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ABSTRACT

Visual–Language–Action (VLA) models report impressive success rates on
robotic manipulation benchmarks, yet these results may mask fundamental weak-
nesses in robustness. We perform a systematic vulnerability analysis by intro-
ducing controlled perturbations across seven dimensions: objects layout, cam-
era viewpoints, robot initial states, language instructions, light conditions, back-
ground textures and sensor noise. We comprehensively analyzed multiple state-of-
the-art models and revealed consistent brittleness beneath apparent competence.
Our analysis exposes critical weaknesses: models exhibit extreme sensitivity to
perturbation factors including camera viewpoints and robot initial states, with per-
formance dropping from 95% to below 30% under modest perturbations. Surpris-
ingly, models are largely insensitive to language variations, with further experi-
ments revealing that models tend to ignore language instructions completely. Our
findings challenge the assumption that high benchmark scores equate to true com-
petency and highlight the need for evaluation practices that assess reliability under
realistic variation.

1 INTRODUCTION

Recent advances in Visual–Language–Action (VLA) models have led to impressive performance
on standardized benchmarks, with many systems achieving near-perfect success rates on tasks in
controlled simulation environments (Kim et al., 2024; 2025; Li et al., 2025; Black et al.; Pertsch
et al., 2025; Hung et al., 2025; Cen et al., 2025; Tan et al., 2025). However, these headline numbers
often conceal critical deficiencies in the underlying models. In fact, a closer inspection reveals that
contemporary VLA systems tend to exhibit a fragile robustness, struggling to maintain performance
when faced with even minor variations in environmental conditions or task parameters.

The prevailing evaluation methodologies (Liu et al., 2023; Li et al., 2024c) focus on aggregate
success rates under static, ideal conditions. While such metrics provide valuable baselines for com-
paring different approaches, they fail to capture the stability and reliability of learned policies under
realistic variations. This approach tends to obscure the models’ inability to handle subtle varia-
tions that are intrinsic to any realistic task setting(Wang et al., 2025; Müller, 2019; Zhang et al.,
2024)—even if those tasks remain within the realm of simulation. For example, models trained to
excel under fixed camera angles or consistent illumination often fail to generalize when confronted
with slight shifts in viewpoint or minor changes in the robot’s initial configuration. This gap is es-
pecially problematic for VLA models, which must integrate information across multiple modalities
and maintain coherent behavior despite perturbations in any of these input channels.

To uncover these hidden vulnerabilities, we conduct a comprehensive analysis of contemporary
VLA models using the LIBERO (Liu et al., 2023) benchmark as a diagnostic tool. By systemati-
cally varying key factors such as camera viewpoints, robot initial states, language instructions, light
conditions, background textures, sensor noise, and object layout, we expose the brittle nature of
these models. Our analysis shows that even nominal modifications can lead to steep drops in per-
formance. This indicates that, rather than achieving true multimodal understanding, current VLA
architectures rely on overfitting to specific, narrowly defined cues provided during training.

Our study highlights several core weaknesses in contemporary VLA models: Vulnerability to Vi-
sual Shifts: an over-reliance on fixed visual features leads to failure under variations in camera
angle or illumination; Inadequate Kinematic Reasoning: limited generalization across different
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initial robot configurations reflects a lack of deep kinematic understanding; Superficial Language
Interaction: linguistic inputs are often underutilized or even completely ignored, as shown by the
minimal impact of instruction variation.

Through this work, we provide:

1. A detailed vulnerability analysis of current VLA models through systematic parameter
variation.

2. A diagnostic framework for identifying and quantifying the impact of perturbations on
model performance.

3. Critical insights into the mismatch between apparent multimodal competence and actual
robust understanding.

Our findings challenge the assumption that high benchmark scores equate to true competency, urging
the community to re-evaluate current evaluation practices and focus on building models that are
robust in the face of inherent variability. This work is a step toward developing VLA systems that
are not only high-performing but also genuinely reliable and adaptable.

2 HOW DO SINGLE-DIMENSION PERTURBATIONS AFFECT VLA MODELS?

2.1 PERTURBATION FACTORS

We systematically evaluate how different perturbation factors affect VLA performance and study
seven common single-dimension perturbations applied to the evaluation episodes: (1) Objects Lay-
out: add confounding objects and/or shift the target object’s position. (2) Camera Viewpoints:
change the viewpoint/pose and field-of-view of the third-person camera. (3) Robot Initial States:
change the manipulator’s initial pose. (4) Language Instructions: rewrite task instructions to in-
crease linguistic richness and complexity. (5) Light Conditions: vary illumination intensity, direc-
tion, color, and shadow patterns. (6) Background Textures: modify table/scene textures and materi-
als. (7) Sensor Noise: inject photometric distortions (e.g., jitter, Gaussian blur) into input images.
Full per-factor specifications are provided in Appendix B.

2.2 MODELS

We analyze a series of representative open-checkpoint models spanning diverse architectures (au-
toregressive vs. diffusion-based) and training paradigms (web-data co-training, world modeling,
reinforcement learning, etc): (1) OpenVLA (Kim et al., 2024) and its variants (2) OpenVLA-OFT
(Kim et al., 2025), (3) OpenVLA-OFT w (third-view-only version), (4) OpenVLA-OFT m (mix-
sft version, trained on all 4 suites), (5) π0 (Black et al.), (6) π0-fast (Pertsch et al., 2025), (7)
Nora (Hung et al., 2025), (8) WorldVLA (Cen et al., 2025), (9) UniVLA (Bu et al., 2025) and (10)
RIPT-VLA (Brohan et al., 2022). Please refer to Appendix C for further details.

2.3 RESULTS

We present the main experimental results in Table 1 and Figure 1, which collectively reveal a sig-
nificant fragility in the generalization capabilities of current VLAs. As shown, even minor perturba-
tions can lead to drastic performance degradation. Below we analyze the specific robustness patterns
across perturbation dimensions, models, and tasks.

Finding 1: Significant Overall Fragility to Perturbations

Across all perturbation factors, current VLAs exhibit brittle generalization. Performance degrades
significantly under various input perturbations, particularly with changes in camera viewpoint and
robot initial state.

Finding 2: Robustness varies considerably by perturbation type.

Models are most vulnerable to changes in camera viewpoint and robot initial state, which require
a high-level understanding of spatial geometry and proprioception. In contrast, they show relative
resilience to lighting and background variations, which constitute more superficial, low-level visual
changes.
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Table 1: Model performance under different perturbations. For each model, the first row reports
the task success rate (%) under each perturbation dimension, with the ”Original” column indicating
the performance on unperturbed inputs. The second row (denoted by ↓) shows the corresponding
absolute performance drop. The results highlight significant variations in robustness across models
and perturbation types.

Original Camera Robot Language Light Background Noise Layout

OpenVLA 76.5 1.1 4.1 26.8 4.4 25.3 19.3 31.6
↓ 75.4 ↓ 72.4 ↓ 49.7 ↓ 72.1 ↓ 51.2 ↓ 57.2 ↓ 44.9

OpenVLA-OFT 97.1 59.7 37.2 81.5 85.8 92.4 76.7 77.1
↓ 37.4 ↓ 59.9 ↓ 15.6 ↓ 11.3 ↓ 4.7 ↓ 20.4 ↓ 20.0

OpenVLA-OFT w 95.3 16.8 43.7 73.2 68.2 92.5 51.4 72.3
↓ 78.5 ↓ 51.6 ↓ 22.1 ↓ 27.1 ↓ 2.8 ↓ 43.9 ↓ 23.0

OpenVLA-OFT m 97.6 57.9 30.6 83.6 91.6 83.6 76.3 73.2
↓ 39.7 ↓ 67.0 ↓ 14.0 ↓ 6.0 ↓ 14.0 ↓ 21.3 ↓ 24.4

π0 94.2 15.8 6.6 61.0 79.6 78.5 79.4 70.4
↓ 78.4 ↓ 87.6 ↓ 33.2 ↓ 14.6 ↓ 15.7 ↓ 14.8 ↓ 23.8

π0-fast 85.5 66.4 24.8 63.3 73.0 67.7 75.8 70.3
↓ 19.1 ↓ 60.7 ↓ 22.2 ↓ 12.5 ↓ 17.8 ↓ 9.7 ↓ 15.2

Nora 87.9 4.0 41.1 67.0 31.0 50.5 17.6 63.9
↓ 83.9 ↓ 46.8 ↓ 20.9 ↓ 56.9 ↓ 37.4 ↓ 70.3 ↓ 24.0

WorldVLA 79.1 0.3 30.2 44.2 29.4 14.5 12.2 39.4
↓ 78.8 ↓ 48.9 ↓ 34.9 ↓ 49.7 ↓ 64.6 ↓ 66.9 ↓ 39.7

UniVLA 95.2 4.3 50.3 71.8 59.1 80.0 25.3 34.3
↓ 90.9 ↓ 44.9 ↓ 23.4 ↓ 36.1 ↓ 15.2 ↓ 69.9 ↓ 60.9

RIPT-VLA 97.5 58.3 36.7 80.1 87.9 90.4 73.8 76.5
↓ 39.2 ↓ 60.8 ↓ 17.4 ↓ 9.6 ↓ 7.1 ↓ 23.7 ↓ 21.0

Finding 3: Minor Impact of Language Perturbation.

Contrary to expectations, language perturbations result in the second smallest average performance
drop (-25.3) across most models. This apparent robustness is counter-intuitive and merits deeper
investigation. As we explore in Section 4, this phenomenon is unlikely to stem from superior
linguistic generalization. A more plausible hypothesis, which we have proven empirically, is that
models may be relying less on the language instruction than anticipated, potentially leveraging task
cues from the visual context.

Finding 4: Model robustness is dictated by architecture and training paradigm.

Specifically, models incorporating a first-person wrist camera (e.g., OpenVLA-OFT) demonstrate
superior generalization, especially to camera viewpoint changes, compared to those reliant solely
on a third-person view (e.g., OpenVLA-OFT w). Furthermore, training strategies that emphasize
diversity and co-training (e.g., π0,π0-fast ) consistently yield more robust models across multiple
perturbation types, highlighting the importance of exposure to varied data distributions.

3 DO CONTEMPORARY VLA MODELS TRULY PAY ATTENTION TO VISUAL
INPUTS?

While the overall trends reveal substantial fragility, we observe two particularly interesting patterns
in the data: (1) models exhibit surprising resilience to background changes, and (2) several models
show limited sensitivity to light variations. These observations raise important questions about what
representations the models are actually learning. Do they genuinely understand task-relevant object
semantics, or are they relying on superficial visual cues? To answer these questions, we conduct
finer-grained analyses of object layout and illumination robustness.

3
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Figure 1: Robustness to object layout perturba-
tions. Comparison of different models under con-
founding and displacement perturbations, as well
as their overall robustness.

Do Models Genuinely Attend to Task-
Relevant Objects? We are pleasantly sur-
prised to observe that the models are relatively
insensitive to changes in the Background set-
ting. To further investigate whether the mod-
els truly focus on the core interactive objects
and genuinely understand the high-level seman-
tics and spatial information relevant to the task,
we decomposed the Object Layout perturbation
into two subcategories: (1) adding confound-
ing objects, and (2) changing the placement and
pose of the target objects. We then evaluated all
models under these conditions, and the results
are shown in Figure 1. It can be seen that for
π0, π0-Fast, RIPT-VLA, UniVLA, and World-
VLA, the success rate decreases only marginally when confounding objects are added, indicating
that these models, through training, indeed manage to focus their attention on the target objects.
However, when the target objects’ placement is altered, the performance of the models drops signif-
icantly, suggesting that the current models may have merely learned the positional information of
the target objects rather than truly capturing the high-level task-relevant semantics.
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Figure 2: Illumination robustness and extreme ab-
lation tests. The term Light denotes the condi-
tion with light perturbation applied. 3rd Black
and All Black represent conditions where only
the third-view image is masked and where images
from both views are masked, respectively.

How Do Models Maintain Performance Un-
der Illumination Changes? We observe that
for several models, the performance drop un-
der light perturbations is limited to around 10
points, suggesting a surprising insensitivity to
illumination changes. To investigate this phe-
nomenon, we design an extreme ablation test:
(i) all-black, where all camera inputs are re-
placed with black frames, and (ii) 3rd-black,
where only the third-person view is masked
while the wrist camera is preserved. In the
all-black condition, performance collapses to
nearly zero across models, confirming a strong
reliance on visual input. In contrast, under
the 3rd-black setting, the same models still
achieve accuracies of 43.6, 43.0, and 67.3, re-
spectively, demonstrating that the wrist view
alone provides critical and stable close-range
geometric and contact cues. This explains why
standard light perturbations cause only minor
degradation: illumination changes primarily af-
fect the third-person view and global appear-
ance, whereas the wrist view remains relatively stable. Consistently, models such as OpenVLA,
Nora, and WorldVLA—which depend exclusively on third-person observations—suffer severe drops
under light perturbations (often exceeding 60 points).

Based on our deeper investigation into object layout and illumination robustness, we can conclude
the following:

Finding 5: Current VLAs exhibit positional bias rather than genuine semantic understanding
of objects. While models demonstrate an ability to ignore distracting objects, they fail to generalize
when target objects are displaced, indicating that they rely on memorized positional cues rather than
learning invariant object semantics.

Finding 6: Wrist cameras provide critical robustness to illumination changes. The relative
stability of performance under light perturbations is largely attributable to the wrist camera’s close-
range perspective, which provides illumination-invariant geometric cues. Models lacking wrist-
camera inputs show significantly greater vulnerability to lighting variations.
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Figure 3: Accuracy of different models on instruction removed (a) and target modified (b) tasks.
Light bars: original success rate with language instruction; (a) dark bars: success rate after removing
the instruction; (b) Dark bars: success rate under altered task goal and instruction (task substitution).

4 DO CONTEMPORARY VLA MODELS TRULY FOLLOW LANGUAGE
INSTRUCTIONS?

In the experiments presented in Section 2, we observed an intriguing phenomenon: when introducing
language perturbations, the overall performance of the OpenVLA-OFT model was barely affected
and remained close to the baseline level. To further investigate the potential underlying reasons, we
propose following three hypotheses:

(1) The model may possess strong generalization capabilities in the language domain, allowing it to
remain robust even when instructions are perturbed.

(2) The model may extract limited keywords from the input instruction for matching and decision-
making, rather than genuinely understanding the full semantic structure. However, this is unlikely
because our perturbations include a commonsense subclass that performs keyword commonsense
rewrite, yet the performance drop remains nearly negligible.

(3) The model may not fully utilize the language modality, instead relying primarily on visual or
other non-linguistic signals to complete tasks. In such a scenario, language inputs would be func-
tionally redundant, and even significant perturbations would have minimal impact.

To verify which of the above hypotheses is more plausible, we conducted additional analysis exper-
iments.

4.1 WHAT IF WE REMOVE LANGUAGE, DOES PERFORMANCE DROP?

We introduced a blank instruction experiment. In this setting, the language input provided to
the model was entirely replaced with an empty value, i.e., no linguistic information was supplied
during inference. This approach directly tests whether the absence of language leads to a substantial
performance degradation. We conducted experiments on all four suites of LIBERO, and the results
are shown in Figure 3(a).

Surprisingly, even without any valid language input, the performance of OpenVLA-OFT on the
object suite remained largely unchanged, with significant degradation observed only on the long
suite. We attribute this to the greater reliance on instruction guidance in long-horizon tasks, which
forces the model to attend to the language modality. This finding is highly revealing: although
the model is nominally designed as a Vision-Language-Action (VLA) framework, in practice it
degenerates into a form that disregards language, behaving more like a Vision-Action (VA) model.

4.2 WHAT IF WE REPLACE GOALS WITH OOD OBJECTS, DO MODELS FAIL?

We further designed a goal replacement task to directly examine whether models genuinely possess
language instruction-following ability. Specifically, for the layout suite, where the issue appeared
most pronounced, we replaced the target object in the instruction and the task goal with alterna-
tives within the same scene. For instance, the original task instruction pick up the alphabet soup
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was replaced with pick up the tomato sauce, and similarly, a series of new goal instructions were
constructed. As shown in Figure 3(b), the experimental results revealed two key findings:

Finding 7: VLA models do not possess strong cross-object instruction-following generaliza-
tion. In tasks with replaced targets, the model’s success rate dropped nearly to zero, with the degra-
dation particularly severe for OpenVLA-OFT. The apparent “robustness” observed in prior language
perturbation experiments did not stem from a deep modeling of language but rather from ignoring
linguistic inputs altogether, leading to a superficially stable performance under perturbations.

Finding 8: VLA models appear to rely more on fixed vision–action mappings than on fully
exploiting language signals in task decision-making. By analyzing rollout cases, we observed
that even when the target in the instruction was explicitly changed, the model still tended to execute
the original target action rather than adjust its behavior according to the new instruction. More
details can be found in Appendix F.

5 DOES THERE EXIST COMPOSITIONAL GENERALIZATION GAP ACROSS
MULTI-DIMENSIONAL PERTURBATIONS?

Generalization results under single-dimension perturbations demonstrate the model’s robustness
against isolated factors. However, these dimensions may not be independent, and different types
of perturbations are likely to exhibit complex dependencies. In this study, we refer to such perfor-
mance as compositional generalization. To ensure scientific rigor, we define the problem from a
statistical perspective as follows.

5.1 STATISTICAL DEFINITION OF THE COMPOSITIONAL GENERALIZATION GAP

We define the random variables Di as

Di =

{
1, if the i-th type of perturbation is applied,
0, otherwise,

(1)

and similarly for Dj . For a single trial, we define the success indicator variable

Y =

{
1, if the task is successfully executed,
0, otherwise.

(2)

The success rate can be defined in terms of conditional probability as

s(Di = di, Dj = dj) = P (Y = 1 | Di = di, Dj = dj), di, dj ∈ {0, 1}. (3)

We further estimate the joint probability between Di and Dj conditioned on Y = 1,

p(Di = di, Dj = dj | Y = 1) =
s(Di = di, Dj = dj)∑

a,b∈{0,1} s(Di = a,Dj = b)
(4)

which represents the probability that the combination Di = di and Dj = dj occurs among all
successful cases. Similarly, the marginal probabilities are

p(Di = 1 | Y = 1) = p(Di = 1, Dj = 0 | Y = 1) + p(Di = 1, Dj = 1 | Y = 1)

=
s(Di = 1, Dj = 0) + s(Di = 1, Dj = 1)∑

a,b∈{0,1} s(Di = a,Dj = b)
, (5)

p(Dj = 1 | Y = 1) = p(Di = 0, Dj = 1 | Y = 1) + p(Di = 1, Dj = 1 | Y = 1)

=
s(Di = 0, Dj = 1) + s(Di = 1, Dj = 1)∑

a,b∈{0,1} s(Di = a,Dj = b)
. (6)

Intuitively, p(Di = 1 | Y = 1) reflects the probability that the i-th perturbation occurs among
all successful cases. It measures the contribution of the i-th perturbation to the overall successful
outcomes. A high value indicates that the perturbation frequently co-occurs with successful trials,

6
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suggesting the model is robust to this perturbation, while a low value indicates sensitivity to this
perturbation. Similarly,

p(Di = 1, Dj = 1 | Y = 1) =
s(Di = 1, Dj = 1)∑

a,b∈{0,1} s(Di = a,Dj = b)
(7)

represents the proportion of successful cases under the ”double perturbation” scenario. A high prob-
ability suggests the model maintains performance under joint perturbations, whereas a low proba-
bility indicates that the combination severely affects success.

In this study, we focus on the Compositionality Gap which is also the covariance between variable
Di and Dj given that Y = 1:

∆ij ≜ Cov(Di, Dj | Y = 1)

= E[DiDj | Y = 1]− E[Di | Y = 1]E[Dj | Y = 1]

= p(Di = 1, Dj = 1 | Y = 1)− p(Di = 1 | Y = 1) p(Dj = 1 | Y = 1). (8)

The sign of ∆ij correctly reflects the correlation of the contributions of the two perturbations to
successful outcomes. Specifically: ∆ij > 0 indicates positive correlation, meaning the model
can jointly handle both perturbations. ∆ij < 0 indicates negative interaction, meaning that the
combination introduces additional difficulty beyond independent effects. ∆ij = 0 indicates no
interaction, satisfying the independence assumption.

5.2 EXPERIMENTAL SETUP AND RESULTS ANALYSIS
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Figure 4: Heatmap of conditional probabil-
ities under pairwise perturbations. Upper
triangular entries represent independence-
based products of single-dimension probabil-
ities, while lower triangular entries show ac-
tual joint outcomes.

We perform 2000 independent repeated experiments
to ensure high statistical significance. As noted in
the previous section, the performance of the VLA
model on LLM-Based Language Rewrites is some-
what limited by the model’s language-following
ability, and its scores may be somewhat “decep-
tive”. Therefore, when analyzing compositional
generalization, we select single-dimension perturba-
tions objects spanning, environment sampling, Il-
lumination Variations, camera-sphere shifts, Robot
Initialization perturbations, sensor noise and use the
OpenVLA-OFT model for testing.

In the experiments, we perform independent tests for
each type of single-dimension perturbation and pair-
wise perturbations, recording the success rate over
2000 repeated trials, which can be found in Ap-
pendix G.

The final experimental results are presented in a
heatmap shown in Figure 4. The values in the upper-
triangular matrix Aij (1 ≤ i < j ≤ 6) are the prod-
uct of the conditional probabilities of two single-
dimension perturbations. The values in the lower-triangular matrix Aij (1 ≤ j < i ≤ 6) represent
the actual probabilities when applying joint perturbations. Additionally, we calculate the composi-
tional generalization gap

∆ij = Aij −Aji (1 ≤ j < i ≤ 6)

and verify the statistical significance of the results using a chi-squared test, as shown in Appendix G.

Finding 9: Generalization is intrinsically non-decomposable. The consistent negative composi-
tionality gap reflects interaction effects among perturbations, where co-occurring shifts act as cou-
pled noise sources in feature space and expose entanglement in the learned representations. The
findings indicate that current models lack mechanisms to capture higher-order dependencies, lead-
ing to pronounced robustness degradation under complex perturbation combinations.
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Figure 5: Model performance trends across perturbation difficulty levels. The line plots show the
success rate of each model as the intensity of four different perturbation dimensions increases.

6 BENCHMARK

6.1 BENCHMARK CONSTRUCTION

Figure 6: Architecture of the LIBERO-Pro bench-
mark, comprising 10,030 tasks organized across
seven perturbation factors and twenty-one under-
lying components.

Building on the analysis in Section 2, we in-
troduce LIBERO-Pro, a benchmark designed
to rigorously evaluate generalization capabili-
ties along the key dimensions identified in our
study. Our construction process consists of
two main steps: (1) systematically expanding
and enriching the original LIBERO benchmark
by applying seven distinct perturbation factors,
followed by filtering and balancing task cate-
gories based on the findings from Section 2; and
(2) evaluating the resulting tasks using four rep-
resentative models, then stratifying them into
five difficulty levels (Level-1–Level-5) accord-
ing to the accuracy distribution observed across
these models. Figure 5 presents the correspond-
ing accuracy of each model across the five diffi-
culty levels under four representative perturba-
tion factors.

The resulting benchmark comprises 10,030
tasks spanning seven perturbation factors with
twenty-one low-level components, as illus-
trated in Figure 6. Detailed generation speci-
fications and level-wise statistics are provided
in Appendix E.

6.2 DOES TRAINING ON GENERALIZED SETS IMPROVE GENERALIZATION?
Leveraging our highly automated generalization pipeline, we constructed an extensive training
dataset comprising over 20,000 successful trajectories. This dataset was constructed through a sub-
stantial expansion of the original LIBERO benchmark, greatly increasing the number of trajectories
and scene diversity, enabling a systematic evaluation of how generalization-oriented training affects
model performance. Further details on dataset construction are available in Appendix E.

Using this dataset, we conducted mixed fine-tuning starting from the official OpenVLA-OFT
weights. The corresponding results on the LIBERO-pro benchmark are presented in Table 2.

As shown in Table 2, our method achieves the highest overall success rate (79.6%), outperforming
all baseline models across nearly all perturbation types. Most notably, it exhibits a dramatic im-
provement in camera view robustness (92.8%), surpassing the next best model by 37.2 percentage
points. Significant gains are also observed under noise (89.3%) and layout (77.6%) perturbations.
These results demonstrate that training with our generalized dataset substantially enhances model
robustness to a wide range of unseen environmental variations.
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Table 2: Robustness evaluation across perturbation dimensions, with bold values denoting the high-
est scores. The bottom row (+ PT) shows the performance of our post-training method, with absolute
improvements over the baseline (OpenVLA-OFT m) indicated by upward arrows.

Camera Robot Language Light Background Noise Layout Total

OpenVLA 0.8 3.5 23.0 8.1 50.4 15.2 28.5 17.3
OpenVLA-OFT 56.4 31.9 79.5 88.7 97.3 75.8 74.2 70.0
OpenVLA-OFT w 10.4 38.7 70.5 76.8 99.2 49.9 69.9 56.4
NORA 2.2 37.0 65.1 45.7 65.5 12.8 62.1 39.8
WorldVLA 0.1 27.9 41.6 43.7 19.8 10.9 38.0 25.3
UniVLA 1.8 46.2 69.6 69.0 90.7 21.2 31.9 43.9
π0 13.8 6.0 58.8 85.0 90.7 79.0 68.9 54.6
π0-Fast 65.1 21.6 61.0 73.2 97.7 74.4 68.8 64.2
RIPT-VLA 55.2 31.2 77.6 88.4 100.0 73.5 74.2 69.3
Openvla-OFT m 55.6 21.7 81.0 92.7 92.3 78.6 68.7 68.1

Ours 92.8 30.3 85.8 94.9 93.9 89.3 77.6 79.6
↑37.2 ↑8.6 ↑4.8 ↑2.2 ↑1.6 ↑10.7 ↑8.9 ↑11.5

7 RELATED WORK
7.1 VISION-LANGUAGE-ACTION MODELS

The paradigm of foundation models has recently extended from language and vision into robotics,
motivating unified architectures that couple perception, language understanding, and control in an
end-to-end foundation model . Autoregressive approaches [Brohan et al. (2022), Kim et al. (2024),
Pertsch et al. (2025), Li et al. (2025), Wen et al. (2025a), Li et al. (2024b)] discretize robot actions
into tokens and train end-to-end policies on large-scale demonstrations, while diffusion-based mod-
els [Black et al., Bjorck et al. (2025), Li et al. (2024a), Wen et al. (2025b)] generate continuous
trajectories via generative diffusion experts. More recently, reinforcement learning methods [Tan
et al. (2025), Liu et al. (2025), Lu et al. (2025), Guo et al. (2025)] move beyond supervised fine-
tuning, emphasizing robustness and downstream adaptability through reinforcement learning objec-
tives. Although these models can exhibit “zero-shot” competence when evaluation closely resembles
training conditions—e.g., similar object layouts, robot initial poses, or camera viewpoints—such
results primarily reflect interpolation rather than genuine robustness. Existing benchmarks thus pro-
vide limited insight into how these models generalize under controlled distribution shifts, leaving
the lack of a systematic and fine-grained robustness analysis as a central open challenge.

7.2 GENERALIZATION ROBOTIC MANIPULATION EVALUATIONS

How to efficiently and systematically evaluate the generalization ability of robotic manipulation
models remains a central question in the field. Early efforts (Liu et al. (2023), James et al. (2020),
Mu et al. (2021)) provided reproducible environments and benchmarks. More recent work (Zhou
et al. (2025), Garcia et al. (2025)) introduced perturbations along the object dimension, such as
modifying target objects, altering positions, or adding confounding items. Other benchmarks (Liu
et al. (2025), Fang et al. (2025)) extended evaluation to additional factors, including task language
instructions, robot initial states, and environmental backgrounds. However, these approaches rely
heavily on manually designed tasks and perturbations, which limits scalability and constrains the
total number of tasks to only a few dozen, resulting in insufficient systematic coverage. More
automated frameworks (Wang et al. (2025), Pumacay et al. (2024)) significantly increase task counts
and incorporate broader dimensions such as illumination and camera viewpoints. Nevertheless, they
lack fine-grained analysis within each dimension, and thus the insights they provide remain limited.

8 CONCLUSION

This work systematically analyzes modern VLA models, exposing a significant generalization prob-
lem in contrast to their alomose saturated performance on benchmarks such as LIBERO. Our find-
ings reveal that most of the contemporary VLA models remain brittle, showing particular vulner-
ability to camera and robot state changes, almost all models ignore the language instructions, and
some of the models execute with a bare memorization of the trajectory instead of relying on visual
feedbacks. We also identify positional bias and negative combinatorial generalization gaps under
combined perturbations. We urge the community to prioritize the true diversity of embodied tasks
in evaluation and develop architectures capable of robust generalization beyond limited benchmark
environments.

9
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets and benchmarks used, including LIBERO(Liu et al., 2023),
were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We
have taken care to avoid any biases or discriminatory outcomes in our research process. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We are committed to maintaining transparency and integrity throughout the
research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
model evaluation, perturbation injection and dataset construction, to assist others in reproducing our
experiments. For implementation detail and code, please refer to our anonymous GitHub repository:
https://anonymous.4open.science/r/LIBERO-pro-522F.

Additionally, Vision-Language-Action (VLA) model training datasets, such as LIBERO(Liu et al.,
2023), are publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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language-action models. arXiv preprint arXiv:2505.17016, 2025.

Zhijie Wang, Zhehua Zhou, Jiayang Song, Yuheng Huang, Zhan Shu, and Lei Ma. Vlatest: Testing
and evaluating vision-language-action models for robotic manipulation. Proceedings of the ACM
on Software Engineering, 2(FSE):1615–1638, 2025.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. IEEE Robotics and Automation Letters, 2025a.

Junjie Wen, Yichen Zhu, Minjie Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Xiaoyu Liu, Chaomin
Shen, Yaxin Peng, and Feifei Feng. Diffusionvla: Scaling robot foundation models via unified
diffusion and autoregression. In Forty-second International Conference on Machine Learning,
2025b.

Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue Yin,
Zuxuan Wu, Yu-Gang Jiang, et al. Vlabench: A large-scale benchmark for language-conditioned
robotics manipulation with long-horizon reasoning tasks. arXiv preprint arXiv:2412.18194, 2024.

12

https://api.semanticscholar.org/CorpusID:275570494
https://api.semanticscholar.org/CorpusID:275570494


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaming Zhou, Ke Ye, Jiayi Liu, Teli Ma, Zifan Wang, Ronghe Qiu, Kun-Yu Lin, Zhilin Zhao,
and Junwei Liang. Exploring the limits of vision-language-action manipulations in cross-task
generalization. arXiv preprint arXiv:2505.15660, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

B PERTURBATION DIMENSIONS

We conducted a comprehensive review of existing studies aimed at evaluating the generaliza-
tion performance of VLA models, particularly those introducing new test suites such as COLOS-
SEUM (Pumacay et al., 2024), RL4VLA (Liu et al., 2025), AGNOSTOS (Zhou et al., 2025), etc.
The comparison of these methods is summarized in Table 3. Based on a systematic analysis of
their task paradigms, environment construction, data collection pipelines, and evaluation dimension
designs, this study ultimately identified seven core dimensions of perturbation: objects layout, envi-
ronment background sampling, light variations, camera-view shifts, robotarm initialization pertur-
bations, LLM-based language rewrites, and image noise, with the goal of testing model robustness
and generalization ability across all modalities of input (vision, state, language). Each dimension
contains multiple quantifiable sub-dimensions defined to enable fine-grained evaluation of model
performance.

The perturbed examples are shown in Figures 11–16.

Table 3: Comparison of Different Evaluation Methods for VLA Models

Method Automation Simulator Fine-grained
Perturbation Dimensions

Obj Background Light Camera Robot Language Noise

AGNOSTOS × RLBench × ✓ × × × × × ×
VLATest ✓ ManiSkill × ✓ × ✓ ✓ × ✓ ×
RL4VLA × ManiSkill × ✓ ✓ × × ✓ ✓ ×
INT-ACT × ManiSkill × ✓ × × × × ✓ ×
Gembench × RLBench × ✓ × × × × × ×
COLOSSEUM ✓ RLBench × ✓ ✓ ✓ ✓ × × ×

LIBERO-pro (Ours) ✓ LIBERO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B.1 OBJECTS LAYOUT

This dimension is designed to test model robustness against object-level disturbances. It is further
divided into two sub-dimensions:

• O1: Confounding Objects. Randomly add n additional unseen objects into the task scene.
The object categories are drawn from a predefined set of 416 distractor objects. This pertur-
bation is implemented by modifying the task description files (BDDL). In the benchmark,
related perturbations are stored in BDDL files with an add suffix.

• O2: Target Object Pose. Apply random perturbations to the target object’s initial position
(x, y, z) and orientation (pitch, yaw, roll). This perturbation does not alter the target object
itself and ensures that essential semantic relations to other objects remain unchanged (e.g.,
in the task pick up the black bowl next to the cookie box and place it on the plate, the
relation to the cookie box determines the target object, and our modifications do not alter
this constraint).
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B.2 BACKGROUND TEXTURES

This dimension evaluates the model’s ability to generalize to different background textures of the
scene. It contains two sub-dimensions:

• B1: Scene Theme. Change the scene texture of the environment (e.g., from painted wall
to brick wall). The new textures are sourced from a curated collection of 950 textures. This
perturbation is implemented by modifying the scene XML definition files and registering
new scene classes.

• B2: Surface Appearance. Randomly alter the texture of the working surface (e.g., tabletop
or floor).

B.3 LIGHT CONDITIONS

This dimension evaluates the model’s visual understanding under different lighting conditions. It
includes four sub-dimensions, all implemented by modifying scene XML definition files:

• L1: Diffuse. The diffuse color, which defines the light color uniformly reflected by object
surfaces (adjusted via RGB channels; e.g., 1 0 0 indicates red diffuse light, making objects
appear reddish).

• L2: Direction. Change the direction of the parallel light source, which significantly affects
color rendering and shading.

• L3: Specular. The intensity of the specular highlight on object surfaces (e.g., the bright
spot reflected on metals). Larger values yield more distinct highlights, strongly influencing
scene style.

• L4: Shadows. Boolean variable (true/false) indicating whether shadows of the robot arm
and objects are cast in the scene.

B.4 CAMERA VIEWPOINTS

This dimension tests the model’s view-free representation and generalization ability by changing
camera viewpoints. All perturbations are implemented by modifying the Problem class interface,
with parameters derived from task filenames:

• C1: Camera Distance. Move the camera along its optical axis, changing the distance to
the scene center. Camera distances are valued among 1.01× to 2.00× the original value.

• C2: Spherical Position. Perturb camera position on a sphere centered at the scene, altering
azimuth (∆θ) and elevation (∆ϕ) within 15◦–75◦ cones.

• C3: Camera Orientation. Fix the camera position but perturb its orientation (yaw, pitch,
roll), valued within 2◦ to 10◦.

B.5 ROBOT INITIAL STATES

• Initial Joint Angle. Random perturbations are applied to the robot arm’s initial joint po-
sitions (qpos). Perturbation magnitudes are valued from 0.1 to 0.5. This perturbation is
implemented by modifying the Problem class interface.

B.6 LANGUAGE INSTRUCTIONS

This dimension employs large language models (LLMs) to rewrite original task instructions, testing
model generalization and reasoning ability in natural language:

• R1: Distraction. Task instructions are rewritten into longer and more conversational forms
that contain additional but task-irrelevant contextual cues.

• R2: Common Sense. Replacing the existing object descriptions with commonsense-based
descriptions to test information extraction and filtering.
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• R3: Reasoning Chain. For multi-step reasoning instructions, perturbations involve alter-
ing reasoning complexity.

Table 4: Examples of Language Instruction Rewriting

Sub-category Examples
Original push the plate to the front of the stove
R1 before turning on the burner, push the plate to the front of the stove
R2 propel the flat surface used for holding food toward the area designated

for cooking heat adjustment
R3 make sure the plate ends up at the front of the stove

B.7 SENSOR NOISE

This dimension simulates real-world sensor imperfections to evaluate robustness under degraded
input quality:

• N1: Motion Blur. Simulates blur caused by relative motion between camera and scene.
Higher levels correspond to larger blur kernels, longer trajectories, and more severe blur.

• N2: Gaussian Blur. Simulates optical blur caused by defocus. Higher levels correspond to
larger kernel size and standard deviation, resulting in smoother images with greater detail
loss.

• N3: Zoom Blur. Simulates radial blur caused by rapid zoom during exposure. Higher
levels increase zoom center and blur intensity, producing strong vignetting.

• N4: Fog. Simulates atmospheric interference such as fog or haze. Higher levels increase
fog density and brightness, lowering image contrast and saturation.

• N5: Glass Blur. Simulates distortions and refractions caused by viewing through textured
glass. Higher levels increase distortion amplitude and range, resulting in severe local pixel
displacements.

Perturbation parameters are shown in Table 5.

C MODEL DETAILS

This appendix provides comprehensive descriptions of all models evaluated in our study, covering
their architectural designs, training data sources, and key implementation specifications. We aim to
offer sufficient transparency such that the reported results can be faithfully reproduced and compared
against future work.

C.1 MODEL OVERVIEW

We evaluate a diverse set of vision-language-action (VLA) models that represent different design
choices in terms of architecture and training strategy, enabling us to systematically analyze how
different factors contribute to task performance and robustness. For each model, we summarize its
backbone, modality encoders, fusion mechanisms, and decision heads.

C.2 OPENVLA(KIM ET AL., 2024) AND OPENVLA-OFTS(KIM ET AL., 2025)

Base Architecture. OpenVLA adopts a modular vision-language architecture built on the Prismatic-
7B VLM. The visual encoder is a 600M-parameter dual-backbone composed of SigLIP and DI-
NOv2, whose outputs are concatenated along the channel dimension to enhance spatial reasoning
capabilities crucial for robotic control. A lightweight two-layer MLP projector maps the fused vi-
sual features into the input space of a Llama2-7B language backbone, which integrates visual and
textual inputs through cross-attention. This design enables OpenVLA to leverage both semantic
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Table 5: Noise perturbation parameters.

ID Noise Type Key Parameters Description of L1–L5

1 Motion Blur Radius r, Gaussian
kernel σ, angle θ

r and σ control blur strength (kernel size and
spread). From weak blur (r = 5, σ = 2) to
strong blur (r = 35, σ = 20).
θ ∼ U(−45◦, 45◦) determines blur direction.

2 Gaussian Blur Standard deviation σ
σ controls the amount of smoothing. Small σ
produces slight blur (σ = 1), large σ produces
heavy blur (σ = 10).

3 Zoom Blur Scaling factors
[smin, smax, step]

Successive rescaling creates a zoom-like blur.
Weak effect at ([1, 1.11, 0.01]) and strong
effect at ([1, 1.56, 0.03]).

4 Fog Density α, decay
rate β

α controls fog thickness, β controls how
quickly fog attenuates. Light fog
(α = 0.5, β = 3.0) → Dense fog with slow
decay (α = 5.0, β = 1.3).

5 Glass Blur
Gaussian blur σ,
pixel displacement δ,
iteration count

σ defines baseline blur, δ controls the
displacement of pixels, and iterations
determine the accumulation of distortions.
Light blur with small displacements
(σ = 0.5, δ = 1, iters = 3) → Strong blur
with large displacements
(σ = 2.5, δ = 5, iters = 1).

Table 6: Model HuggingFace repository addresses.

ID Model Name Checkpoint Address
1 OpenVLA OpenVLA LIBERO checkpoint
2 OpenVLA-OFT OpenVLA-OFT LIBERO checkpoint
3 OpenVLA-OFT m OpenVLA-OFT m LIBERO checkpoint
4 NORA NORA LIBERO checkpoint
5 WorldVLA WorldVLA LIBERO checkpoint
6 UniVLA UniVLA LIBERO checkpoint
7 π0 π0 LIBERO checkpoint
8 π0-Fast π0-Fast LIBERO checkpoint
9 RIPT-VLA RIPT-VLA LIBERO checkpoint

understanding and spatial grounding for action prediction. To adapt the VLM backbone for robotic
control, continuous robot actions are discretized into 256 bins per dimension and represented as
tokens within the LLM vocabulary. The 256 least frequently used tokens of the Llama tokenizer are
replaced by action tokens, and training proceeds with the standard next-token prediction objective
applied to action sequences.

Training Strategy. The training pipeline consists of two stages: an initial pre-training followed
by supervised fine-tuning. OpenVLA is pre-trained on the Open X-Embodiment (OpenX) dataset,
which includes over 970k robot trajectories across multiple embodiments and tasks. The model is
trained end-to-end with a cross-entropy loss applied exclusively to the action tokens. Unlike typical
VLM practices, the vision encoder is fine-tuned rather than frozen, enabling the model to capture
fine-grained spatial details crucial for robotic control.

Variants. In addition to the baseline OpenVLA models, we consider the OpenVLA-OFT family of
variants:

• OpenVLA-OFT: A parallel decoding variant enabling simultaneous prediction of all ac-
tions in a single forward pass. It employs continuous action representations through a multi-
layer MLP head and is trained with an L1 regression objective, resulting in faster inference
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and more precise action generation, and it incorporates Feature-wise Linear Modulation
(FiLM) to enhance language grounding.

• OpenVLA-OFT w: A variant of OpenVLA-OFT that removes the first-person wrist cam-
era input and retains only the third-person view. This model is trained from OpenVLA with
the official OFT hyperparameters on four LIBERO benchmark suites for 150K steps using
8×A100 GPUs.

• OpenVLA-OFT m: A mixed-training variant that adopts the official mix-SFT weights.
Unlike suite-specific training, this model is jointly trained across all four LIBERO suites,
enabling it to learn from a broader distribution of tasks and environments.

C.3 π0(BLACK ET AL.) AND π0-FAST(PERTSCH ET AL., 2025)

Base Architecture. The π0 architecture is inspired by the Transfusion framework, which trains a
single Transformer with multiple objective functions: a flow-matching loss for continuous output
tokens and a cross-entropy loss for discrete tokens. Building upon this, π0 implements two sets of
transformer weights (one initialized from the VLM and a smaller action expert). The core model
comprises a VLM base (PaliGemma) for semantic understanding of multimodal inputs (multiple
RGB images, language instructions, and proprioceptive state qt), and action tokens are projected
and routed to a smaller action-expert.

Training Strategy. The training follows a two-stage paradigm: (i) large-scale, diverse pre-training
on a mixture ddataset to learn broad capabilities and recovery behaviors; (ii) post-training on smaller,
high-quality curated datasets to induce dexterity and fluent task execution. The pre-training mixture
is carefully reweighted to avoid over-representation.

π0-fast: Efficient Action Tokenization. The π0-fast variant introduces the FAST tokenization
method to compress action sequences. FAST combines a Discrete Cosine Transform (DCT) for
converting temporal action trajectories into a sparse frequency-domain representation, followed by
Byte-Pair Encoding (BPE) to losslessly compress the sparse DCT coefficient matrix into dense to-
kens.

C.4 NORA(HUNG ET AL., 2025)

Base Architecture. NORA is a 3B-parameter general-purpose VLA model optimized for robotic
tasks. It adopts the Qwen-2.5-VL-3B multimodal model as its backbone, chosen for its strong
visual-semantic understanding capabilities, which enhance visual reasoning and action grounding.
The model processes natural language task instructions and single-frame (as per its implementation)
visual observations as input. It outputs discrete action sequences by employing the FAST+ tokenizer
to discretize continuous action tokens.

Training Strategy. NORA is pre-trained on the Open X-Embodiment dataset, which includes tra-
jectories from various robots performing diverse tasks. This phase aims to equip the model with
broad robotic capabilities and strong generalization. Training was conducted on 8×H100 GPUs for
approximately three weeks (totaling 4000 GPU hours), using the AdamW optimizer with a batch
size of 256 over 1.1 million gradient steps. A linear warmup followed by cosine decay was applied
to the learning rate.

C.5 WORLDVLA(CEN ET AL., 2025)

Base Architecture. WorldVLA is an autoregressive action-world model that unifies visual-
language-action (VLA) modeling and world modeling within a single, integrated framework. The
core idea is to jointly learn a policy model for action generation and a world model for future state
prediction, allowing the two components to mutually enhance each other. The model is initialized
from Chameleon, a unified image understanding and generation model. It employs three tokeniz-
ers: a VQ-GAN-based image tokenizer, a BPE-based text tokenizer, and an action tokenizer that
discretizes each dimension of the continuous robot action into 256 bins. All modalities (text, im-
age, action) are discretized into tokens and modeled autoregressively within a unified sequence. A
key architectural innovation is a customized attention mask for action generation that prevents the
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current action from attending to previous actions, thereby mitigating error propagation and enabling
more robust parallel action chunk prediction.

Training Strategy. The model is trained on a mixture of action-modeling data and world-modeling
data. The action-modeling data trains the model to generate action chunks given a language instruc-
tion and a history of image observations, using a loss computed only on the action tokens. The
world-modeling data trains the model to predict the next image frame given the current image and
action, using a loss computed only on the image tokens. This joint training strategy encourages
the learning of shared representations: the world model acquires an understanding of environmental
physics to aid task-relevant action generation, while the action model enhances visual understanding
to support accurate frame prediction. The model is evaluated on the LIBERO benchmark suite, with
training leveraging 90% of the successful trajectories for training and 10% for validation.

C.6 UNIVLA(LI ET AL., 2025)

Base Architecture. UniVLA is a universal visual-language-action model that operates in a discrete,
task-centric latent action space to achieve cross-embodiment generalization. The architecture is
built upon a pre-trained Prismatic-7B VLM, which integrates a fused visual encoder (SigLip and
DINOv2), a projection layer, and an LLaMA-2 LLM. A key innovation is the extension of the
LLM’s vocabulary with special action tokens to represent quantized latent actions. The model takes
a visual observation and a language instruction as input and autoregressively predicts a sequence of
these latent action tokens. For deployment on specific robots, a lightweight action decoder head is
added, which uses multi-head attention pooling to map the predicted latent actions into the robot’s
executable low-level control space.

Training Strategy. The training process involves three stages. First, a latent action model is trained
in a self-supervised manner on large-scale video datasets to learn a discrete codebook of task-centric
actions. This model uses a DINOv2-based reconstruction objective and conditions on language in-
structions to disentangle task-relevant dynamics from irrelevant visual changes. Second, the uni-
versal policy is pre-trained to predict these latent action tokens from observations and instructions,
leveraging the generalizable representations of the pre-trained VLM. This approach compresses
the action space dramatically, leading to significantly faster convergence compared to methods op-
erating in raw action spaces. Finally, for downstream adaptation, the entire model is fine-tuned
end-to-end with a combined loss for latent action prediction and low-level action regression, often
using parameter-efficient methods like LoRA. A history-augmented input scheme, where past latent
actions are fed back as context, is employed to enhance performance in long-horizon tasks.

C.7 RIPT-VLA(BROHAN ET AL., 2022)

Base Architecture. The base model for RIPT-VLA is OpenVLA-OFT, a continuous-action VLA
model where the action head is typically trained with an L1 regression loss. To make this architecture
compatible with reinforcement learning, which requires a probabilistic policy output, RIPT-VLA
augments the model with a lightweight auxiliary head that predicts the scale parameter σθ for the
action distribution. The policy is then treated as a factorized Laplace distribution (for L1 loss)
with the original model output as the mean µθ and the new head’s output as the scale. This allows
for sampling actions and computing the log-probability log πθ(at|a<t, c) in closed form, which is
essential for policy gradient updates.

Training Strategy. RIPT-VLA introduces a third stage of Reinforcement Interactive Post-Training
(RIPT) following the standard pre-training and supervised fine-tuning (SFT) stages. The strategy is
centered on the Dynamic Sampling Leave-One-Out PPO (LOOP) framework. In the rollout collec-
tion phase, for a given context ci, K trajectories are sampled from the current policy. The RLOO
advantage estimation method is used to compute advantages from the sparse binary rewards. A key
innovation is a dynamic rejection mechanism that filters out context samples where all K rollouts
receive identical rewards (all successes or all failures), thus ensuring that the training batch contains
meaningful learning signals. During the policy optimization phase, the PPO algorithm is applied to
the collected rollouts to maximize the expected task success rate, with the policy update constrained
by the probability ratio ri = πθ(ai|ci)/πψ(ai|ci) to ensure stable training. This iterative process of
data collection and optimization allows the model to improve its performance through environment
interaction, specifically targeting and overcoming failure modes encountered during deployment.
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D PERTURBATIONS AND BENCHMARK CONSTRUCTION

D.1 DATA GENERATION AND FILTERING

We began with the 40 evaluation tasks from LIBERO and generated 500 instances for each of the
four generalization sub-tasks (Spatial, Object, Goal, Long) across the seven generalization dimen-
sions, resulting in an initial set of 14,000 candidate tasks. These tasks were evaluated using several
widely adopted baseline models to assess performance distributions, as summarized in Section 2.

Tasks that were solved by all models, or by a large majority, were removed to avoid ceiling effects.
We further balanced the remaining tasks across augmentation sub-dimensions to prevent bias. The
final test-only benchmark consists of 10,030 tasks spanning all seven dimensions.

D.2 DATASET COMPOSITION

Table 7 presents the final distribution of evaluation tasks across generalization dimensions and sub-
task categories.

Table 7: Distribution of the evaluation dataset across dimensions and different categories.

Camera Robot Language Light Background Noise Layout Total
Spatial 376 350 354 292 258 351 312 2293
Object 396 398 390 297 248 422 425 2576
Goal 408 409 410 279 281 379 403 2569
Long 419 393 383 274 289 449 385 2592
Total 1599 1550 1537 1142 1076 1601 1525 10030

D.3 DIFFICULTY ASSESSMENT

We evaluated the 10,030 tasks using four representative models—Openvla-oft, pi0, pi0-fast, and uni-
vla—and stratified task difficulty based on how many of these models succeeded on each instance:

• Level 1 (lv1): solved by all four models;
• Level 2 (lv2): solved by exactly three models;
• Level 3 (lv3): solved by exactly two models;
• Level 4 (lv4): solved by exactly one model;
• Level 5 (lv5): solved by none.

Figure 7 illustrates the proportion of tasks at each difficulty level for every dimension.

D.4 MODEL PERFORMANCE BY DIFFICULTY LEVEL

We further analyzed how model accuracy varies with task difficulty. Figure 8 shows the success
rates of each model across the five difficulty levels.

E TRAINING DATASET CONSTRUCTION

E.1 DATASET OVERVIEW

The generalized training dataset consists of over 20,000 successful trajectories, covering a wide
range of task variations and environment configurations. Figure 9 shows the distribution of the
7-dimensional robot actions in the dataset. The plots are arranged from top to bottom and left to
right, corresponding to the seven action dimensions, respectively. This visualization demonstrates
the diversity and coverage of the actions captured in the generalized dataset.

The dataset includes six types of task variants and environment modifications: objects spanning,
environment sampling, light variations, camera-view shifts, LLM-based language rewrites, and sen-
sor noise. Among these, the objects spanning variant contains only compounding objects, which
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Figure 7: Proportion of tasks per difficulty level across the seven generalization dimensions.

are generated by executing existing trajectories and selecting only the successful ones. Variants
involving pose changes were not added due to the limited reliability of automatically generated
trajectories.

E.2 DATA GENERATION PROCESS

The generalized dataset was constructed using the same automated generalization pipeline, with
variations in parameters to produce diverse scenarios:

• Objects Positioning: For compounding objects, distractor objects and their poses were
varied while ensuring no overlap with the test set.

• Background Environment Sampling: Additional textures for tables, walls, and floors
were automatically sampled to avoid overlap with the test environments.

• Light Variations: Different lighting parameters were applied to the scenes.
• Camera-view Shifts: Camera angles differed by 5° on the spherical coordinate system

compared to the test set.
• LLM-based Language Rewrites: New language instructions were generated to provide

additional linguistic diversity.
• Image Noise: Sensor noise parameters differed from those listed in Table 5.

E.3 TRAJECTORY COLLECTION

Trajectory collection was performed using the original LIBERO dataset’s (state, action) pairs, ex-
ecuted in the newly generated environments. Only successful trajectories were retained, and any
actions corresponding to no-ops were filtered out. Specifically, 2,400 trajectories were collected for
the compounding object variant, while 4,000 trajectories were collected for each of the other vari-
ants, resulting in a total of 22,400 trajectories. After filtering, over 20,000 high-quality trajectories
were retained for training.

E.4 TRAINING CONFIGURATION

Using this dataset, we performed mixed fine-tuning based on the official OpenVLA-OFT weights.
The training was conducted on 8× A100 GPUs with a learning rate of 5× 10−4 for 100,000 steps.
The batch size was set to 64 per GPU, resulting in an effective batch size of 512. We employed the
AdamW optimizer with weight decay of 0.1 and used a cosine learning rate schedule with warmup.
The training results on LIBERO-pro are shown in Table 2.
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Figure 8: Model performance trends across perturbation difficulty levels. The line plots show the
success rate of each model as the intensity of all seven different perturbation dimensions increases.

E.5 STORAGE FORMAT

All trajectories are stored in the rlds format, consistent with standard practices for robotics datasets
and ensuring compatibility with existing training pipelines.

Figure 9: Distribution of the 7-dimensional robot actions in the generalized dataset. Plots are ar-
ranged from top to bottom and left to right, corresponding to action dimensions 1–7.

F GOAL REPLACEMENT ROLLOUT CASES ANALYSIS

To further probe whether Vision-Language-Action (VLA) models genuinely understand and act
upon natural language instructions, we designed a goal replacement evaluation. In this task, the
target object specified in both the instruction and the task goal was replaced with an alternative ob-
ject from the same scene, while keeping the rest of the environment unchanged. For example, an
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Table 8: Pairwise evaluation results across different perturbation dimensions.

Object Background Light Camera Robot Noise
Object 71.75 – – – – –
Background 57.00 85.75 – – – –
Light 57.20 67.10 82.10 – – –
Camera 35.95 37.70 39.65 57.30 – –
Robot 24.40 29.95 29.65 19.05 39.10 –
Noise 44.55 51.05 54.00 36.70 22.15 71.50

original instruction such as “pick up the alphabet soup and place it in the basket” could be modi-
fied to “pick up the tomato sauce and place it in the basket”. We performed this manipulation on
the object suite, where misalignment between model actions and instructions was most pronounced.
Figure 5(b) summarizes the performance drop across models, while the rollout cases in Figure 10
reveal how these degradations manifest in execution.

From these results, we observed two key patterns:

1. Lack of cross-object generalization in instruction following. Across all tested instances,
models failed to adapt to the new target specified in the instruction, with success rates
in replaced-target tasks dropping nearly to zero. This drop was particularly dramatic for
OpenVLA-OFT, whose accuracy in the modified target setting diminished from high base-
line values to almost complete failure. This confirms that the robustness observed in ear-
lier language perturbation experiments did not originate from true linguistic comprehen-
sion—the models appear to ignore linguistic signals and rely instead on fixed, learned per-
ception–action associations.

2. Over-reliance on fixed vision–action mappings rather than dynamic instruction-based
planning. In nearly all rollout cases (Figure 10), the model performed the original action
for the original target even when the instruction had explicitly changed. For example:

• In case (a), the new instruction specified picking up the butter, yet the model still
picked up the alphabet soup as in the original task.

• In case (c), the model was instructed to pick up tomato sauce, but executed the original
butter action.

• Similar behavior was observed in (d) and (e), where the model persisted with the
original target (e.g., chocolate pudding, cream cheese) rather than adjusting to the
new goal.

These behavioral patterns indicate that the VLA models in our study function more like “visual
pattern matchers” mapping scene configurations to predetermined action sequences, rather than in-
tegrating task-relevant

G DETAILS OF THE COMPOSITIONAL GENERALIZATION EXPERIMENTS

G.1 SUCCESS RATE RECORD

Table 8 reports the pairwise success rates across different perturbation dimensions. Each diagonal
entry corresponds to the performance under a single perturbation dimension, while the off-diagonal
entries represent joint perturbations of two dimensions. This analysis allows us to examine not only
the robustness of models to isolated disturbances, but also the interaction effects between multi-
ple perturbations, which are critical for assessing ompositional generalization in realistic robotic
scenarios.

G.2 SIGNIFICANCE EXPERIMENTS FOR COMPOSITIONAL GENERALIZATION

To ensure that the observed deviations between the expected product-based success rates and the ac-
tual joint success rates are not due to random chance, we conduct significance experiments. Specif-
ically, we aim to statistically validate whether the negative compositionality gaps indeed reflect

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Pick up the alphabet soup and place it in the basket → pick up the butter and place it in the basket
Actually did the task "Pick up the alphabet soup and place it in the basket"

(b) Pick up the alphabet soup and place it in the basket → pick up the butter and place it in the basket
Actually did the task "Pick up the alphabet soup and place it in the basket"

(c) Pick up the butter and place it in the basket → pick up the tomato sauce and place it in the basket
Actually did the task "Pick up the butter and place it in the basket"

(d) Pick up the chocolate pudding and place it in the basket → pick up the salad dressing and place it in the basket
Actually did the task "Pick up the chocolate pudding and place it in the basket"

(e) Pick up the cream cheese and place it in the basket → pick up the milk and place it in the basket
Actually did the task "Pick up the cream cheese and place it in the basket"

Figure 10: Behavioral Analysis of Goal Replacement Failures. Case studies showing model re-
sponses to modified instructions. For each pair: original→new instruction (above); actually exe-
cuted behavior (below). The consistent execution of original tasks despite changed targets indicates
shallow language processing and strong bias toward memorized visual-action associations.

systematic interaction effects between perturbations, rather than sampling noise arising from finite
trials. For this purpose, we adopt the classical chi-square test for independence.

Let n00 be the number of samples succeeding under neither of the two perturbations, n01 the number
succeeding under perturbation 2, n10 the number succeeding under perturbation 1, and n11 the
number succeeding under both perturbations.
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• Chi-square test for independence: To statistically assess whether the deviation is signifi-
cant, we consider the 2×2 contingency table of success counts under perturbations Di and
Dj :

Dj = 0 Dj = 1 Total
Di = 0 n00 n01 n0·
Di = 1 n10 n11 n1·
Total n·0 n·1 n

The chi-square statistic is then given by

χ2 =
∑
r,c

(Orc − Erc)
2

Erc
,

where Orc denotes the observed count and Erc = (row total)×(column total)
n is the expected

count under the independence hypothesis.

• p-value: Given the chi-square statistic χ2 and the corresponding degrees of freedom (here
dof = 1 for a 2× 2 table), the p-value is the probability of observing a test statistic at least
as extreme as χ2 under the null hypothesis of independence:

p = P
(
χ2

dof=1 ≥ χ2
)
,

where χ2
dof=1 denotes a chi-square distribution with 1 degree of freedom. A small p-value

(e.g., < 0.05) indicates strong evidence against the independence assumption.

A large χ2 value (with small p-value) indicates that the joint success/failure distribution under per-
turbations di and dj deviates significantly from the independence assumption, implying interaction
effects between the two perturbations. Conversely, a small χ2 (large p-value) suggests no evidence
against independence.

Table 9: Chi-square test results for perturbation pairs

Perturbation A Perturbation B Chi-square p-value

Object Env 4.09 4.32e-02
Object Light 1.23 2.68e-01
Object Camera 7.55 6.01e-03
Object Robo init 6.13 1.33e-02
Object Noise 9.42 2.14e-03
Env Light 2.37 1.24e-01
Env Camera 26.1 3.33e-07
Env Robo init 4.87 2.74e-02
Env Noise 16.1 6.07e-05
Light Camera 12.1 4.92e-04
Light Robo init 2.79 9.48e-02
Light Noise 4.53 3.34e-02
Camera Robo init 6.76 9.31e-03
Camera Noise 5.51 1.90e-02
Robo init Noise 14.3 1.59e-04

From Table 9, it can be observed that most perturbation pairs yield large χ2 values, with corre-
spondingly tiny p-values, below conventional significance thresholds (0.05). This indicates that the
joint distribution under different perturbations deviates strongly from the independence assumption,
implying clear interaction effects between perturbations.

Overall, the results consistently demonstrate that perturbation interactions are significant and cannot
be ignored when evaluating compositional generalization.

H FAILURE CASES STUDY

To gain deeper insights into the model’s failure mechanisms beyond aggregate performance met-
rics, we conduct a qualitative analysis of characteristic error patterns across different perturbation
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types. This case study reveals how each perturbation dimension induces distinct failure modes in
object localization, task understanding, and action execution, providing explanatory context for the
quantitative results presented in previous sections. Typical failure cases can be seen in Figures 17
to 19.

texture = FabricString

texture = Bricks

texture = Cobblestone texture = FabricTarpPlastictexture = FabricSuedeFine

texture = FabricTarpPlastictexture = CliffDesertorigin

Figure 11: Rendering results with background texture perturbations. The top-left image is the orig-
inal; the others show results with the textures as labeled.

origin hr=8,vr=15,dis=
100,chr=0,cvr=0

hr=47,vr=15,dis=
100,chr=0,cvr=0

hr=0,vr=0,dis=
100,chr=350,cvr=352

hr=0,vr=0,dis=
153,chr=0,cvr=0

hr=299,vr=15,dis=
100,chr=0,cvr=0

hr=74,vr=15,dis=
100,chr=0,cvr=0

hr=320,vr=0,dis=
100,chr=0,cvr=0

Figure 12: Rendering results under background texture perturbations, comparing the original image
(top-left) with transformed versions. The labels denote the following transformation parameters:
hr (horizontal rotation angle), vr (vertical rotation angle), dis (distance pulled away), chr (in-place
horizontal rotation angle), and cvr (in-place vertical rotation angle).
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∆����=3.54 ∆���� = 3.48 ∆���� = 3.31

∆���� = 3.49 ∆���� = 3.19 ∆���� = 3.35 ∆���� = 3.55

origin

Figure 13: Rendering results with robot initial state perturbations. The top-left image is the original;
the others show results with the norm of the change in the robot’s joint angles as labeled.

diffuse=1.166,dir=0.0,
specular=0.0,shadow=0

diffuse=0.866,dir=0.0,
specular=0.0,shadow=1

diffuse=0.375,dir=0.165,
specular=0.429,shadow=0

diffuse=0.812,dir=0.0,
specular=0.0,shadow=1

diffuse=1.218,dir=0.835,
specular=1.0,shadow=0

diffuse=0.375,dir=0.0,
specular=0.0,shadow=1

diffuse=0.375,dir=0.165,
specular=1.0,shadow=1

origin

Figure 14: Rendering results with light perturbations. The top-left image is the original; the others
show results with the relative change as labeled.

I DETAILED RESULTS OF LIBERO-PRO

This section presents a comprehensive analysis of generalization performance under diverse per-
turbations on the LIBERO-Pro benchmark. Table 10 provides detailed success rates across seven
perturbation categories (Camera, Robot Initialization, Language Instruction, Lighting, Background,
Sensor Noise, and Scene Layout) for various VLA methods, with results further broken down by
task suite (Spatial, Object, Goal, and Long). The comparative analysis reveals significant differ-
ences in robustness patterns across methods and perturbation types, offering valuable insights for
understanding model generalization capabilities.
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origin motion blur , 
severity =1 

motion blur , 
severity =5 

zoom blur , 
severity =1 

fog, severity =1 fog, severity =4 glass blur , 
severity =1 

zoom blur , 
severity =9 

Figure 15: Rendering results with sensor noise perturbations. The top-left image is the original; the
others show results corresponding to the type and severity of the applied noise, as indicated by the
labels.

origin object=1 object=2 object=3

object=3 object=4 object=5object=4

Figure 16: Rendering results with object layout perturbations. The top-left image is the original; the
others show results with the number of added objects as labeled.

Table 10: Detailed generalization performance comparison across different perturbation types on
the LIBERO-pro benchmark. The table reports success rates (%) for various VLA methods under
seven distinct perturbation categories and their average (Total). Results are further broken down by
task suite to provide fine-grained insights into each method’s robustness capabilities.

Camera Robot Language Light Background Noise Layout Total

OpenVLA

Spatial 0.0 3.7 27.7 12.3 50.4 12.0 40.7 19.4
Object 0.5 4.5 21.0 1.0 45.2 11.4 22.4 14.0
Goal 2.5 2.7 21.5 9.0 27.1 19.5 25.6 15.1

Continued on next page
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Table 10 (continued)
Camera Robot Language Light Background Noise Layout Total

Long 0.0 3.0 22.2 10.6 19.4 17.6 28.3 14.3
Avg 0.8 3.5 23.0 8.1 34.8 15.2 28.5 15.6

OpenVLA-OFT

Spatial 88.3 40.0 80.5 98.3 97.3 96.3 93.9 84.0
Object 38.9 25.4 99.0 73.7 97.6 72.3 71.8 66.5
Goal 62.0 25.2 53.2 93.9 92.5 75.2 59.1 63.0
Long 38.7 38.2 87.0 89.4 86.8 63.5 76.9 66.4
Avg 56.4 31.9 79.5 88.7 93.3 75.8 74.2 69.6

OpenVLA-OFT w

Spatial 8.8 39.7 83.6 88.4 99.2 55.3 82.7 62.5
Object 10.1 31.4 76.4 85.9 96.4 48.3 66.3 56.0
Goal 16.4 39.9 47.1 85.3 89.0 54.9 61.8 53.3
Long 6.2 43.8 77.3 46.0 90.7 43.0 72.0 52.2
Avg 10.4 38.6 70.5 76.8 93.6 49.9 69.9 55.8

OpenVLA-OFT m

Spatial 55.3 19.7 92.7 100.0 92.3 85.2 94.5 75.4
Object 70.2 18.1 98.5 100.0 91.9 94.1 77.4 77.1
Goal 56.6 17.1 47.6 87.8 94.7 65.7 46.6 56.2
Long 41.0 31.8 88.3 82.1 85.5 69.9 61.0 63.9
Avg 55.6 21.7 81.0 92.7 91.0 78.6 68.7 67.9

NORA

Spatial 4.3 50.9 63.8 66.8 65.5 12.5 84.6 47.6
Object 0.5 28.4 76.4 25.3 54.8 5.7 55.8 34.4
Goal 2.9 31.1 56.6 60.6 60.5 18.2 53.9 38.8
Long 1.2 39.4 64.0 30.3 54.0 15.1 59.5 36.3
Avg 2.2 37.0 65.1 45.7 58.6 12.8 62.1 39.0

WorldVLA

Spatial 0.0 44.3 46.3 65.1 19.8 11.7 46.1 32.5
Object 0.0 26.4 57.2 20.5 17.3 18.0 53.6 28.6
Goal 0.3 30.6 42.2 68.8 30.3 13.5 47.4 31.8
Long 0.0 12.2 20.6 20.4 1.7 1.6 4.4 8.2
Avg 0.1 27.9 41.6 43.7 17.1 10.9 38.0 25.0

UniVLA

Spatial 1.1 52.6 83.9 96.6 90.7 15.7 69.5 55.5
Object 0.0 42.2 86.9 25.6 81.5 10.4 27.3 36.7
Goal 3.9 37.9 45.6 89.6 78.3 33.5 22.6 40.7
Long 1.9 53.2 64.2 65.7 74.4 25.4 16.4 39.9
Avg 1.8 46.2 69.5 69.0 81.0 79.0 31.9 52.1

pi0

Spatial 17.8 6.6 58.8 89.7 90.7 90.9 89.1 60.7
Object 22.2 8.3 70.0 90.9 91.1 87.0 76.2 61.4
Goal 12.3 5.6 39.3 84.2 76.5 76.5 44.7 44.9
Long 3.8 3.6 68.4 74.5 69.5 64.4 69.6 48.4
Avg 13.8 6.0 58.8 85.0 81.4 79.0 68.8 53.6

pi0 Fast

Spatial 87.2 26.9 84.2 37.0 97.7 93.2 95.5 74.4
Object 72.0 27.6 71.5 71.0 95.2 93.1 84.5 72.7
Goal 70.8 20.5 47.3 95.3 60.9 69.7 51.6 57.5

Continued on next page
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Table 10 (continued)
Camera Robot Language Light Background Noise Layout Total

Long 33.2 12.0 43.6 91.6 44.6 46.1 47.8 43.4
Avg 65.1 21.6 61.0 73.2 73.2 74.4 68.8 61.6

RIPT-VLA

Spatial 85.4 38.0 99.7 99.7 100.0 92.0 92.3 85.8
Object 37.9 26.4 80.8 85.9 99.2 68.0 70.1 64.3
Goal 65.7 23.2 45.4 74.2 79.7 71.0 59.8 58.0
Long 34.1 38.4 88.3 93.4 89.3 66.4 79.2 67.5
Avg 55.2 31.2 77.5 88.3 91.6 73.5 74.2 68.4

Ours
Spatial 98.4 31.7 96.0 99.3 98.8 86.3 97.8 86.1
Object 97.0 24.6 100.0 99.7 98.8 97.4 82.8 84.5
Goal 93.9 24.7 55.1 96.8 94.0 93.4 53.9 70.7
Long 82.6 40.7 94.8 83.2 85.1 80.6 80.3 77.7
Avg 92.8 30.3 85.8 94.9 93.9 89.3 77.6 79.5
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Camera – changes in camera position cause the model to localize the target object inaccurately.

Language - modified language description sets the task object as darkcolored dish, but the model 
incorrectly localizes cookies

Light - variations in light source position create shadows, leading to biased localization of the 
target object.

Noise - added noise blurs the image, resulting in inaccurate localization of the target object

Robot - changes in the robot arm’s initial position cause deviations in path planning and final 
positioning.

Layout - additional distractor objects lead to mislocalization of the target plate, with a nearby 
object being mistakenly recognized as the plate.

Figure 17: Failure Mode Analysis Across Perturbation Types. Visualization of characteristic failure
patterns induced by each perturbation dimension, revealing distinct vulnerability profiles: camera
shifts cause viewpoint-dependent localization errors; language modifications lead to semantic mis-
interpretations; lighting variations introduce shadow artifacts; sensor noise produces feature cor-
ruption; initial state changes affect trajectory planning; and object distractors trigger recognition
confusion.
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language - modified language description sets the task object as darkcolored dish, but the 
model incorrectly localizes cookies

light - variations in light source position create shadows, leading to biased localization 
of the target object.

noise - added noise blurs the image, resulting in inaccurate localization of the target 
object

noise - added noise blurs the image, resulting in inaccurate localization of the target 
object

initstate - changes in the robot arm’s initial position cause deviations in path planning 
and final positioning.

initstate - changes in the robot arm’s initial position cause deviations in path planning 
and final positioning.

camera – changes in camera position cause the model to localize the target object 
inaccurately.

Figure 18: Failure Mode Analysis Across Perturbation Types. Visualization of characteristic failure
patterns induced by each perturbation dimension, revealing distinct vulnerability profiles: camera
shifts cause viewpoint-dependent localization errors; language modifications lead to semantic mis-
interpretations; lighting variations introduce shadow artifacts; sensor noise produces feature cor-
ruption; initial state changes affect trajectory planning; and object distractors trigger recognition
confusion.
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camera – changes in camera position cause the model to localize the target object 
inaccurately.

camera – changes in camera position cause the model to localize the target object 
inaccurately.

object - additional distractor objects lead to mislocalization of the target plate, with a 
nearby object being mistakenly recognized as the plate.

object - additional distractor objects lead to mislocalization of the target plate, with a 
nearby object being mistakenly recognized as the plate.

object - additional distractor objects lead to mislocalization of the target plate, with a 
nearby object being mistakenly recognized as the plate.

object - The model fails to flexibly rotate the robotic arm, resulting in a collision with 
a distractor object.

object - after the object position is perturbed, the model fails to correctly localize the 
object.

Figure 19: Failure Mode Analysis Across Perturbation Types. Visualization of characteristic failure
patterns induced by each perturbation dimension, revealing distinct vulnerability profiles: camera
shifts cause viewpoint-dependent object localization inaccuracy; object distractors provoke recogni-
tion confusion and mislocalization of the target, in some cases leading to incorrect collision-prone
trajectories when arm motion flexibility is insufficient.
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