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Abstract

We propose a simple yet effective model, DOC-001
HOPPER, for selecting evidence from long002
structured documents to answer complex ques-003
tions. Similar to multi-hop question-answering004
(QA) systems, at each step, DOCHOPPER it-005
eratively uses a query q to extract information006
from a document, and combines this informa-007
tion with q to produce the next query. How-008
ever, in contrast to most previous multi-hop009
QA systems, DOCHOPPER is able to extract010
either short or long sections of the document,011
thus emulating a multi-step process of “navi-012
gating” through a long document to answer a013
question. To enable this novel behavior, DOC-014
HOPPER does not combine document informa-015
tion with q by concatenating text to the text of016
q, but by combining a compact neural represen-017
tation of q with a compact neural representation018
of a (potentially large) hierarchical part of the019
document. We evaluate DOCHOPPER on three020
different tasks that require reading long struc-021
tured documents and finding multiple pieces of022
evidence, and show DOCHOPPER outperforms023
Transformer models for plain text input. Addi-024
tionally, DOCHOPPER is efficient at inference025
time, being 10–250 times faster than baselines.026

1 Introduction027

In this work we focus on the problem of extracting028

evidence over long and hierarchically structured029

documents to answer complex questions. A long030

document typically contains coherent information031

on a certain topic, and the contents are grouped into032

hierarchical structures, such as sections, chapters,033

etc. To answer complex questions over long docu-034

ments often requires navigating through different035

parts of the documents to find multiple pieces of in-036

formation. This navigation, in turn, requires under-037

standing high-level information about the structure038

of the document.039

For example, consider answering questions over040

academic papers (Dasigi et al., 2021). To answer041

the question “What modules in DOCHOPPER will 042

be finetuned in all the experiments?”, one might 043

first turn to the section titled “Model” to identify 044

the different modules in DOCHOPPER, and then 045

read the “Experiments” section with these modules 046

in mind, potentially further selecting evidence from 047

specific subsections (such as the one titled “Imple- 048

mentation Details”). Similar processes might be 049

needed to answer questions concerning government 050

policies (Sun et al., 2022) or legal documents. This 051

type of QA tests not only the ability to understand 052

short passages of text, but also the ability to un- 053

derstand the goal of questions and the structure of 054

documents in a domain. 055

A common approach to solving questions that 056

require multiple pieces of evidence is to iteratively 057

find evidence and update the query for the next step. 058

The update can be performed by either explicitly 059

predicting the intermediate answers (Talmor and 060

Berant, 2018; Sun et al., 2019) or directly append- 061

ing previous evidences to the questions (Zhao et al., 062

2021; Qi et al., 2021; Li et al., 2020; Xiong et al., 063

2021). While appending retrieved evidence to a 064

query works well on many factual QA tasks, where 065

it is possible to answer questions with evidences 066

that are short pieces of text, this approach is expen- 067

sive if one wishes to retrieve larger pieces of text 068

as evidences (e.g., the “Experiments” section of 069

a paper). Another disadvantage is that appending 070

together many small fragments of text intuitively 071

fails to capture the relationships between them, and 072

the structure of the document from which they were 073

extracted. 074

To capture high-level structural information in 075

a document as well as detailed information from 076

short passages, Ainslie et al. (2020) proposed ETC, 077

which introduced a global-local attention mecha- 078

nism where embeddings of special global tokens 079

are used to encode high-level information. 1 ETC 080

1Our DOCHOPPER system incorporates ETC as a docu-
ment encoder, but other pretrained LMs will still work.
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has previously performed well on multi-hop QA081

tasks like HotpotQA and WikiHop (Yang et al.,082

2018; Welbl et al., 2018) which require combining083

information from a small number of short passages.084

However, it has not been previously evaluated on085

tasks of the sort considered here. Our experiments086

show that DOCHOPPER outperforms ETC in ex-087

tracting evidence for questions from long and struc-088

tured documents.089

DOCHOPPER proposes a novel approach to up-090

dating queries over structured documents in a multi-091

hop setting. DOCHOPPER iteratively attends to092

different parts of the document, either large parts093

(e.g., chapters) or small parts (e.g., sentences). This094

process can be viewed as either retrieving a short095

passage, or navigating to a part of a document. In096

each iteration, the query vector is updated in em-097

bedding space using the encoding of an evidence098

previously selected. This updating step is end-to-099

end differentiable and efficient. In our experiments,100

we show DOCHOPPER is effective on three differ-101

ent benchmarks involving complex queries over102

long and structured documents.103

In particular, we evaluate DOCHOPPER on two104

evidence extraction tasks and one question answer-105

ing (QA) task. In QASPER (Dasigi et al., 2021)106

and ConditionalQA (Sun et al., 2022), we evalu-107

ate DOCHOPPER’s performance in extracting all108

evidences that are required to answer questions.109

In HybridQA, oracle evidence is not labeled. We110

instead evaluate final answer accuracy by passing111

the selected evidences into a simple reader model.112

DOCHOPPER outperforms large-document Trans-113

former models—ETC (Ainslie et al., 2020) and114

Longformer (Beltagy et al., 2020)—by up to 6115

points. Additionally, DOCHOPPER runs 10–250116

faster than baseline models, since it makes effective117

use of pre-computed question-independent encod-118

ings of documents.119

2 Related Work120

Graph-based models have been widely used for an-121

swering multi-hop questions in factual QA (Min122

et al., 2020; Sun et al., 2018, 2019; Qiu et al., 2019;123

Fang et al., 2019). However, most of the graph-124

based models are grounded to entities, i.e., evi-125

dences (from knowledge bases or text corpus) are126

connected by entities in the graph. The graph con-127

struction step also heavily relies on many discrete128

features such as hyperlinks or entities predicted129

with external entity linkers. It’s not clear how to130

apply these models to more general tasks if con- 131

text is not entity-centric, such as questions about 132

academic papers or government documents. Simi- 133

lar problems also exist in memory-augmented lan- 134

guage models that achieved the state-of-the-art on 135

many factual QA tasks (Guu et al., 2020; Lewis 136

et al., 2021; Verga et al., 2020; Dhingra et al., 2020; 137

Sun et al., 2021). 138

Alternatively, one can adopt a “retrieve and read” 139

pipeline to answer multi-hop questions over long 140

documents. Recent works proposed to extend the 141

dense retrieval methods (Karpukhin et al., 2020) to 142

multi-hop questions (Zhao et al., 2021; Qi et al., 143

2021; Li et al., 2020). However, such models re- 144

trieve one small piece of evidence at a time, lacking 145

the ability of navigating between different parts of 146

the documents to find relevant information at both 147

higher and lower levels of the document-structure 148

hierarchy. Another disadvantage of these iterative 149

models is that they are not end-to-end differentiable. 150

Updating the questions for the next hop requires 151

re-encoding the concatenated tokens from the ques- 152

tions and previously retrieved evidences. It also 153

makes the model inefficient because re-encoding 154

tokens with large Transformer models is very ex- 155

pensive. 156

Besides question answering tasks, hierarchi- 157

cal information in documents has been success- 158

fully used in tasks such as document classifica- 159

tion (Yang et al., 2016; Chang et al., 2019), sum- 160

marization (Gidiotis and Tsoumakas, 2020; Xiao 161

and Carenini, 2019; Zhang et al., 2019), sentiment 162

analysis (Ruder et al., 2016), text segmentation 163

(Koshorek et al., 2018), etc. It is worth mention- 164

ing that ETC (Ainslie et al., 2020) was also used 165

on a key-phrase extraction task on web pages us- 166

ing structured DOM trees. However, none of these 167

models can be easily adapted to answering complex 168

questions over long documents. 169

3 Model 170

In this section, we discuss the iterative process of 171

extracting evidence from long and structured doc- 172

uments. The iterative process is performed over 173

a pre-computed document index that contains em- 174

beddings at different hierarchical levels. To start 175

with, we first introduce strategies to compute em- 176

beddings for parts of a document to build an index 177

for a document. Then, we present the iterative pro- 178

cess that operates over document index to extract 179

evidence. Depending on hierarchical level of the 180

2



Figure 1: DOCHOPPER Overview. For a structured document consisting of sentences and paragraphs, during the iterative
selection process, DOCHOPPER selects a paragraph or a sentence from a combined document index that contains both paragraph
embeddings and sentence embeddings. Selected information will be mixed with the query vector and in turn update the query for
the next hop. Different update strategies are applied if sentences or paragraphs are selected previously.

evidence selected, a different query update strategy181

will be applied.182

3.1 Input183

A long document usually contains multiple levels184

of hierarchy, e.g. sections, sub-sections, paragraphs,185

sentences, etc. For simplicity, we only consider two186

levels of hierarchy in this paper: paragraph-level187

and sentence-level. A sentence is the lowest granu-188

larity that can be selected, while a paragraph is an189

abstraction of a collection of sentences, which can190

be used to represent sections or other levels in the191

hierarchy, depending on the application. Formally,192

let d = {p0, . . . , p|d|} ∈ D be a document in the193

corpus D that contains a sequence of paragraphs194

pj , and let a paragraph pj = {s0j , . . . , s
|pj |
j } con-195

tain a sequence of sentences. A sentence sij will be196

encoded into a fixed length vector sij ∈ Rd.197

3.2 Document Index in Embedding Space198

Sentence Embeddings A sentence sij has the low-199

est granularity that can be selected as evidence. We200

learn a Transformer model to encode sentences sij201

into vectors sij .202

sij = Transformersent(s
i
j) (1)203

Paragraph Embeddings Paragraph embeddings204

are derived from sentence embeddings sij and de-205

pendent on queries qt, the embedding of the t’th206

hop of the question. We will discuss methods to207

obtain query embeddings qt later in §3.3. A para-208

graph embedding pj is the weighted sum of sen-209

tence embeddings sij in paragraph pj , where αi is210

the attention weights of the query vector qt to the 211

sentence embedding sij . 212

pj =
∑
i

αi sij , αi = softmax(qT
t sij) (2) 213

The paragraph embeddings pj are thus dependent 214

on the query, but do not require jointly encoding 215

tokens from queries and context, as in many BERT- 216

style reading comprehension models. Computing 217

paragraph embeddings with Eq.2 is hence very effi- 218

cient. 219

Combined Document Index We put the sentence 220

embeddings and paragraph embeddings of docu- 221

ment d into a combined document index, so the 222

model has the flexibility to decide which sentence 223

or paragraph to attend to. Different update rules 224

will be applied according to whether sentences or 225

paragraphs are attended to. 226

To construct the embedding table, we iterate 227

through all paragraphs in a document and apply 228

the sentence encoder to compute sentence and para- 229

graph embeddings. Sentence and paragraph embed- 230

dings from all paragraphs are then concatenated to 231

form a combined embedding table. We denote 232

the combined embedding table for document d as 233

Cd = {p0, s00, . . . , s|p0|0 ,p1, s01, . . . , s|p1|1 , . . . }. Let 234

cm be the embedding of the m’th entry from Cd; 235

we emphasize that cm can represent either a sen- 236

tence or a paragraph embedding. 237

Pretrained Sentence Encoder We use ETC 238

(Ainslie et al., 2020) as our sentence encoder, as 239

it is pretrained to produce sentence-level embed- 240

dings. Different from vanilla Transformer models, 241

e.g. BERT (Devlin et al., 2019), ETC introduces 242
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an global-local attention mechanism. ETC assigns243

to each sentence a special global token that only244

attends to local tokens in the sentence, and its em-245

bedding is trained to summarize the information246

of local tokens in the sentence. A global token247

also attends the global tokens of other sentences248

in the input. ETC additionally adopts Contrastive249

Predictive Coding (CPC) (Oord et al., 2018) to250

train the embedding of global tokens to make them251

aware of other sentences in the context. We use the252

embeddings of global tokens in ETC as sentences253

embeddings.254

Specifically, instead of encoding one sentence
at a time, we run ETC over multiple contiguous
sentences (usually a paragraph) to improve encod-
ing efficiency, pj = {s0j , . . . , s

|pj |
j }. ETC’s output

includes vectors s0j , . . . , s|pj |j , where each sij ∈ Rd

represents the embedding of a sentence sij .

si0, . . . , si|pi| = ETC({si0, . . . , si|pi|}) ∈ R|pi|×d

Finetuning Sentence Encoder A pretrained ETC255

model can be finetuned to specific domains. While256

finetuning ETC’s sentence encoder generally im-257

proves performance of our model, we find the258

pretrained ETC produces reasonably good sen-259

tence embeddings without finetuning, and using260

pretrained ETC allows faster training.261

3.3 Query Embeddings262

Many questions, especially ones answered by pro-263

fessional documents that are long and structured,264

require navigating through different parts of doc-265

uments to find multiple pieces of evidence. We266

consider it as an iterative search process over the267

precomputed document index that has been dis-268

cussed above. The search process is performed in269

embedding space.270

Different from the multi-hop questions that have271

been studied in past work (Sun et al., 2018; Qiu272

et al., 2019; Min et al., 2020; Chen et al., 2020),273

e.g. “Which gulf is north of the Somalian city with274

550,000 residents”, we focus on questions that re-275

quires information from multiple parts of a docu-276

ment that are hierarchically related. For example,277

a question that asks “am I eligible for this benefit”278

may require first navigating to a section that de-279

scribes the requirements of the benefit based on the280

user’s scenario, and then check whether all require-281

ments have been satisfied. This searching process is282

inherently multi-hop and requires combining both283

contextual and hierarchical information.284

Assume that a question is k-hop, where k is 285

a hyper-parameter.To generate k different query 286

vectors, one for each hop, we add k − 1 dummy 287

questions qnull to form a question paragraph qp = 288

{q0, qnull, . . . , qnull}. The question paragraph is 289

passed into a query encoder to compute query em- 290

beddings. 291

q0,q1, . . . ,qk−1 = Encoderq({q0, qnull, . . . , qnull})
(3)

292

Again, we use pretrained ETC as our query en- 293

coder in this project. The global-to-local attention 294

mask of ETC is modified to allow the global token 295

of the dummy question to attend to tokens in the 296

question q0. With this modification, query embed- 297

dings for q0 and qnull can attend to different parts 298

of the question. ETC is always finetuned as query 299

encoder. Query vectors qt will not be directly used 300

to select evidence at the t’th step, but instead will 301

be updated using previously selected information 302

before selecting next evidence. 303

Query vectors can either select paragraphs or 304

sentences from documents. The selection process is 305

performed over the combined document index that 306

contains both sentence and paragraph embeddings. 307

The selection process will be discussed in the next 308

section. 309

3.4 Iterative Evidence Selection 310

With the query embedding qt at step t and context 311

embeddings Cd discussed above, we now introduce 312

the proposed iterative evidence selection algorithm 313

in DOCHOPPER. 314

Selection Step At each iteration, DOCHOPPER 315

computes inner product scores between the query 316

vector qt and embeddings cm in Cd, and returns 317

the entry ĉ with the largest score, which is usually 318

referred as hard attention. (As we will see ĉ is not 319

directly used for computation, but it is helpful in 320

explaining the selection step). 321

ĉ = argmaxcm(q
T
t cm) 322

Note that the selected entry can be either a para- 323

graph pj or a sentence sij because the document 324

index Cd contains both sentence and paragraph 325

embeddings. 326

Update Step Many multihop models update a ques- 327

tion by appending retrieved text to the text of the 328

question. In contrast, DOCHOPPER numerically 329

combines the embedding of the selected entry ĉ 330
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with the embedding of the query vector qt, a pro-331

cess we call “mixing”. Since the combined embed-332

ding table Cd contains both sentence and paragraph333

embeddings, the selected entry ĉ can represent ei-334

ther a sentence or a paragraph. The two cases will335

be considered separately. If ĉ is a sentence, i.e.336

ĉ = sij , DOCHOPPER computes the mixed embed-337

ding as338

q̃t = WT
q [qt; sij ] (4)339

where [qt; sij ] is the concatenation of two vectors qt340

and sij . The mixed vector is then used to update the341

query to form qt+1 as shown in Eq. 5. Intuitively,342

q̃t is the residual from the previous step. Adding343

the residual embedding encourages the model to344

attend to information that is not fully satisfied from345

previous steps.346

qt+1 ← qt+1 + q̃t (5)347

If ĉ is a paragraph, i.e., ĉ = pj , a more complex348

mixing process is used. DOCHOPPER first looks up349

the sentences in pj , i.e. the vectors {s0j , . . . , s
|pj |
j }.350

The following three steps are then used to compute351

the update vector q̃t. (1) DOCHOPPER computes352

the importance weights of the query vector qt to the353

embeddings of associated sentences {s0j , . . . , s
|pj |
j }354

that measures the relevance scores between the355

query vector and the sentences. This importance356

weight is the same as the weight αi in Eq.2 that357

is used to compute the paragraph embeddings. In358

the implementation, we also re-use the value of αi359

if it has been computed for the query-dependent360

paragraph embeddings. (2) The query vector qt361

is combined with every sentence in paragraph. In362

particular, qt is multiplied with weight αi and ap-363

pended to the i-th sentence embedding sij , where364

the αi’s indicate relevance. The result is then lin-365

early projected to form a vector ki:366

kj = WT
q [αi qt; sij ] (6)367

Then (3) the vectors ki are summed with the weight368

βi, where βi is the attention weight of a learned369

vector v to the concatenated vector ki. The learned370

vector v weights the importance of sentences from371

the selected paragraph after comparing them with372

the query vector and decides what information to373

pass to the next step of selection.374

q̃t =
∑
i

βi ki, βi = softmax(vTki) (7)375

It is not hard to see that computing the mixed 376

embedding in Eq. 7 for the case that a paragraph 377

is selected is essentially the same as in Eq. 4 if the 378

selected paragraph pi only contains one sentence, 379

i.e. αi = 1 and βi = 1 if |pj | = 1; hence the 380

same logic can be used regardless of whether ĉ is a 381

sentence or a paragraph. 382

Loss Function Attention is supervised if (distantly) 383

supervised labels are available in the dataset. qT
t cm 384

is the inner product score between the query vector 385

qt and a context embedding cm. Icm is an indica- 386

tor function that equals to 1 iff the label of cm is 387

positive. 388

lt = cross_entropy(softmax(qT
t cm), Icm) 389

The loss function is computed at the final step, 390

and possibly at intermediate steps if labels are avail- 391

able. Supervision labels are sometimes distantly 392

constructed. For example, in the extractive QA task, 393

a positive candidate is the sentence or paragraph 394

that contains the answer span (see §4). 395

3.5 Evidence Prediction 396

After all iterations, scores at all iterative steps are 397

summed to compute a final score which is used 398

to make prediction. The score for sentence sij is 399

computed as 400

score(sij) =
∑
t

λt · (qT
t sij + qT

t pj) (8) 401

where qT
1 sij and qT

0 pj are the scores of sentence sij 402

and paragraph pj that it belongs to. λt are hyper- 403

parameters tuned for different datasets. We often 404

set λ0 = 1 and tune the rest of λt’s. 405

3.6 Runtime Efficiency 406

DOCHOPPER is very efficient at runtime thanks to 407

the query-agnostic sentence embeddings that can 408

be pre-computed (§3.2) at inference time. Differ- 409

ent from previous reading comprehension models 410

that jointly encode questions and context (Beltagy 411

et al., 2020; Ainslie et al., 2020), DOCHOPPER en- 412

code question embeddings and context embeddings 413

independently. At inference time, DOCHOPPER di- 414

rectly select from document index that contains 415

precomputed context embeddings, significantly re- 416

ducing the computation cost compared to cross- 417

attention models that jointly encode questions and 418

context. 419
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4 Experiments420

We evaluate DOCHOPPER on two evidence ex-421

traction tasks, QASPER (Dasigi et al., 2021) and422

ConditionalQA (Sun et al., 2022). QASPER con-423

tains questions about academic papers. Condition-424

alQA contains questions about public policies de-425

scribed on government websites. Documents in426

both datasets are long and structured, and answer-427

ing the questions requires navigating through en-428

tire documents to find relevant information. Both429

datasets provide labels for the evidence that is re-430

quired to find answers, which we use to evaluate431

the evidence extracted by DOCHOPPER.432

In addition to QASPER and ConditionalQA, we433

additionally evaluate DOCHOPPER on a variant of434

HybridQA (Chen et al., 2020). HybridQA contains435

multihop data that requires using both text and436

tabular data. Here, following (Chen et al., 2021),437

we consider an alternative setting where tables are438

preprocessed into structured documents—i.e. cells439

in tables are converted into sentences and sentences440

for cells in the same row are then merged into a441

paragraph. Please see §4.1 for more information.442

Since evidence is not labeled in HybridQA, we run443

a simple reader on the extracted evidence and report444

numbers in final answer accuracy (in EM/F1).2445

4.1 Datasets446

QASPER (Dasigi et al., 2021) (CC BY 4.0 Li-447

cense) is a QA dataset constructed from NLP pa-448

pers. Questions are asked without reading the full449

paper and thus usually requires combining multiple450

pieces of information to obtain final answers. As it451

is mentioned in Dasigi et al. (2021), 55.5% of the452

questions have multi-paragraph evidence. Docu-453

ments in the QASPER dataset are highly structured,454

i.e. contents are structured into sections, subsec-455

tions, etc. We treat each subsection as a paragraph456

and prepend the section and subsection titles to the457

beginning of the subsection.458

ConditionalQA (Sun et al., 2022) (CC BY-SA 4.0459

License) contains questions on public policies that460

are asked over documents posted on government461

websites. Similar to QASPER, documents in Con-462

ditionalQA are also highly structured, with infor-463

mation structured in sections, subsections, listed464

items, tables etc. Documents in ConditionalQA465

are presented in HTML format. We treat HTML466

elements at the leaf of the DOM tree as sentences467

and group sentences that share the same parents as468

2All datasets are released for research purposes.

paragraphs. The ConditionalQA dataset also pro- 469

vides a list of evidence which we use to evaluate 470

extraction results by DOCHOPPER.3 471

HybridQA (Chen et al., 2020) (CC BY 4.0 Li- 472

cense) is a dataset that requires jointly using infor- 473

mation from tables and hyperlinked text from cells 474

to find the answers. In this experiment, we consider 475

HybridQA in a long document QA setting, where 476

tables are converted to structured documents with 477

paragraphs and sentences. Annotated evidence is 478

not provided in HybridQA, so we evaluate DOC- 479

HOPPER on the final predicted answers. 480

A row in the table describes attributes of an 481

instance, for example, a person or an event. At- 482

tributes are organized by columns. For example, 483

the table of Medalist of Sweden in 1932,4 con- 484

tains a row “[Medal:] Gold; [Name:] Rudolf Svens- 485

son; [Sport:] Wrestling (Greco-Roman); [Event:] 486

Men’s Heavyweight”. Text in the square brackets 487

are the headers of the table. The medal winner 488

“Rudolf Svensson” and the event “Wrestling (Greco- 489

Roman)” are hyperlinked to the first paragraph of 490

their Wikipedia pages. A question asks “What was 491

the nickname of the gold medal winner in the men 492

’s heavyweight greco-roman wrestling event of the 493

1932 Summer Olympics?” requires the model to 494

first locate the correct row in the table, and find the 495

answer from other cells in the row or their hyper- 496

linked text. 497

We convert a table with hyperlinked text into a 498

long document. Each row in the table is considered 499

a paragraph by concatenating the column header, 500

cell text, and hyperlinked text if any. The column 501

name and cell text are each treated as one sentence. 502

Hyperlinked text is also split into sentences. In the 503

example above, the row becomes “Medal. Gold. 504

Name. Rudolf Svensson. Johan Rudolf Svensson 505

(27 March 1899 – 4 December 1978) was a Swedish 506

wrestler. He competed ...”. The average length of 507

the documents is 9345.5 tokens. 508

4.2 Implementation Details 509

For QASPER and ConditionalQA, we construct 510

distant labels to supervise DOCHOPPER to first se- 511

lect paragraphs, and then select sentences. Note 512

that we do not require that sentences selected in 513

3Examples in ConditionalQA have conditional answers,
i.e. answers are only correct under certain conditions. We
will leave this new task for future work and focus on evidence
extraction in this paper.

4https://en.wikipedia.org/wiki/Sweden_at_the_
1932_Summer_Olympics
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QASPER ConditionalQA
Dev Test Dev example / sec

Retrieval + ETC 22.4 27.9 21.1 8.3 / s
Sequential ETC 22.8 28.7 23.7 0.7 / s
LED (Longformer) 23.9 29.6 29.4 0.5 / s
FiD 24.9 32.3 24.6 1.3 / s
DOCHOPPER 25.8 33.1 28.8 124.8 / s

(sentence only) 24.4 29.8 27.3 –
(single-hop) 22.8 28.0 26.4 –
(w/o query update) 25.1 31.8 26.5 –

Table 1: F1 results in evidence selection. Results of baselines are obtained by running open-sourced codes.

the second hop must be from the previously se-514

lected paragraphs. Final scores for prediction is515

computed as described in Eq. 8. We set λ1 = 0.5516

for QASPER and λ1 = 1.2 for ConditionalQA.517

In HybridQA, we additionally use paragraph-518

level sparse features to improve accuracy, similar to519

the baseline model by Chen et al. (2020). The func-520

tion sparse(q0, pi) computes the length of longest521

common substrings in the question q0 and the para-522

graph pi. Sparse features are only used at the end523

of retrieval, not at any intermediate steps. For Hy-524

bridQA, we set λ1 = 1.5 and γ = 3.0.525

score(sij)← score(sij) + γ · sparse(q0, pi) (9)526

Since oracle evidence is not provided in Hy-527

bridQA, we consider sentences that contain an-528

swers as evidence. Selected evidence is then passed529

to a BERT-based model to extract final answers.530

We finetune BERT-large to serve as our reader. Ex-531

perimental results are presented in Table 2.532

4.3 Baselines533

We compare DOCHOPPER with strong baselines534

for long input—LED (Longformer) (Dasigi et al.,535

2021), FiD (Izacard and Grave, 2020), and varia-536

tions of ETC (Ainslie et al., 2020)—to show the ef-537

ficacy of DOCHOPPER. LED is an encoder-decoder538

model that builds on Longformer (Beltagy et al.,539

2020). Fusion-in-Decoder (FiD) is based on T5540

but uses the fusion-in-decoder strategy to reduce541

memory usage for longer inputs. We also exper-542

iment with directly reading the documents with543

a Transformer-based reader ETC (Ainslie et al.,544

2020): though it can’t fit the entire document into545

its input, it is still one of the best models for read-546

ing long sequences (up to 4096 tokens). To handle547

longer documents, we adopt the sequential reading548

strategy: the model reads the document paragraph549

by paragraph, and picks the most confident predic- 550

tion as the answer. We also report the numbers of a 551

“retrieve and read” pipeline with a dense retriever 552

(DPR-like) and a finetuned ETC reader. The num- 553

bers are shown in Table 1. Runtime is measured as 554

examples per second with a batch size of 1. 555

For HybridQA, we additionally compared to QA 556

models that are specifically designed for tabular 557

data, e.g. HYBRIDER (Chen et al., 2020), MATE 558

(Eisenschlos et al., 2021), and MITQA (Kumar 559

et al., 2021). Again, we focus on the task of ex- 560

tracting evidences from long and structured doc- 561

uments and thus convert tables in HybridQA into 562

plain text. Some tabular information, such as cell 563

and column structures, has been removed in this 564

conversion process. Although DOCHOPPER is not 565

directly comparable models specialized for tables, 566

we also present numbers for severeal such models— 567

HYBRIDER (Chen et al., 2020), MATE (Eisen- 568

schlos et al., 2021), and MITQA (Kumar et al., 569

2021)–in Table 2 for completeness. 570

4.4 Results and Analysis 571

On QASPER, DOCHOPPER outperforms the base- 572

lines by 1-5%, and runs 10-250 times faster. On 573

ConditionalQA, DOCHOPPER’s retrieval perfor- 574

mance is slightly worse than LED (0.6%), but it 575

is 250 times faster. We additionally performed 576

more ablation experiments with DOCHOPPER. The 577

query update (see the row w/o query update) in Eq. 578

5 is important, causing 0.7% and 2.3% difference in 579

performance on both datasets. We also ablated the 580

model by using one step of attention to select the 581

most relevant sentence from the document (single- 582

hop), and note again that performance drops notice- 583

ably. Adding one more step of attention, while only 584

attending to sentences (sentence-only in the table), 585

leads to some improvement, but is still worse than 586

attending at both paragraph and sentence levels. 587

HybridQA is evaluated on answer accuracy be- 588
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HybridQA
Dev Test example / sec

Retrieval + ETC 37.0 / 43.5 34.1 / 40.3 8.3 / s
Sequential ETC 39.4 / 44.8 37.0 / 43.0 0.5 / s
Longformer 45.8 / 53.5 43.4 / 49.7 0.5 / s
DOCHOPPER 47.7 / 55.0 46.3 / 53.3 74.6 / s

HYBRIDER 44.0 / 50.7 43.8 / 50.6 –
DOCHOPPER(w/ cell) 53.1 / 61.4 – / – –
MATE 63.4 / 71.0 62.8 / 70.2 –
MITQA 65.5 / 72.7 64.3 / 71.9 –

(w/o sparse) 44.4 / 51.2 – / – –
(w/o query update) 44.2 / 50.9 – / – –
(sentence-only) 36.7 / 43.7 – / – –
(single-hop) 27.8 / 34.1 – / – –

Table 2: EM/F1 performance of answer spans on HybridQA.
Results of baseline models are obtained by running open-
sourced codes.

cause oracle evidence is not provided. DOC-589

HOPPER with a simple BERT reader outperforms590

a few Transformer baselines for long input, e.g.591

ETC (Ainslie et al., 2020) and Longformer (Belt-592

agy et al., 2020). DOCHOPPER outperforms base-593

lines by 1.5-3.6 points. Again, DOCHOPPER with594

a BERT reader overall performs 9-150 times faster595

than the Transformer baselines.596

Comparing to QA models specifically designed597

for tabular data, i.e. HYBRIDER (Chen et al.,598

2020), MATE (Eisenschlos et al., 2021), and599

MITQA (Kumar et al., 2021), DOCHOPPER does600

not perform, as well because our process of convert-601

ing tables to DOCHOPPER’s hierarchical-document602

input format loses information about cells and603

columns, that are needed to fully understand tabu-604

lar data. We also extended DOCHOPPER to allow605

it to return cells that contain selected sentences and606

pass the cells (instead of single sentences) to the607

underlying extractive QA model (labeled “w/ cell”608

in the table). This improves the performance by609

5.4 points. We note that the baselines for tabular610

data, e.g. MATE, are optimized for this task in611

other ways: e.g., they restrict the length of text in612

cells to a limited number of sentences, only the use613

the top-k sentences from the hyperlinked text, and614

restrict the total length of tables to 2048 tokens.615

DOCHOPPER does not impose these restrictions,616

and can applied to more general tasks (as shown in617

the other experiments).618

To show the efficacy of the proposed iterative619

evidence extraction method, we present the Hits@1620

accuracy of selecting distantly labeled evidence, i.e.621

cells (converted to sentences) that contain correct622

answers. These results are shown in Table 3, along623

HybridQA

DOCHOPPER 56.5
(w/o sparse) 53.3
(w/o query update) 51.8
(sentence-only) 46.4
(single-hop) 34.2

Table 3: Hits@1 accuracy on distantly labeled evidence,
i.e. sentences that contain answers (on dev set).

with ablated results. 624

5 Conclusion 625

We consider on the problem of extracting evidence 626

for complex questions over long and structured 627

documents. Like multi-hop open QA tasks, this 628

problem requires not only conventional “machine 629

reading” abilities, but the ability to extract relevant 630

information and refine queries based on retrieved 631

information. Additionally, it requires the ability to 632

navigate through a document, by understanding the 633

relationship between sections of the document and 634

parts of the question. Unlike most prior multi-hop 635

QA models, queries in DOCHOPPER are updated 636

in embedding space, rather than by appending to 637

a discrete representation of question text. This ap- 638

proach is end-to-end differentiable and very fast. 639

Experiments also demonstrate that this use of itera- 640

tive searching can significantly improve the perfor- 641

mance in selecting evidence from long and struc- 642

tured documents: in fact, the DOCHOPPER model 643

outperforms Transformer baselines by 3–5%, while 644

also being 10-250 times faster. However, DOC- 645

HOPPER’s performance is still limited (e.g. only 646

28.8 in evidence F1) and thus needs substantial 647

improvement for real world applications. 648
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A Appendix 822

A.1 Dataset Details 823

HybridQA (Chen et al., 2020) is a dataset that re- 824

quires jointly using information from tables and 825

text hyperlinked from table cells to find the an- 826

swers of multi-hop questions. A row in the table 827

describes attributes of an instance, for example, 828

a person or an event. Attributes are organized 829

by columns. For example, the table of Medal- 830

ist of Sweden in 1932,5 contains a row “[Medal:] 831

Gold; [Name:] Rudolf Svensson; [Sport:] Wrestling 832

(Greco-Roman); [Event:] Men’s Heavyweight”. 833

Text in the square brackets are the headers of the 834

table. The medal winner “Rudolf Svensson” and 835

the event “Wrestling (Greco-Roman)” are hyper- 836

linked to the first paragraph of their Wikipedia 837

pages. A question asks “What was the nickname of 838

the gold medal winner in the men ’s heavyweight 839

greco-roman wrestling event of the 1932 Summer 840

Olympics?” requires the model to first locate the 841

correct row in the table, and find the answer from 842

other cells in the row or their hyperlinked text. 843

To apply our model on the HybridQA dataset, 844

we first convert a table with hyperlinked text into a 845

long document. Each row in the table is considered 846

a paragraph by concatenating the column header, 847

cell text, and hyperlinked text if any. The column 848

name and cell text are each treated as one sentence. 849

Hyperlinked text is also split into sentences. In the 850

example above, the row becomes “Medal. Gold. 851

Name. Rudolf Svensson. Johan Rudolf Svensson 852

(27 March 1899 – 4 December 1978) was a Swedish 853

wrestler. He competed ...”. The average length of 854

the documents is 9345.5. 855

QASPER (Dasigi et al., 2021) is a QA dataset con- 856

structed from NLP papers. They hired graduate 857

students to read the papers and ask questions. A 858

different group of students are hired to answer the 859

questions. For example, a question asks “What 860

are the baseline models used in this paper?”. The 861

answers are {“BERT”, “RoBERTa”}. The dataset 862

contains a mixture of extractive, abstractive, and 863

yes/no questions. We focus on the subset of extrac- 864

tive questions (51.8% of the datasets) in this paper. 865

Some questions in the dataset are answerable with 866

a single-hop. However, as suggested in the original 867

paper, 55.5% of the questions have multi-paragraph 868

evidence, and thus aggregating multiple pieces of 869

information should improve the accuracy. Answers 870

5https://en.wikipedia.org/wiki/Sweden_at_the_
1932_Summer_Olympics
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in the QASPER dataset are longer, with an average871

of 14.4 tokens. We treat each subsection as a para-872

graph and prepend the section title and subsection873

title to the beginning of the subsection.874

ShARC (Saeidi et al., 2018) is a conversational875

QA dataset for discourse entailment reasoning.876

Questions in ShARC are about government policy877

crawled from government websites. Users engage878

with a machine to check if they qualify for some879

benefits. A question in the dataset starts with a880

initial question, e.g. “Can I get standard deduc-881

tion for my federal tax return?”, with a user sce-882

nario, e.g. “I lived in the US for 5 years with a883

student visa”, and a few followup questions and an-884

swers through the interaction between the machine885

and users, e.g. “Bot: Are you a resident alien for886

tax purpose? User: No”. The model reviews the887

conversation and predicts one of the three labels:888

“Yes”, “No”, or “Irrelevant”. If the model think889

there’s not enough information to make the predic-890

tion, it should predict a fourth label “Inquire”.891

Besides the conversation, each example in the892

ShARC dataset provides a snippet that the con-893

versation is originated from. A snippet is a short894

paragraph that the conversation is created from, e.g.895

“Certain taxpayers aren’t entitled to the standard896

deduction: (1) A married individual filing as mar-897

ried... (2) An individual ...”. Since the snippets898

are usually short, with an average of 54.7 tokens,899

previous models, e.g. DISCERN (Gao et al., 2020),900

concatenate the snippet and the conversation, and901

jointly encode them with Transformer-based mod-902

els, e.g. BERT or RoBERTa. Here we consider903

instead a more challeging long-document setting,904

in which the snippet is not known, and the model905

must also locate the snippet from the document.906

We crawl the web pages with the provided URL.907

The pages contain 737.1 tokens on average, 13.5908

times longer than the original snippets, and the909

longest page contains 3927 tokens. We name this910

new variant ShARC-Long.911

A.2 Dataset Statistics912

Dataset statistics are shown in Table 4.

Train Dev Test

QASPER 2593 1005 1451
ConditionalQA 2338 285 804
HybridQA 62682 3466 3463

Table 4: Dataset statistics.

913

A.3 Implementation Details for ShARC-Long 914

Changes to Context Representations Instead
of computing the paragraph embeddings as a
weighted sum of sentence embeddings, we di-
rectly obtain the paragraph embeddings from ETC
output for this dataset. Recall that a paragraph
pi = {si0, . . . , si|pi|} contains a sequence of sen-
tences sij . We prepend a dummy sentence snull to
the beginning of the paragraph, and again, we mod-
ify the global-to-local attention mask to allow the
global token of the dummy sentence to attend to
all tokens in the paragraph pi. Let pi ∈ Rd be the
embedding of paragraph pi. The embeddings for a
paragraph and its contained sentences are:

pi, si0, . . . , si|pi| = ETC({snull, s
i
0, . . . , s

i
|pi|})

Distant Supervision The iterative attention pro- 915

cess is distantly supervised with supervision at in- 916

termediate steps. At each step, the model is trained 917

to attend to both the correct paragraph and the cor- 918

rect sentences if they exists. Since the embedding 919

table Cd consists of both paragraph and sentence 920

embeddings, we only need to compute the attention 921

scores once at each step, but consider both the cor- 922

rect paragraph and the correct sentence as positive. 923

The positive paragraph is one of the paragraphs 924

from the crawled web page with the highest BLEU 925

score.6 We notice that some web pages at the pro- 926

vided URLs have been changed significantly, so 927

the snippets provided in the datasets may not exist 928

any more, hence we discard the associated data 929

if the highest BLEU scores of the paragraphs is 930

less than 0.7. We follow the heuristics used by 931

baseline models (Gao et al., 2020) to get positive 932

sentence candidates by finding the sentence with 933

the minimum edit distance. 934

A.4 Additional Results 935

We report the performance of eventually selecting 936

the correct evidences in Table 5, 6, and 7. 937

Comments on HotpotQA-Long We also observe 938

that ablated experiment on evidence selection (w/o 939

query update) is only 7.8 points lower than the 940

full model. To understand the underlying reason, 941

we train the model to perform a one-step attention 942

only for supporting facts of the second hop (for 943

bridge questions). The accuracy is 71.7, only 3.6 944

points lower than the accuracy of the full multi-hop 945

process. This is likely due to the high surface form 946

overlap between the questions and their context. 947
6We drop the brevity penalty term in BLEU score.
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HybridQA QASPER
(Extractive)

DOCHOPPER 56.5 39.1
(w/o sparse) 53.3 (39.1)
(w/o query update) 51.8 37.2
(sentence-only) 46.4 36.1
(single-hop) 34.2 36.8

Table 5: Hits@1 accuracy on selecting sentences that
actually contains the answer (on dev set).

HotpotQA-Long

IRRR 56.8

DOCHOPPER 64.7
(w/o query update) 56.5
(sentence-only) 61.8
(single-hop) 37.4

Table 6: Accuracy of correctly predicting supporting
facts for both hops on HotpotQA-Long (without rerank-
ing).

ShARC-Long

DOCHOPPER 82.2
(w/o query update) 81.8
(sentence-only) 63.0
(single-hop) 72.4

Table 7: Accuracy of selecting all required evidences
on ShARC-Long.
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