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Abstract

Recent advancements in Chain-of-Thought001
(CoT) reasoning utilize complex modules but002
are hampered by high token consumption, lim-003
ited applicability, and challenges in repro-004
ducibility. This paper conducts a critical evalua-005
tion of CoT prompting, extending beyond arith-006
metic to include complex logical and common-007
sense reasoning tasks, areas where standard008
CoT methods fall short. We propose the inte-009
gration of human-like heuristics and shortcuts010
into language models (LMs) through "break the011
chain" strategies. These strategies disrupt tradi-012
tional CoT processes using controlled variables013
to assess their efficacy. Additionally, we de-014
velop innovative zero-shot prompting strategies015
that encourage the use of shortcuts, enabling016
LMs to quickly exploit reasoning clues and017
bypass detailed procedural steps. Our compre-018
hensive experiments across various LMs, both019
commercial and open-source, reveal that LMs020
maintain effective performance with "break the021
chain" strategies. We also introduce Short-022
cutQA, a dataset specifically designed to evalu-023
ate reasoning through shortcuts, compiled from024
competitive tests optimized for heuristic reason-025
ing tasks such as forward/backward reasoning026
and simplification. Our analysis confirms that027
ShortcutQA not only poses a robust challenge028
to LMs but also serves as an essential bench-029
mark for enhancing reasoning efficiency in AI.030

1 Introduction031

In the evolving landscape of artificial intelligence,032

the ability to reason and solve complex problems033

symbolizes a cornerstone of intelligence. Language034

Models (LMs), particularly those based on trans-035

former (Vaswani et al., 2017) architectures, have036

revolutionized our approach to natural language037

processing (NLP), significantly enhancing capa-038

bilities in comprehending and generating text that039
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Choose any natural number greater than 50. Let's say we choose 60.
Since 60 is an even number, we divide it by 2, which gives us 30.
Now we continue the process:
30 is even, so we divide it by 2 to get 15.
15 is odd, so we multiply it by 3 and then add 1, which gives us 46.
                         ......
2 is even, so we divide it by 2 to get 1.
1 is odd, so we multiply it by 3 and then add 1, which gives us 4.
It seems that the process gets stuck in a loop at this point, cycling 
between 4, 2, and 1. Based on this pattern, the final result seems to be: 
(b) 1

Question: Choose any natural number greater than 50. If it is even, 
divide it by 2; if it is odd, multiply it by 3 and then add 1. Repeat this 
process; what is the final result?
(a) 0
(b) 1
(c) 2
(d) 3

Rapidly evaluate and use the most effective reasoning shortcut to 
answer the question.

The final result will always end up at 1, regardless of the starting 
number chosen. This is known as the Collatz Conjecture. 
Therefore, the answer is (b) 1.

Let's think step by step

Break the Chain

Chain of Thought

Figure 1: ChatGPT responses to Chain-of-Thought and
"Break the Chain". Our "Break the Chain" method
significantly simplifies the reasoning process.

bears a striking resemblance to human communica- 040

tion. 041

Among recent advancements, Chain-of-Thought 042

(CoT) prompting has emerged as a pivotal tech- 043

nique for utilizing Large Language Models (LLMs) 044

to address complex reasoning tasks. By methodi- 045

cally eliciting step-by-step reasoning, CoT prompt- 046

ing has significantly enhanced the problem-solving 047

capabilities of LLMs across a variety of learning 048

scenarios, including few-shot (Wei et al., 2022) and 049

zero-shot contexts (Kojima et al., 2022a). Figure 1 050

illustrates a zero-shot example in which the Chat- 051

GPT model methodically resolves a mathematical 052

question. This strategy is further augmented by 053

approaches such as self-consistency (Wang et al., 054

2022b, 2023c), interactive reasoning (Yao et al., 055

2022a; Shinn et al., 2024), reflective thinking (Ling 056

et al., 2024; Li et al., 2023), task decomposition 057

(Khot et al., 2022; Press et al., 2022), and strategic 058

planning (Wang et al., 2023b; Hu et al., 2023). 059

Despite its benefits, CoT is also critiqued for its 060

substantial token usage, as it explores numerous 061
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reasoning pathways before arriving at a conclusive062

answer. This characteristic is particularly promi-063

nent in variants such as Tree-of-Thought (ToT)064

(Yao et al., 2023), which scrutinize every possi-065

ble reasoning chain. Traditionally, CoT has been066

predominantly applied to mathematical reasoning,067

with scant application to commonsense, or complex068

logical reasoning tasks. This limited focus may069

hinder a comprehensive understanding of CoT’s070

potential to emulate intricate human-like reason-071

ing processes. Additionally, instruction fine-tuned072

(IFT) (Ouyang et al., 2022) large language models073

like ChatGPT, which are usually capable of reach-074

ing the answers methodically, further question the075

necessity for explicit CoT prompting (Chen et al.,076

2023).077

Human reasoning uses heuristics to find local ra-078

tional maximum (Karlan, 2021; Neth and Gigeren-079

zer, 2015; Lancia et al., 2023), which often relies080

on cognitive shortcuts (Fernbach and Rehder, 2013;081

Ferrario, 2004), a characteristic that can be mir-082

rored and exploited in LMs. Traditionally, LLMs’083

shortcut learning has been viewed as the acquisi-084

tion of spurious correlations within datasets (Du085

et al., 2023; Jiang and Bansal, 2019; Branco et al.,086

2021). However, this perspective fails to capture087

the nuanced heuristic reasoning processes inherent088

in human cognition, both in everyday scenarios089

and professional contexts such as clinical decision-090

making. We argue that shortcut reasoning, by dras-091

tically reducing reasoning steps and computational092

demands, offers a valuable means of enhancing093

LLM efficiency. As depicted in Figure 1, when094

prompted with shortcut reasoning, the ChatGPT095

model swiftly arrives at answers with minimal to-096

ken consumption. The ability of LLMs to employ097

shortcut reasoning not only mirrors human cogni-098

tive strategies but also has the potential to stream-099

line problem-solving processes, thereby reshaping100

computational efficiency and model performance.101

The primary goal of our study is to critically102

evaluate and challenge the established Chain-of-103

Thought (CoT) prompting framework used in Large104

Language Models (LLMs). Our approach is three-105

pronged: First, we explore the effectiveness, lim-106

itations, and mechanisms of CoT by comparing107

it with different prompts derived from the "break108

the chain" strategy in both few-shot and zero-109

shot scenarios. Second, the study pioneers the110

use of shortcut reasoning prompts that encourage111

LLMs to utilize heuristic shortcuts — akin to in-112

tuitive leaps in human reasoning — to efficiently113

solve problems. This method aims to minimize 114

computational demands and token consumption 115

while maintaining or potentially enhancing per- 116

formance accuracy. To support this investigation, 117

we introduce ShortcutQA, a novel dataset metic- 118

ulously curated to specifically assess the ability 119

of LLMs to employ heuristic shortcuts. We con- 120

ducted experiments on both OpenAI models and 121

open-source models of various sizes, including 122

MIXTRAL-8X7B-INSTRUCTION, LLAMA-3-70B- 123

INSTRUCTION, QWEN1.5-72B-CHAT, QWEN1.5- 124

14B-CHAT, QWEN1.5-1.8B-CHAT, to ascertain 125

the generalizability of our experimental conclu- 126

sions across different model configurations. 127

Our few-shot experiments reveal that Large Lan- 128

guage Models (LLMs) are not adversely affected by 129

disrupted Chain-of-Thought (CoT) demonstrations, 130

casting doubts on the effectiveness of few-shot CoT 131

methods. To our knowledge, this is the first series 132

of experiments designed to "break the chain" of 133

in-context examples. Furthermore, in zero-shot 134

scenarios, models prompted with shortcut reason- 135

ing display robust performance, often surpassing 136

that of traditional CoT methods. Our evaluations 137

span both OpenAI models and open-source models, 138

showing consistent results across platforms. 139

Furthermore, our comparative analysis eluci- 140

dates distinct performance trends across various 141

model sizes: smaller models typically experi- 142

ence more substantial enhancements with Chain-of- 143

Thought (CoT) prompts compared to their larger 144

counterparts. Notably, as model size increases, the 145

efficacy of "break the chain" strategies becomes 146

more pronounced, highlighting its effectiveness in 147

mitigating the impact of disrupted CoT demonstra- 148

tions. 149

Most notably, we observe that shortcut reasoning 150

significantly reduces token consumption, provid- 151

ing a vital advantage in computational efficiency. 152

Under stringent token constraints, shortcut reason- 153

ing strategies not only conserve resources but also 154

consistently outperform traditional CoT methods. 155

These benefits are observed across various datasets, 156

underscoring the robustness and scalability of short- 157

cut reasoning as a superior approach in enhancing 158

LLM performance. 159
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2 Related Work160

2.1 CoT Prompting in Large Language161

Models162

The evolution of Chain-of-Thought (CoT) prompt-163

ing, particularly through few-shot (Wei et al., 2022)164

and zero-shot (Kojima et al., 2022a) methodolo-165

gies, has markedly advanced Large Language Mod-166

els’ (LLMs) ability to address complex reason-167

ing challenges. This field has witnessed the in-168

troduction of sophisticated data structures, such169

as Tree-of-Thought (Yao et al., 2023), Graph-of-170

Thought (Besta et al., 2024), and Program-of-171

Thought (Chen et al., 2022), enriching LLMs’ ca-172

pacity for introspection and nuanced evaluation of173

their reasoning paths.174

Beyond conventional prompting strategies, the175

ReAct model (Yao et al., 2022b) integrates176

reasoning with actionable tasks like data re-177

trieval, whereas the Selection-Inference frame-178

work (Creswell et al., 2023) combines context179

creation with logical chaining. While pioneering,180

these approaches rely on the models’ inherent abil-181

ities and do not embed explicit logical rules within182

the reasoning process.183

The adoption of external tools in prompting184

paradigms, especially for tasks that demand supple-185

mentary knowledge, has also shown considerable186

progress. Analogous to the role calculators play187

in mathematical reasoning, introducing predefined188

functions for enforcing inference rules marks a189

significant step forward in leveraging external com-190

putational aids to bolster reasoning capabilities.191

Moreover, breaking down complex reasoning192

tasks into more manageable subproblems or en-193

gaging multiple models for collaborative problem-194

solving has introduced novel methodologies in195

LLM prompting. Strategies such as Cumulative196

Reasoning (Zhang et al., 2023a) focus on an iter-197

ative, step-wise approach, while ScratchPad (Nye198

et al., 2021) emphasizes the articulation of in-199

termediate steps in multi-step reasoning. Meta-200

prompting (Suzgun and Kalai, 2024) envisions a201

cooperative framework where LLMs act as orches-202

trators, decomposing tasks, delegating them to spe-203

cialized models, and synthesizing the outcomes,204

thereby fostering a holistic approach to problem-205

solving.206

In the specific arena of instruct-tuning LLMs207

with tailored datasets for advanced reasoning, ini-208

tiatives like LogiCoT (Liu et al., 2023), which209

fine-tunes an LLaMA-7b model with data on log-210

ical chaining, demonstrate considerable improve- 211

ments in logical reasoning tasks. Similarly, Logi- 212

cLLM (Jiao et al., 2023) explores a self-supervised 213

learning strategy for logical reasoning enhance- 214

ments, and Symbol-LLM (Xu et al., 2023) incorpo- 215

rates symbolic data in a two-stage tuning process to 216

equip a LLaMA-2-chat model with symbolic rea- 217

soning skills. These efforts highlight the potential 218

of fine-tuning with specialized datasets to signifi- 219

cantly enhance the reasoning capabilities of LLMs, 220

illustrating the dynamic and evolving landscape of 221

CoT prompting in AI research. 222

2.2 Questioning CoT 223

Despite the demonstrated effectiveness of Chain-of- 224

Thought (CoT) in enhancing model performance 225

on complex tasks, the underlying mechanisms by 226

which Large Language Models (LLMs) generate 227

CoT responses are not fully understood. Research 228

efforts are increasingly focused on demystifying 229

CoT prompting, providing empirical insights and 230

developing theoretical frameworks to comprehend 231

this advanced reasoning capability. However, nu- 232

merous studies have highlighted the brittleness of 233

CoT reasoning in various aspects. 234

Turpin et al. (2023) investigate the faithfulness 235

of CoT reasoning, revealing systematic misrepre- 236

sentations in the true rationale behind a model’s 237

predictions. Lanham et al. (2023) extend this in- 238

quiry by introducing errors or paraphrases within 239

the CoT process to test whether the articulated rea- 240

soning truly reflects the model’s underlying logic, 241

finding that larger models tend to produce more 242

unfaithful responses. This issue of faithfulness is 243

critical as it challenges the reliability of CoT expla- 244

nations. The effectiveness of CoT is also impacted 245

by the selection and arrangement of demonstrations. 246

Wang et al. (2023a) find that the accuracy of reason- 247

ing chains is less critical than the relevance of the 248

question and the correctness of the reasoning se- 249

quence, emphasizing the importance of contextual 250

alignment. In contrast, Wang et al. (2022a) show 251

that CoT can operate even with invalid demonstra- 252

tions, suggesting some resilience in the reasoning 253

process. Our research contributes to this discourse 254

by disturbing the order of the reasoning chain to 255

examine its impact on CoT consistency. 256

Jin et al. (2024) demonstrate that artificially 257

lengthening the reasoning steps in prompts — sim- 258

ply by instructing models to "think more steps" — 259

can enhance LLMs’ performance across various 260

datasets without introducing new content. This 261
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Dataset Question Type # of instances Avg. # words Source

Analytical shortcuts 156 55.88 Analytical reasoning tests
ShortcutQA Logical shortcuts 108 21.76 Verbal reasoning tests

Mathematical shortcuts 185 67.19 Gaokao examinations

Table 1: Dataset statistics of ShortcutQA.
finding suggests that the perceived depth of rea-262

soning may artificially inflate effectiveness. Con-263

versely, we explore minimalist prompting strategies264

where LLMs are instructed to streamline their rea-265

soning processes.266

The sensitivity of LLMs to the ordering of267

premises is scrutinized by Chen et al. (2024),268

who note optimal performance when the order of269

premises supports the necessary context in inter-270

mediate reasoning steps. This sensitivity is para-271

doxical in deductive reasoning contexts where the272

order of premises should not logically influence273

the validity of conclusions. Similarly, Pfau et al.274

(2024) Indicates that LLMs solve more problems275

with meaningless filler tokens in place of a chain of276

thought than without meaningless tokens. This find-277

ing suggests that CoT’s effectiveness may some-278

times rely solely on the increase in computational279

effort, rather than on the literal intermediate rea-280

soning steps. Our "break the chain" methods ex-281

periment with new models and datasets and aim to282

illuminate this issue further.283

Implicit CoT (Deng et al., 2023, 2024) has been284

introduced to internalize explicit step-by-step rea-285

soning. Similar to our work, implicit CoT questions286

the necessity of step-by-step reasoning. However,287

we diverge from prior studies that employed fine-288

tuning to reduce the need for reasoning steps.289

Finally, Chen et al. (2023) question the applica-290

bility of CoT in instruction fine-tuned (IFT) mod-291

els like ChatGPT, which show inconsistent per-292

formance across various reasoning tasks. Surpris-293

ingly, while CoT prompts enhance some reason-294

ing tasks, they fail in others like arithmetic rea-295

soning, where ChatGPT can independently gener-296

ate CoT sequences without specific prompts. This297

phenomenon inspires us to abstract a hypothesis298

that more powerful models increasingly exhibit a299

reduced dependency on CoT. Our subsequent ex-300

periments conducted within the Qwen1.5 series of301

various sizes strive to support this viewpoint.302

3 ShortcutQA303

The ShortcutQA dataset is designed to evaluate304

Language Models’ (LMs) ability to employ heuris-305

tic shortcuts in reasoning, addressing a gap in ex-306

isting resources that primarily focus on sequential 307

reasoning approaches. Comprising 449 diverse 308

reasoning problems, ShortcutQA spans logical puz- 309

zles to real-world problem-solving scenarios. Each 310

problem is presented with a shortcut-based solution 311

alongside a detailed step-by-step solution, catego- 312

rized into three reasoning types. 313

Data Collection and Annotation 314

Data for ShortcutQA were sourced from vari- 315

ous online forums and educational websites, with 316

necessary permissions secured. Annotation was 317

conducted by two independent domain experts, ad- 318

hering to strict guidelines for identifying and cat- 319

egorizing heuristic shortcuts employed in the so- 320

lutions. A third expert resolved any discrepancies, 321

ensuring high annotation quality and consistency. 322

Dataset Categorization 323

ShortcutQA introduces problems categorized 324

into three distinct types, each testing different as- 325

pects of heuristic reasoning: 326

• Analytical Shortcuts: Tasks necessitate ana- 327

lyzing situations beyond mere comprehension, 328

assessing models’ capabilities in efficiently 329

synthesizing and utilizing key information, 330

and strategic decision-making under time con- 331

straints. 332

• Logical Shortcuts: Encompassing forms of 333

reasoning such as analogical, abductive, and 334

forward/backward reasoning, these tasks fo- 335

cus on applying these logical theories to derive 336

conclusions from provided statements. 337

• Mathematical Shortcuts: Features problems 338

solvable through approximation techniques, 339

substitution, simplification, and special-case 340

reasoning, bypassing traditional sequential 341

thought processes. 342

Data Statistics are shown in Table 1. We release 343

the data at https://anonymous.com. 344

4 Method 345

4.1 Break the Chain 346

To examine the resilience and limitations of Large 347

Language Models (LLMs) in employing Chain-of- 348

Thought (CoT) reasoning, our research outlines 349
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a novel experimental framework aimed at "break-350

ing the chain" of thought. This approach seeks to351

elucidate the conditions under which CoT reason-352

ing may falter, thereby offering insights into the353

underlying mechanisms of LLMs’ reasoning capa-354

bilities. Our methodology juxtaposes zero-shot and355

few-shot scenarios to delineate the impact of CoT356

disruption across different prompting contexts.357

Few-Shot In the few-shot scenario, our strat-358

egy involves perturbing the sequence of sentences359

within the in-context examples provided to the360

LLM. This disturbance is designed to misalign the361

logical progression typically demonstrated in CoT362

reasoning, thereby testing the model’s ability to363

maintain coherent and accurate reasoning despite364

the disordered presentation of steps. This manipula-365

tion will help ascertain the significance of stepwise366

logical progression in the model’s reasoning effi-367

cacy and its ability to reorient itself to reach correct368

conclusions.369

Zero-Shot We initiate probing experiments to as-370

sess the efficacy of zero-shot CoT prompts, aiming371

to discern whether CoT prompting is essential or372

merely a byproduct of longer model responses. Em-373

ploying controlled experiments, we craft prompts374

that obviate the need for reasoning chains, instruct-375

ing models to provide either more verbose or min-376

imalist responses. Detailed descriptions of these377

prompts are provided in Appendix A. Furthermore,378

we employ meticulously designed prompts to stim-379

ulate shortcut reasoning, outlined comprehensively380

in Appendix A. By directing LLMs to circumvent381

intermediate reasoning steps typically associated382

with CoT, we aim to evaluate the resilience of their383

inferential processes and their reliance on detailed384

reasoning pathways.385

ShortcutQA Probing Parallel to our few-shot386

and zero-shot experiments, we introduce the Short-387

cutQA dataset into our methodology. ShortcutQA388

is carefully curated to focus on questions that re-389

quire shortcut reasoning — a form of intuitive390

problem-solving that deviates from traditional step-391

by-step logical deduction. The inclusion of Short-392

cutQA is intended to test the hypothesis that LLMs393

can effectively employ heuristic shortcuts, akin to394

human cognitive shortcuts, to efficiently resolve395

complex problems.396

4.2 Experimental Setup397

We evaluate Large Language Models (LLMs)398

across a variety of commercial and open-source399

platforms under both few-shot and zero-shot con-400

ditions. Our methodology includes a diverse array 401

of complex problem-solving tasks encompassing 402

arithmetic reasoning, commonsense deduction, and 403

logical reasoning. This design rigorously tests the 404

LLMs’ ability to generalize across different diffi- 405

culty levels and domains. 406

Task Dataset Size Avg #words

Arithmetic

SingleEq 508 27.4
AddSub 395 31.5

MultiArith 600 31.8
GSM8K 1319 46.9

AQUA-RAT 254 51.9
SVAMP 1000 31.8

Commonsense
CommonsenseQA 1221 27.8

StrategyQA 2290 9.6

Logic

Date Understanding 369 35.0
Coin Flip 500 37.0
LogiQA 651 146.2
ReClor 500 153.0

Table 2: Statistics of Evaluation benchmarks.
407

As depicted in Figure 5 in Appendix B, the ex- 408

perimental pipeline begins by inputting a question 409

and a prompt into an LLM, which then generates a 410

reasoned response and answer. This output is con- 411

catenated with the original question and prompt, 412

followed by an answer extraction prompt to extract 413

the final answer. 414

Benchmarks For arithmetic reasoning, 415

we assess the models using six datasets: 416

SingleEq (Koncel-Kedziorski et al., 2015), 417

AddSub (Hosseini et al., 2014) , MultiArith (Roy 418

and Roth, 2015) , GSM8K (Cobbe et al., 2021), 419

AQUA-RAT (Ling et al., 2017), and SVAMP (Patel 420

et al., 2021). The first three originate from the 421

well-established Math World Problem Reposi- 422

tory (Koncel-Kedziorski et al., 2016), with the 423

remaining datasets presenting more recent and 424

complex challenges. SingleEq and AddSub feature 425

relatively straightforward problems that can be 426

solved without multi-step reasoning, whereas 427

MultiArith, AQUA-RAT, GSM8K, and SVAMP 428

require more intricate, sequential problem-solving. 429

For commonsense reasoning, we utilize the Com- 430

monsenseQA (Talmor et al., 2019) and Strate- 431

gyQA (Geva et al., 2021) datasets. Common- 432

senseQA tests reasoning based on general world 433

knowledge (Talmor et al., 2019) , while StrategyQA 434

demands inference of unstated, multi-step reason- 435

ing processes (Geva et al., 2021). 436

For logical reasoning tasks, we select two sce- 437

narios from the BIG-bench (Srivastava et al., 2022): 438

Date Understanding and Coin Flip (Wei et al., 439
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Task Dataset
Few-shot Zero-shot

Base Break the Chain Base No Steps More Tokens

Arithmetic

SingleEq 92.72 92.32 86.61 90.35 88.39
AddSub 84.05 85.32 83.80 89.62 86.58

MultiArith 99.00 98.33 83.33 91.17 93.50
GSM8K 74.60 74.22 32.68 37.53 38.89

AQUA-RAT 53.15 55.51 35.43 36.61 38.97
SVAMP 76.80 79.70 71.70 81.70 76.70

Commonsense
CommonsenseQA 74.94 75.18 70.52 75.92 74.28

StrategyQA 69.13 68.60 64.37 59.91 63.23

Logic
Date Understanding 81.03 82.11 64.37 64.50 63.23

LogiQA 35.94 33.95 40.09 41.17 40.09
ReClor 51.40 50.80 52.40 51.20 54.20

Table 3: ChatGPT performance comparison across tasks. All results are in %, the best ones are in bold.
2022). Date Understanding challenges models to440

infer dates from given contexts, and Coin Flip eval-441

uates the ability to determine the outcome of a442

series of coin flips. Additionally, we incorporate443

LogiQA (Liu et al., 2020) and ReClor (Yu et al.,444

2020), which are reading comprehension tests that445

require logical deduction.446

Language Models We test both OpenAI com-447

mercial models and huggingface open-source mod-448

els. For OpenAI models, we choose the Chat-449

GPT (gpt-3.5-turbo-0613) model, an IFT GPT-3450

model. For community models, we use Llama-451

3-70B-Instruct, Mixtral-8x7B-Instruct, Qwen1.5-452

72B-Chat, Qwen1.5-14B-Chat, Qwen1.5-1.8B-453

Chat.454

Baselines We run zero-shot CoT (Kojima et al.,455

2022b) and few-shot CoT (Wei et al., 2022) on456

the datasets to establish our baselines. In the few-457

shot CoT setup, we follow Wei et al. (2022) to458

provide each test with context examples; for the459

zero-shot baseline, each question is suffixed with460

“The answer is ”, following prior work (Kojima461

et al., 2022b; Zhang et al., 2023b).462

5 Results463

Few-Shot Table 3 on the left side shows com-464

parative performance between traditional few-shot465

CoT and our "breaking the chain" approach across466

datasets in commonsense, arithmetic, and logical467

reasoning tasks. Notably, in arithmetic reasoning,468

performance on the MultiArith dataset decreases469

slightly from 99.00% to 98.33% with "breaking the470

chain", while in GSM8K, the decrease is marginal,471

from 74.60% to 74.22%. In commonsense reason-472

ing, "breaking the chain" slightly outperforms the473

traditional approach on CommonsenseQA (75.18%474

vs. 74.94%), but underperforms on StrategyQA,475

dropping from 69.13% to 68.60%. LogiQA in logi- 476

cal reasoning shows a more notable performance 477

drop from 35.94% to 33.95%. These results sug- 478

gest that while "breaking the chain" generally per- 479

forms comparably to the few-shot CoT baseline, it 480

does not significantly impact the model’s overall 481

performance. 482

Zero-Shot The right side of Table 3 presents re- 483

sults from our zero-shot probing experiment, com- 484

paring the zero-shot CoT baseline with our "break 485

the chain" prompts across 11 datasets within three 486

key tasks: arithmetic reasoning, commonsense 487

reasoning, and logical reasoning. Notably, even 488

when we ablate step-by-step reasoning, ChatGPT 489

maintains competitive performance across various 490

tasks. Moreover, prompting with only "More To- 491

kens" leads to the best performance on several other 492

datasets. 493

Results for the "Shortcut Reasoning" prompts 494

are detailed in Table 4, where this approach shows 495

substantial improvements: a 22% increase in arith- 496

metic tasks, a 9% boost in commonsense tasks, and 497

an 11% enhancement in logical reasoning tasks. 498

Performance is consistent on the Mixtral and Qwen 499

platforms, though it varies with the Llama models, 500

underlining the effectiveness of our approach. 501

In addition, experiments with Qwen models 502

of varying sizes, both under CoT and "break the 503

chain" conditions, are documented. Figure 4 in Ap- 504

pendix C illustrates that smaller models exhibit a 505

more pronounced reliance on CoT, especially as the 506

model size decreases, narrowing performance gaps 507

from a 16% deficit in 72B models to parity in 1.8B 508

models for arithmetic tasks. For logic and com- 509

monsense tasks, smaller models transition from 510

underperformance to outperforming larger counter- 511

parts, suggesting less capable models benefit more 512

from CoT’s structured approach. 513
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Model Task Base Quick Conclude Shortcut Reasoning Effective Shortcut Innovative Shortcut

ChatGPT
Arithmetic 65.59 77.23 80.11 80.58 71.34

Commensense 67.45 73.18 73.65 72.36 67.52
Logical 51.97 53.32 57.57 56.77 56.91

Llama-70B
Arithmetic 72.47 62.29 81.59 63.37 50.96

Commensense 67.57 73.00 60.58 67.29 67.27
Logical 71.41 66.26 68.60 67.18 63.95

Mixtral-8x7B
Arithmetic 70.80 73.22 71.70 68.77 56.63

Commensense 65.03 69.37 69.23 69.50 60.81
Logical 69.08 69.61 69.84 68.48 60.46

Qwen1.5-72B
Arithmetic 65.28 76.00 75.51 74.52 70.83

Commensense 79.11 79.85 79.38 80.36 79.78
Logical 60.17 63.42 63.58 63.62 61.79

Qwen1.5-14B
Arithmetic 63.30 71.97 71.57 69.94 66.85

Commensense 74.43 75.65 75.14 75.25 74.20
Logical 53.47 55.76 54.91 55.50 54.38

Qwen1.5-1.8B
Arithmetic 39.40 39.99 37.12 31.97 28.81

Commonsense 57.61 55.07 57.19 55.95 55.20
Logical 33.00 30.72 31.00 32.37 32.05

Table 4: Experiment results concerning different tasks. Detailed results are in Appendix C. All results are in %, the
best ones are in bold.

These findings question the prevailing assump-514

tion that CoT invariably enhances LLM perfor-515

mance. Our results indicate that specific prompts,516

even without detailed reasoning, can yield compa-517

rable or superior outcomes. However, the effective-518

ness of "break the chain" prompts varies, pointing519

to a nuanced interplay between prompt nature and520

LLM performance that merits further investigation.521

We observe that CoT is particularly adept at522

tackling questions decomposable into sub-issues523

that are solvable in brief sentences. Challenges524

arise when generated responses become exces-525

sively lengthy, leading to potential task misalign-526

ment and illogical outputs, or when they exceed527

the maximum length constraints set in the code,528

inhibiting the completion of reasoning sequences.529

ShortcutQA Table 5 presents a comparative anal-530

ysis of performance across various task types531

within the ShortcutQA dataset. Compared to bench-532

marks utilized elsewhere in this study, ShortcutQA533

poses a greater challenge, making it an ideal testing534

ground for advancing model capabilities.535

In mathematical reasoning tasks, all "break the536

chain" prompts outperform the established base-537

lines. The "Innovative Shortcut" prompt is par-538

ticularly effective, achieving a significant relative539

improvement of 28.56% over the baseline. "Quick540

Conclude" also shows substantial gains, with a rel-541

ative increase of 23.8% compared to the baseline.542

For analytical and verbal reasoning tasks, "Quick543

Conclude" registers the highest improvements, 544

with increases of 26.65% and 9.99%, respectively, 545

over the baseline. "Innovative Shortcut" also posts 546

notable gains in analytical tasks, while "Effective 547

Shortcut" sees considerable enhancements in ver- 548

bal tasks. 549

Overall, "Innovative Shortcut" and "Quick Con- 550

clude" are standout performers on the ShortcutQA 551

dataset, underscoring the potency of our "break the 552

chain" strategy. This dataset not only challenges 553

current LLMs but also sets a benchmark for fu- 554

ture enhancements, providing a robust platform for 555

testing and refining next-generation models. 556

6 Discussion 557

6.1 Reasoning with Token Limits 558

We investigated the impact of token limits on model 559

performance by experimenting with different con- 560

straints (128, 256 tokens) during the response gen- 561

eration phase. Figure 2 illustrates how varying 562

token limits affect outcomes on the mathematical 563

reasoning task within ShortcutQA using different 564

prompts. We observed that as the token limit in- 565

creases, so does performance across all prompts, 566

indicating that constraints on output length signif- 567

icantly influence the inference process and thus 568

the results. Notably, even at the minimum limit 569

of 128 tokens, all prompts exceed the baseline per- 570

formance, suggesting that our "break the chain" 571

approach is not only efficient but also effective in 572
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Dataset Question Type Base Quick Conclude Shortcut Reasoning Effective Shortcut Innovative Shortcut

ShortcutQA
Analytical Reasoning 26.79 33.93 21.43 19.64 30.36

Verbal Reasoning 22.73 25.00 22.73 23.86 21.59
Mathematical Reasoning 25.00 30.95 29.76 26.19 32.14

Table 5: Performance comparison across tasks within ShortcutQA.
conserving computational resources while main-573

taining or improving task performance.574

Figure 2: Performance comparison of different token
limits on the mathematical reasoning task from Short-
cutQA.

6.2 Theoretical Analysis575

We have developed a qualitative model to formalize576

the performance dynamics of Chain-of-Thought577

(CoT) reasoning and to elucidate the effectiveness578

of the "Break the Chain" approach.579

In our framework, each CoT step is divided into580

two phases: analysis and reasoning. The accuracy581

of the analysis at step t is denoted as P (at), and582

the subsequent reasoning based on this analysis is583

denoted as P (rt). Therefore, the total accuracy of584

a CoT sequence depends on the combined accuracy585

of these phases across all steps, mathematically586

expressed as:587

P (CorrectReasoningCoT) =

T∏
t=1

P (at)P (rt), (1)588

where T is the total number of steps in the589

CoT reasoning chain. To evaluate the effi-590

cacy of different prompting strategies, we define591

P (CorrectReasoningp) as the probability of achiev-592

ing correct reasoning for a given prompt p. A593

prompt is considered more effective than the tradi-594

tional CoT approach if P (CorrectReasoningp) sur-595

passes P (CorrectReasoningCoT).596

In cases where no explicit analysis or reasoning597

phase is involved, and both are integrated by LLMs598

in each step, Equation 1 simplifies to:599

P (CorrectReasoningCoT) =
T∏
t=1

P (it), (2)600

where it signifies the probability of obtaining 601

the correct result in a single, consolidated inference 602

step. 603

Figure 3: Relationship between CoT Chain Length and
Accuracy.

Our experimental results corroborate the theoret- 604

ical predictions, as illustrated in Figure 3. We ob- 605

serve that CoT accuracy generally declines as chain 606

length increases. Notably, in scenarios like Coin 607

Flip where P (it) approaches 1, accuracy remains 608

stable regardless of chain length. Conversely, in 609

tasks like SVamp where P (it) is lower, a decrease 610

in accuracy is noted as the chain lengthens. When 611

comparing "Quick Conclude" on SVamp against 612

baseline accuracies, the relative CoT accuracy di- 613

minishes with increasing chain length, aligning 614

precisely with our model. Detailed methodologies 615

for these experiments are available in Appendix D. 616

7 Conclusion 617

This study critically evaluates Chain-of-Thought 618

(CoT) reasoning in language models, highlighting 619

limitations such as high token consumption and 620

limited applicability. Our "break the chain" strate- 621

gies integrate human-like heuristics and shortcuts, 622

enhancing efficiency without compromising perfor- 623

mance across various models. The introduction of 624

the ShortcutQA dataset further advances AI rea- 625

soning evaluation by focusing on heuristic tasks, 626

providing a robust benchmark that challenges tra- 627

ditional methods. Our findings suggest that adopt- 628

ing more intuitive, efficient reasoning approaches 629

could significantly improve the problem-solving 630

capabilities of AI systems in real-world applica- 631

tions. 632
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Limitations633

While our study presents a significant advance-634

ment in understanding the reasoning capabilities635

of Large Language Models (LLMs) through the636

introduction of "break the chain" strategies and the637

ShortcutQA dataset, there are several limitations638

that warrant discussion.639

1. Scope of Reasoning Tasks: Our experiments,640

although diverse, are not exhaustive in terms of641

the types of reasoning tasks. The tasks selected642

for our study are primarily logical, mathematical,643

and commonsense reasoning problems. There may644

be other types of reasoning tasks where the "break645

the chain" approach could exhibit different perfor-646

mance characteristics.647

2. Faithfulness of Reasoning: As noted in re-648

lated work, there is an ongoing debate regarding649

the faithfulness of CoT reasoning in LLMs. Our650

study raises questions about the necessity of ex-651

plicit step-by-step reasoning, but does not fully652

resolve the issue of whether LLMs can provide ex-653

planations that are both accurate and reflective of654

their internal reasoning processes.655

3. Evaluation Metrics: Our evaluation primarily656

relies on accuracy as the metric for assessing rea-657

soning performance. However, reasoning effective-658

ness may also be influenced by other factors such659

as the coherence, explainability, and efficiency of660

the reasoning process, which were not extensively661

measured in this study.662

In future work, it will be crucial to address these663

limitations by expanding the scope of reasoning664

tasks, investigating the generalizability of the strate-665

gies across different model architectures, mitigat-666

ing potential biases in the dataset, exploring differ-667

ent token constraints, enhancing the faithfulness of668

reasoning, and considering a broader set of evalua-669

tion metrics. Furthermore, research into the prac-670

tical application of these strategies in real-world671

scenarios will be essential to fully harness the po-672

tential of LLMs as efficient and effective reasoners.673
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A Zero-shot prompts for "break the968

chain"969

The abbreviations of probing prompts and shortcut970

prompts are shown in the table 6.971

B Pipeline Details972

Figure 5 shows the pipeline of experiments.973

Figure 4: The Impact of Model Size on CoT’s Relative
Outperformance over Other Prompts across Datasets

C Experiment Results974

Table 7 is the original experiment results of diverse975

model structures.976

Figure 4 shows that as model size decreases,977

CoT’s relative performance advantage over other978

prompts increases across all tasks.979

D Detailed Methods980

In this section, we introduce our detailed methods981

for our experiments. For our experiment in discus-982

sion, we generally used GPT4 to evaluate the logs,983

and caculate the accuracy of different lengths. First,984

We used GPT4 to check the logs of CoT to calcu-985

late the length of chain in each question on SVamp986

and Coin Flip. Second, we calculated the accu-987

racy at different length of chain. Third, to exclude988

the disturbance of various difficulty distributions989

within each group, we calculated the accuracy with990

promptQC in each group of data as baseline with-991

out CoT on SVamp.992
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Prompt Type Abbreviations Full Prompts

Probing Prompts
Skip Steps Let’s skip as much as possible.

No Steps Let’s don’t think step by step.

More Token Let’s think as much as possible.

Shortcut Prompts

Quick Conclude Let’s quickly conclude the answer without showing step-by-step reasoning.

Shortcut Reasoning Let’s quickly conclude the answer with shortcut reasoning.

Effective Shortcut Rapidly evaluate and use the most effective reasoning shortcut to answer the question.

Innovative Shortcut Think outside the box and quickly identify an innovative shortcut to solve this problem.

Table 6: The relationship between a prompt abbreviation and its full prompt.

Q: Suppose the function ( f(x) ) is differentiable on the 
interval ([-2,2]), and it satisfies ( f'(x) > f(x) > 0 ). Then:
(a) $ \frac {f(-2)}{f(-1)} $ >1
 (b) $ \frac {f(0)}{f(-1)} $ >e
 (c) $ \frac {f(1)}{f(-1)} $ < $ e^ {2} $
 (d) $ \frac {f(2)}{f(-1)} $ < $ e^ {3} $ 
A: Rapidly evaluate and use the most effective 
reasoning shortcut to answer the question.

LLM

Since f'(x) > f(x) > 0, we know that f(x) is increasing on the interval [-2,2]. 
Therefore, f(-2) < f(-1) < f(0) < f(1) < f(2).
(a) $ \frac {f(-2)}{f(-1)} $ < 1 (since f(-2) < f(-1))
(b) $ \frac {f(0)}{f(-1)} $ > 1 (since f(0) > f(-1))
(c) $ \frac {f(1)}{f(-1)} $ < 1 (since f(1) < f(-1))
(d) $ \frac {f(2)}{f(-1)} $ < 1 (since f(2) < f(-1))
Therefore, the correct answer is (b) $ \frac {f(0)}{f(-1)} $ >e.

Question&Prompt

Shortcut 
Reasoning&Answer

Therefore, among a through d, the answer is Extract Answer

LLM

b

concatenate

Shortcut 
Reasoning

Q: Suppose the function ( f(x) ) is differentiable on the 
interval ([-2,2]), and it satisfies ( f'(x) > f(x) > 0 ). Then:
(a) $ \frac {f(-2)}{f(-1)} $ >1
 (b) $ \frac {f(0)}{f(-1)} $ >e
 (c) $ \frac {f(1)}{f(-1)} $ < $ e^ {2} $
 (d) $ \frac {f(2)}{f(-1)} $ < $ e^ {3} $ 
A: Rapidly evaluate and use the most effective 
reasoning shortcut to answer the question.

Since f'(x) > f(x) > 0, we know that f(x) is increasing on the interval [-2,2]. 
Therefore, f(-2) < f(-1) < f(0) < f(1) < f(2).
(a) $ \frac {f(-2)}{f(-1)} $ < 1 (since f(-2) < f(-1))
(b) $ \frac {f(0)}{f(-1)} $ > 1 (since f(0) > f(-1))
(c) $ \frac {f(1)}{f(-1)} $ < 1 (since f(1) < f(-1))
(d) $ \frac {f(2)}{f(-1)} $ < 1 (since f(2) < f(-1))
Therefore, the correct answer is (b) $ \frac {f(0)}{f(-1)} $ >e.

Figure 5: Our evaluation pipeline.
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model Task Dataset Base Quick Conclude Shortcut Reasoning Effective Shortcut Innovative Shortcut

ChatGPT
Arithmetic

SingleEq 86.61 91.14 91.73 92.32 77.36
AddSub 83.80 90.89 86.33 89.62 73.67
AQUA-RAT 35.43 51.97 52.76 53.94 52.36
MultiArith 83.33 91.00 94.67 94.83 89.83
GSM8K 32.68 56.86 71.57 67.25 58.00
SVAMP 71.70 81.50 83.60 85.50 76.80

Commensense
CommonsenseQA 70.52 77.89 78.95 76.82 72.89
StrategyQA 64.37 68.47 68.34 67.90 62.14

Logic
LogiQA 40.09 41.32 43.32 42.70 41.01
ReClor 52.40 52.80 51.60 52.00 51.40
Date Understanding 63.41 65.85 77.78 75.61 78.32

Llama-70B
Arithmetic

SingleEq 67.91 55.91 81.10 49.80 40.16
AddSub 69.87 40.51 80.25 53.92 32.66
AQUA-RAT 61.02 52.36 62.20 57.87 50.79
MultiArith 79.83 71.00 93.33 73.67 60.33
GSM8K 80.97 81.05 85.14 78.17 69.52
SVAMP 75.20 72.90 87.50 66.80 52.30

Commensense
CommonsenseQA 79.03 81.49 77.31 69.21 74.37
StrategyQA 56.11 64.50 43.84 65.37 60.17

Logic
LogiQA 57.60 57.30 57.45 58.83 56.07
ReClor 71.80 69.40 68.40 69.80 70.20
Date Understanding 84.82 72.09 79.95 72.90 65.58

Mixtral-8x7B
Arithmetic

SingleEq 87.40 88.58 87.01 83.46 70.87
AddSub 85.82 86.84 84.81 83.54 72.15
AQUA-RAT 37.40 41.34 42.13 39.76 32.68
MultiArith 87.50 87.33 85.83 78.17 62.17
GSM8K 48.90 55.80 54.81 49.20 39.12
SVAMP 77.80 79.40 75.60 78.50 62.80

Commensense
CommonsenseQA 71.63 72.40 72.73 71.17 65.85
StrategyQA 58.43 66.33 65.72 67.82 55.76

Logic
LogiQA 42.70 45.01 38.56 40.86 45.78
ReClor 47.40 50.60 51.80 48.60 47.60
Date Understanding 66.40 67.48 63.96 68.02 59.08

Qwen1.5-72B
Arithmetic

SingleEq 80.71 87.80 88.78 88.58 86.61
AddSub 84.56 84.81 86.33 88.61 86.84
AQUA-RAT 37.80 47.24 48.43 46.46 35.43
MultiArith 81.33 96.00 95.33 96.00 93.67
GSM8K 28.96 54.06 48.98 45.26 42.30
SVAMP 78.30 86.10 85.20 82.20 80.10

Commensense
CommonsenseQA 81.98 83.54 81.98 83.37 83.7
StrategyQA 76.24 76.16 76.77 77.34 75.85

Logic
LogiQA 46.54 50.08 51.15 50.54 47.00
ReClor 61.60 66.20 64.00 65.80 64.40
Date Understanding 72.36 73.98 75.61 74.53 73.98

Table 7: Comparison of Various Open-Source Large Models’ Performance with Different Prompts Across Multiple
Datasets.
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