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Abstract

‘We propose a simple yet effective model, DoC-
HOPPER, for selecting evidence from long
structured documents to answer complex ques-
tions. Similar to multi-hop question-answering
(QA) systems, at each step, DOCHOPPER it-
eratively uses a query ¢ to extract information
from a document, and combines this informa-
tion with ¢ to produce the next query. How-
ever, in contrast to most previous multi-hop
QA systems, DOCHOPPER is able to extract
either short or long sections of the document,
thus emulating a multi-step process of “navi-
gating” through a long document to answer a
question. To enable this novel behavior, DOC-
HOPPER does not combine document informa-
tion with ¢ by concatenating text to the text of
q, but by combining a compact neural represen-
tation of ¢ with a compact neural representation
of a (potentially large) hierarchical part of the
document. We evaluate DOCHOPPER on three
different tasks that require reading long struc-
tured documents and finding multiple pieces of
evidence, and show DOCHOPPER outperforms
Transformer models for plain text input. Addi-
tionally, DOCHOPPER is efficient at inference
time, being 10-250 times faster than baselines.

1 Introduction

In this work we focus on the problem of extracting
evidence over long and hierarchically structured
documents to answer complex questions. A long
document typically contains coherent information
on a certain topic, and the contents are grouped into
hierarchical structures, such as sections, chapters,
etc. To answer complex questions over long docu-
ments often requires navigating through different
parts of the documents to find multiple pieces of in-
formation. This navigation, in turn, requires under-
standing high-level information about the structure
of the document.

For example, consider answering questions over
academic papers (Dasigi et al., 2021). To answer

the question “What modules in DOCHOPPER will
be finetuned in all the experiments?”, one might
first turn to the section titled “Model” to identify
the different modules in DOCHOPPER, and then
read the “Experiments” section with these modules
in mind, potentially further selecting evidence from
specific subsections (such as the one titled “Imple-
mentation Details”). Similar processes might be
needed to answer questions concerning government
policies (Sun et al., 2022) or legal documents. This
type of QA tests not only the ability to understand
short passages of text, but also the ability to un-
derstand the goal of questions and the structure of
documents in a domain.

A common approach to solving questions that
require multiple pieces of evidence is to iteratively
find evidence and update the query for the next step.
The update can be performed by either explicitly
predicting the intermediate answers (Talmor and
Berant, 2018; Sun et al., 2019) or directly append-
ing previous evidences to the questions (Zhao et al.,
2021; Qi et al., 2021; Li et al., 2020; Xiong et al.,
2021). While appending retrieved evidence to a
query works well on many factual QA tasks, where
it is possible to answer questions with evidences
that are short pieces of text, this approach is expen-
sive if one wishes to retrieve larger pieces of text
as evidences (e.g., the “Experiments” section of
a paper). Another disadvantage is that appending
together many small fragments of text intuitively
fails to capture the relationships between them, and
the structure of the document from which they were
extracted.

To capture high-level structural information in
a document as well as detailed information from
short passages, Ainslie et al. (2020) proposed ETC,
which introduced a global-local attention mecha-
nism where embeddings of special global tokens
are used to encode high-level information. ' ETC

'Our DOCHOPPER system incorporates ETC as a docu-
ment encoder, but other pretrained LMs will still work.



has previously performed well on multi-hop QA
tasks like HotpotQA and WikiHop (Yang et al.,
2018; Welbl et al., 2018) which require combining
information from a small number of short passages.
However, it has not been previously evaluated on
tasks of the sort considered here. Our experiments
show that DOCHOPPER outperforms ETC in ex-
tracting evidence for questions from long and struc-
tured documents.

DOCHOPPER proposes a novel approach to up-
dating queries over structured documents in a multi-
hop setting. DOCHOPPER iteratively attends to
different parts of the document, either large parts
(e.g., chapters) or small parts (e.g., sentences). This
process can be viewed as either retrieving a short
passage, or navigating to a part of a document. In
each iteration, the query vector is updated in em-
bedding space using the encoding of an evidence
previously selected. This updating step is end-to-
end differentiable and efficient. In our experiments,
we show DOCHOPPER is effective on three differ-
ent benchmarks involving complex queries over
long and structured documents.

In particular, we evaluate DOCHOPPER on two
evidence extraction tasks and one question answer-
ing (QA) task. In QASPER (Dasigi et al., 2021)
and ConditionalQA (Sun et al., 2022), we evalu-
ate DOCHOPPER’s performance in extracting all
evidences that are required to answer questions.
In HybridQA, oracle evidence is not labeled. We
instead evaluate final answer accuracy by passing
the selected evidences into a simple reader model.
DOCHOPPER outperforms large-document Trans-
former models—ETC (Ainslie et al., 2020) and
Longformer (Beltagy et al., 2020)—by up to 6
points. Additionally, DOCHOPPER runs 10-250
faster than baseline models, since it makes effective
use of pre-computed question-independent encod-
ings of documents.

2 Related Work

Graph-based models have been widely used for an-
swering multi-hop questions in factual QA (Min
et al., 2020; Sun et al., 2018, 2019; Qiu et al., 2019;
Fang et al., 2019). However, most of the graph-
based models are grounded to entities, i.e., evi-
dences (from knowledge bases or text corpus) are
connected by entities in the graph. The graph con-
struction step also heavily relies on many discrete
features such as hyperlinks or entities predicted
with external entity linkers. It’s not clear how to

apply these models to more general tasks if con-
text is not entity-centric, such as questions about
academic papers or government documents. Simi-
lar problems also exist in memory-augmented lan-
guage models that achieved the state-of-the-art on
many factual QA tasks (Guu et al., 2020; Lewis
et al., 2021; Verga et al., 2020; Dhingra et al., 2020;
Sun et al., 2021).

Alternatively, one can adopt a “retrieve and read”
pipeline to answer multi-hop questions over long
documents. Recent works proposed to extend the
dense retrieval methods (Karpukhin et al., 2020) to
multi-hop questions (Zhao et al., 2021; Qi et al.,
2021; Li et al., 2020). However, such models re-
trieve one small piece of evidence at a time, lacking
the ability of navigating between different parts of
the documents to find relevant information at both
higher and lower levels of the document-structure
hierarchy. Another disadvantage of these iterative
models is that they are not end-to-end differentiable.
Updating the questions for the next hop requires
re-encoding the concatenated tokens from the ques-
tions and previously retrieved evidences. It also
makes the model inefficient because re-encoding
tokens with large Transformer models is very ex-
pensive.

Besides question answering tasks, hierarchi-
cal information in documents has been success-
fully used in tasks such as document classifica-
tion (Yang et al., 2016; Chang et al., 2019), sum-
marization (Gidiotis and Tsoumakas, 2020; Xiao
and Carenini, 2019; Zhang et al., 2019), sentiment
analysis (Ruder et al., 2016), text segmentation
(Koshorek et al., 2018), etc. It is worth mention-
ing that ETC (Ainslie et al., 2020) was also used
on a key-phrase extraction task on web pages us-
ing structured DOM trees. However, none of these
models can be easily adapted to answering complex
questions over long documents.

3 Model

In this section, we discuss the iterative process of
extracting evidence from long and structured doc-
uments. The iterative process is performed over
a pre-computed document index that contains em-
beddings at different hierarchical levels. To start
with, we first introduce strategies to compute em-
beddings for parts of a document to build an index
for a document. Then, we present the iterative pro-
cess that operates over document index to extract
evidence. Depending on hierarchical level of the
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Figure 1: DOCHOPPER Overview. For a structured document consisting of sentences and paragraphs, during the iterative
selection process, DOCHOPPER selects a paragraph or a sentence from a combined document index that contains both paragraph
embeddings and sentence embeddings. Selected information will be mixed with the query vector and in turn update the query for
the next hop. Different update strategies are applied if sentences or paragraphs are selected previously.

evidence selected, a different query update strategy
will be applied.

3.1 Input

A long document usually contains multiple levels
of hierarchy, e.g. sections, sub-sections, paragraphs,
sentences, etc. For simplicity, we only consider two
levels of hierarchy in this paper: paragraph-level
and sentence-level. A sentence is the lowest granu-
larity that can be selected, while a paragraph is an
abstraction of a collection of sentences, which can
be used to represent sections or other levels in the
hierarchy, depending on the application. Formally,
letd = {po,...,pja} € D be adocument in the
corpus D that contains a sequence of paragraphs

{sg,..., ijl} con-

tain a sequence of sentences. A sentence s’ will be

pj, and let a paragraph p; =

encoded into a fixed length vector sé- € R%.

3.2 Document Index in Embedding Space

Sentence Embeddings A sentence sg has the low-
est granularity that can be selected as evidence. We
learn a Transformer model to encode sentences 33-
into vectors sz

sé- = Transformersem(sé-) (1)
Paragraph Embeddings Paragraph embeddings
are derived from sentence embeddings sé» and de-
pendent on queries q,, the embedding of the ¢’th
hop of the question. We will discuss methods to
obtain query embeddings q, later in §3.3. A para-
graph embedding p; is the weighted sum of sen-
tence embeddings s; in paragraph p;, where o; is

the attention weights of the query vector q, to the
sentence embedding s;

p; = Z Q; s§, o; = softmax(thsé) 2)
7

The paragraph embeddings p; are thus dependent
on the query, but do not require jointly encoding
tokens from queries and context, as in many BERT-
style reading comprehension models. Computing
paragraph embeddings with Eq.2 is hence very effi-
cient.
Combined Document Index We put the sentence
embeddings and paragraph embeddings of docu-
ment d into a combined document index, so the
model has the flexibility to decide which sentence
or paragraph to attend to. Different update rules
will be applied according to whether sentences or
paragraphs are attended to.

To construct the embedding table, we iterate
through all paragraphs in a document and apply
the sentence encoder to compute sentence and para-
graph embeddings. Sentence and paragraph embed-
dings from all paragraphs are then concatenated to
form a combined embedding table. We denote
the combined embedding table for document d as

Cd: {pOasgv" ‘p()lapbslv" s‘lpl" } Let
¢, be the embeddmg of the m’th entry from Cyg;
we emphasize that ¢, can represent either a sen-
tence or a paragraph embedding.

Pretrained Sentence Encoder We use ETC
(Ainslie et al., 2020) as our sentence encoder, as
it is pretrained to produce sentence-level embed-
dings. Different from vanilla Transformer models,

e.g. BERT (Devlin et al., 2019), ETC introduces



an global-local attention mechanism. ETC assigns
to each sentence a special global token that only
attends to local tokens in the sentence, and its em-
bedding is trained to summarize the information
of local tokens in the sentence. A global token
also attends the global tokens of other sentences
in the input. ETC additionally adopts Contrastive
Predictive Coding (CPC) (Oord et al., 2018) to
train the embedding of global tokens to make them
aware of other sentences in the context. We use the
embeddings of global tokens in ETC as sentences
embeddings.

Specifically, instead of encoding one sentence
at a time, we run ETC over multiple contiguous
sentences (usually a paragraph) to improve encod-

: sljp il }. ETC’s output

, where each sé- c R4

ing efficiency, p; = {5?, .

includes vectors s, .. . ,s|jp il

represents the embedding of a sentence sz
. . , , Ixd
Sy -8, = ETC({s, ..., s, }) € R

Finetuning Sentence Encoder A pretrained ETC
model can be finetuned to specific domains. While
finetuning ETC’s sentence encoder generally im-
proves performance of our model, we find the
pretrained ETC produces reasonably good sen-
tence embeddings without finetuning, and using
pretrained ETC allows faster training.

3.3 Query Embeddings

Many questions, especially ones answered by pro-
fessional documents that are long and structured,
require navigating through different parts of doc-
uments to find multiple pieces of evidence. We
consider it as an iterative search process over the
precomputed document index that has been dis-
cussed above. The search process is performed in
embedding space.

Different from the multi-hop questions that have
been studied in past work (Sun et al., 2018; Qiu
et al., 2019; Min et al., 2020; Chen et al., 2020),
e.g. “Which gulf is north of the Somalian city with
550,000 residents”, we focus on questions that re-
quires information from multiple parts of a docu-
ment that are hierarchically related. For example,
a question that asks “am I eligible for this benefit”
may require first navigating to a section that de-
scribes the requirements of the benefit based on the
user’s scenario, and then check whether all require-
ments have been satisfied. This searching process is
inherently multi-hop and requires combining both
contextual and hierarchical information.

Assume that a question is k-hop, where k is
a hyper-parameter.To generate k different query
vectors, one for each hop, we add £ — 1 dummy
questions gy to form a question paragraph ¢, =
{490, @nul, - - - s gnun }- The question paragraph is
passed into a query encoder to compute query em-
beddings.

- Goull })
(3)

90,41, -+ - dg—1 = EnCOderq({QO7 Gnull; - -

Again, we use pretrained ETC as our query en-
coder in this project. The global-to-local attention
mask of ETC is modified to allow the global token
of the dummy question to attend to tokens in the
question gg. With this modification, query embed-
dings for gg and ¢,y can attend to different parts
of the question. ETC is always finetuned as query
encoder. Query vectors ¢, will not be directly used
to select evidence at the ¢’th step, but instead will
be updated using previously selected information
before selecting next evidence.

Query vectors can either select paragraphs or
sentences from documents. The selection process is
performed over the combined document index that
contains both sentence and paragraph embeddings.
The selection process will be discussed in the next
section.

3.4 Iterative Evidence Selection

With the query embedding q, at step ¢ and context
embeddings C, discussed above, we now introduce
the proposed iterative evidence selection algorithm
in DOCHOPPER.

Selection Step At each iteration, DOCHOPPER
computes inner product scores between the query
vector q, and embeddings ¢, in Cg4, and returns
the entry ¢ with the largest score, which is usually
referred as hard attention. (As we will see ¢ is not
directly used for computation, but it is helpful in
explaining the selection step).

¢ = argmax, (q?cm)

Note that the selected entry can be either a para-
graph p; or a sentence sj- because the document
index C, contains both sentence and paragraph
embeddings.

Update Step Many multihop models update a ques-
tion by appending retrieved text to the text of the
question. In contrast, DOCHOPPER numerically
combines the embedding of the selected entry ¢



with the embedding of the query vector q,, a pro-
cess we call “mixing”. Since the combined embed-
ding table C, contains both sentence and paragraph
embeddings, the selected entry ¢ can represent ei-
ther a sentence or a paragraph. The two cases will
be considered separately. If ¢ is a sentence, i.e.
¢= sé., DOCHOPPER computes the mixed embed-
ding as

a, =W, [q;s] 4)

where [q;; s;] is the concatenation of two vectors q,
and s; The mixed vector is then used to update the
query to form q;,; as shown in Eq. 5. Intuitively,
q, is the residual from the previous step. Adding
the residual embedding encourages the model to
attend to information that is not fully satisfied from
previous steps.

Q1 < Qi T Q (5)

If ¢ is a paragraph, i.e., ¢ = p;, a more complex
mixing process is used. DOCHOPPER first looks up
the sentences in pj, i.e. the vectors {s?, - sL.pj‘}.
The following three steps are then used to compute
the update vector q,. (1) DOCHOPPER computes
the importance weights of the query vector q, to the

embeddings of associated sentences {5?, e s|f J |}
that measures the relevance scores between the
query vector and the sentences. This importance
weight is the same as the weight «; in Eq.2 that
is used to compute the paragraph embeddings. In
the implementation, we also re-use the value of o;
if it has been computed for the query-dependent
paragraph embeddings. (2) The query vector q;,
is combined with every sentence in paragraph. In
particular, q, is multiplied with weight c; and ap-
pended to the i-th sentence embedding s; where
the «;’s indicate relevance. The result is then lin-
early projected to form a vector K;:

kj = W/ [o; q;; 8] (6)

Then (3) the vectors k; are summed with the weight
Bi, where ; is the attention weight of a learned
vector v to the concatenated vector k;. The learned
vector v weights the importance of sentences from
the selected paragraph after comparing them with
the query vector and decides what information to
pass to the next step of selection.

q = Z Biki, B;= softmax(kaZ-) 7

It is not hard to see that computing the mixed

embedding in Eq. 7 for the case that a paragraph
is selected is essentially the same as in Eq. 4 if the
selected paragraph p; only contains one sentence,
ie. a; = land §; = 1if |[pj| = 1; hence the
same logic can be used regardless of whether ¢ is a
sentence or a paragraph.
Loss Function Attention is supervised if (distantly)
supervised labels are available in the dataset. q ¢,
is the inner product score between the query vector
q, and a context embedding ¢,,. I, is an indica-
tor function that equals to 1 iff the label of ¢,, is
positive.

I; = cross_entropy(softmax(q/ ¢,,), I, )

The loss function is computed at the final step,
and possibly at intermediate steps if labels are avail-
able. Supervision labels are sometimes distantly
constructed. For example, in the extractive QA task,
a positive candidate is the sentence or paragraph
that contains the answer span (see §4).

3.5 Evidence Prediction

After all iterations, scores at all iterative steps are
summed to compute a final score which is used
to make prediction. The score for sentence sé. is
computed as

score(sé) = Z At - ((ItTS;' + quj) )
¢

where qr{sé- and quj are the scores of sentence sé
and paragraph p; that it belongs to. ); are hyper-
parameters tuned for different datasets. We often
set \g = 1 and tune the rest of \;’s.

3.6 Runtime Efficiency

DOCHOPPER is very efficient at runtime thanks to
the query-agnostic sentence embeddings that can
be pre-computed (§3.2) at inference time. Differ-
ent from previous reading comprehension models
that jointly encode questions and context (Beltagy
et al., 2020; Ainslie et al., 2020), DOCHOPPER en-
code question embeddings and context embeddings
independently. At inference time, DOCHOPPER di-
rectly select from document index that contains
precomputed context embeddings, significantly re-
ducing the computation cost compared to cross-
attention models that jointly encode questions and
context.



4 [Experiments

We evaluate DOCHOPPER on two evidence ex-
traction tasks, QASPER (Dasigi et al., 2021) and
ConditionalQA (Sun et al., 2022). QASPER con-
tains questions about academic papers. Condition-
alQA contains questions about public policies de-
scribed on government websites. Documents in
both datasets are long and structured, and answer-
ing the questions requires navigating through en-
tire documents to find relevant information. Both
datasets provide labels for the evidence that is re-
quired to find answers, which we use to evaluate
the evidence extracted by DOCHOPPER.

In addition to QASPER and ConditionalQA, we
additionally evaluate DOCHOPPER on a variant of
HybridQA (Chen et al., 2020). HybridQA contains
multihop data that requires using both text and
tabular data. Here, following (Chen et al., 2021),
we consider an alternative setting where tables are
preprocessed into structured documents—i.e. cells
in tables are converted into sentences and sentences
for cells in the same row are then merged into a
paragraph. Please see §4.1 for more information.
Since evidence is not labeled in HybridQA, we run
a simple reader on the extracted evidence and report
numbers in final answer accuracy (in EM/F1).2

4.1 Datasets

QASPER (Dasigi et al., 2021) (CC BY 4.0 Li-
cense) is a QA dataset constructed from NLP pa-
pers. Questions are asked without reading the full
paper and thus usually requires combining multiple
pieces of information to obtain final answers. As it
is mentioned in Dasigi et al. (2021), 55.5% of the
questions have multi-paragraph evidence. Docu-
ments in the QASPER dataset are highly structured,
i.e. contents are structured into sections, subsec-
tions, etc. We treat each subsection as a paragraph
and prepend the section and subsection titles to the
beginning of the subsection.

ConditionalQA (Sun et al., 2022) (CC BY-SA 4.0
License) contains questions on public policies that
are asked over documents posted on government
websites. Similar to QASPER, documents in Con-
ditional QA are also highly structured, with infor-
mation structured in sections, subsections, listed
items, tables etc. Documents in ConditionalQA
are presented in HTML format. We treat HTML
elements at the leaf of the DOM tree as sentences
and group sentences that share the same parents as

2All datasets are released for research purposes.

paragraphs. The Conditional QA dataset also pro-
vides a list of evidence which we use to evaluate
extraction results by DOCHOPPER.?

HybridQA (Chen et al., 2020) (CC BY 4.0 Li-
cense) is a dataset that requires jointly using infor-
mation from tables and hyperlinked text from cells
to find the answers. In this experiment, we consider
HybridQA in a long document QA setting, where
tables are converted to structured documents with
paragraphs and sentences. Annotated evidence is
not provided in HybridQA, so we evaluate DOC-
HOPPER on the final predicted answers.

A row in the table describes attributes of an
instance, for example, a person or an event. At-
tributes are organized by columns. For example,
the table of Medalist of Sweden in 1932,* con-
tains a row “[Medal:] Gold; [Name:] Rudolf Svens-
son; [Sport:] Wrestling (Greco-Roman); [Event:]
Men’s Heavyweight”. Text in the square brackets
are the headers of the table. The medal winner
“Rudolf Svensson” and the event “Wrestling (Greco-
Roman)” are hyperlinked to the first paragraph of
their Wikipedia pages. A question asks “What was
the nickname of the gold medal winner in the men
’s heavyweight greco-roman wrestling event of the
1932 Summer Olympics?” requires the model to
first locate the correct row in the table, and find the
answer from other cells in the row or their hyper-
linked text.

We convert a table with hyperlinked text into a
long document. Each row in the table is considered
a paragraph by concatenating the column header,
cell text, and hyperlinked text if any. The column
name and cell text are each treated as one sentence.
Hyperlinked text is also split into sentences. In the
example above, the row becomes “Medal. Gold.
Name. Rudolf Svensson. Johan Rudolf Svensson
(27 March 1899 — 4 December 1978) was a Swedish
wrestler. He competed ...”. The average length of
the documents is 9345.5 tokens.

4.2 TImplementation Details

For QASPER and ConditionalQA, we construct
distant labels to supervise DOCHOPPER to first se-
lect paragraphs, and then select sentences. Note
that we do not require that sentences selected in

*Examples in ConditionalQA have conditional answers,
i.e. answers are only correct under certain conditions. We
will leave this new task for future work and focus on evidence
extraction in this paper.

4ht’cps: //en.wikipedia.org/wiki/Sweden_at_the_
1932_Summer_Olympics
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QASPER  Conditional QA
Dev  Test Dev example / sec

Retrieval + ETC 224 279 21.1 83 /s
Sequential ETC 22.8  28.7 23.7 0.7/s
LED (Longformer) 239 29.6 294 0.5/s
FiD 249 323 24.6 1.3/s
DOCHOPPER 258 331 28.8 124.8 /s
(sentence only) 244 298 27.3 -
(single-hop) 22.8  28.0 26.4 -

(w/o query update) 25.1 31.8 26.5 -

Table 1: F1 results in evidence selection. Results of baselines are obtained by running open-sourced codes.

the second hop must be from the previously se-
lected paragraphs. Final scores for prediction is
computed as described in Eq. 8. We set A\; = 0.5
for QASPER and A\ = 1.2 for ConditionalQA.

In HybridQA, we additionally use paragraph-
level sparse features to improve accuracy, similar to
the baseline model by Chen et al. (2020). The func-
tion sparse(qo, p;) computes the length of longest
common substrings in the question ¢ and the para-
graph p;. Sparse features are only used at the end
of retrieval, not at any intermediate steps. For Hy-
bridQA, we set A\; = 1.5 and v = 3.0.

score(sé) — score(s?) + v - sparse(qo, pi) (9)

Since oracle evidence is not provided in Hy-
bridQA, we consider sentences that contain an-
swers as evidence. Selected evidence is then passed
to a BERT-based model to extract final answers.
We finetune BERT-large to serve as our reader. Ex-
perimental results are presented in Table 2.

4.3 Baselines

We compare DOCHOPPER with strong baselines
for long input—LED (Longformer) (Dasigi et al.,
2021), FiD (Izacard and Grave, 2020), and varia-
tions of ETC (Ainslie et al., 2020)—to show the ef-
ficacy of DOCHOPPER. LED is an encoder-decoder
model that builds on Longformer (Beltagy et al.,
2020). Fusion-in-Decoder (FiD) is based on T5
but uses the fusion-in-decoder strategy to reduce
memory usage for longer inputs. We also exper-
iment with directly reading the documents with
a Transformer-based reader ETC (Ainslie et al.,
2020): though it can’t fit the entire document into
its input, it is still one of the best models for read-
ing long sequences (up to 4096 tokens). To handle
longer documents, we adopt the sequential reading
strategy: the model reads the document paragraph

by paragraph, and picks the most confident predic-
tion as the answer. We also report the numbers of a
“retrieve and read” pipeline with a dense retriever
(DPR-like) and a finetuned ETC reader. The num-
bers are shown in Table 1. Runtime is measured as
examples per second with a batch size of 1.

For HybridQA, we additionally compared to QA
models that are specifically designed for tabular
data, e.g. HYBRIDER (Chen et al., 2020), MATE
(Eisenschlos et al., 2021), and MITQA (Kumar
et al., 2021). Again, we focus on the task of ex-
tracting evidences from long and structured doc-
uments and thus convert tables in HybridQA into
plain text. Some tabular information, such as cell
and column structures, has been removed in this
conversion process. Although DOCHOPPER is not
directly comparable models specialized for tables,
we also present numbers for severeal such models—
HYBRIDER (Chen et al., 2020), MATE (Eisen-
schlos et al., 2021), and MITQA (Kumar et al.,
2021)—in Table 2 for completeness.

4.4 Results and Analysis

On QASPER, DOCHOPPER outperforms the base-
lines by 1-5%, and runs 10-250 times faster. On
ConditionalQA, DOCHOPPER’s retrieval perfor-
mance is slightly worse than LED (0.6%), but it
is 250 times faster. We additionally performed
more ablation experiments with DOCHOPPER. The
query update (see the row w/o query update) in Eq.
5 is important, causing 0.7% and 2.3% difference in
performance on both datasets. We also ablated the
model by using one step of attention to select the
most relevant sentence from the document (single-
hop), and note again that performance drops notice-
ably. Adding one more step of attention, while only
attending to sentences (sentence-only in the table),
leads to some improvement, but is still worse than
attending at both paragraph and sentence levels.
HybridQA is evaluated on answer accuracy be-



HybridQA HybridQA

Dev Test example / sec DOCHOPPER 56.5
Retrieval + ETC 37.0/43.5 34.1/40.3 8.3 /s (w/o sparse) 53.3
Sequential ETC 39.4/448 37.0/43.0 0.5/s (w/o query update) 51.8
Longformer 45.8/53.5 43.4/49.7 0.5/s (sentence-only) 46.4
DOCHOPPER 47.7/55.0 46.3/53.3 74.6/s (single-hop) 342
HYBRIDER 44.0/50.7 43.8/50.6 -
DOCHOPPER(W/ cell) 53.1/61.4 _/- — Table 3: Hits@1 accuracy on distantly labeled evidence,
MATE 63.4/71.0 62.8/70.2 — 1.e. sentences that contain answers (on dev set).
MITQA 65.5/72.7 64.3/71.9 -
(w/o sparse) 44.4/51.2 -/ - -
(w/o query update) 44.2/50.9 -/- - with ablated results.
(sentence-only) 36.7/43.7 -/ - -
(single-hop) 27.8/34.1 -/- -

5 __Conclusion

Table 2: EM/F1 performance of answer spans on HybridQA.
Results of baseline models are obtained by running open-
sourced codes.

cause oracle evidence is not provided. DocC-
HOPPER with a simple BERT reader outperforms
a few Transformer baselines for long input, e.g.
ETC (Ainslie et al., 2020) and Longformer (Belt-
agy et al., 2020). DOCHOPPER outperforms base-
lines by 1.5-3.6 points. Again, DOCHOPPER with
a BERT reader overall performs 9-150 times faster
than the Transformer baselines.

Comparing to QA models specifically designed
for tabular data, i.e. HYBRIDER (Chen et al.,
2020), MATE (Eisenschlos et al., 2021), and
MITQA (Kumar et al., 2021), DOCHOPPER does
not perform, as well because our process of convert-
ing tables to DOCHOPPER’s hierarchical-document
input format loses information about cells and
columns, that are needed to fully understand tabu-
lar data. We also extended DOCHOPPER to allow
it to return cells that contain selected sentences and
pass the cells (instead of single sentences) to the
underlying extractive QA model (labeled “w/ cell”
in the table). This improves the performance by
5.4 points. We note that the baselines for tabular
data, e.g. MATE, are optimized for this task in
other ways: e.g., they restrict the length of text in
cells to a limited number of sentences, only the use
the top-k sentences from the hyperlinked text, and
restrict the total length of tables to 2048 tokens.
DOCHOPPER does not impose these restrictions,
and can applied to more general tasks (as shown in
the other experiments).

To show the efficacy of the proposed iterative
evidence extraction method, we present the Hits@ 1
accuracy of selecting distantly labeled evidence, i.e.
cells (converted to sentences) that contain correct
answers. These results are shown in Table 3, along

We consider on the problem of extracting evidence
for complex questions over long and structured
documents. Like multi-hop open QA tasks, this
problem requires not only conventional “machine
reading” abilities, but the ability to extract relevant
information and refine queries based on retrieved
information. Additionally, it requires the ability to
navigate through a document, by understanding the
relationship between sections of the document and
parts of the question. Unlike most prior multi-hop
QA models, queries in DOCHOPPER are updated
in embedding space, rather than by appending to
a discrete representation of question text. This ap-
proach is end-to-end differentiable and very fast.
Experiments also demonstrate that this use of itera-
tive searching can significantly improve the perfor-
mance in selecting evidence from long and struc-
tured documents: in fact, the DOCHOPPER model
outperforms Transformer baselines by 3-5%, while
also being 10-250 times faster. However, DOC-
HOPPER’s performance is still limited (e.g. only
28.8 in evidence F1) and thus needs substantial
improvement for real world applications.
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A Appendix

A.1 Dataset Details

HybridQA (Chen et al., 2020) is a dataset that re-
quires jointly using information from tables and
text hyperlinked from table cells to find the an-
swers of multi-hop questions. A row in the table
describes attributes of an instance, for example,
a person or an event. Attributes are organized
by columns. For example, the table of Medal-
ist of Sweden in 1932, contains a row “[Medal:]
Gold; [Name:] Rudolf Svensson; [Sport:] Wrestling
(Greco-Roman); [Event:] Men’s Heavyweight”.
Text in the square brackets are the headers of the
table. The medal winner “Rudolf Svensson” and
the event “Wrestling (Greco-Roman)” are hyper-
linked to the first paragraph of their Wikipedia
pages. A question asks “What was the nickname of
the gold medal winner in the men ’s heavyweight
greco-roman wrestling event of the 1932 Summer
Olympics?” requires the model to first locate the
correct row in the table, and find the answer from
other cells in the row or their hyperlinked text.

To apply our model on the HybridQA dataset,
we first convert a table with hyperlinked text into a
long document. Each row in the table is considered
a paragraph by concatenating the column header,
cell text, and hyperlinked text if any. The column
name and cell text are each treated as one sentence.
Hyperlinked text is also split into sentences. In the
example above, the row becomes “Medal. Gold.
Name. Rudolf Svensson. Johan Rudolf Svensson
(27 March 1899 — 4 December 1978) was a Swedish
wrestler. He competed ...”. The average length of
the documents is 9345.5.

QASPER (Dasigi et al., 2021) is a QA dataset con-
structed from NLP papers. They hired graduate
students to read the papers and ask questions. A
different group of students are hired to answer the
questions. For example, a question asks “What
are the baseline models used in this paper?”. The
answers are { “BERT”, “RoBERTa”}. The dataset
contains a mixture of extractive, abstractive, and
yes/no questions. We focus on the subset of extrac-
tive questions (51.8% of the datasets) in this paper.
Some questions in the dataset are answerable with
a single-hop. However, as suggested in the original
paper, 55.5% of the questions have multi-paragraph
evidence, and thus aggregating multiple pieces of
information should improve the accuracy. Answers

5ht’cps: //en.wikipedia.org/wiki/Sweden_at_the_
1932_Summer_Olympics
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in the QASPER dataset are longer, with an average
of 14.4 tokens. We treat each subsection as a para-
graph and prepend the section title and subsection
title to the beginning of the subsection.
ShARC (Saeidi et al., 2018) is a conversational
QA dataset for discourse entailment reasoning.
Questions in ShARC are about government policy
crawled from government websites. Users engage
with a machine to check if they qualify for some
benefits. A question in the dataset starts with a
initial question, e.g. “Can I get standard deduc-
tion for my federal tax return?”’, with a user sce-
nario, e.g. “I lived in the US for 5 years with a
student visa”, and a few followup questions and an-
swers through the interaction between the machine
and users, e.g. “Bot: Are you a resident alien for
tax purpose? User: No”. The model reviews the
conversation and predicts one of the three labels:
“Yes”, “No”, or “Irrelevant”. If the model think
there’s not enough information to make the predic-
tion, it should predict a fourth label “Inquire”.
Besides the conversation, each example in the
ShARC dataset provides a snippet that the con-
versation is originated from. A snippet is a short
paragraph that the conversation is created from, e.g.
“Certain taxpayers aren’t entitled to the standard
deduction: (1) A married individual filing as mar-
ried... (2) An individual ...”. Since the snippets
are usually short, with an average of 54.7 tokens,
previous models, e.g. DISCERN (Gao et al., 2020),
concatenate the snippet and the conversation, and
jointly encode them with Transformer-based mod-
els, e.g. BERT or RoBERTa. Here we consider
instead a more challeging long-document setting,
in which the snippet is not known, and the model
must also locate the snippet from the document.
We crawl the web pages with the provided URL.
The pages contain 737.1 tokens on average, 13.5
times longer than the original snippets, and the
longest page contains 3927 tokens. We name this
new variant ShARC-Long.

A.2 Dataset Statistics

Dataset statistics are shown in Table 4.

Train Dev Test
QASPER 2593 1005 1451
ConditionalQA 2338 285 804
HybridQA 62682 3466 3463

Table 4: Dataset statistics.
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A.3 Implementation Details for ShARC-Long

Changes to Context Representations Instead
of computing the paragraph embeddings as a
weighted sum of sentence embeddings, we di-
rectly obtain the paragraph embeddings from ETC
output for this dataset. Recall that a paragraph
pi = {s},...,s],,} contains a sequence of sen-
tences sé We prepend a dummy sentence Sy to
the beginning of the paragraph, and again, we mod-
ify the global-to-local attention mask to allow the
global token of the dummy sentence to attend to
all tokens in the paragraph p;. Let p; € RY be the
embedding of paragraph p;. The embeddings for a
paragraph and its contained sentences are:

P Sos - - ,S\ipil = ETC({snu, 50, - - - S\ipi|})

Distant Supervision The iterative attention pro-
cess is distantly supervised with supervision at in-
termediate steps. At each step, the model is trained
to attend to both the correct paragraph and the cor-
rect sentences if they exists. Since the embedding
table C, consists of both paragraph and sentence
embeddings, we only need to compute the attention
scores once at each step, but consider both the cor-
rect paragraph and the correct sentence as positive.
The positive paragraph is one of the paragraphs
from the crawled web page with the highest BLEU
score.® We notice that some web pages at the pro-
vided URLSs have been changed significantly, so
the snippets provided in the datasets may not exist
any more, hence we discard the associated data
if the highest BLEU scores of the paragraphs is
less than 0.7. We follow the heuristics used by
baseline models (Gao et al., 2020) to get positive
sentence candidates by finding the sentence with
the minimum edit distance.

A.4 Additional Results

We report the performance of eventually selecting
the correct evidences in Table 5, 6, and 7.
Comments on HotpotQA-Long We also observe
that ablated experiment on evidence selection (w/o
query update) is only 7.8 points lower than the
full model. To understand the underlying reason,
we train the model to perform a one-step attention
only for supporting facts of the second hop (for
bridge questions). The accuracy is 71.7, only 3.6
points lower than the accuracy of the full multi-hop
process. This is likely due to the high surface form
overlap between the questions and their context.

®We drop the brevity penalty term in BLEU score.



HybridQA'  QASPER

(Extractive)
DOCHOPPER 56.5 39.1
(w/o sparse) 53.3 (39.1)
(w/o query update) 51.8 37.2
(sentence-only) 46.4 36.1
(single-hop) 34.2 36.8

Table 5: Hits@1 accuracy on selecting sentences that
actually contains the answer (on dev set).

HotpotQA-Long

IRRR 56.8
DOCHOPPER 64.7
(w/o query update) 56.5
(sentence-only) 61.8
(single-hop) 374

Table 6: Accuracy of correctly predicting supporting
facts for both hops on HotpotQA-Long (without rerank-

ing).

ShARC-Long
DOCHOPPER 82.2
(w/o query update) 81.8
(sentence-only) 63.0
(single-hop) 72.4

Table 7: Accuracy of selecting all required evidences

on ShARC-Long.
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