Pro-
ceedings of the 28th International Conference on Very Large Databases, pp. 155–
166. Elsevier (2002)

2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
3. Chai, H., Yang, S., Jiang, Z.L., Wang, X.: A robust and reversible watermarking

technique for relational dataset based on clustering. In: 2019 18th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pp. 411–418. IEEE (2019)



308 K. Yang et al.

4. Chang, C.-C., Nguyen, T.-S., Lin, C.-C.: A blind robust reversible watermark
scheme for textual relational databases with virtual primary key. In: Shi, Y.-Q.,
Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) Digital-Forensics and Water-
marking: 13th International Workshop, IWDW 2014, Taipei, Taiwan, October 1-4,
2014. Revised Selected Papers, pp. 75–89. Springer International Publishing, Cham
(2015). https://doi.org/10.1007/978-3-319-19321-2 6

5. Franco-Contreras, J., Coatrieux, G.: Robust watermarking of relational databases
with ontology-guided distortion control. IEEE Trans. Inf. Forensics Secur. 10(9),
1939–1952 (2015)

6. Franco-Contreras, J., Coatrieux, G., Cuppens, F., Cuppens-Boulahia, N., Roux, C.:
Robust lossless watermarking of relational databases based on circular histogram
modulation. IEEE Trans. Inf. Forensics Secur. 9(3), 397–410 (2013)

7. Gort, M.L.P., Dı́az, E.A., Uribe, C.F.: A highly-reliable virtual primary key scheme
for relational database watermarking techniques. In: 2017 International Confer-
ence on Computational Science and Computational Intelligence (CSCI), pp. 55–60.
IEEE (2017)

8. Gort, M.L.P., Feregrino-Uribe, C., Cortesi, A., Fernández-Peña, F.: Hqr-scheme: a
high quality and resilient virtual primary key generation approach for watermark-
ing relational data. Expert Syst. Appl. 138, 112770 (2019)

9. Gort, M.L.P., Feregrino-Uribe, C., Cortesi, A., Fernández-Peña, F.: A double frag-
mentation approach for improving virtual primary key-based watermark synchro-
nization. IEEE Access 8, 61504–61516 (2020)

10. Hou, R., Xian, H.: A graded reversible watermarking scheme for relational data.
Mobile Netw. Appl. 26, 1552–1563 (2021)

11. Hu, D., Zhao, D., Zheng, S.: A new robust approach for reversible database water-
marking with distortion control. IEEE Trans. Knowl. Data Eng. 31(6), 1024–1037
(2019)

12. Iftikhar, S., Kamran, M., Anwar, Z.: Rrw-a robust and reversible watermarking
technique for relational data. IEEE Trans. Knowl. Data Eng. 27(4), 1132–1145
(2014)

13. Jawad, K., Khan, A.: Genetic algorithm and difference expansion based reversible
watermarking for relational databases. J. Syst. Softw. 86(11), 2742–2753 (2013)

14. Kamran, M., Farooq, M.: An information-preserving watermarking scheme for
right protection of emr systems. IEEE Trans. Knowl. Data Eng. 24(11), 1950–
1962 (2011)

15. Kamran, M., Farooq, M.: A comprehensive survey of watermarking relational
databases research. arXiv preprint arXiv:1801.08271 (2018)

16. Kamran, M., Suhail, S., Farooq, M.: A robust, distortion minimizing technique for
watermarking relational databases using once-for-all usability constraints. IEEE
Trans. Knowl. Data Eng. 25(12), 2694–2707 (2013)

17. Kumar, S., Singh, B.K., Yadav, M.: A recent survey on multimedia and database
watermarking. Multimedia Tools Appl. 79(27), 20149–20197 (2020)

18. Li, W., Li, N., Yan, J., Zhang, Z., Yu, P., Long, G.: Secure and high-quality water-
marking algorithms for relational database based on semantic. IEEE Transactions
on Knowledge and Data Engineering (2023)

19. Li, Y., Swarup, V., Jajodia, S.: Constructing a virtual primary key for fingerprint-
ing relational data. In: Proceedings of the 3rd ACM Workshop on Digital Rights
Management, pp. 133–141 (2003)

20. Li, Y., Swarup, V., Jajodia, S.: Fingerprinting relational databases: schemes and
specialties. IEEE Trans. Dependable Secure Comput. 2(1), 34–45 (2005)

https://doi.org/10.1007/978-3-319-19321-2_6
http://arxiv.org/abs/1801.08271


A High-Synchronization and Robust Virtual Primary Key Scheme 309

21. Odeh, A., Al-Haj, A.: Watermarking relational database systems. In: 2008 First
International Conference on the Applications of Digital Information and Web Tech-
nologies (ICADIWT). pp. 270–274. IEEE (2008)

22. Sebé, F., Domingo-Ferrer, J., Solanas, A.: Noise-Robust Watermarking for Numer-
ical Datasets. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS
(LNAI), vol. 3558, pp. 134–143. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526018 14

23. Shehab, M., Bertino, E., Ghafoor, A.: Watermarking relational databases using
optimization-based techniques. IEEE Trans. Knowl. Data Eng. 20(1), 116–129
(2007)

24. Sion, R., Atallah, M., Prabhakar, S.: Rights protection for relational data. In:
Proceedings of the 2003 ACM SIGMOD International Conference on Management
of data, pp. 98–109 (2003)

25. Wang, H., Cui, X., Cao, Z.: A speech based algorithm for watermarking relational
databases. In: 2008 International Symposiums on Information Processing, pp. 603–
606. IEEE (2008)

26. Yuan, S., Chen, C., Yang, K., Yang, T., Yu, J.: An attribute-attack-proof water-
marking technique for relational database. In: 2022 IEEE International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 1136–1143. IEEE (2022)

https://doi.org/10.1007/11526018_14
https://doi.org/10.1007/11526018_14

	Don't Abandon the Primary Key: A High-Synchronization and Robust Virtual Primary Key Scheme for Watermarking Relational Databases
	1 Introduction
	2 Related Works
	3 Scheme Overview
	3.1 Notations
	3.2 Process Overview
	3.3 Threat Model

	4 Proposed Watermarking Scheme
	4.1 Attribute Attacks Extension
	4.2 Data Preprocessing and Classifier Training
	4.3 Virtual Primary Key Generation
	4.4 Watermark Embedding
	4.5 Watermark Detection

	5 Performance Experiment Results
	5.1 Robustness Verification
	5.2 Usability Verification

	6 Conclusion
	References


