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Abstract

Parameter estimation in inverse problems involving partial differential equations (PDEs)
underpins modeling across scientific disciplines, especially when parameters vary in space
or time. Physics-informed Machine Learning (PhiML) integrates PDE constraints into deep
learning, but prevailing approaches depend on recursive automatic differentiation (autodiff),
which produces inaccurate high-order derivatives, inflates memory usage, and underperforms
in noisy settings. We propose Mollifier Layers, a lightweight, architecture-agnostic module
that replaces autodiff with convolutional operations using analytically defined mollifiers.
This reframing of derivative computation as smoothing integration enables efficient, noise-
robust estimation of high-order derivatives directly from network outputs. Mollifier Layers
attach at the output layer and require no architectural modifications. We compare them
with three distinct architectures and benchmark performance across first-, second-, and
fourth-order PDEs—including Langevin dynamics, heat diffusion, and reaction-diffusion
systems—observing significant improvements in memory efficiency, training time and ac-
curacy for parameter recovery across tasks. To demonstrate practical relevance, we apply
Mollifier Layers to infer spatially varying epigenetic reaction rates from super-resolution
chromatin imaging data—a real-world inverse problem with biomedical significance. Our
results establish Mollifier Layers as an efficient and scalable tool for physics-constrained
learning.

1 Introduction

Parameter estimation through inverse problems constrained by PDEs arise across science and engineering,
where parameters like diffusivity or conductance must be inferred from sparse, noisy measurements (Kaipio
& Somersalo (2006); Tarantola (2005); Herrera et al. (2022); Zhang et al. (2020)). Traditional inference
methods are computationally intensive, as they require repeatedly solving forward PDEs. These challenges
grow worse in high-resolution or real-time settings, especially when governing parameters vary at fine scales
or data is sparse (Xun et al. (2013)).

Deep learning has emerged as a powerful framework for such problems, with physics-informed machine
learning (PhiML) approaches (Toscano et al. (2024))—like PINNs (Raissi et al. (2019)), DeepFNO (Li
et al. (2020)), and DeepONet (Lu et al. (2021))—embedding PDE constraints into model training and
inference. These methods enable learning from limited observations, but rely heavily on recursive automatic
differentiation (autodiff) to compute spatial and temporal derivatives (Baydin et al. (2018)). Autodiff based
PhiML techniques are memory-intensive and can be unstable for higher-order derivatives (Wang et al. (2024);
Fuks & Tchelepi (2020); Fourment et al. (2023); Margossian (2019)), making such models brittle under noise
and costly for deep architectures.

To overcome these limitations, we propose mollifier layers(inspired from Friedrichs (1944); Murio et al.
(1998)): lightweight, architecture-agnostic modules that replace autodiff with convolution-based derivative
estimation using smooth, compactly supported kernels. These layers estimate derivatives via convolution
with analytic derivatives of smooth mollifier kernels, transferring differentiation off the network and implicitly
regularizing the computation for stability and noise robustness.
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Figure 1: Limitations of autodiff and overview of PhiML+Mollifier architecture. (a) Training time compar-
ison for PINNs with and without PDE residual loss. (b) PINN-predicted vs. actual Laplacian in a reaction-
diffusion system. (c) PINN-predicted vs. actual forcing term in a Langevin system. (d) PhiML+Mollifier
Layer architecture replacing autodiff with mollifier-based convolution.

Integrated into and benchmarked against three PhiML architectures—PINNs (Raissi et al. (2019)), PirateNet
(Wang et al. (2024)), and PINNsFormer (Zhao et al. (2023))—mollifier layers offer a scalable, robust alterna-
tive to autodiff for physics-informed learning. They achieve significant improvements in parameter recovery,
derivative stability, and computational efficiency across diverse PDEs, including a fourth-order reaction-
diffusion model (Heo et al. (2023)) where they infer the governing parameter with high correlations while
reducing the memory usage and time complexity by over an order of magnitude. Applied to super-resolution
microscopy (Schermelleh et al. (2019)) of the human cell nuclei, they enable spatially resolved inference
of critical biophysical parameters from noisy data, demonstrating practical utility in real-world scientific
modeling.

While our benchmarks target inverse PDEs, the underlying principle—offloading high-order derivative com-
putation to analytic mollifier convolutions—can possibly generalize to forward models (Karniadakis et al.
(2021)) (shown briefly in B.5), operator learning (Azizzadenesheli et al. (2024)), or neural ODE systems
(Ruiz-Balet & Zuazua (2023); Chen et al. (2018)) where gradient accuracy is crucial.

2 Motivation

As shown in prior work (Wang et al. (2024); Fuks & Tchelepi (2020); Fourment et al. (2023); Margossian
(2019)), recursive autodiff—despite its central role in PhiML—poses key bottlenecks for learning PDEs,
particularly in the accurate and efficient estimation of higher-order derivatives. To expose and quantify
these, we benchmarked an upgraded PINN (with fourier-features and residual connections, details in A.1),
which we will refer to as PINN on spatio-temporally varying parameter estimation. This analysis revealed
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Table 1: Peak memory usage by PINNs
Equation MSE Loss Only MSE + PDE Loss

Langevin (first order 1D) 0.17 GB 0.21 GB
Heat (second order 2D) 0.80 GB 1.20 GB
Reaction-Diffusion (fourth order 2D) 0.40 GB 2.70 GB

three core issues: compute cost, derivative inaccuracy, and memory blow-up, that directly motivated our
mollifier layer design.

Motivation #1: Rising cost of high-order derivatives with model depth. Evaluating PDE residuals
in PhiML requires multiple backward passes for each order of differentiation, causing compute time to grow
superlinearly with network depth (Cho et al. (2024); Suarez Cardona & Hecht (2023)). This becomes
especially burdensome in complex systems that demand deeper networks. For instance, in the reaction-
diffusion benchmark (system descrobed in Sec. 4.3), training PINNs with 7 to 15 layers using the full loss
(data + PDE) took significantly longer than using the data loss alone—an overhead that widens with network
depth (Fig 1a). Such costs slow down training and escalate power/hardware requirements, forming a major
scalability barrier.

Motivation #2: Inaccuracy in higher-order derivatives for high-frequency features. Recursive
autodiff is susceptible to rounding errors from repeated gradient operations. This instability becomes par-
ticularly problematic when modeling spatio-temporally varying or noisy parameters. For example, a PINN
trained to recover the gradient in a reaction-diffusion system achieved only 0.21 Laplacian correlation with
ground truth (Fig 1b), indicating poor quantitative accuracy.

These issues are exacerbated with high-frequency or noisy signals, where the inherent smoothness of neural
networks hinders the capture of sharp or discontinuous features (Fuks & Tchelepi (2020)). In a Langevin
system with Gaussian white noise (Sec. 4.1.1), the PINN failed to capture variance in the inferred parameter
(Fig 1c). Together, these results underscore the fragility of autodiff in noisy, high-order settings, motivating
the need for more stable and noise-resilient derivative estimation techniques.

Motivation #3: High memory overhead from recursive autodiff. Computing higher-order deriva-
tives through recursive autodiff requires storing intermediate gradients across layers, leading to memory usage
that scales with both depth and derivative order. In experiments with parameter estimation for Langevin,
heat, and reaction-diffusion equations using PINN(Sec. 4), adding the PDE error significantly increased
GPU memory usage (hardware specs in A.6) compared to training with data-only losses (Table 1). This
memory blow-up limits scalability and highlights the need for more memory-efficient alternatives.

3 Methods

3.1 Formulating parameter inference using PhiML

To ground our innovation, we begin with a brief overview of parameter inference for PDEs using a general
PhiML framework. Without loss of generality, consider a partial differential equation:

ut + D[u, λ] = 0, x ∈ Ω, t ∈ T (1)

where u(t, x) is the solution of the PDE, D[.; λ] is a non-linear/linear ordinary or partial differential operator
parameterized by λ(t, x) and the domain Ω is a subset in Rn. Subscripts denote differentiation in time t
or space x. Given this PDE, the aim is to infer λ(t, x) given a sparsely sampled set of u(t, x). In PhiML,
the solution u(t, x) is approximated by a deep neural network uθ(t, x) (or û), where θ represents the set of
all trainable parameters of the network. With the autodiff formulation (Paszke et al. (2017), Raissi et al.
(2019)), required gradients with respect to input variables (t, x) or network parameters θ can be computed.
Additionally, λ̂, the estimated parameter, is also an output of the neural network. The actual parameter
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λ(t, x) is spatially or temporally varying, which can be due to a pattered modulation in these parameters
or fluctuations due to noise. We assume that λ(t, x) is unknown across Ω, making parameter inference
challenging but broadly applicable. Combining the estimates (û, λ̂) with the derivatives of û computed
via autodiff, the PDE residual is defined as f̂ = ût + D[û, λ̂], evaluated at all points in Ω. With these
tools, the optimization problem is to minimize the total mean squared error (MSEtotal), which is defined as
MSEtotal = MSEu + MSEf , where,

Data loss: MSEu = 1
Nu

∑
i=Nu

|û(ti, xi) − u(ti, xi)|2 (2)

and

PDE residual loss: MSEf = 1
Nf

∑
j=Nf

|f̂(tj , xj , λj)|2. (3)

Here, Nu are the training data points available for the actual solution u(t, x) and Nf are all the points in
the discretized domain for which the solution is being sought. For the initial testing of the models and
characterizing their behavior, we use Nu = Nf and later validate the models on Nu = 0.1Nf , i.e., with 10%
sampling. The data loss is calculated on Nu, while the PDE loss on Nf .

3.2 Modified parameter inference with Mollifier Layers

Intuition behind Mollifier Layers: Recognizing the limitations of recursive autodiff, we draw from the weak-
form formulation in finite element methods (Hughes (2003)), where derivatives are inferred via integration
against smooth test functions. This principle suggests an alternative to gradient chaining: recovering deriva-
tives through structured integration applied directly to the network output. A similar idea underlies Sav-
itzky–Golay filters (Savitzky & Golay (1964)), which compute stable numerical derivatives by fitting local
polynomials within a sliding window—smoothing and differentiating simultaneously to mitigate the effects
of noise and discretization.

Mollifier layers formalize this intuition within neural architectures: rather than relying on recursive autodiff,
they compute derivatives via convolution with analytic derivatives of smooth, compactly supported kernels.
These mollifiers serve as localized test functions, converting differentiation into a stable smoothing operation
that is mathematically grounded and memory-efficient. Compared to alternatives like Gaussian filters or
splines, mollifiers offer two key advantages: (1) compact support for localized and efficient computation,
and (2) closed-form derivatives for stable gradient flow. Prior analysis (Murio et al. (1998)) confirms that
this formulation achieves provably bounded error under discretization and measurement noise, making it
well-suited for high-order and noise-prone inverse problems.

Formal definition: Drawing inspiration from Mollifiers (Friedrichs (1944)) and the weak form formulation of
PDEs (details in A.7), we construct a modified estimator, as illustrated in Fig 1d. Although the base PhiML
architecture remains unchanged aside from an added mollifier layer at the output, our methodology diverges
from traditional PhiML approach in key ways:

• Rather than predicting the target field û directly, the base network outputs ĝ. This decouples
function approximation from derivative evaluation: all PDE derivatives needed for the residual
are computed at the Mollifier Layer from ĝ using fixed (non-learned) operators, avoiding recursive
autodiff through the network.

• û, is obtained at the Mollifying layer through the following operation (where ∗ is the convolution
operator, η is the Mollifying function and U is the compact support of η):

û(n) = (ĝ ∗ η)(n) =
∫

m∈U

ĝ(m)η(n − m) dm, (4)
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• At the Mollifier Layer, the higher-order derivatives w.r.t. a variable j (e.g., time or space) at a
coordinate n, such as ûj(n), ûjj(n), etc., are obtained through the following operations:

ûj(n) = (ĝ ∗ ηj)(n) =
∫

m∈U

ĝ(m)ηj(n − m) dm, (5)

ûjj = (ĝ ∗ ηjj)(n) =
∫

m∈U

ĝ(m)ηjj(n − m) dm. (6)

This formulation offloads derivative computation to analytic derivatives of a predefined mollifier η. Rather
than using recursive autodiff, we obtain the required derivatives by convolving the learned function ĝ with
the corresponding kernel derivatives ηj , ηjj , etc.; any order-k derivative is computed directly using the
precomputed order-k derivative of η. This decoupling is the central innovation: it enables efficient and
stable high-order derivatives, inherently regularized by a low-pass filtering effect, while substantially reducing
memory and compute costs.

Implementation of Mollifier Layers. In practice, the integrals in Eqs (4-6) are implemented as discrete
convolutions over the compact support U . The network outputs ĝ on the collocation grid, and the Mollifier
Layer applies fixed kernels to produce û = ĝ ∗ η and derivative fields such as ûj = ĝ ∗ ηj and ûjj = ĝ ∗ ηjj .
Consequently, each required PDE derivative is obtained by a single convolution with the corresponding
analytic kernel derivative, avoiding recursive autodiff through the network. In Fig 1d, the Mollifier Layer
corresponds exactly to these fixed-kernel convolutions, with kernel size determined by U . During training, we
compute the PDE residual loss from û and its derivatives; gradients backpropagate through the convolution
operations to update the base network parameters, while the mollifier kernels (η, ηj , ηjj) remain fixed.

The mollifier η is designed to satisfy the following properties:

1. Smoothness (Infinitely Differentiable): The mollifier η is chosen from the C∞ class to enable com-
putation of all high-order PDE derivatives.

2. Compact Support: η has compact support on U ⊂ Rn, meaning η(m) = 0 for all m /∈ U . This
confines integration to a finite region, reducing computational cost by restricting convolution to a
fixed kernel size.

3. Non-Negativity: η(m) ≥ 0 for all m ∈ U , ensuring the mollifier behaves as a localized averaging
kernel and adheres to the following:

(a) In the limit the support of η contracts to zero, the mollifying operation converges to the identity
operator, with η approximating the Dirac delta δ(m).

(b) Non-negativity prevents destructive interference during integration, mitigating cancellation er-
rors common in oscillatory kernels.

(c) In physical systems with inherently non-negative targets (e.g., density, concentration), non-
negative mollifiers preserve this constraint for consistent estimates.

We consider several mollifiers (e.g., different order polynomials and sine-based kernels) defined on appropriate
compact supports; their explicit forms are provided in App A.5. An extension of mollifier layers to multi-
parameter (vector-valued) inverse problems is given in App D. In our default setting we use a smooth
compactly supported mollifier, e.g. the standard C∞ bump η(x) = c exp

(
− 1

1−∥x∥2

)
1{∥x∥<1}. The derivative

kernels ηj , ηjj , . . . are obtained by analytic differentiation of η and discretized over the same support U used
in Eqs (4-6). The kernel size is determined by the compact support U and controls the smoothing detail
trade-off; we sweep a small set of supports and use validation performance to select U (values in Sec A.5).

With this formulation, mollifier layers provide the following key advantages over traditional autodiff-based
physics-informed approaches: (1) Computational efficiency: Derivatives are computed via a single
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Figure 2: Parameter inference for the Langevin equation using PINN and Mollified PINN. a) Ground truth
and predicted u(t). b–c) MSEu Data and MSEf PDE residual learning curves. d) Ground truth and
inferred forcing term λ(t) under Gaussian noise. e–f) Actual vs. predicted noise trends in λ(t). g) Inferred
time-varying λ(t) without noise. h) Inferred time-varying λ(t) with added noise.

output-layer convolution, avoiding recursive autodiff and reducing memory usage. (2) Structural de-
coupling: Differentiation is shifted to fixed analytical kernels, independent of network depth. (3) Noise
robustness: As localized smoothers, mollifiers suppress high-frequency artifacts, enabling stable inference
under noise.

Convergence guarantees of the Mollifier layer. [Uniform derivative consistency] Let the true field u ∈
C1([0, 1]) be L-Lipschitz. Noisy grid samples are gj = u(xj) + nj at xj = jh with |nj | ≤ ε. Denote by
ηδ(r) = δ−1η(r/δ) the analytic kernel from the mollifier layer and Jδg = ηδ ∗ g. Then∥∥D0(Jδg) − u′∥∥

∞ ≤ C1 δ + C2 (h + ε), (7)

where D0gj = (gj+1 − gj−1)/(2h). [Proof sketch.] Combine Murio et al. Murio et al. (1998) Thm 2.6
(continuous bias) with Thm 3.5 (discrete + noise); see appendix A.8. Choosing δ ≈

√
h balances bias and

variance, giving O(
√

h) uniform error while the backward operator norm remains O(1/δ).

3.3 Inverse parameter estimation

The proposed methodology estimates the spatio-temporally varying PDE parameter λ̂(t, x). As discussed
in Motivation#2, even though this approach yields estimates for smoothly varying parameters; it may un-
derperform when capturing high-frequency variations due to the inherent smoothness bias of neural network
outputs. To mitigate this limitation, we introduce an alternative estimation strategy applicable when λ(t, x)
can be expressed as a function of other predicted quantities—i.e., when λ is separable. For example, consider
a PDE of the form ut−λD[u] = 0, then our final estimated PDE parameter is λ̂final = ût

D[û] . We propose that
this estimation will better capture the ground truth, as û, optimized through the data loss (MSEu), reflects
data variance and is better equipped to capture rapidly varying spatio-temporal features. We emphasize
that this is a special case; the mollifier layer applies regardless of whether λ is separable.

4 Experiments

We evaluate our method on three PDE benchmarks of increasing complexity: 1D Langevin (first-order), 2D
heat (second-order), and 2D reaction–diffusion (fourth-order). We compare standard architectures—upgraded
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PINNs (Raissi et al. (2019)) (with residual connections (Wang et al. (2021a)), spatio-temporal encodings
(Wang et al. (2021b)), and layer norm (Ba et al. (2016))), PirateNet (Wang et al. (2024)), and PINNsFormer
(Zhao et al. (2023))—against their mollified counterparts where applicable. These pairwise comparisons
(native vs. native+mollifier) serve as direct ablation studies, isolating the impact of mollifier layers across
models. The selected architectures reflect a spectrum of design choices: PINNs as the canonical baseline,
PirateNet for its stability with higher-order derivatives, and PINNsFormer for its use of attention mechanisms
(Vaswani et al. (2017); Dosovitskiy et al. (2020); Niu et al. (2021)). Due to the high computational cost
of attention-based models, we do not include a mollified PINNsFormer; mollified PINNs already achieve
superior performance at a fraction of the computational cost. To further benchmark against alternatives
to autodiff, we compare our method with FD-PINNs, which approximate derivatives using finite differences
(Lim et al. (2022); Huang & Alkhalifah (2024); Chiu et al. (2022)). While FD-PINNs are among the most
memory- and time-efficient approaches, our results show that Mollifier Layers, by virtue of their built-in
regularization, achieve superior accuracy—particularly for higher-order derivatives (theoretical comparison
in A.8). While all quantitative comparisons are reported in the main text, we plot only the Mollified-PINN
variants for clarity. All supporting plots are provided in the appendix.

4.1 First-Order 1D Langevin equation

To evaluate parameter inference under time-varying dynamics, we consider a simplified form of the Langevin
equation—a classical model for systems subject to both deterministic and stochastic forces. Specifically, we
use the rescaled first-order ODE:

ut = u + λ(t), (8)

where u(t) is the observed velocity and λ(t) is an unknown forcing term to be inferred. This formulation
preserves the essential Langevin-dynamics structure—modeling stochastic forcing transients—while sidestep-
ping second-order complexity. As our simplest nontrivial ODE, it offers a clear benchmark for evaluating
inference accuracy and robustness.

Setup. We observe u(t) at Nu time points and infer the forcing λ(t) in ut = u + λ(t). Training minimizes
a data misfit on u(t) together with the PDE residual enforced at Nf collocation points; derivatives are
computed via autodiff for native models and via the Mollifier Layer for mollified variants. We report (i)
correlation of the inferred forcing mean and variance against ground truth and (ii) training time and peak
memory (Table 2; Fig. 2). Unless stated otherwise, we use the default mollifier η from Sec. A.5. Under
constant forcing λ, all models perform similarly; we therefore focus below on settings with temporal variation
and/or noise where derivative stability matters most.

4.1.1 Langevin equation with Gaussian White Noise

We simulate trajectories where the forcing is λ(t) ∼ N (Λ, σ2) with Λ = −1 being the mean of the forcing term
and σ ∈ {0, 0.44, 1} being the variance capturing the noise around the mean, and we provide observations of
u(t) to the models while treating λ(t) as unknown. All methods optimize the standard inverse-PDE objective
consisting of a data term on u(t) and a physics residual term for ut − u − λ(t), with mollified derivatives
used for the residual in mollified variants. For consistency, we set Nu = Nf across all experiments, using the
default mollifier η (Sec. A.5). As shown in Fig. 2a–c for σ = 1, both PINNs and mollified PINNs converge
to the underlying function, but the latter, with our parameter estimation scheme, more accurately captures
noise variations (Fig. 2d). Across noise levels, mollified PINNs consistently outperform standard PINNs in
capturing these trends (Fig. 2e). The same qualitative improvements hold across architectures (Table 2).

We evaluated each method’s accuracy—via mean and variance correlation—and computational effi-
ciency—via training time and memory—over five runs per noise level. Mollified variants consistently outper-
formed their native counterparts in tracking temporal trends and used fewer resources on average (Table 2).

4.1.2 Langevin Equation with temporally varying force

We next evaluate the performance of the models in inferring a noiseless, temporally varying parameter.
For this, we simulate a trajectory with a time-dependent mean forcing term, λ(t) = Λ(t), and generate
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Figure 3: Parameter estimation for the Heat and Reaction–Diffusion equations using Mollified PINN. a)
Ground truth and predictions for constant and spatially varying thermal diffusivity λ(x, y) and Laplacians
for the 2D heat equation. b) Predicted vs. actual chromatin order parameter ϕd, recovered Laplacian, and
training curves for the reaction–diffusion system.

simulations for various configurations of Λ(t) to compare the capabilities of the native models with their
mollified versions. As shown in Fig. 2g, mollified PINNs provide a very good estimate of the underlying
parameter’s variation. While all variants successfully capture the global mean, native variants generally fail
to capture the temporal variation in the parameter.

We introduced noise (σ = 1) to the underlying parameters by sampling λ(t) ∼ N (Λ(t), 1). As illustrated in
Fig. 2h, mollified PINNs demonstrate great performance in capturing temporal trends in the forcing term
compared to PINNs (Fig. 13). Similar trends are obtained for the other models (Figs. 14–16), proving that
the mollifier layer lends higher accuracy predictions.

Additional results (constant forcing, other architectures, and kernel ablations) are in App. B (Secs. B.1–B.4;
Figs. 5–16).

4.2 Second-Order 2D Heat Equation

We consider the steady-state 2D heat equation, a second-order PDE modeling spatial temperature distribu-
tion under thermal diffusion and external sources:

λ(x, y)∇2u + m(x, y) = 0, (9)

where u(x, y) is the observed temperature field, λ(x, y) is the unknown thermal diffusivity, and m(x, y) is a
known source term. The goal is to recover λ(x, y) from a sparsely sampled u(x, y) and a known m, a problem
relevant in materials science, geophysics, and biomedical imaging for characterizing heterogeneous media.

Setup. We observe u(x, y) at Nu spatial locations and infer λ(x, y) in λ∇2u + m = 0, with m(x, y) known.
Training minimizes a data term on the observed u together with the PDE residual enforced at Nf collocation
points, using autodiff for native models and the Mollifier Layer to compute ∇2u for mollified variants. We
report correlation between inferred and ground-truth λ(x, y) and computational cost (training time and peak
memory; Table 2).

We evaluate all models on cases with both constant and spatially varying diffusivity. Fig 3a shows rep-
resentative results for mollified PINNs, and Table 2 summarizes correlation and efficiency across methods.
Additional qualitative comparisons for other architectures are provided in App. B (Figs 17-20).

4.3 Fourth-Order 2D Reaction–Diffusion Equation

Reaction-diffusion systems model spatial pattern formation via diffusion and local reaction kinetics, with
applications in biology, chemistry, and ecology (Epstein & Xu (2016)). We study a biologically motivated
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system describing DNA organization in the eukaryotic/human nucleus, where heterochromatin (inactive)
and euchromatin (active) states are shaped by diffusion and epigenetic reactions such as methylation and
acetylation—key drivers of gene regulation (Kant et al. (2024); Vinayak et al. (2025); Dhankhar et al.
(2025)). Our goal is to infer the spatially varying reaction rate λ(x, y) from the final chromatin configuration
in synthetically generated data, enabling scalable estimation of biophysical parameters. In Sec. 5, we extend
this framework to experimentally obtained super-resolution imaging data.

We adopt a phase-field model (Kant et al. (2024)) with volume fractions ϕh, ϕe, and ϕn for heterochromatin,
euchromatin, and nucleoplasm, respectively. These volume fractions satisfy the space-filling constraint ϕh +
ϕe + ϕn = 1. In Sec 4.3 we focus on the inverse problem for λ(x, y) using the chromatin order parameter
ϕd = ϕh − ϕe; ϕn is therefore omitted from subsequent expressions (it can be recovered implicitly from the
constraint when needed). The dynamics of the system are described as:

∂ϕd

∂t
= ∇2µd + 2(λϕe − ϕh), (10)

where µd is a chemical potential depending on ϕh and ϕe. At steady state, this yields:

∇2µd + 2(λϕe − ϕh) = 0. (11)

Since µd depends on second-order derivatives of ϕd (i.e., includes terms proportional to ∇2ϕd), the operator
∇2µd contains fourth-order derivatives of ϕd (via ∇2(∇2ϕd)). This makes the steady-state inverse problem
effectively fourth order and a challenging testbed for stable high-order derivative learning.

Setup. We observe the final chromatin configuration (i.e., ϕh(x, y) and ϕe(x, y), equivalently ϕd(x, y))
at Nu spatial locations and infer the spatially varying reaction rate λ(x, y) in the steady-state equation
above. Training minimizes a data misfit on the observed chromatin fields together with the PDE residual
enforced at Nf collocation points. Native models compute the required spatial derivatives via autodiff, while
mollified variants compute them via the Mollifier Layer (fixed convolutions), including the Laplacian and
higher-order terms arising through ∇2µd. We report accuracy of λ(x, y) (correlation) as well as intermediate
derivative fidelity (e.g., Laplacian correlation where applicable) and computational cost (training time and
peak memory; Table 2).

As shown in Fig 3b, mollified PINNs accurately estimate λ(x, y) and stably recover the Laplacian as a
key intermediate, unlike standard PINNs, which often misestimate its magnitude (see also Fig 1). Mollified
models consistently outperform their native counterparts in both accuracy and efficiency (Table 2; additional
qualitative comparisons across architectures are shown in Figs 21-24).

Fig 4a further shows that mollified PINNs capture spatial noise trends in λ(x, y), which the native PINNs
fail to achieve, highlighting improved recovery of heterogeneous parameter fields in this high-order setting.
Additional implementation details and extended results are provided in App B.3.1 and Figs 21-24.

5 Biophysical Application

DNA architecture spans multiple spatial scales, with nanoscale features such as "heterochromatin domains"
lying below the diffraction limit of conventional microscopy (Ricci et al. (2015)). Super-resolution techniques
(Schermelleh et al. (2019)) like STORM (Rust et al. (2006)) overcome this barrier, enabling visualization of
sub-diffraction chromatin structures and their spatial heterogeneity (Fig 4b). While such imaging provides
rich qualitative insight, extracting mechanistic information demands integration with physical models.

Figure 4 summarizes this pipeline and its outputs. Fig 4a illustrates, on synthetic reaction-diffusion data,
that mollified PINNs recover spatially heterogeneous noise trends in the inferred reaction rate field λ(x, y),
a key capability needed for robust inference under measurement variability. Fig 4b shows representative raw
STORM images (Appendix C), which serve as the observational input to the inverse problem. Fig 4c reports
the inferred reaction-rate statistics over image regions: the predicted mean and variance of λ(x, y) closely
track the corresponding ground-truth statistics in controlled synthetic benchmarks and remain spatially
consistent with domain-like chromatin structure in STORM-derived fields.
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Table 2: Comparison of baseline and mollified models across PDEs and metrics. PINN: Physics-Informed
Neural Network, PN: PirateNet, PF: PINNsFormer, FD: FD-PINN, +M indicates the corresponding model
augmented with mollifier layers.

PDE Constraint (Order) Metric PINN PINN+M PN PN+M PF FD

1D Langevin (1st)

Time Taken (sec) 2138 1615 2414 1473 6507 1527
Mean Corr. 0.99 0.96 0.98 0.99 0.98 0.97

Temporal Corr. 0.36 0.97 0.98 0.97 0.35 0.97
Peak Memory (GB) 0.21 0.16 0.77 0.11 0.33 0.14

2D Heat (2nd)

Time Taken (sec) 2294 1582 4737 2948 10200 1478
Mean Corr. 0.81 0.99 0.13 0.22 0.73 0.82

Spatial Corr. 0.21 0.99 0.16 0.20 0.04 0.76
Peak Memory (GB) 1.20 0.24 1.15 0.11 0.80 0.21

Laplacian Corr. 0.16 0.99 0.01 0.23 0.09 0.71

2D Reaction-Diffusion (4th)

Time Taken (sec) 3386 335 817 125 34487 308
Mean Corr. 0.44 0.99 0.77 0.99 0.68 -0.73

Spatial Corr. 0.17 0.84 0.25 0.91 0.47 -0.86
Peak Memory (GB) 2.75 0.23 0.48 0.12 1.90 0.21

Laplacian Corr. 0.21 0.78 0.01 0.75 0.01 -0.38

Figure 4: Mollified PINNs capture spatial heterogeneity in reaction-rate inference and enable PDE-
constrained parameter extraction from STORM-derived chromatin fields. a) Synthetic benchmark: mollified
PINNs recover spatial noise trends in the inferred reaction-rate field λ(x, y). b) Example STORM image
region preprocessed into a continuous chromatin-density field (Appendix C) used as input to the inverse
problem. c) Predicted mean and variance of inferred reaction rates over image regions, showing faithful
recovery of reaction-rate statistics and spatial consistency with chromatin domain structure.

Together, Fig 4a-c demonstrates that mollifier layers enable stable, high-order PDE-constrained inference on
image-derived fields, supporting both accurate recovery of λ(x, y) and faithful capture of spatial variability
(mean/variance) that native PINNs miss in Sec 4.3. Resolving local epigenetic reaction rates from imaging
reveals the mechanistic drivers of chromatin reorganization, linking nanoscale domain remodeling to gene
regulation, cancer metastasis, and cell fate memory in development and disease contexts (Vinayak et al.
(2025); Heo et al. (2023); Kant et al. (2024)). Our results thus establish mollifier layers as a robust tool
for making PhiML scalable for integrating super-resolution imaging with biophysical modeling to extract
interpretable parameters from high-dimensional biological data.
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6 Discussion

By collapsing recursive higher-order automatic differentiation into a single analytic convolution, Mollifier
Layers reduce both memory footprint and training time by 6–10×, as demonstrated in our experiments,
while preserving robust, high-order derivative estimates. Though tested for inverse PDEs, the mollifier-based
derivative layer extends naturally to forward solvers (Sec. B.5), operator learning, and neural ODEs where
stable and accurate gradients are essential. This efficiency enables scalable physics-informed machine learning
to tackle complex systems like kilometer-scale weather models (Bodnar et al. (2024); Palmer (2019)) or
morphogenesis (Liu et al. (2024); Wyczalkowski et al. (2012)) simulations with markedly lower computational
cost.

Limitations: Performance remains sensitive to the choice of mollifier kernel (see Sec. B.1.3), which must
trade off noise suppression against high variance. The current hand-tuned implementation is limited near
boundaries and on anisotropic grids. Developing adaptive or learned kernels, boundary-aware formulations,
and validation strategies for adaptive meshes are key directions for future work.

7 Related Works

Recent physics-informed machine learning (PhiML) approaches—ranging from PINNs (Raissi et al. (2019))
and DeepONets (Lu et al. (2021)) to FNOs (Li et al. (2020)), PINOs (Li et al. (2024b)), and PIKANs
(Patra et al. (2024))—have advanced PDE modeling. Our focus is on inverse problems and stable derivative
computation, replacing recursive autodiff with a convolutional alternative. We review related work in these
directions and outline our contributions.

Inverse Modeling: Recent work mitigates inverse-PhiML shortcomings in complementary ways. PINNverse
(Almanstötter et al. (2025)) treats parameter recovery as a constrained optimization, improving robustness
to noise; H-PINN (Chandrasukmana et al. (2025)) enforces Hadamard well-posedness to regularize ill-posed
tasks; Bayesian PINNs (Yang et al. (2021)) place probabilistic priors on parameters to quantify uncertainty,
albeit with significant sampling cost; and gPINNs (Yu et al. (2022)) augment the loss with gradient informa-
tion to accelerate convergence; The PI-INN framework (Guan et al. (2024)) enables Bayesian inference via
invertible networks but retain the full autodiff graph. Beyond the PINN family, operator-learning models
such as the Latent Neural Operator (Wang & Wang (2024)) and Transformer-BVIP (Guo et al. (2022)) use
cross-attention or boundary-aware transformers for inverse PDEs. Despite these advances, all rely on recur-
sive autodiff. We replace it with a differentiable mollifier layer, enabling stable, memory-efficient, high-order
derivatives while remaining plug-and-play.

Alternatives to Autodiff: Prior efforts to avoid recursive autodiff fall into three tracks: (i) finite-difference
PhiML (Lim et al. (2022); Chiu et al. (2022); Huang & Alkhalifah (2024)) that save memory but lose
high-order accuracy and suffers at high resolution, (ii) spectral PhiML (Maust et al. (2022); Patel et al.
(2022)) that gain stability yet demand bespoke bases and (iii) operator-specific networks—e.g., Koopman
operator nets (Lusch et al. (2018)), implicit Fourier/Green-function networks (Li et al. (2024a))—that embed
analytical derivative kernels directly in the architecture; these deliver fast inference for a fixed PDE class but
cannot generalize beyond the operators they hard-code. He et al. (2023) accelerate PINN training by estimat-
ing PDE derivatives through Monte Carlo sampling of Gaussian-smoothed networks using Stein’s identity,
replacing stacked back-propagation with stochastic expectation estimators. In contrast, our approach offers
a general, architecture-agnostic alternative that enables stable, low-memory, high-order gradients—even in
noisy, fourth-order PDEs—without sacrificing flexibility across PDE classes.

Alternative inverse-PDE paradigms: Beyond alternatives to autodiff for physics-informed training, there are
complementary non-neural approaches to inverse PDEs. ODIL (Karnakov et al. (2024)) optimizes a discrete
physics/data loss over grid-valued unknown fields, whereas our mollifier layers retain a neural continuous
surrogate and replace recursive autodiff with mollified convolutional derivative operators for stable high-order
derivatives. Physics-Informed Regression (Nielsen et al. (2025)) estimates parameters via (often parameter-
linear) regression/least-squares structure, whereas our approach is an architecture-agnostic derivative module
that improves the efficiency and noise-robustness of high-order derivative evaluation in physics-informed
neural models without assuming parameter-linearity.
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8 Conclusion

Mollifier Layers offer a robust, scalable alternative to recursive autodiff, enabling stable high-order derivative
estimation critical for inverse PDE learning. By decoupling differentiation from network depth, they unlock
accurate, noise-resilient inference across complex physical systems. In doing so, Mollifier Layers pave the
way for physics-informed machine learning to tackle previously intractable regimes—where deep models must
reason stably over space, time, and noise—to extract scientific insight from data in real-world dynamical
systems.
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A Details of the models

A.1 Details of the PINNs implementation

Significant progress has been made in improving PINNs since they first came out (Raissi et al. (2019)),
specially showing that gradient flow can be significantly improved by adding residual connections (Wang
et al. (2021a)). Additionally, it is well known that layer normalization helps with gradient smoothening and
prevents explosion (Xu et al. (2019)). Since our aim is to accurately capture gradients and account for this
progress made, we used an upgraded PINN, which has the following two features in addition to the base
PINN architecture:

1. Residual Connections: Also known as skip connections, residual connections (He et al. (2016)) help
mitigate the vanishing gradient problem and facilitate the training of deep neural networks. They can
be incorporated into any layer by modifying the standard transformation in a multi-layer perceptron
(MLP). Given an input x to a node in a linear layer L, the standard output f(x) is defined as:

fL(x) = ϕ(Wx + b) (12)

where ϕ, W , and b represent the activation function, weights, and biases, respectively. To introduce
a residual (skip) connection between layer L and layer L + 1, the modified output fL

res(x) is given
by:

fL
res(x) = ϕ(Wx + b) + x (13)

This modification allows gradients to propagate more effectively through deeper layers, improving
both convergence and model performance.

2. Layer Normalization: Layer normalization (Ba (2016)) stabilizes and accelerates the training of deep
neural networks by normalizing activations across features within each training example, rather than
across the batch dimension as in batch normalization. This ensures consistent normalization even
for small batch sizes, making it particularly useful in recurrent and transformer-based architectures.
Given input features x, the output after applying layer normalization is:

f(x) = x − E[x]√
Var(x) + ϵ

γ + β (14)

where E[x] and Var(x) are the mean and variance computed over the feature dimension of each
input, and γ and β are learnable scaling and shifting parameters. This transformation ensures
stable feature distributions, improving training convergence and model performance.

A.2 Details of the PirateNet implementation

We adopt the original architectures—with their core components intact—and fine-tune each one by varying
their depth specifically for our problems, as detailed in Section B.

A.3 Details of the PINNsFormer implementation

We adopt the original architectures—with their core components intact—and fine-tune each one by varying
their depth specifically for our problems, as detailed in Section B.

A.4 Common training choices across models

We use the following choices for all the models:

1. Fourier Features: As shown through previous works (Wang et al. (2021b)), input features mapped
to a higher-dimensional space using Fourier features perform better in capturing high frequency
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signals in the output. Given an input x, we define a set of frequencies ωi within an interval I ⊂ R.
Specifically, we set I = [−3, 3] and select ωi at equal intervals within this range. The Fourier feature
transformation then maps each input x as follows:

x → [sin(ω1x), cos(ω1x), . . . , sin(ωnx), cos(ωnx)] (15)

where sin(x) and cos(x) are applied component-wise to each feature in x.This transformation expands
the feature space, allowing the model to capture periodic patterns and high-frequency variations in
the data. By incorporating both sine and cosine terms, Fourier features provide a richer oscilla-
tory representation, improving the model’s ability to approximate functions with diverse frequency
components. This enhanced representation strengthens the model’s ability to learn and generalize
frequency-dependent behaviors.

2. Adam Optimization: Adam is an adaptive optimization algorithm (Kingma & Ba (2014)) widely
used for training deep learning models. It combines the advantages of Momentum and RMSprop,
adapting the learning rate for each parameter based on both the first moment (mean of gradients)
and the second moment (uncentered variance of gradients). This adaptive mechanism allows Adam
to efficiently navigate complex optimization landscapes, ensuring faster convergence, especially in
problems involving sparse gradients or noisy datasets.
Adam maintains two moving averages for each parameter θ:

• mt: First moment (mean of gradients).
• vt: Second moment (uncentered variance of gradients).

At time step t, these moments are updated as follows:

mt = β1mt−1 + (1 − β1)gt (16)

vt = β2vt−1 + (1 − β2)g2
t (17)

where:

• gt is the gradient of the loss function with respect to θ at time step t.
• β1 and β2 are the exponential decay rates for the first and second moments, typically set to

β1 = 0.9 and β2 = 0.999.

To correct the bias toward zero in the initial steps, Adam applies bias correction:

m̂t = mt

1 − βt
1

, v̂t = vt

1 − βt
2

(18)

Finally, the parameters are updated using:

θt = θt−1 − α√
v̂t + ϵ

m̂t (19)

where:

• α is the learning rate.
• ϵ is a small constant (typically 10−8) to prevent division by zero.

Adam’s adaptive learning rates make it effective across a wide range of problems, particularly those
involving noisy or sparse gradients.
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3. Cosine Learning Rate Decay (Loshchilov & Hutter (2016)): In deep learning, the learning rate is
often initialized at a relatively high value and progressively reduced to refine the model and prevent
overshooting minima. A common approach for this adjustment is cosine annealing, which schedules
the learning rate to follow a cosine curve, ensuring a smooth and gradual decay. Compared to step
decay, cosine decay has been shown to improve convergence and generalization.
The learning rate αt at time step t is defined as:

αt =
{

η, if t < T0

ϵ + η cos
(

t−T0
T −T0

)
, if t ≥ T0

(20)

where:

• η is the initial learning rate.
• ϵ is the minimum learning rate (typically close to zero).
• T is the total number of training iterations or epochs.
• t is the current iteration or epoch.
• T0 is the point at which the learning rate transitions from constant to decreasing.

This decay strategy ensures a smooth reduction in the learning rate, allowing the model to gradually
settle into a well-generalized region of the loss landscape. When combined with Adam optimization,
cosine annealing can lead to faster convergence and improved performance on unseen data.

A.5 Choice of Mollifying function

With the constraints of smoothness, compact support, and non-negativity outlined in the main text, we
define three mollifying functions to explore the behavior of our methodology. We consider a second-order
polynomial, a fourth-order polynomial, and a sine function as potential mollification functions, along with
the original exponential mollifier kernel. These functions are defined as follows:

Second-order polynomial:
f2(x) = −(x2 − R2) (21)

Fourth-order polynomial:
f4(x) = −(x2 − R2)2 (22)

Sine function:
fsin(x) = sin

(
πRx

2 + π

2

)
(23)

Original mollification function:
fexp(x) = e

(
−1

1−x2

)
(24)

where x ∈ BR(0), with BR(0) representing the L2-norm ball centered at zero. We refer to BR(0) as U in the
main text for simplicity.

The kernel size is defined relative to the grid resolution, with values set as follows:

• Langevin equation: 0.01

• Heat equation: 0.005

• Reaction-diffusion system: 0.05

Thus, a kernel size of 7 corresponds to:
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• R = 0.3 for the Langevin equation,

• R = 0.015 for the heat equation,

• R = 0.15 for the reaction-diffusion system.

We benchmarked the performance of these kernels using the Langevin equation with a constant parameter
with noise, with details provided in Section B.1.

A.6 Hardware specifications

Our computing core consists of nodes equipped with four Tesla K80 GPU cards, each containing two
GK210GL GPUs, resulting in eight GPUs per node. The GK210GL GPU architecture features 13 Streaming
Multiprocessors (SMs), with each SM comprising 192 CUDA cores, yielding a total of 2,496 CUDA cores
per GPU. For each training run, we utilize a single node.

A.7 Weak Form Motivation

The success of the Finite Element Method (FEM), which employs a weak form approach to solve Partial
Differential Equations (PDEs) (Brenner (2008)Zienkiewicz et al. (2005)), has inspired the development of the
mollification operation (Friedrichs (1944)) presented in this work. Lets begin with function v, u, f : U → R.
here u is the actual solution to PDE , f is the source term and v is the weak form approximation of u′′. In
the weak form of a PDE, we aim to minimize the residual, which can be expressed as:

∫
U

v(y)ϕ(y) dy −
∫

U

f(y)ϕ(y) dy = 0 ∀ ϕ ∈ C∞
c (U) (25)

We say v = u′′ in the weak sense if,

∫
U

v(y)ϕ(y) =
∫

U

u′′(y)ϕ(y) dy = −
∫

U

u′(y)ϕ′(y) dy ∀ ϕ ∈ C∞
c (U) (26)

This formulation helps us avoid the direct computation of higher-order derivatives, which would otherwise
complicate the process. By approximating the PDE residual with derivatives, we can improve the accuracy
of the solution. This leads us to propose an approach in which all derivatives are approximated in the weak
form.

To achieve this, we employ a well-established approximation of functions in Sobolev spaces using mollification.
This allows us to express the PDE residual in the weak form as:

∣∣∣∣∫
U

ηϵ(x − y)v(y) dy −
∫

U

ηϵ(x − y)f(y) dy

∣∣∣∣ (27)

Here, v = Dαu in the weak sense and ηϵ(t) is a compact support bounded function in (−ϵ, ϵ). Here η, also
known as the mollifying function, is non-negative, infinitely differentiable and is defined as:

ηϵ(t) = η( t

ϵ
) (28)

η(x) = e
−1

1−||x||2
2 ∀||x||2 < 1 (29)

η(x) = 0 ∀||x||2 ≥ 1 (30)

We further relax the above residual by doing the following:
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∣∣∣∫
U

ηϵ(x − y) v(y) dy −
∫

U

ηϵ(x − y) f(y) dy
∣∣∣ ≤

∣∣∣∫
U

ηϵ(x − y) v(y) dy − f(x)
∣∣∣

+
∣∣∣f(x) −

∫
U

ηϵ(x − y) f(y) dy
∣∣∣. (31)

Note that the residual part of our importance is:

∣∣∣∣∫
U

ηϵ(x − y)v(y) − f(x)
∣∣∣∣ (32)

The other term tends to zero as we decrease ϵ:

∣∣∣∣f(x) −
∫

U

ηϵ(x − y) f(y) dy

∣∣∣∣ =
∣∣∣∣∫

U

ηϵ(x − y)
(
f(x) − f(y)

)
dy

∣∣∣∣
≤ 1

ϵn

∫
B(x,ϵ)

η
(

x−y
ϵ

) ∣∣f(x) − f(y)
∣∣ dy.

(33)

1
ϵn

∫
B(x,ϵ)

η

(
x − y

ϵ

)
|f(x) − f(y)| dy ≤ C

ϵn

∫
B(x,ϵ)

|f(x) − f(y)| (34)

where C = supt∈Rn η(t). Using the Lebesgue Differentiation Theorem, we can state that as ϵ → 0:

1
ϵn

∫
B(x,ϵ)

|f(x) − f(y)| dy → 0 (35)

Now, we can see that v is our weak derivative (approximated by a neural network). Thus, the expression
becomes:

upred = ηϵ ∗ NNθ (36)

Here NNθ is the final output form our Neural network layers.

As we are working on the grid (G), so we can express the PDE residual with the help of Mollifying operations
as:

(∑
x∈G Dα

x ηϵ ∗ NNθ(x) − f(x)
)2

|G|
(37)

Here x is sampled randomly from a predefined grid of points in the domain.

A.8 Convergence Analysis of the Mollifier Layer

Let f : [0, 1] → R be continuously differentiable and L-Lipschitz. Denote the uniform grid spacing by h > 0
and the kernel half-width by δ > 0. For a nonnegative bump ρ ∈ C∞

c ([−1, 1]) with unit mass, define the
mollifier

(Jδf)(x) =
∫ δ

−δ

ρδ(r)f(x + r)dr, ρδ(r) = δ−1ρ(r/δ). (38)

Measured data are gj = f(xj) + ηj at xj = jh with |ηj | ≤ ε. Throughout, C, C1, C2, . . . denote positive
constants independent of δ, h, and ε.
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Mean-square consistency. (Murio et al. (1998)) For f ∈ L2([0, 1]),

∥Jδf − f∥L2 → 0 as δ → 0. (39)

Uniform consistency (Murio et al. (1998)).

∥Jδf − f∥∞ ≤ CLδ, ∥∂xJδf − f ′∥∞ ≤ CLδ. (40)

Discrete mollification (Murio et al. (1998)).

∥Jδg − f∥∞ ≤ C(δ + h + ε). (41)

Finite-difference accuracy (Murio et al. (1998)).∣∣D0(Jδg) ∗ j − ∂xJδf(xj)
∣∣ ≤ Ch2, D0gj = gj+1 − gj−1

2h
. (42)

Uniform derivative consistency (Murio et al. (1998)).

∥D0(Jδg) − f ′∥∞ ≤ C(δ + h2 + ε). (43)

Choosing δ ≈
√

h and h2 ≈ ε minimises the bound, giving O(
√

h) uniform error while the backward operator
norm ∥∂xJδ∥ remains O(1/δ).

For higher-order derivatives, differentiating under the integral sign yields

∂n
x (Jδf) = J

(n)
δ f, (44)

where the superscript acts on the kernel. The same arguments with a centred stencil of length 2n give

∥∂n
x (Jδf) − f (n)∥∞ ≤ Cn(δ + h + ε). (45)

Finally, in the case n = 1 and absorbing h2 into the constants we obtain

|∂x(Jδf) − f ′|∞ ≤ C1δ + C2(h + ε), (46)

which is the bound quoted in the main text.

Comparison with finite-difference (FD) derivatives. To clarify the distinction between finite-
difference (FD) schemes and mollifier layers, we summarize both the theoretical error behavior and the
empirical outcomes observed in our experiments.

Finite differences. FD schemes approximate derivatives by forming weighted sums of nearby grid values.
For higher-order derivatives, the associated coefficients become increasingly oscillatory and extreme (see
Fornberg (1988); Lele (1992)), which amplifies any measurement noise. Analytically, for derivative order m
on a grid with spacing h, the FD error bound includes a noise-amplification term of order ε/hm, in addition
to truncation error terms O(hp) depending on the scheme order p. Thus, as m grows, noise is magnified by
the factor 1/hm, rendering high-order FD estimates unstable.

Mollifier layers. In contrast, mollifier-based differentiation first convolves the signal with a smooth, com-
pactly supported kernel before differentiation. This convolution damps high-frequency components, prevent-
ing noise amplification. As derived, the derivative error bound for mollifiers takes the form

∥D0(Jδg) − u′∥∞ ≤ C1δ + C2(h + ϵ),

Importantly, the growth with derivative order is absorbed into the mollifier kernel, so stability is preserved
even for high-order PDEs.

Empirical validation. Our experiments confirm this theoretical distinction:
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• For the 1D Langevin equation (first order), FD-PINNs and mollifier-PINNs perform comparably.

• For the 2D heat equation (second order), FD-PINN accuracy deteriorates, while mollifier-PINNs
remain stable.

• For the 2D reaction–diffusion equation (fourth order), FD-PINNs collapse entirely, whereas mollifier-
PINNs retain high accuracy.

Together, both the analytic bounds and experimental results demonstrate that FD-based differentiation
suffers from noise amplification that scales unfavorably with derivative order, while mollifier layers—by
acting as a built-in low-pass filter—maintain stable, accurate performance in high-order and noisy settings.

B Application-wise details

B.1 Langevin equation

B.1.1 Training Setup for All Models

PINN architechures: The PINN architecture for predicting û consists of seven layers, each with 1000 nodes
and ReLU activation functions. To enhance temporal encoding, we augment the input time t with Fourier
features (details in appendix A). The model is trained using the Adam optimizer with a cosine annealing
learning rate schedule. The corresponding mollified PINN maintains the same architecture and training
epochs but includes the mollifying layer.

PirateNet arch: PirateNet models the stochastic ordinary differential equation ut = u + λ(t) with an eight-
layer fully connected residual network, each layer having 256 hidden units and tanh activations. The scalar
time input t is first lifted into a 256-dimensional Fourier feature embedding (scale factor 2) to capture
high-frequency temporal structure. Each layer applies a custom PI Modified Bottleneck block: a three-layer
MLP whose residual update is mixed via two learnable nonlinear functions u(·) and v(·), and whose skip
connection is scaled by a trainable parameter α. Finally, two parallel output heads predict the solution û(t)
and the auxiliary forcing coefficient λ̂(t), enabling the network to learn both the state evolution and the
driving noise in one joint framework.

PINNsFormer arch: When applied to the Langevin equation ut = u + λ(t): PINNsformer is configured as a
four-layer transformer encoder–decoder with model dimension 64 and four attention heads per layer. The
input time t is first encoded using learned sinusoidal embeddings. Each transformer layer applies multi-
head self-attention followed by a three-layer feed-forward block activated by WaveAct, a learnable mixture
of sin(x) and cos(x). Full residual connections and layer normalization are maintained throughout. Two
decoder heads then output the state û(t) and the auxiliary estimate λ̂(t), allowing the attention-based model
to jointly learn deterministic evolution and stochastic forcing.

All models are trained on a grid sampled from the interval [0, 1], using a batch size of 200 for 1000 epochs.
The initial learning rate is set to 10−3 with cosine decay scheduling. The Adam optimizer is configured with
parameters β1 = 0.9, β2 = 0.999.

B.1.2 Evaluation on the Langevin Equation

To test the models, we first infer a constant forcing term for the Langevin equation. As shown in Fig. 5-7,
all models successfully predict the constant forcing term. We then extend our analysis to Gaussian white
noise predictions, with results summarized in Section 4.1 and Table 2. The figures for all the models are Fig.
8-10. Mollified versions outperform the native nets in all cases.

Thereafter, we also text the models on temporally varying signal along with its noisy version Fig. 13-16.
Here too the mollified models outperform the native models.

B.1.3 Impact of Functional Choices

The effectiveness of Mollifier-Nets depends on two key parameters:
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1. The order of the mollifying function η.

2. The kernel size, i.e., the integration domain U .

For the Langevin equation with constant noisy parameter, various configurations accurately estimate the
mean Λ (Fig. 11), but they differ in their ability to capture noise variations.

Kernel Size Effect: As shown in Fig. 11, for a second-order polynomial mollifier, increasing the kernel size
degrades performance on large noise, while a small kernel size fails to capture finer noise variations. An
optimal kernel size of 10-15 balances noise capture effectively. This behavior can be attributed to the
frequency distribution of the underlying function.

Mollifier Order Effect: As shown in Fig. 12, higher-order polynomials perform worse at capturing noise
compared to lower-order mollifying functions.

Conclusively, both polynomial order and kernel size can be optimized. While a low-order polynomial with a
moderate kernel size is ideal for extracting Gaussian white noise in the Langevin setting, these choices may
vary for different learnable functions.

B.2 Heat equation

Training setup

PINN architecture: The neural network consists of 10 layers, each with 250 nodes and tanh activation
functions. Spatial Fourier features are used for positional encoding. Training is performed using the Adam
optimizer with a learning rate that progressively decreases following a cosine decay schedule. The mollified
version consists of the mollifier layer in addition to the base arch with a original mollifying function.

PirateNet architecture:To solve the two-dimensional heat equation, PirateNet uses the same eight residual
layers with 256 units each and tanh nonlinearities. The spatial coordinates (x, y) are first transformed
via a 256-dimensional Fourier embedding (scale 2) to enrich spatial frequencies. Inside each PI Modified
Bottleneck block, the network mixes the three-layer MLP update with u(·) and v(·) transforms, and applies
the learned α scaling to the skip path. The main output head produces the temperature field û(x, y), while
an auxiliary head estimates the spatial diffusivity map λ̂(x, y), jointly recovering both solution and physical
parameter.

PINNsFormer architecture: To handle two-dimensional heat flow, PINNsformer is simplified to a single trans-
former layer of dimension 32 with one attention head. The spatial coordinates (x, y) are mapped via learned
2D sinusoidal embeddings before entering a WaveAct-activated feed-forward block. Residual connections and
normalization persist in this minimal transformer. Its two output heads predict the temperature field û(x, y)
and the diffusivity field λ̂(x, y), embedding both solution and parameter estimation within a physics-aware
attention framework.

The models are trained on a grid-sampled interval with a batch size of 2500 for 1000 epochs. The initial
learning rate is set to 10−3, with Adam optimizer parameters β1 = 0.9, β2 = 0.999.

The results are quantitatively summarized in table 2 and the plots are Fig. 18-20.

B.3 Reaction Diffusion equation

B.3.1 Reaction-Diffusion Model for Chromatin Organization

The spatial organization of chromatin within the nucleus plays a fundamental role in gene regulation, in-
fluencing cellular function and fate (Gilbert et al. (2005)). Chromatin exists in two primary states: hete-
rochromatin, which is compacted and transcriptionally inactive, and euchromatin, which is more open and
transcriptionally active. The dynamic interplay between these states is governed by diffusion and biochem-
ical reactions, particularly modifications such as methylation and acetylation (Kant et al. (2024); Vinayak
et al. (2025)).
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Mathematical Model:

To model this system, the authors (Kant et al. (2024)) consider the nucleus as a mixture of three components:
nucleoplasm (ϕn), euchromatin (ϕe), and heterochromatin (ϕh), where their volume fractions satisfy the
space-filling constraint:

ϕh(x, t) + ϕn(x, t) + ϕe(x, t) = 1. (47)

To simplify the system, they define two independent variables:

• Nucleoplasm volume fraction (ϕn(x, t)): Represents the proportion of nucleoplasm at a given loca-
tion.

• Chromatin phase difference (ϕd(x, t)): Defined as the difference between heterochromatin and eu-
chromatin fractions:

ϕd(x, t) = ϕh(x, t) − ϕe(x, t). (48)

The order parameter ϕd(x, t) indicates whether a region is euchromatin-rich (ϕd < 0) or heterochromatin-rich
(ϕd > 0).

Free Energy Formulation: The free energy density F (x, t) of the system is given by:

F (x, t) =
[
ϕ2

e + ϕ2
h(ϕmax

h − ϕh)2]
+ δ2

2 |∇ϕn|2 + δ2

2 |∇ϕd|2, (49)

where:

• The first term represents chromatin-chromatin interactions, modeled using a Flory-Huggins-type
potential with minima at ϕh = 0 (euchromatin) and ϕh = ϕmax

h (heterochromatin).

• The second term accounts for interfacial energy, penalizing sharp transitions between chromatin
phases and promoting smooth boundaries. The parameter δ controls the interface width.

Diffusion Kinetics of Nucleoplasm: The diffusion of nucleoplasm (ϕn) is governed by the gradient of the
chemical potential µn(x, t), which drives the system toward a lower-energy configuration. The evolution of
nucleoplasm follows the diffusion equation:

∂ϕn

∂t
= ∇2µn, (50)

where ∇2 is the Laplacian operator, ensuring a conservative dynamics where total nucleoplasm content
remains constant unless boundary conditions specify otherwise.

Reaction-Diffusion Model for Histone Modifications: Epigenetic modifications such as methylation and
acetylation mediate the conversion between euchromatin and heterochromatin. The evolution of the chro-
matin phase difference (ϕd) is governed by:

∂ϕd

∂t
= ∇2µd + 2(λϕe − ϕh), (51)

where:

• ∇2µd represents the diffusive spread of epigenetic modifications.

• λϕe − ϕh models methylation-driven conversion from euchromatin to heterochromatin.

The chemical potential µd associated with this transition is:

µd = −ϕe + ϕh(ϕmax
h − ϕh)(ϕmax

h − 2ϕh) − δ2∇2ϕd. (52)
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Thus, combining equation 41 and 42 yields a system which is governed by a fourth-order differential equation,
indicating complex spatiotemporal dynamics.

Numerical Solution and Simulations: To numerically solve the system, we discretize the evolution equations
for ϕn and ϕd, along with their corresponding chemical potentials µn and µd. The simulations assume no net
exchange of chromatin or nucleoplasm with the surroundings, though boundary conditions can be adjusted
to model specific biological scenarios.

B.3.2 Training setup:

PINN architechure: The neural network comprises 10 layers, each with 250 nodes using a tanh activation
function. We use spatial Fourier features as positional encoding. Training is performed using the Adam
optimizer, with a learning rate that progressively decreases during training.

PirateNet architechure:

PirateNet for the reaction–diffusion system. For the reaction–diffusion PDE, PirateNet remains
an eight-layer tanh MLP with 256-unit width. The inputs (x, y) pass through the same 256-dimensional
Fourier embedding before entering successive PI Modified Bottleneck blocks, each mixing residual updates
via learnable u and v functions and scaling skips by α. Two output heads then predict the concentration
field ϕ̂d(x, y) and the reaction-rate field λ̂(x, y), capturing both diffusion dynamics and reaction kinetics in
one cohesive residual architecture.

PINNsFormer architechure: For reaction-diffusion, PINNsformer again uses one transformer layer of size
32 with a single attention head. Inputs (x, y) receive learned sinusoidal embeddings and pass through a
WaveAct feed-forward subblock, all under full residual connections and layer normalization. The model’s
main head outputs the concentration field ϕ̂d(x, y), while an auxiliary head outputs the reaction-rate map
λ̂(x, y), integrating physics constraints directly into the attention-based architecture.

The models were trained on a grid sampled on the interval using a batch size of 2500 for 500 epochs. A
learning rate of 1 × 10−3 with cosine decay scheduling was used. Training employed the Adam optimizer
with specific parameters: β1 = 0.9, β2 = 0.999.

B.4 Correlation calculations, computing time estimates and memory efficiency estimates

We assess the accuracy and computational efficiency of our model by measuring the correlation between
the actual and predicted parameter values, laplacians and the time/memory usage respectively. These
evaluations ensure that our method is not only effective but also feasible for real-world applications where
resources such as time and memory are constrained.

B.4.1 Mean and Noise Calculation

To evaluate the robustness of our model and assess its sensitivity to statistical fluctuations, we conduct
multiple runs on the same problem. Each run produces two key metrics: the predicted mean and the
predicted noise.

Predicted Mean: The model outputs an estimate of the central tendency of the target variable for each run.
This predicted mean represents the model’s best approximation of the expected output given the input
features. By averaging the predicted means across multiple runs, we obtain a consolidated estimate of the
model’s central tendency.

Predicted variance: In addition to the predicted mean, we compute the variability or noise associated with
each prediction. By averaging these predicted noise values, we gain insights into the uncertainty of the
model’s predictions.

Correlation Analysis: Once the actual and predicted mean, variance and the laplacians are computed, the
next step is to assess the correlation between the actual and predicted values. This ensures that the model
effectively captures underlying trends and relationships in the data.
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To quantify this relationship, we compute the correlation coefficient, defined as:

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )√
n∑

i=1
(Xi − X̄)2

n∑
i=1

(Yi − Ȳ )2

(53)

where:

• Xi and Yi represent the actual and predicted values, respectively.

• X̄ and Ȳ denote the mean of the actual and predicted values.

This correlation coefficient provides a quantitative measure of the strength and direction of the relationship
between actual and predicted values.

B.4.2 Time Evaluation

To measure the execution time of our model, we use Python’s built-in time module, which provides a simple
way to capture the start and end times of a computation. By recording the time before and after running
the model, we can compute the total time taken for a single run. This approach allows us to evaluate the
speed of our model under various conditions and for different input sizes.

Additionally, execution time measurements across different experiments enable the identification of perfor-
mance bottlenecks and an assessment of whether the model’s time complexity scales appropriately with
increasing data or model size.

B.4.3 Memory Evaluation

To measure memory consumption, we utilize PyTorch’s built-in utilities for tracking memory us-
age during training and inference. Specifically, when using GPUs, we employ the functions
torch.cuda.memory_allocated() and torch.cuda.memory_reserved() to monitor memory allocation.

By tracking both GPU and system memory consumption, we can determine whether the model is memory-
efficient and ensure that it operates within available system resources without causing memory overflow or
excessive usage.

B.5 Forward toy problem

While our focus is on inverse problems, as demonstrated extensively throughout this work, we briefly illustrate
the applicability of mollifier layers to a forward problem. The forward problem is governed by the linear
ordinary differential equation d

dx u(x) + λu(x) = 0, with λ = 1.0. The solution u(x) is approximated using
a fully connected neural network with hidden layer of 64 neurons each and Tanh activations. To compute
spatial derivatives in a stable and differentiable manner, we employ mollifier-based convolutions. The loss
function consists of two terms: an ODE loss that enforces the differential equation, and a data loss that
aligns the mollified prediction with the sampled data. We use a mollifier kernel of size 11 with a smoothing
radius ε = 5∆x, where the spatial discretization ∆x = 0.05. The model is trained using the Adam optimizer
with cosine learning rate decay over 5000 epochs. This example illustrates how mollifier layers can be used
in the forward problem. The predictions as well as the learning curves are provided in Fig. 26.

C Super-resolution image processing

Since the super-resolution images are binary, they only indicate the presence or absence of a signal at a
given locus. The density of these activated loci reflects the chromatin density at a given position, where a
higher density corresponds to more heterochromatin. To establish a correspondence between the imaging
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data and the reaction-diffusion system, it is necessary to determine a density equivalent to the obtained
super-resolution imaging data. In this work, we define a new square grid to better identify the distribution
of chromatin within the nucleus. To compute the density of chromatin at a given point on this grid, we use
the following methodology:

Watson Kernel interpolation (Watson (1964)) is employed to perform spatial interpolation of data points in
super-resolution images. This method utilizes a Gaussian kernel to compute a weighted average estimate of
nearby points, ensuring smooth interpolation over the image grid. The Gaussian kernel is defined as:

K(d) =
exp

(
− d2

2σ2

)
√

2πσ2
(54)

where d represents the Euclidean distance between points, and σ is the kernel’s bandwidth parameter, which
controls the kernel width. The kernel assigns higher weights to closer points, effectively smoothing the
interpolation based on proximal density.

Then the Nadaraya-Watson estimator (Nadaraya (1964); Watson (1964)) is used to compute the weighted
average of data values, where the weights are determined by the above Gaussian kernel. Specifically, for a
query point (xnew, ynew), the estimated value znew is calculated as:

znew =

n∑
i=1

wizi

n∑
i=1

wi

(55)

where wi is the weight assigned to each data point based on its distance to (xnew, ynew), and zi is the
corresponding value at each data point.

For computational efficiency, batch processing is used to perform interpolation in chunks. This method
divides the target grid into smaller batches and computes the weighted average for each batch, ensuring that
the interpolation process scales efficiently with large datasets. The interpolation is implemented using the
following steps:

1. Compute the distances between target points and known data points.

2. Apply the Gaussian kernel to compute weights.

3. Calculate the weighted sum of the data values.

4. Normalize the weighted sum by the total weights to obtain the interpolated values.

After applying Watson Kernel interpolation, the interpolated values are used to update image features such
as ϕh, ϕe, and ϕn. These terms are computed as:

ϕh =
(

zmesh × 6
7

)0.5
, (56)

ϕn =
(

zmesh − 0.7
0.7

)2
× 6

7 × 0.7 + 0.2, (57)

ϕe = 1 − ϕh − ϕn. (58)

These processed values are then used for further analysis, providing refined estimates of the underlying
super-resolution imaging features.
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D Extension to Multiple Unknown Parameters / Fields

This appendix formalizes how our mollifier-layer framework extends from a single unknown parameter field
to the case of multiple unknown parameters (or multiple coupled fields). The key point is that mollifier
layers define a derivative operator applied at the output, and thus extend component-wise to any number of
predicted quantities.

D.1 Multi-parameter inverse-PDE formulation

Consider a PDE constraint written abstractly as

F
(

t, x, u(t, x), {∂αu(t, x)}|α|≤k, λ(t, x)
)

= 0, (59)

where u : T × Ω → Rdu is the (possibly vector-valued) state, and λ(t, x) = (λ1(t, x), . . . , λP (t, x)) ∈ RP

collects P unknown parameters/fields to be inferred. The PDE residual typically requires derivatives of u
up to order k.

D.2 Network outputs and mollifier layer (component-wise)

In our method, the base model predicts a pre-mollified output ĝ and the mollifier layer produces the smoothed
field û by convolution with a compactly supported mollifier η:

û(n) = (ĝ ∗ η)(n) =
∫

m∈U

ĝ(m) η(n − m) dm, (60)

and derivatives are computed by convolving ĝ with analytic derivatives of η:

∂j û(n) = (ĝ ∗ ∂jη)(n), ∂αû(n) = (ĝ ∗ ∂αη)(n), (61)

as in Eqs. (4–6) of the main paper.

For multiple unknown parameters, we predict them as additional outputs of the model. A convenient
parameterization is

(t, x) 7→
(
ĝ(t, x), λ̂(t, x)

)
, (62)

where λ̂ may be (i) predicted directly, or (ii) predicted via its own pre-mollified outputs and (optionally)
mollified in the same way as û if one desires the same smoothing/regularization:

λ̂p(n) = (ĝλp ∗ η)(n), p = 1, . . . , P (optional). (63)

Importantly, these equations are applied component-wise when u is vector-valued; no change is required
beyond carrying extra output channels.

D.3 Residual and training objective

Using mollifier-based derivatives, we define the residual at collocation points (ti, xi):

f̂(ti, xi) = F
(

ti, xi, û(ti, xi), {∂αû(ti, xi)}|α|≤k, λ̂(ti, xi)
)

. (64)

Training then minimizes the same PhiML objective as in the single-parameter case, with λ̂ replacing λ̂:

MSEtotal = MSEu + MSEf , MSEu = 1
Nu

Nu∑
i=1

∥û(ti, xi) − u(ti, xi)∥2, MSEf = 1
Nf

Nf∑
j=1

∥f̂(tj , xj)∥2.

(65)
If supervision or priors are available for any parameter fields, one can add additional terms (e.g., ∥λ̂p − λp∥2

or smoothness regularizers), but these are not required for the extension.

29



Under review as submission to TMLR

D.4 Remarks

• What changes with P > 1. Only the dimensionality of the parameter output increases from λ̂ to
λ̂; mollifier derivative computation for û is unchanged.

• When to mollify parameters. If the PDE uses derivatives of parameters (or one wants additional
smoothing/regularization on λ̂), apply the same mollifier construction to λ̂p via Eq. equation 63;
otherwise predicting λ̂ directly is sufficient.

• Separable/closed-form parameter recovery. For PDEs where parameters can be expressed
algebraically from predicted quantities (as discussed in Sec. 3.3), the same idea applies component-
wise to each parameter in λ whenever such a separable form exists.

E Code and data availability

Code and data generated: All the code generated, along with the required data for the paper has been stored
here: https://doi.org/10.5281/zenodo.15420249

STORM imaging data availability: We have provided the data for the 5 sections for which the parameters
have been calculated with the uploaded data. A full sample image can be found at the Dhankhar et al.
(2025) author’s github repository at: https://github.com/ShenoyLab/STORM_Analysis
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Figure 5: Constant forcing term inference in Langevin equation using PINN and Mollified PINN
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Figure 6: Constant forcing term inference in Langevin equation using PirateNet and Mollified PirateNet

Figure 7: Constant forcing term inference using PINNsFormer
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Figure 8: Noisy forcing term inference in Langevin equation using PINN and Mollified PINN
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Figure 9: Noisy forcing term inference in Langevin equation using PirateNet and Mollified PirateNet
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Figure 10: Noisy forcing term inference in Langevin equation using PINNsFormer
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Figure 11: Mean Forcing term prediction with different kernel choices with Mollified PINNs
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Figure 12: Estimating the Noise in the forcing term prediction with different kernel choices with Mollified
PINNs
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Figure 13: Estimating with and without noise temporally varying forcing term with PINNs
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Figure 14: Estimating with and without noise temporally varying forcing term with PirateNet
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Figure 15: Estimating with and without noise temporally varying forcing term with Mollified PirateNet
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Figure 16: Estimating with and without noise temporally varying forcing term with PINNsFormer
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Figure 17: Estimating constant and spatially varying diffusivity terms and corresponding Laplacians for the
heat equation using PINNs

Figure 18: Estimating constant and spatially varying diffusivity terms and corresponding Laplacians for the
heat equation using PirateNets
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Figure 19: Estimating constant and spatially varying diffusivity terms and corresponding Laplacians for the
heat equation using mollified PirateNets

Figure 20: Estimating constant and spatially varying diffusivity terms and corresponding Laplacians for the
heat equation using PINNsFormer
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Figure 21: Predcited vs. Actual mean for the reaction rates in simulations for PINNs and Mollified PINN

Figure 22: Predcited vs. Actual mean for the reaction rates in simulations for PirateNet and Mollified
PirateNet
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Figure 23: Predcited vs. Actual noise for the reaction rates in simulations for PirateNet and Mollified
PirateNet

Figure 24: Predicted vs. Actual mean and noise for the reaction rates in simulations for PINNsFormer
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Figure 25: Mollified PINNs capture the spatial reaction rates for reaction-diffusion equation.

Figure 26: Using Mollified PINNs for a forward problem.
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