

# EFFICIENT MULTI-SOURCE KNOWLEDGE TRANSFER BY MODEL MERGING

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010

## ABSTRACT

011 While transfer learning is an advantageous strategy, it often overlooks the oppor-  
012 tunity to leverage knowledge from numerous available models online. Addressing  
013 this multi-source transfer learning problem is a promising path to boost adaptabil-  
014 ity and cut re-training costs. However, existing approaches are inherently coarse-  
015 grained, lacking the necessary precision for granular knowledge extraction and  
016 the aggregation efficiency required to fuse knowledge from either a large number  
017 of source models or those with high parameter counts. We address these limita-  
018 tions by leveraging Singular Value Decomposition (SVD) to first decompose each  
019 source model into its elementary, rank-one components. A subsequent aggrega-  
020 tion stage then selects only the most salient components from all sources, thereby  
021 overcoming the previous efficiency and precision limitations. To best preserve and  
022 leverage the synthesized knowledge base, our method adapts to the target task by  
023 fine-tuning only the principal singular values of the merged matrix. In essence,  
024 this process only recalibrates the importance of top SVD components. The pro-  
025 posed framework allows for efficient transfer learning, is robust to perturbations  
026 both at the input level and in the parameter space (e.g., noisy or pruned sources),  
027 and scales well computationally. Our code is provided in the supplementary.  
028

## 1 INTRODUCTION

029 The increasing complexity of models and the immense computational costs associated with their  
030 training necessitate the efficient utilization of existing resources. Transfer learning Zhuang et al.  
031 (2020), which involves initializing networks with weights from a pretrained model, has emerged as  
032 a standard practice. This practice relies on foundational models, such as large-scale vision trans-  
033 formers Awais et al. (2025) and self-supervised models Caron et al. (2021), which learn robust and  
034 generalized representations from vast, general-purpose datasets (e.g., ImageNet, LAION-5B). By  
035 effectively leveraging this broad pre-existing knowledge, transfer learning significantly reduces the  
036 demand for extensive task-specific data, accelerates training, and enhances overall model perfor-  
037 mance across a wide range of computer vision tasks.  
038

039 However, the wealth of specialized knowledge residing in other fine-tuned models remains largely  
040 untapped. Each model represents a valuable knowledge asset, with hundreds of thousands of ver-  
041 sions publicly available on platforms like Hugging Face. Each new adaptation typically requires  
042 training from its original, pre-trained state, neglecting the specialized knowledge already acquired  
043 by previously fine-tuned models for distinct tasks. This gap has sparked considerable interest in de-  
044 veloping methods for combining multiple models into a unified model Shu et al. (2021); Yang et al.  
045 (2022). Among these is model merging Yang et al. (2024), which presents a notable opportunity to  
046 fuse capabilities at low cost, such as the aTLAS method Zhang et al. (2024), which addresses the  
047 multi-source knowledge transfer for a new target task. It learns to scale and combine task vectors  
048 anisotropically Ilharco et al. (2022), which are the weight differences between fine-tuned models  
049 and their pre-trained state. The method operates by learning a distinct coefficient for each of the  
050  $T$  tasks, across each of the  $L$  layers, and for each of  $P$  partitions within a weight matrix. These  
051 coefficients collectively form a learned tensor with dimensions  $T \times L \times P$ , allowing for adjustments  
052 to the model's behavior for new tasks. While holding significant promise, aTLAS lacks mechanisms  
053 for granular parameter selection, which restricts the precision of knowledge fusion. Furthermore,  
aTLAS's memory footprint scales linearly with the number of added sources due to its reliance on  
using full task vectors. This design prevents the aggregation of larger models or a greater number

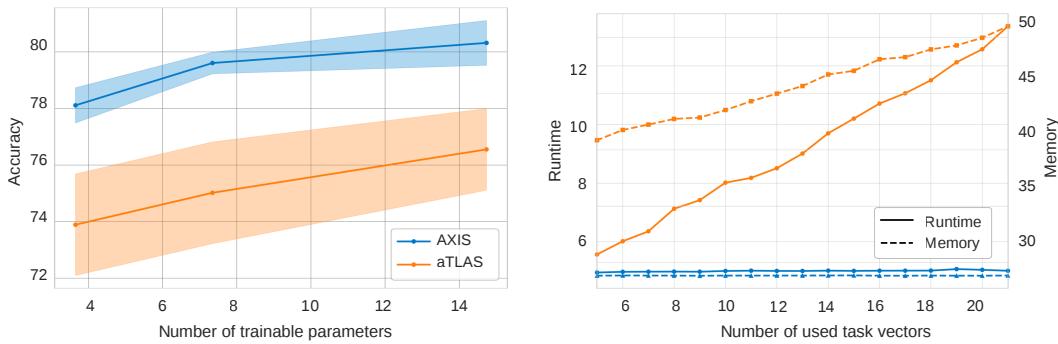


Figure 1: **Left:** Accuracy versus the number of trainable parameters for our method and aTLAS, averaged over all target tasks with ViT-B-32 architecture. Each data point corresponds to a fine-tuning parameter budget defined by the top  $N$  singular values ( $N=10\%$ ,  $20\%$ , and  $40\%$ ). The solid line denotes the mean accuracy, while the shaded area represents the standard deviation. The variation is calculated over all source task vectors. **Right:** Scalability analysis for ViT-L-14 architecture with  $N=10\%$  trainable parameters. As the number of source task vectors increases, the runtime and memory costs of aTLAS scale near-linearly. In contrast, our AXIS framework maintains a constant computational footprint.

of source models. As a result, its training is confined to multi-GPU environments, undermining its parameter-efficient benefits. This coarse-grained approach lacks a robust knowledge composition mechanism, making it susceptible to perturbations from both corrupted and pruned parameters and degraded inputs.

In this paper, we present a unified method that efficiently combines specialized knowledge from multiple fine-tuned source models in the parameter space to facilitate transfer to a new, unseen target task. We depart from the methodology proposed in the aTLAS paper, which assumes that the entire set of full-rank task vectors is used throughout the entire training process. Instead, we propose a more scalable approach that first aggregates knowledge and then allows for its efficient refinement during adaptation. First, we leverage Singular Value Decomposition (SVD) to decompose each task vector into its elementary, rank-one components. This allows us to identify and isolate granular patterns learned for each source task. A subsequent combination stage aggregates these components from all source models, performing a joint ranking to retain only a small, fixed number of the most significant ones. We term this strategy **AXIS**, as it embodies the principle of **A**ggregation by **X**traction of **I**mportant **S**ingular components. Such selective aggregation ensures a stable memory usage and constant wall-time footprint during training, irrespective of the number of source models or original task matrix sizes (see Figure 1). Consequently, the proposed design is not only more parameter-efficient, but it also proves to be more robust. Our key contributions include:

- We introduce a scalable approach, AXIS, which outperforms the state-of-the-art method, aTLAS, across a wide spectrum of evaluation conditions, including 21 distinct tasks and various parameter budgets, [covering three vision model scales as well as the language domain](#).
- The computational efficiency of AXIS is a key advantage, allowing for the scaling of knowledge transfer from a large number of source tasks and larger models.
- We demonstrate AXIS’s robustness to parameter and input degradations, [as well as its potential for transferring knowledge across models with diverse initializations](#).
- Through ablation studies, we offer insights into the underlying structure of knowledge composition and how it can be leveraged.

## 2 RELATED WORKS

**Model merging** is gaining traction as a promising approach to leverage fine-tuned models without requiring access to training data or incurring increased model size and inference costs. The merging stage itself demands low computational resources and could be entirely training-free. [While substantial progress has been made in combining models with diverse architectures](#) Du et al. (2025) or

108 those trained without a shared initialization Rinaldi et al. (2025); Stoica et al. (2023); Ainsworth  
 109 et al. (2022), our work primarily focuses on distinct, yet highly prevalent paradigm where  
 110 models originate from a common pre-trained base Akiba et al. (2025); Yang et al. (2023); Yadav et al.  
 111 (2023). This shared origin allows for the direct application of task arithmetic Ilharco et al. (2022),  
 112 **enabling precise manipulation of weight differences to compose capabilities**. Model merging can  
 113 enhance single-task performance Wortsman et al. (2022a); Ramé et al. (2023); Jang et al. (2024)  
 114 or be utilized in the creation of multitask models Marczak et al. (2025); Gargiulo et al. (2025). While  
 115 merged models for multitask performance show limited promise for cross-domain compo-  
 116 sitional generalization Tam et al. (2024), we focus on explicitly reusing weights for distinct, new  
 117 target tasks. Other prior works focus on merging reasoning skills with Chains-of-Thought Yin et al.  
 118 (2025) for better zero-shot knowledge composition.  
 119

120 **Singular Value Decomposition (SVD)** offers a valuable approach for parameter-efficient  
 121 fine-tuning (PEFT), allowing effective modifications within the eigenspectrum of pre-trained  
 122 weights Wang et al. (2024); Bałazy et al. (2024); Peng et al. (2024); Meng et al. (2024). While  
 123 many of these strategies achieve parameter efficiency by focusing on the singular values, diverse  
 124 approaches exist Lingam et al. (2024). Others leverage SVD with reinforcement learning at inference  
 125 time, adapting to unseen target tasks Sun et al. (2025). We introduce a unique adaptation strategy  
 126 that diverges from prior work in two critical ways. First, we apply SVD to a multi-source merged  
 127 model. Second, departing from the more varied heuristics seen before, our adaptation is guided  
 128 exclusively by the largest singular values.  
 129

### 3 METHOD

#### 3.1 PROBLEM STATEMENT

130 Let the parameters of the base, pre-trained model be denoted by  $\theta_{\text{pre}}$ . We consider a set of  $T$  distinct  
 131 tasks. For a given task  $i$ , the model is fine-tuned on a corresponding dataset  $D_i$ . The parameters  
 132 of this fine-tuned model are denoted as  $\theta_i$ . Finally, the parameters for a specific layer  $l$  within this  
 133 model are represented by  $\theta_i^{(l)}$ . A task vector is the element-wise difference between the parameters  
 134 of a fine-tuned model and its pre-trained counterpart. Building on this concept, we define a per-layer  
 135 task difference to capture these modifications with greater granularity. Denoting the parameters of  
 136 the base model for layer  $l$  as  $\theta_{\text{pre}}^{(l)}$  and the fine-tuned parameters for task  $i$  at layer  $l$  as  $\theta_i^{(l)}$ , we define  
 137 **task vectors**  $\tau_i^{(l)}$  as:  
 138

$$\tau_i^{(l)} = \theta_i^{(l)} - \theta_{\text{pre}}^{(l)}$$

139 For weight parameters that form a matrix (e.g., in linear or attention layers), we denote this difference  
 140 specifically as the task matrix  $\Delta_i^{(l)}$  to emphasize the structure suitable for SVD. For all other modules  
 141 (e.g., biases, normalization), we retain the **general** term  $\tau_i^{(l)}$ . For these non-matrix parameters, we  
 142 simply compute their element-wise average across all source tasks, similar to other works. The  
 143 entire procedure, from decomposition to adaptation, is performed independently for each relevant  
 144 layer in the model. For brevity, we will generally omit the layer index  $(l)$ . While non-parametric  
 145 operations, such as activation functions, are applied during the model’s forward pass, they do not  
 146 have learnable weights and are therefore not represented in the task vector.  
 147

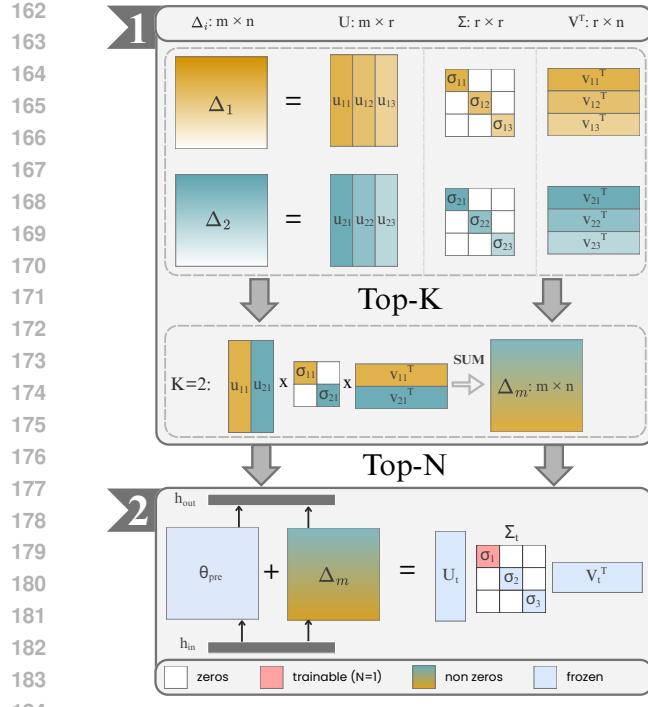
#### 3.2 DECOMPOSING TASK MATRICES

148 To capture the structured modifications introduced by fine-tuning, we perform a granular analysis  
 149 of each task matrix,  $\Delta_i$ , using Singular Value Decomposition (SVD). For a given task matrix  $\Delta_i$  at  
 150 any generic layer, we consider its SVD:  
 151

$$\Delta_i = \mathbf{U}_i \boldsymbol{\Sigma}_i \mathbf{V}_i^\top$$

152 where  $\mathbf{U}_i \in \mathbb{R}^{m \times r_i}$  and  $\mathbf{V}_i \in \mathbb{R}^{n \times r_i}$  are the matrices of left and right singular vectors, respectively,  
 153 and  $\boldsymbol{\Sigma}_i \in \mathbb{R}^{r_i \times r_i}$  is a diagonal matrix containing the singular values  $\sigma \in \mathbb{R}^{r_i}$ . The value  $r_i$  denotes  
 154 the rank of the matrix  $\Delta_i$  and corresponds to the number of its singular components.  
 155

156 Given a pre-trained model, parameterized by  $\theta_{\text{pre}}$ , and a library of  $T - 1$  source **task matrices**,  
 157  $\{\Delta_i\}_{i=1}^{T-1}$ , our objective is to synthesize this knowledge to effectively adapt the model for a new,  
 158

**Algorithm 1** AXIS

---

```

1: Initialize SVD components:  $\mathcal{C} \leftarrow \emptyset$ .
2: for each source task  $i \in \{1, \dots, T-1\}$  do
3:   Compute the SVD of  $\Delta_i = U_i \Sigma_i V_i^\top$ 
4:    $\mathcal{C} \leftarrow \mathcal{C} \cup \{(\mathbf{u}_j, \sigma_j, \mathbf{v}_j^\top)\}_{j=1}^{r_i}$ 
5: end for
6: Select the top-K components to form  $\mathcal{B}$ 
7: Sort $_{\sigma_k \downarrow}(\mathcal{C}) \rightarrow \mathcal{B}$ 
8: Assemble non-orthogonal vectors:
9:    $U_m \leftarrow [u_1 | u_2 | \dots | u_K]$ 
10:   $\Sigma_m \leftarrow \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_K)$ 
11:   $V_m \leftarrow [v_1 | v_2 | \dots | v_K]$ 
12: Reconstruct from components:
13:    $\Delta_m \leftarrow U_m \Sigma_m V_m^\top$ 
14: Re-orthogonalize the basis via SVD:
15:    $\Delta_m = U_t \Sigma_t V_t^\top$ .
16: Define the set of learnable parameters  $\Lambda$  as the top-N singular values from  $\Sigma_t$ :
17:    $\Lambda \leftarrow [s_1, \dots, s_N]$ .
18: Define frozen singular values:
19:    $\mathbf{s}_{\text{frozen}} \leftarrow \text{diag}(\Sigma_t) \setminus \Lambda$ 
20: Reconstruct with learned values:
21:    $\Delta_t \leftarrow U_t \text{diag}(\Lambda, \mathbf{s}_{\text{frozen}}) V_t^\top$ .
22: return  $\Delta_t$ 

```

---

Figure 2: An overview of the AXIS framework. The process consists of two stages: **(1) Extraction and aggregation:** Each source task matrix ( $\Delta_1, \Delta_2, \dots$ ) is decomposed into its elementary singular components using SVD. The most salient components from all sources are selected based on a global Top-K ranking of their singular values. These K components are then summed to synthesize the merged task matrix,  $\Delta_m$ . For clarity, the diagram illustrates this with  $K = 2$ . **(2) Adaptation:** To form a stable and decorrelated transfer basis,  $\Delta_m$  is re-parameterized via a final SVD. The model is then adapted to the target task by fine-tuning only a small subset (Top-N) of the most principal singular values of the resulting matrix  $\Sigma_t$  in each layer.

unseen target task. The original training datasets for these source tasks, i.e.,  $\{D_1, \dots, D_{T-1}\}$ , are not available. For the target task, we only have access to its labeled dataset, which is partitioned into a training set  $D_t^{\text{train}}$  and a test set  $D_t^{\text{test}}$ .

### 3.3 OUR TWO-STAGE COMPOSITION FRAMEWORK

#### STAGE 1: KNOWLEDGE EXTRACTION AND AGGREGATION.

Our core hypothesis is that the most transferable useful knowledge for the target task, encoded across diverse source tasks  $\{\Delta_i\}_{i=1}^{T-1}$ , is within the principal singular components, which represent the most dominant structural patterns in the parameter space. Therefore, for each source task matrix  $\Delta_i$ , we perform SVD to decompose it into a set of orthogonal components. Each component is a triplet  $(\mathbf{u}_{i,j}, \sigma_{i,j}, \mathbf{v}_{i,j}^\top)$ , where  $j$  is the component index for a given task  $i$ . Consequently, we propose an aggregation strategy based on a global ranking of all components from all source task matrices. We then select the Top-K components with the highest singular values to construct the transfer basis:

$$\mathcal{B} = \{(\mathbf{u}_k, \sigma_k, \mathbf{v}_k^\top)\}_{k=1}^K, \text{ where } \sigma_k \geq \sigma_{k+1}, \forall k$$

Finally, the merged task matrix,  $\Delta_m$ , is synthesized by summing the Top-K selected rank-one components:

$$\Delta_m = \sum_{k=1}^K \mathbf{u}_k \sigma_k \mathbf{v}_k^\top.$$

216 By prioritizing these high-magnitude components, we aim to build a new, effective pre-trained state  
 217 for any unknown downstream task. We empirically validate the quality of the merged model and the  
 218 component selection strategy against alternatives in our ablation studies.  
 219

220 STAGE 2: TARGET TASK ADAPTATION.

221 In the second stage, the merged knowledge  $\Delta_m$  is adapted to the specific target task. We define  
 222 the final target task vector  $\Delta_t$  as a function of  $\Delta_m$  and a small set of *learnable parameters*  $\Lambda$  that  
 223 minimize the cross-entropy loss  $\mathcal{L}$  on the target dataset:  
 224

$$225 \quad \Lambda^* = \underset{\Lambda}{\operatorname{argmin}} \mathbb{E}_{(x, y) \in D_t} [\mathcal{L}(f(x; \theta_{\text{pre}} + \Delta_t(\Lambda)), y)]$$

226 For a parameter-efficient adaptation, we apply gradient-based learning exclusively to the top- $N$   
 227 singular values of  $\Delta_t$ , which constitute the set  $\Lambda$ . The remaining singular vectors and less significant  
 228 components are kept frozen. The resulting full model parameters for the target task are  $\theta_t = \theta_{\text{pre}} +$   
 229  $\Delta_t(\Lambda)$  and the full, step-by-step process is formalized in Algorithm 1 and Figure 2.  
 230

231 The synthesized matrix  $\Delta_m$  represents a rich but intermediate consolidation of knowledge from  
 232 multiple source tasks. To transform this aggregation into a computationally stable and effective  
 233 basis for adaptation, we re-parameterize it using a final SVD. This procedure,  $\Delta_m \rightarrow U_t \Sigma_t V_t^\top$ ,  
 234 serves a dual purpose. First, it constructs a new set of orthogonal vectors,  $U_t$  and  $V_t$ , creating a  
 235 decorrelated basis that optimally represents the merged transformation in the sense of the Frobenius  
 236 norm. Second, it yields a new diagonal matrix  $\Sigma_t$ , whose values reflect the true importance of  
 237 the components within the combined matrix  $\Delta_m$  and also serve as the isolated set of learnable  
 238 parameters,  $\Lambda$ , for the subsequent fine-tuning.  
 239

## 4 RESULTS

### 4.1 EXPERIMENTAL SETUP

240 To evaluate the performance, scalability, and robustness of our method, we benchmark it against the  
 241 recent state-of-the-art method, aTLAS, which serves as our baseline. The experimental framework  
 242 is based on diverse image classification tasks, including texture recognition (DTD), satellite imagery  
 243 (EuroSAT), and fine-grained visual categorization (Flowers102). The experimental setup employs a  
 244 leave-one-out protocol. For each target task, we incrementally aggregate knowledge assets by vary-  
 245 ing the number of source task vectors from one up to the maximum of  $T - 1$  in a fixed, predefined  
 246 sequence. By default, we use the pre-trained Vision Transformer (ViT-B-32) variant of the CLIP  
 247 model Radford et al. (2021). Our primary performance metric is the Top-1 accuracy evaluated on  
 248 the test set of each target task. All results are presented under a matched number of trainable pa-  
 249 rameters and within the range used by aTLAS method. Our evaluation adapts the comprehensive  
 250 benchmark, publicly released task vectors, and training protocols established by the authors of aT-  
 251 LAS to ensure a direct and fair comparison. For each target task adaptation, the fine-tuning process  
 252 utilizes the complete, standard training set. To provide a one-to-one comparison, we adopted the  
 253 same training configuration used for the aTLAS baseline and ran all its experiments within this con-  
 254 sistent framework. Specifically, each adaptation runs for 10 epochs with a learning rate of  $10^{-1}$ . [All](#)  
 255 [setup details and results with seven textual datasets from Yadav et al. \(2023\) utilizing the T5-Base](#)  
 256 [language model \(see Figure 10\) are provided in the Appendix.](#)  
 257

### 4.2 PERFORMANCE AND EFFICIENCY GAINS OVER ATLAS

258 For each target task, we incrementally build the merged task vector,  $\Delta_{\text{target}}$ , by aggregating an  
 259 increasing number of source task vectors. For example, a single model synthesized from 16 source  
 260 vectors is then independently fine-tuned 21 times - once for each distinct target task as illustrated in  
 261 Figure 3. This entire process is repeated for every aggregation level, and the outcomes are averaged  
 262 to produce the final performance curves. The parameter budgets  $N$  of 10%, 20%, and 40% are  
 263 determined by the percentage of trainable singular values selected from each task matrix; their sum  
 264 across all matrices results in total trainable parameter counts of approximately 3.6k, 7.3k, and 14.7k,  
 265 respectively, in the ViT-B-32 version. The results demonstrate that our approach outperforms aTLAS  
 266 across the entire spectrum of source task quantities on both the ViT-B-32 (illustrated in Figure 3)  
 267 and ViT-L-14 architectures (see Figure 9 in the Appendix).  
 268

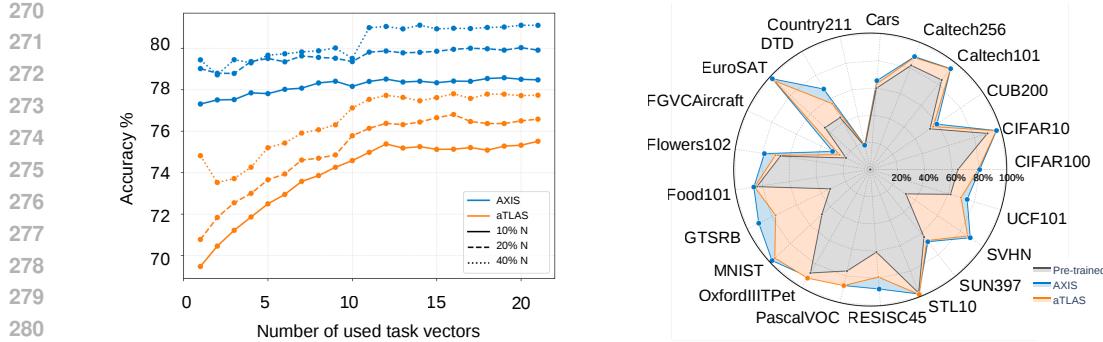


Figure 3: **Left:** Performance comparison with aTLAS varying the number of trainable parameters with the ViT-B-32 architecture. Each point represents a model configuration that was independently adapted to all target tasks. The plotted value is the mean performance across these tasks. **Right:** Detailed per-task comparison of the merged models (AXIS vs. aTLAS) utilizing 16 task vectors. To clarify performance differences in overlapping regions, the marker of the superior method for a given task is rendered on top. Overall, AXIS achieves a higher average accuracy of 78.42% compared to 75.13% for aTLAS.

Our method shows higher parameter efficiency, as illustrated in Figure 1. The figure compares AXIS with aTLAS, showing that for any given parameter budget, our approach yields higher average accuracy. Furthermore, the noticeably smaller shaded area for AXIS indicates a lower standard deviation, highlighting that our aggregation mechanism is more stable and less sensitive to variations in the number of source task vectors used.

**Memory and Runtime Scalability.** A key advantage of our method is its significantly lower computational overhead compared to baselines like aTLAS. The memory and runtime costs of aTLAS scale near-linearly with the number of source models, as it learns a distinct coefficient for each of the  $T$  source tasks across every layer and parameter partition  $P$  during the fine-tuning process. This means that all source task vectors must be present in memory throughout the entire adaptation phase for a new target task.

In stark contrast, AXIS decouples the process into two distinct stages. The first stage, knowledge aggregation, is a fast, one-time operation. It efficiently processes all  $T - 1$  source task vectors using SVD and consolidates them into a single, fixed-size merged matrix,  $\Delta_m$ . The subsequent, and most computationally intensive, fine-tuning stage operates only on this compact  $\Delta_m$ . As a result, the memory footprint and runtime of the adaptation phase remain constant, regardless of the number of source models initially aggregated. This design choice not only makes our approach more scalable but also significantly reduces the resources required for fine-tuning, as is illustrated in Figure 1.

### 4.3 ROBUSTNESS TO NOISE AND SPARSITY IN SOURCE PARAMETERS

To evaluate the robustness of our method with unreliable Li et al. (2025) or compressed Iurada et al. (2025); Li et al. (2025) source task vectors, we designed two specific scenarios. The first simulates contamination from a single, low-quality source, for instance, due to training instabilities. The second scenario evaluates how effectively these approaches leverage knowledge when all source task vectors are heavily pruned. Both investigations explore the method’s capacity to merge a more diverse and challenging spectrum of models, expanding its practical applicability.

We formed aggregations of source task vectors of varying sizes, ranging from three to eight, to demonstrate the effect of a single faulty source. In each aggregation, one task vector was intentionally corrupted, while the others remained intact. The corruption was applied by adding zero-mean Gaussian noise to the weights of an original task vector. To ensure a significant level of disruption, the standard deviation of the noise was scaled to 50% of the Frobenius norm of that task matrix ( $\sigma = 0.5 \cdot \|\Delta_i\|_F$ ). The results illustrated in Figure 4 demonstrate that while both methods experience some performance degradation in the presence of a corrupted source, the impact on our method is significantly less pronounced. This indicates a more robust knowledge transfer mechanism. We

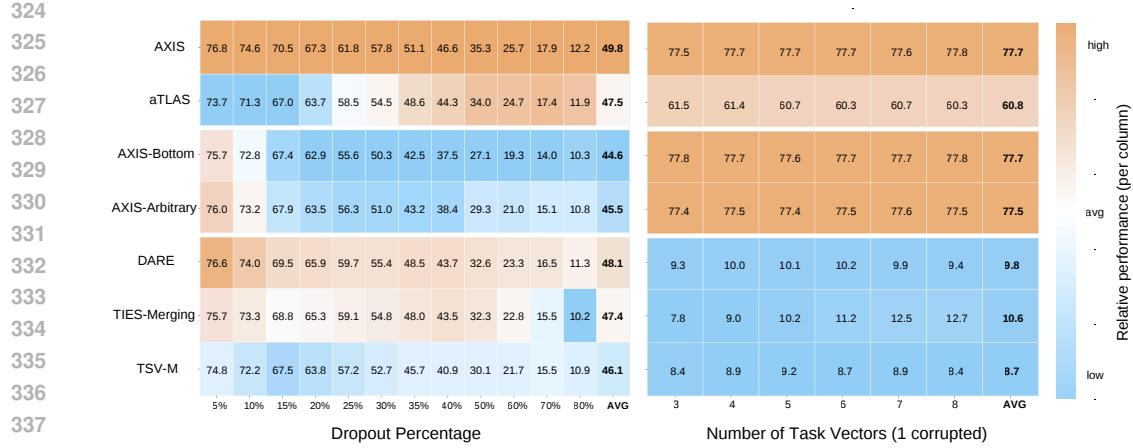


Figure 4: **Left:** The heatmap illustrates the average accuracy across all target tasks. Results indicate that **AXIS** outperforms the baselines under challenging conditions where input information is partially hidden, with up to 80% of patches masked. **Right:** Results averaged across all target tasks summarize the robustness to a single corrupted source task vector (out of 3 to 8 total). Our method, **AXIS**, demonstrates superior resilience to this scenario compared to aTLAS and other merging methods.

observe that our SVD-based selection process, by focusing on components with the highest singular values, is less susceptible to the unstructured perturbations introduced into a single source vector.

To assess the robustness of our method from a compression perspective, each of the source task vectors underwent magnitude-based pruning (see Figure 20). We applied a high-level ratio, ensuring that specialized knowledge was not catastrophically degraded. The subsequent analysis suggests that our approach can more effectively leverage the knowledge contained within highly sparse task vectors, showcasing a distinct advantage in utilizing compressed knowledge.

#### 4.4 ROBUSTNESS TO INPUT DATA DEGRADATION

Building on findings that merging models fine-tuned with distinct hyperparameters on the same task leads to greater stability under distribution shifts Wortsman et al. (2022a;b), we explore whether aggregating knowledge from multiple, diverse models, each fine-tuned with the same set of hyperparameters, can similarly construct a more robust representation. For this experiment, the **AXIS** and aTLAS models were built by aggregating the complete set of  $T - 1$  source task vectors and fine-tuning them for each target task.

The model’s accuracy on images with randomly omitted patches can serve as a direct test, which was previously used to measure model robustness Paul & Chen (2022) or ability to perform prediction with partial information Pardyl et al. (2025), providing unique insight into a model’s internal representation, as this form of robustness is often less correlated with baseline model performance than other image perturbations Malik et al. (2025). To ensure a fair comparison, a fixed seed guarantees that all methods are evaluated using the same masked patches for each dropout level. In Figure 4, **AXIS** shows resilience when almost all complete information is available, and degrades more slowly as input degradation becomes more severe. This capability is essential for real-world scenarios with incomplete data and follows prior research aimed at improving model resilience to partial visual information Liu et al. (2023); Tang et al. (2022) (see Table 8). Additionally, we demonstrate better robustness capabilities of **AXIS** than aTLAS against a set of 12 common image corruptions Hendrycks & Dietterich (2019) with five severity levels in the Appendix (see Figure 16 and Figure 17).

## 5 ANALYSIS

### 5.1 BROAD COMPARISON

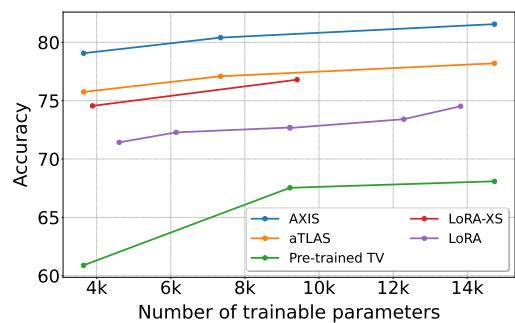


Figure 5: Performance comparison with competing methods, including PEFT variants. The proposed merge-and-tune paradigm in AXIS achieves a more efficient performance-parameter trade-off.

To demonstrate the advantages of our approach, we compare it with different finetuning methods, in particular with PEFT methods. This includes the widely-adopted LoRA Hu et al. (2022) and its enhanced variant LoRA-XS Bałazy et al. (2024). Additionally we try to further adapt the pre-trained weights as a single task vector. As the Fig 5 shows, our method efficiently outperform these techniques, effectively reusing already finetuned weights.

We further take inspiration from model merging techniques and ask the question whether a general, multi-task model serve as an effective knowledge base for our Stage 2 adaptation? To test this hypothesis, we substitute our AXIS aggregation with several established multi-task merging techniques, such as DARE Yu et al. (2024), TIES-Merging Yadav et al. (2023), TSV-M Gargiulo et al. (2025) and simple averaging, treating their merged weights as alternative initializations. As the results in Table 1 demonstrate, these multi-task models indeed form a potent foundation for our adaptation mechanism, albeit slightly below the performance of the AXIS method. This suggests that the Stage 2 is not rigidly dependent on a single aggregation method but can effectively refine knowledge from various merged, multi-capability models. Crucially, these alternative merging baselines lack the structural robustness inherent in our approach, as illustrated in Figure 4. They exhibit significant performance degradation in realistic scenarios involving partial input information or corrupted source models, whereas AXIS maintains superior resilience.

## 5.2 SCALABILITY AND PARAMETER SENSITIVITY OF AXIS

To assess the sensitivity of our method to the size of the transfer basis, we conducted an ablation study on the number of selected components,  $K$ . This sole hyperparameter directly controls the dimensionality of the aggregated knowledge consolidated into the merged task matrix,  $\Delta_m$ . In this experiment, we varied the value of  $K$  used in our *top components* aggregation strategy, where components from all source tasks are globally ranked by their singular values before the top  $K$  are selected to form the transfer basis. Our default choice of  $K = 76$  (approximating 10% of each layer’s rank) proves to be a robust heuristic. The plot demonstrates that performance remains high, with the drop being less than 1.5% even for large  $K$  (Figure 6). Overall, we find that limiting  $K$  to be less than 20% of total parameters provides robust results. We hypothesize that including additional components may introduce more task-specific details, which are not necessarily important for the target task (see Figure 11 and Figure 12).

Additionally, we evaluate how scaling the number of trainable parameters ( $N$ ) affects model performance (Figure 7). Specifically, setting  $N = 100\%$  corresponds to fine-tuning all the singular values in each AXIS task matrix. The improvements begin to diminish once  $N$  exceeds 60%. Thus,  $N$  serves as a control parameter that balances computational requirements and final performance.

## 5.3 COMPONENTS SELECTIONS STRATEGY

To evaluate the quality of component aggregation, we test three selection criteria from a global pool of all aggregated SVD components. We compare the impact of selecting components with

| Method            | <b>N = 10%</b>                     | <b>N = 20%</b>                     | <b>N = 40%</b>                     |
|-------------------|------------------------------------|------------------------------------|------------------------------------|
| DARE + Stage 2    | $78.09 \pm 0.06$                   | $79.69 \pm 0.04$                   | $80.77 \pm 0.09$                   |
| Average + Stage 2 | $78.19 \pm 0.15$                   | $79.45 \pm 0.15$                   | $79.43 \pm 0.70$                   |
| TIES + Stage 2    | $77.39 \pm 0.03$                   | $78.99 \pm 0.05$                   | $80.27 \pm 0.05$                   |
| TSV-M + Stage 2   | $76.41 \pm 0.05$                   | $78.69 \pm 0.07$                   | $80.41 \pm 0.11$                   |
| aTLAS             | $75.50 \pm 0.03$                   | $75.93 \pm 0.44$                   | $77.66 \pm 0.05$                   |
| <b>AXIS</b>       | <b><math>78.46 \pm 0.04</math></b> | <b><math>79.93 \pm 0.11</math></b> | <b><math>81.13 \pm 0.07</math></b> |

Table 1: Performance comparison with aTLAS and merging methods when followed by our Stage 2 adaptation. While the best results are obtained by AXIS, the adaptation mechanism itself is a potent and versatile tool for refining diverse multi-capability models. Crucially, while other merging baselines achieve lower, but competitive accuracy, AXIS exhibits significantly superior robustness against weights corruption (see Figure 4). All results are averaged over 3 seeds.

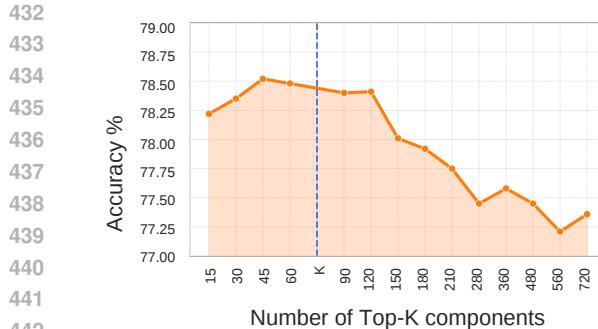


Figure 6: Performance sensitivity to the number of aggregated components  $K$ . Best averaged results are obtained for  $K < 20\%$ . The default setting is 10% ( $K = 76$ ).

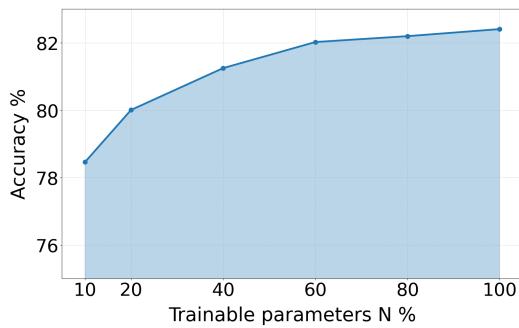


Figure 7: The AXIS scales consistently with the number of trainable parameters ( $N\%$ ), showing improved performance as  $N$  increases, with gains tapering off beyond 60%.

| N (%) | Top              | Arbitrary        | Bottom           |
|-------|------------------|------------------|------------------|
| 10    | $78.46 \pm 0.04$ | $77.83 \pm 0.04$ | $77.56 \pm 0.02$ |
| 20    | $79.93 \pm 0.11$ | $79.79 \pm 0.03$ | $79.81 \pm 0.05$ |
| 40    | $81.13 \pm 0.07$ | $81.17 \pm 0.08$ | $81.13 \pm 0.04$ |

Table 2: Performance comparison of different SVD component selection strategies within the AXIS framework, demonstrating their comparable effectiveness. However, the choice of components is crucial for ensuring the resilience of the model, as illustrated in the Figure 4

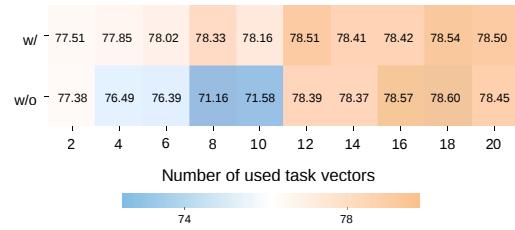


Figure 8: Skipping the final SVD orthogonalization results in a decline in performance, especially when combining a moderate number of task vectors.

the highest singular values (*top components*), the lowest (*bottom components*), and those chosen arbitrarily (*arbitrary components*). The results of this comparison are presented in Table 2, which indicates that the *top components* strategy yields the best performance. While selecting the *top components* components yields the highest accuracy, this advantage is most pronounced at lower parameter budgets. As the number of trainable parameters increases, the performance of all three strategies converges, suggesting that the importance of the initial component selection decreases as the model is given more trainable parameters. However, this convergence does not extend to robustness; see Figure 4. In the Appendix, we provide additional evidence demonstrating that the *top components* strategy captures the most transferable structural knowledge.

#### 5.4 STABILIZING THE TRANSFER BASIS

Instead of performing the final SVD re-parameterization, the layer’s weights were reconstructed directly from the aggregated components  $\Delta_m$ . For our primary strategy of top component selection, this omission results in significant performance degradation when a moderate number of task vectors are aggregated (Figure 8).

## 6 CONCLUSION

We presented AXIS, a framework that addresses multi-source knowledge transfer through the extraction, aggregation, and adaptation of useful knowledge for the target task. Furthermore, the framework enables efficient final adaptation while demonstrating robustness to degradations at both the parameter and input levels. Although the AXIS assumes a shared architecture and pre-training origin, our experiments in the Appendix demonstrate remarkable robustness to deviations from these constraints. This enables effective knowledge transfer even across models with different initializations and architectural variants with different scales.

486 REFERENCES  
487

488 Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models  
489 modulo permutation symmetries. *arXiv preprint arXiv:2209.04836*, 2022.

490 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of  
491 model merging recipes. *Nature Machine Intelligence*, 7(2):195–204, 2025.

492 Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal,  
493 Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundation models defining a  
494 new era in vision: a survey and outlook. *IEEE Transactions on Pattern Analysis and Machine  
495 Intelligence*, 2025.

496 Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-  
497 tion with extremely small number of parameters. *arXiv preprint arXiv:2405.17604*, 2024.

498 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-  
499 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,  
500 2014.

501 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and  
502 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of  
503 the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

504 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-  
505 mark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.

506 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-  
507 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and  
508 pattern recognition*, pp. 3606–3613, 2014.

509 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised  
510 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-  
511 gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

512 David L Donoho and Matan Gavish. The optimal hard threshold for singular values is 4. *arXiv  
513 preprint arXiv: 1305.5870*, 2013.

514 Yiyang Du, Xiaochen Wang, Chi Chen, Jiabo Ye, Yiru Wang, Peng Li, Ming Yan, Ji Zhang, Fei  
515 Huang, Zhifang Sui, et al. Adamms: Model merging for heterogeneous multimodal large language  
516 models with unsupervised coefficient optimization. In *Proceedings of the Computer Vision and  
517 Pattern Recognition Conference*, pp. 9413–9422, 2025.

518 Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew  
519 Zisserman. The pascal visual object classes challenge: A retrospective. *International journal of  
520 computer vision*, 111(1):98–136, 2015.

521 Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object categories. *IEEE trans-  
522 actions on pattern analysis and machine intelligence*, 28(4):594–611, 2006.

523 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio  
524 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model  
525 merging. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18695–  
526 18705, 2025.

527 Gregory Griffin, Alex Holub, Pietro Perona, et al. Caltech-256 object category dataset. Technical  
528 report, Technical Report 7694, California Institute of Technology Pasadena, 2007.

529 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset  
530 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected  
531 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

532 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-  
533 ruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 541 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.  
 542

543 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,  
 544 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint*  
 545 *arXiv:2212.04089*, 2022.

546 Leonardo Iurada, Marco Ciccone, and Tatiana Tommasi. Efficient model editing with task-localized  
 547 sparse fine-tuning. *arXiv preprint arXiv:2504.02620*, 2025.

548 Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few  
 549 fine-tuned models. In *European Conference on Computer Vision*, pp. 207–223. Springer, 2024.

550 Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A dataset  
 551 for question answering via sentence composition. In *Proceedings of the AAAI Conference on*  
 552 *Artificial Intelligence*, volume 34, pp. 8082–8090, 2020.

553 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained  
 554 categorization. In *Proceedings of the IEEE international conference on computer vision work-*  
 555 *shops*, pp. 554–561, 2013.

556 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.  
 557 2009.

558 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

559 Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. *KR*,  
 560 2012(13th):3, 2012.

561 Hongkang Li, Yihua Zhang, Shuai Zhang, Meng Wang, Sijia Liu, and Pin-Yu Chen. When is task  
 562 vector provably effective for model editing? a generalization analysis of nonlinear transformers.  
 563 *arXiv preprint arXiv:2504.10957*, 2025.

564 Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,  
 565 Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:  
 566 Parameter-efficient fine-tuning with singular vectors. *Advances in Neural Information Processing*  
 567 *Systems*, 37:41425–41446, 2024.

568 Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, and Kevin Smith. Patchdropout:  
 569 Economizing vision transformers using patch dropout. In *Proceedings of the IEEE/CVF Winter*  
 570 *Conference on Applications of Computer Vision*, pp. 3953–3962, 2023.

571 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 572 *arXiv:1711.05101*, 2017.

573 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained  
 574 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

575 Hashmat Shadab Malik, Fahad Shamshad, Muzammal Naseer, Karthik Nandakumar, Fahad Shahbaz  
 576 Khan, and Salman Khan. Towards evaluating the robustness of visual state space models. In  
 577 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3544–3553, 2025.

578 Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D Bagdanov,  
 579 and Joost van de Weijer. No task left behind: Isotropic model merging with common and task-  
 580 specific subspaces. *arXiv preprint arXiv:2502.04959*, 2025.

581 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular  
 582 vectors adaptation of large language models. *Advances in Neural Information Processing Systems*,  
 583 37:121038–121072, 2024.

584 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.  
 585 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*  
 586 *learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, 2011.

594 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number  
 595 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.  
 596 722–729. IEEE, 2008.

597 Adam Pardyl, Grzegorz Kurzejamski, Jan Olszewski, Tomasz Trzcinski, and Bartosz Zielinski. Be-  
 598 yond grids: Exploring elastic input sampling for vision transformers. In *IEEE/CVF Winter Con-  
 599 ference on Applications of Computer Vision, WACV*, pp. 8536–8545. IEEE, 2025.

600 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012  
 601 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

602 Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In *Proceedings of the AAAI  
 603 Conference on Artificial Intelligence*, pp. 2071–2081. AAAI Press, 2022.

604 Zelin Peng, Zhengqin Xu, Zhilin Zeng, Xiaokang Yang, and Wei Shen. Sam-parser: Fine-tuning  
 605 sam efficiently by parameter space reconstruction. In *Proceedings of the AAAI Conference on  
 606 Artificial Intelligence*, volume 38, pp. 4515–4523, 2024.

607 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 608 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 609 models from natural language supervision. In *International conference on machine learning*, pp.  
 610 8748–8763. PMLR, 2021.

611 Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.  
 612 Model ratatouille: Recycling diverse models for out-of-distribution generalization. In *Inter-  
 613 national Conference on Machine Learning*, pp. 28656–28679. PMLR, 2023.

614 Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, Elisa  
 615 Ficarra, Emanuele Rodola, Simone Calderara, and Angelo Porrello. Update your transformer to  
 616 the latest release: Re-basin of task vectors. *arXiv preprint arXiv:2505.22697*, 2025.

617 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng  
 618 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual  
 619 recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

620 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-  
 621 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

622 Rishi Sharma, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh. Tackling the story  
 623 ending biases in the story cloze test. In *Proceedings of the 56th Annual Meeting of the Association  
 624 for Computational Linguistics (Volume 2: Short Papers)*, pp. 752–757, 2018.

625 Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, and Mingsheng Long. Zoo-tuning: Adaptive  
 626 transfer from A zoo of models. In *Proceedings of the 38th International Conference on Machine  
 627 Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine  
 628 Learning Research*, pp. 9626–9637. PMLR, 2021.

629 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions  
 630 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

631 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign  
 632 recognition benchmark: a multi-class classification competition. In *The 2011 international joint  
 633 conference on neural networks*, pp. 1453–1460. IEEE, 2011.

634 George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman.  
 635 Zipit! merging models from different tasks without training. *arXiv preprint arXiv:2305.03053*,  
 636 2023.

637 Qi Sun, Edoardo Cetin, and Yujin Tang. Transformer-squared: Self-adaptive llms. *arXiv preprint  
 638 arXiv:2501.06252*, 2025.

639 Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. Quartz: An open-domain dataset of  
 640 qualitative relationship questions. *arXiv preprint arXiv:1909.03553*, 2019.

648 Derek Tam, Yash Kant, Brian Lester, Igor Gilitschenski, and Colin Raffel. Realistic evaluation of  
 649 model merging for compositional generalization. *arXiv preprint arXiv:2409.18314*, 2024.  
 650

651 Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu, and Dacheng Tao. Patch  
 652 slimming for efficient vision transformers. In *Proceedings of the IEEE/CVF Conference on Com-*  
 653 *puter Vision and Pattern Recognition*, pp. 12165–12174, 2022.

654 Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora: Harnessing minor  
 655 singular components for parameter-efficient llm finetuning. *arXiv preprint arXiv:2406.09044*,  
 656 2024.

657 Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and  
 658 Pietro Perona. Caltech-ucsd birds 200. 2010.  
 659

660 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,  
 661 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model  
 662 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing in-  
 663 ference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022a.

664 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,  
 665 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust  
 666 fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision*  
 667 and pattern recognition, pp. 7959–7971, 2022b.

668 Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:  
 669 Exploring a large collection of scene categories. *International Journal of Computer Vision*, 119  
 670 (1):3–22, 2016.  
 671

672 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-  
 673 solving interference when merging models. *Advances in Neural Information Processing Systems*,  
 674 36:7093–7115, 2023.

675 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.  
 676 Adamerging: Adaptive model merging for multi-task learning. *arXiv preprint arXiv:2310.02575*,  
 677 2023.  
 678

679 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.  
 680 Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.  
 681 *arXiv preprint arXiv:2408.07666*, 2024.

682 Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly.  
 683 *Advances in neural information processing systems*, 35:25739–25753, 2022.

684 Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-domain ques-  
 685 tion answering. In *Proceedings of the 2015 conference on empirical methods in natural language*  
 686 *processing*, pp. 2013–2018, 2015.

688 Fangcong Yin, Zeyu Leo Liu, Liu Leqi, Xi Ye, and Greg Durrett. Learning composable chains-of-  
 689 thought. *arXiv preprint arXiv:2505.22635*, 2025.

690 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-  
 691 sorbing abilities from homologous models as a free lunch. In *Forty-first International Conference*  
 692 *on Machine Learning*, 2024.

694 Frederic Z Zhang, Paul Albert, Cristian Rodriguez-Opazo, Anton van den Hengel, and Ehsan Ab-  
 695 basnejad. Knowledge composition using task vectors with learned anisotropic scaling. *Advances*  
 696 *in Neural Information Processing Systems*, 37:67319–67354, 2024.

697 Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling.  
 698 *arXiv preprint arXiv:1904.01130*, 2019.

699 Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,  
 700 and Qing He. A comprehensive survey on transfer learning. *Proceedings of the IEEE*, 109(1):  
 701 43–76, 2020.

702  
703  
A APPENDIX704  
OVERVIEW  
705706  
The appendix provides supplementary material to support and expand upon the main findings of our  
707  
paper. Additionally, we provide code in the supplementary material. To ensure clarity the contents  
708  
are organized as follows:

- 709 • **Evaluation Protocol in Vision Benchmark:** We begin by providing comprehensive details  
710 on the evaluation protocol and datasets used throughout our experiments.  
711
- 712 • **Performance on ViT-L-14 Architecture:** We present a comparative performance analysis  
713 of AXIS and aTLAS using the larger ViT-L-14 architecture, demonstrating that the  
714 advantages of our method scale effectively to more powerful models.  
715
- 716 • **Performance on T5-Base Language Models:** We demonstrate the generalization of AXIS  
717 beyond computer vision by evaluating its performance on the T5-Base architecture across  
718 seven natural language processing tasks.  
719
- 720 • **Validation of Adaptation Flexibility:** We empirically validate the efficiency of optimizing  
721 singular values by comparing it against alternative SVD-based strategies.  
722
- 723 • **Investigating Transfer Boundaries:** We explore the limits of our framework by applying  
724 AXIS to cross-architecture and cross-initialization scenarios.  
725
- 726 • **Transferability by SVD Components:** We provide an in-depth analysis justifying our  
727 ranking strategy, showing that high-magnitude singular components consistently align best  
728 with the ground-truth target task direction.  
729
- 730 • **AXIS Performance at Full Parameter Budget:** We analyze the model’s behavior as the  
731 number of trainable parameters budget approaches 100%.  
732
- 733 • **Multi-Task Performance of Axis:** We evaluate a joint training strategy for simultaneous  
734 adaptation to multiple tasks.  
735
- 736 • **Zero-Shot Transferability of Trained Models:** We assess the cross-task generalization of  
737 adapted models.  
738
- 739 • **Dynamic Top-K Selection:** We benchmark our fixed  $K$  component selection strategy  
740 against an dynamic method.  
741
- 742 • **Incremental Knowledge Aggregation:** We introduce a streaming aggregation protocol  
743 that updates the model sequentially.  
744
- 745 • **In-depth Robustness Analyses:** We conduct a series of thorough evaluations to validate  
746 the robustness of our framework under challenging conditions. These include:
  - 747 – Resilience to 12 common image corruptions across five distinct severity levels.  
748
  - 749 – Performance evaluation across different levels of training data availability for the tar-  
750 get task.  
751
  - 752 – Robustness against altered source parameters, including scenarios with noisy or heav-  
753 ily pruned task vectors.  
754
- 755 • **Component Selection:** We present a detailed ablation study comparing our default com-  
756 ponent aggregation strategy (top components) against a range of alternative methods.  
757
- 758 • **Impact of Final SVD:** We provide details of the role of the final SVD re-parameterization  
759 step in stabilizing the transfer basis across a couple of selection strategies.  
760
- 761 • **Detailed Main Results:** We then provide extensive results with the ViT-B-32 architecture.  
762 These tables offer a granular performance breakdown, detailing per-target-task accuracy  
763 for different numbers of aggregated source task vectors and varying budgets of trainable  
764 parameters ( $N$ ).  
765

752  
753 A.1 EVALUATION PROTOCOL  
754755 To ensure a direct and fair comparison, we adopt the comprehensive benchmark, publicly re-  
leased task vectors, and training protocols established by the authors of aTLAS. Their framework

| Dataset       | Classes | Splits    |        |        | Epochs | Fine-tuned accuracy (%) |          |
|---------------|---------|-----------|--------|--------|--------|-------------------------|----------|
|               |         | train     | val    | test   |        | ViT-B/32                | ViT-L/14 |
| Cars          | 196     | 7,330     | 814    | 8,041  | 35     | 78.26                   | 91.67    |
| DTD           | 47      | 3,384     | 376    | 1,880  | 76     | 78.94                   | 84.73    |
| EuroSAT       | 10      | 21,600    | 2,700  | 2,700  | 12     | 98.89                   | 99.81    |
| GTSRB         | 43      | 23,976    | 2,664  | 12,630 | 11     | 99.14                   | 99.30    |
| MNIST         | 10      | 55,000    | 5,000  | 10,000 | 5      | 99.65                   | 99.77    |
| RESISC45      | 45      | 17,010    | 1,890  | 6,300  | 15     | 95.94                   | 97.14    |
| SUN397        | 397     | 17,865    | 1,985  | 19,850 | 14     | 75.40                   | 81.98    |
| SVHN          | 10      | 68,257    | 5,000  | 26,032 | 4      | 97.38                   | 97.97    |
| CIFAR10       | 10      | 45,000    | 5,000  | 10,000 | 5      | 98.05                   | 99.22    |
| CIFAR100      | 100     | 45,000    | 5,000  | 10,000 | 6      | 89.09                   | 93.01    |
| ImageNet      | 1,000   | 1,276,167 | 5,000  | 50,000 | 10     | 76.41                   | 85.52    |
| STL10         | 10      | 4,500     | 500    | 8,000  | 4      | 98.55                   | 99.62    |
| Food101       | 101     | 70,750    | 5,000  | 25,250 | 15     | 88.68                   | 95.37    |
| Caltech101    | 101     | 6,941     | 694    | 1,736  | 10     | 94.41                   | 94.82    |
| Caltech256    | 257     | 22,037    | 2,448  | 6,122  | 8      | 92.60                   | 97.17    |
| FGVCAircraft  | 100     | 3,334     | 3,333  | 3,333  | 60     | 40.65                   | 68.11    |
| Flowers102    | 102     | 1,020     | 1,020  | 6,149  | 40     | 90.08                   | 97.84    |
| OxfordIIITPet | 37      | 3,312     | 368    | 3,669  | 5      | 92.15                   | 95.91    |
| CUB200        | 200     | 5,395     | 599    | 5,794  | 20     | 73.56                   | 86.35    |
| PascalVOC     | 20      | 7,844     | 7,818  | 14,976 | 10     | 88.42                   | 92.05    |
| Country211    | 211     | 31,650    | 10,550 | 21,100 | 15     | 21.99                   | 38.06    |
| UCF101        | 101     | 7,639     | 1,898  | 3,783  | 20     | 85.01                   | 92.55    |

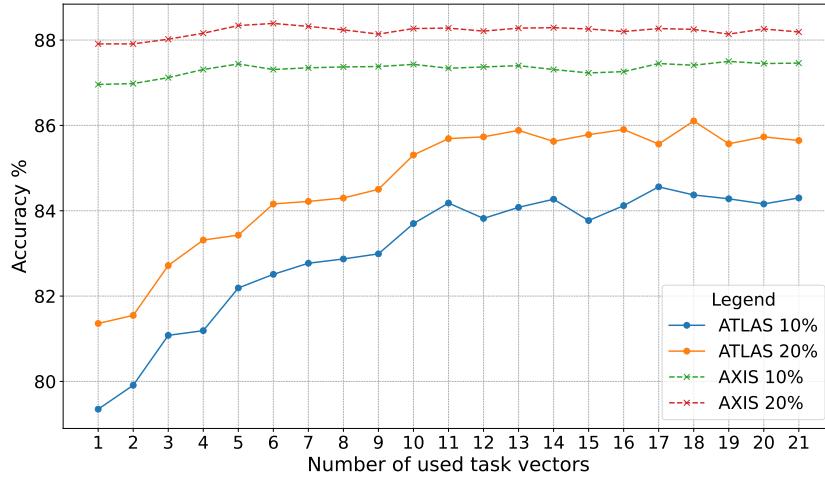
Table 3: Comparison of full fine-tuning model accuracy per dataset

provides task vectors obtained by fine-tuning the pre-trained CLIP Radford et al. (2021) model on distinct image recognition datasets: Stanford Cars Krause et al. (2013), DTD Cimpoi et al. (2014), EuroSAT Helber et al. (2019), GTSRB Stallkamp et al. (2011), MNIST LeCun (1998), RESISC45 Cheng et al. (2017), SUN397 Xiao et al. (2016), SVHN Netzer et al. (2011), CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), ImageNet Russakovsky et al. (2015), STL10 Coates et al. (2011), Food101 Bossard et al. (2014), Caltech101 Fei-Fei et al. (2006), Caltech256 Griffin et al. (2007), FGVCAircraft Maji et al. (2013), Flowers102 Nilsback & Zisserman (2008), Oxford Pets Parkhi et al. (2012), CUB200 Welinder et al. (2010), PascalVOC Everingham et al. (2015), Country211 Radford et al. (2021), and UCF101 Soomro et al. (2012). The original fine-tuning for these vectors was performed using the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of  $10^{-5}$ , a batch size of 128, and a weight decay of 0.1 for the ViT-B-32 architecture. Table 3 provides dataset details, their corresponding hyperparameters, and the fine-tuning accuracy achieved with full-finetuning.

During the target task adaptation stage, we fine-tune the merged model for each dataset independently, using the same hyperparameters as the aTLAS baseline (each adaptation runs for 10 epochs with a learning rate of  $10^{-1}$ ). The batch size is adjusted based on the model architecture: 64 for the ViT-B-32 and ViT-B-16 model and 128 for the larger ViT-L-14 model. For the ViT-L-14 architecture, both methods originally use two steps of gradient accumulation. To ensure a controlled and reproducible evaluation provided by aTLAS, the source task vectors are aggregated incrementally in a fixed, pre-defined sequence. The order of aggregation is as follows: Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397, SVHN, CIFAR10, CIFAR100, ImageNet, STL10, Food101, Caltech101, Caltech256, FGVCAircraft, Flowers102, OxfordIIITPet, CUB200, PascalVOC, Country211, and UCF101. Each experimental run was conducted once with a single random seed across our comprehensive evaluation, which included 21 target tasks, multiple aggregation levels, and varying parameter budgets.

810 A.1.1 COMPUTATIONAL ENVIRONMENT  
811

812 All experiments were conducted within a high-performance computing (HPC) cluster equipped with  
813 a heterogeneous GPU environment. The available resources included partitions with NVIDIA RTX  
814 4090, NVIDIA V100, and NVIDIA A100 GPUs. The results reported in this paper, generated using  
815 the ViT-L-14 architecture, were obtained with nodes equipped with NVIDIA A100-SXM4-80GB  
816 GPUs. Our software stack was built upon the CUDA 12.2 toolkit with NVIDIA driver version  
817 535.183.01.

818 A.2 PERFORMANCE ON ViT-L-14 ARCHITECTURE  
819

837 Figure 9: AXIS outperforms aTLAS on the ViT-L-14 architecture with  $N = 10\%$  and  $N = 20\%$  of  
838 trainable singular values. Each point is the mean accuracy across 21 independently evaluated target  
839 tasks. The plot illustrates the accuracy gain as the number of aggregated source tasks increases.

840 To validate the scalability and effectiveness of our approach on larger models, we replicated our  
841 experiments using the ViT-L-14 architecture. The results demonstrate the advantages of the AXIS  
842 framework. The performance comparison for the  $N = 10\%$  and  $N = 20\%$  parameter budget is  
843 illustrated in Figure 9, where AXIS consistently outperforms aTLAS as the number of aggregated  
844 source tasks increases. Further analysis across different parameter budgets confirms these findings.

| Dataset        | AXIS (%)     | aTLAS (%)    | Absolute gain (AXIS) |
|----------------|--------------|--------------|----------------------|
| CIFAR100       | 80.13        | 79.14        | +0.99                |
| CIFAR10        | 96.78        | 96.51        | +0.27                |
| CUB200         | 59.06        | 55.82        | +3.24                |
| Caltech101     | 94.47        | 94.18        | +0.29                |
| Caltech256     | 88.88        | 88.09        | +0.79                |
| Cars           | 65.30        | 62.82        | +2.48                |
| Country211     | 18.28        | 18.08        | +0.20                |
| DTD            | 68.09        | 55.69        | +12.40               |
| EuroSAT        | 97.74        | 95.67        | +2.07                |
| FGVCAircraft   | 30.63        | 24.96        | +5.67                |
| Flowers102     | 78.37        | 70.24        | +8.13                |
| Food101        | 86.23        | 85.63        | +0.60                |
| GTSRB          | 90.58        | 76.96        | +13.62               |
| MNIST          | 98.03        | 95.30        | +2.73                |
| RESISC45       | 87.76        | 78.95        | +8.81                |
| SUN397         | 67.62        | 66.50        | +1.12                |
| SVHN           | 88.65        | 86.32        | +2.33                |
| UCF101         | 74.31        | 69.60        | +4.71                |
| OxfordIIITPet  | 90.79        | 91.82        | -1.03                |
| PascalVOC      | 87.16        | 87.18        | -0.02                |
| STL10          | 97.91        | 98.33        | -0.42                |
| <b>Average</b> | <b>78.42</b> | <b>75.13</b> | <b>+3.29</b>         |

Table 4: The table clarifies that aTLAS holds a marginal advantage on only 3 datasets (OxfordIIITPet, PascalVOC, STL10), with two of these (PascalVOC, STL10) being statistically negligible, likely falling within the variance of a single-seed run. This superior per-task performance with ViT-B-32 architecture is visually detailed in the spider plot on the right side of Figure 3.

### A.3 PERFORMANCE ON T5-BASE LANGUAGE MODELS.

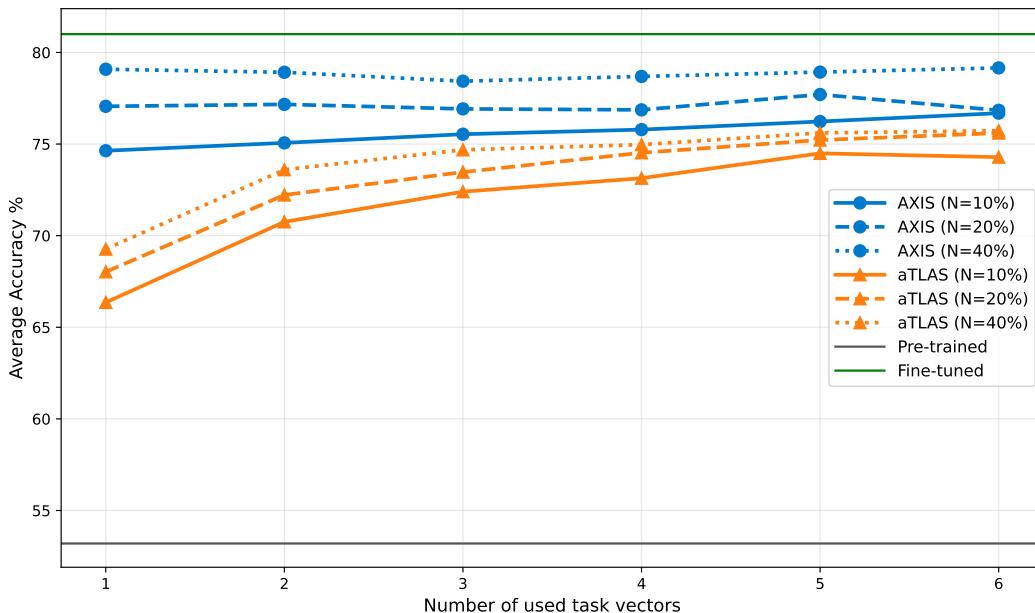


Figure 10: AXIS consistently outperforms the aTLAS baseline across seven diverse NLP benchmarks under varying source task aggregation levels and parameter budgets.

We extend the evaluation of the AXIS framework to the language domain using the T5-base architecture, adopting the multi-task merging protocol established in TIES-Merging. The evaluation encompasses seven NLP datasets: question answering (QASC Khot et al. (2020), WikiQA Yang et al. (2015), and QuaRTz Tafjord et al. (2019)), Paraphrase Identification (PAWS Zhang et al. (2019)), Sentence Completion (Story Cloze Sharma et al. (2018)), and Coreference Resolution (Winogrande Sakaguchi et al. (2021) and WSC Levesque et al. (2012)).

Figure 10 reports the average performance for an increasing number of aggregated source models, denoted by  $s$  (ranging from 1 to  $T - 1$ ). To ensure statistical robustness and mitigate selection bias, we performed an exhaustive evaluation of all valid source subsets. Specifically, for any given target task with a pool of  $T - 1 = 6$  available sources, we averaged the results across all possible combinations for each subset size  $s$ . This entailed computing the mean performance over  $\binom{6}{1} = 6$ ,  $\binom{6}{2} = 15$ ,  $\binom{6}{3} = 20$ ,  $\binom{6}{4} = 15$ ,  $\binom{6}{5} = 6$ , and  $\binom{6}{6} = 1$  distinct source combinations per target task. The final results are averaged over all target tasks. We benchmark AXIS across three distinct trainable parameter budgets, defined by the percentage of fine-tuned singular values ( $N \in \{10\%, 20\%, 40\%\}$ ). For a direct and fair comparison of efficiency, the aTLAS baseline was evaluated using a matching budget of trainable parameters. The empirical results demonstrate that AXIS consistently outperforms the baseline across all aggregation levels, confirming that the method’s efficacy in multi-source knowledge transfer generalizes beyond the vision domain.

| Dataset        | AXIS (Tuning $\Sigma_t$ Diag) | A. FT in Singular Vectors | B. FT in $\Sigma_t$ Random |
|----------------|-------------------------------|---------------------------|----------------------------|
| CIFAR10        | 98.29%                        | 92.05%                    | 97.92%                     |
| CIFAR100       | 86.61%                        | 66.96%                    | 84.31%                     |
| CUB200         | 70.85%                        | 34.93%                    | 65.17%                     |
| Caltech101     | 96.89%                        | 81.11%                    | 96.14%                     |
| Caltech256     | 93.24%                        | 78.05%                    | 91.56%                     |
| Cars           | 79.22%                        | 48.35%                    | 75.04%                     |
| Country211     | 24.84%                        | 13.36%                    | 21.01%                     |
| DTD            | 73.35%                        | 31.28%                    | 68.40%                     |
| EuroSAT        | 98.48%                        | 72.00%                    | 98.78%                     |
| FGVCAircraft   | 40.11%                        | 14.10%                    | 38.07%                     |
| Flowers102     | 86.03%                        | 29.65%                    | 72.08%                     |
| Food101        | 91.94%                        | 81.29%                    | 90.19%                     |
| GTSRB          | 95.30%                        | 43.95%                    | 94.75%                     |
| MNIST          | 99.04%                        | 85.88%                    | 99.05%                     |
| OxfordIIITPet  | 94.85%                        | 77.00%                    | 93.59%                     |
| PascalVOC      | 89.82%                        | 45.83%                    | 88.43%                     |
| RESISC45       | 94.08%                        | 54.43%                    | 93.10%                     |
| STL10          | 99.31%                        | 89.78%                    | 98.78%                     |
| SUN397         | 74.01%                        | 46.19%                    | 70.92%                     |
| SVHN           | 95.19%                        | 77.77%                    | 94.81%                     |
| UCF101         | 84.93%                        | 41.69%                    | 80.49%                     |
| <b>Average</b> | <b>84.11%</b>                 | <b>57.41%</b>             | <b>81.55%</b>              |

Table 5: Comparison of adaptation strategies of Stage 2 across all target tasks for the ViT-B-16 model under different fine-tuning (FT) strategies. Our method (AXIS) outperforms alternative tuning strategies while maintaining an identical parameter budget.

#### A.4 VALIDATION OF ADAPTATION FLEXIBILITY

To validate the hypothesis that tuning principal singular values does not limit adaptation flexibility, we conducted two comparative experiments while maintaining an identical budget of trainable parameters ( $N$ ):

- 1. Values vs. Vectors:** We compared our method (tuning values, freezing vectors) against an alternative approach where the singular values are frozen, and a random subset of parameters within the singular vectors is fine-tuned.
- 2. Diagonal vs. Random Elements:** We investigated the structural importance of the singular value matrix,  $\Sigma_t$ . We train randomly selected elements of  $\Sigma_t$  (allowing for off-diagonal interactions).

972 In both cases, the proposed approach outperformed the alternatives as seen in Table 5. These results  
 973 confirm that recalibrating the importance of stable basis vectors via the principal singular values is  
 974 superior to directly modifying the vectors or introducing arbitrary off-diagonal terms.  
 975

### 976 A.5 INVESTIGATING TRANSFER BOUNDARIES

978 While our primary objective was the direct comparison against the aTLAS baseline, necessitating  
 979 a shared initialization for our main evaluation, we designed an entirely new experiments to test the  
 980 practical boundaries of the AXIS methodology.

981 The study consisted of four distinct experimental runs, three of them utilizing a task vector derived  
 982 from the fine-tuning on the Cars dataset:

984 **A. Baseline:** We measured the fine-tuning performance of a randomly selected ViT-B/16 Cars  
 985 task vector on all target tasks, using the standard ViT-B/16 base model. This served as our  
 986 internal compatibility benchmark.

987 **B. Cross-Initialization Transfer (Minor Architectural Changes):** We tested transfer be-  
 988 tween two distinct base models (ViT-B/32 and ViT-B/16) that share the same pre-training  
 989 objective (CLIP) but represent different initializations and minor architectural differences  
 990 (patch size). The task vector was computed as the difference between the fine-tuned and  
 991 base parameters for ViT-B/32:  $\Delta_{\text{task}} = \theta_{\text{ViT-B-32, Cars}} - \theta_{\text{ViT-B-32, base}}$ . We applied our full  
 992 AXIS adaptation methodology to the ViT-B/16 base model, explicitly skipping the two  
 993 layers with shape mismatches while transferring knowledge from all other compatible lay-  
 994 ers. This configuration simultaneously tests cross-initialization transfer and adaptability to  
 995 minor architectural differences.

996 **C. Different Pre-training (Same Source Task):** To test the necessity of a shared initial-  
 997 ization history, we utilized an architecturally compatible model with an entirely different  
 998 pre-training source. We took the OpenClip ViT-B/16 model and fine-tuned it on the Cars  
 999 dataset using the standard aTLAS recipe to create a new source task vector. The task vec-  
 1000 tor was calculated as  $\Delta_{\text{task}} = \theta_{\text{OpenClip, Cars}} - \theta_{\text{OpenClip, base}}$ , and then applied to the CLIP  
 1001 ViT-B/16 base model without altering the AXIS procedure.

1002 **D. Out-of-Distribution Control:** As a control, we employed Microsoft’s popular Biomed-  
 1003 CLIP (ViT-B/16) from HuggingFace. This domain-specific model, fine-tuned on medical  
 1004 images, serves as a highly distant reference point. The model is architecturally compatible  
 1005 but pre-trained and fine-tuned on data completely unrelated to our broad category of tar-  
 1006 get tasks. We computed the task vector as the difference between the fine-tuned and base  
 1007 parameters of OpenClip (similar to C) and applied it to the CLIP ViT-B/16 base model.

1008 The results for  $N=0.1$  are presented in Table 6, which distinguishes the impact of the source task  
 1009 vector across the tested boundaries.

1010 Overall, the results demonstrate that AXIS successfully achieves knowledge transfer despite dif-  
 1011 ferences in initialization and minor architectural changes. The hierarchy of transfer compatibility is  
 1012 clear: the highest performance benchmark remains the most compatible version (the native ViT-B/16  
 1013 baseline), followed closely by the ViT-B/32 task vector and the OpenClip task vector. This shows  
 1014 a consistent relationship between base model compatibility and final performance, with both cross-  
 1015 initialization and minor architectural changes only leading to a slight decrease in average accuracy  
 1016 (from 80.59% to 79.41% and 79.16%, respectively).

1017 The performance of the domain-distant BiomedCLIP source, while low on average, confirmed its  
 1018 role as an extreme sanity check. Crucially, even this highly specialized model provided positive  
 1019 transfer, exceeding the zero-shot capabilities of the ViT-B/16 base model on certain target tasks (e.g.,  
 1020 EuroSAT). This result, expected given the model’s highly specific domain knowledge, confirms that  
 1021 our method could function robustly even when provided with low-relevance source model.

1022 The decision to utilize only a single source task vector for these boundary tests was deliberate,  
 1023 allowing us to avoid the methodological ambiguity that incorporating many other compatible source  
 1024 task vectors might mask poor performance.

| 1026 | Dataset        | A. ViT-B/16   | B. ViT-B/32   | C. OpenCLIP ViT-B/16 | D. BiomedCLIP |
|------|----------------|---------------|---------------|----------------------|---------------|
| 1027 | CIFAR10        | 97.17%        | 97.30%        | 97.11%               | 33.84%        |
| 1028 | CIFAR100       | 80.73%        | 80.91%        | 80.37%               | 5.71%         |
| 1029 | CUB200         | 63.43%        | 61.93%        | 61.13%               | 0.90%         |
| 1030 | Caltech101     | 96.14%        | 95.62%        | 94.87%               | 17.45%        |
| 1031 | Caltech256     | 91.49%        | 91.39%        | 90.85%               | 5.23%         |
| 1032 | Country211     | 23.89%        | 24.11%        | 23.40%               | 1.09%         |
| 1033 | DTD            | 59.84%        | 54.15%        | 54.63%               | 4.41%         |
| 1034 | EuroSAT        | 97.56%        | 97.19%        | 97.19%               | 51.30%        |
| 1035 | FGVCAircraft   | 34.05%        | 30.42%        | 30.78%               | 1.35%         |
| 1036 | Flowers102     | 78.13%        | 74.37%        | 74.09%               | 0.47%         |
| 1037 | Food101        | 91.01%        | 91.16%        | 90.96%               | 3.80%         |
| 1038 | GTSRB          | 90.91%        | 88.33%        | 87.93%               | 14.45%        |
| 1039 | MNIST          | 98.33%        | 97.98%        | 97.95%               | 20.60%        |
| 1040 | OxfordIIITPet  | 93.40%        | 93.49%        | 93.21%               | 3.82%         |
| 1041 | PascalVOC      | 88.42%        | 88.17%        | 87.87%               | 36.79%        |
| 1042 | RESISC45       | 89.46%        | 88.22%        | 88.65%               | 14.30%        |
| 1043 | STL10          | 99.02%        | 99.12%        | 99.08%               | 27.29%        |
| 1044 | SUN397         | 71.26%        | 70.02%        | 70.26%               | 0.63%         |
| 1045 | SVHN           | 90.56%        | 89.49%        | 90.13%               | 24.51%        |
| 1046 | UCF101         | 76.92%        | 74.83%        | 72.80%               | 4.47%         |
| 1047 | <b>Average</b> | <b>80.59%</b> | <b>79.41%</b> | <b>79.16%</b>        | <b>13.62%</b> |

Table 6: Transfer performance of the different task vectors under varying initialization and architecture constraints ( $N=0.1$ ).

## A.6 TRANSFERABILITY BY SVD COMPONENTS

### A.6.1 INDIVIDUAL COMPONENT ANALYSIS

In this experiment, we incrementally tested the performance of single components. Specifically, during Stage 2, we fine-tuned only one singular value per 2D layer in  $\Delta_{target}$ . This allowed us to evaluate which structural components contribute most effectively to the target task.

The averaged performance across all target tasks is illustrated in Figure 11. The results demonstrate a clear trend: higher raw singular values correlate with a significantly better capacity to transfer knowledge. As observed in the figure, the most structurally dominant component achieves an accuracy of approximately 61.6%, whereas performance drops sharply for lower-ranked components (stabilizing between 30% and 35%).

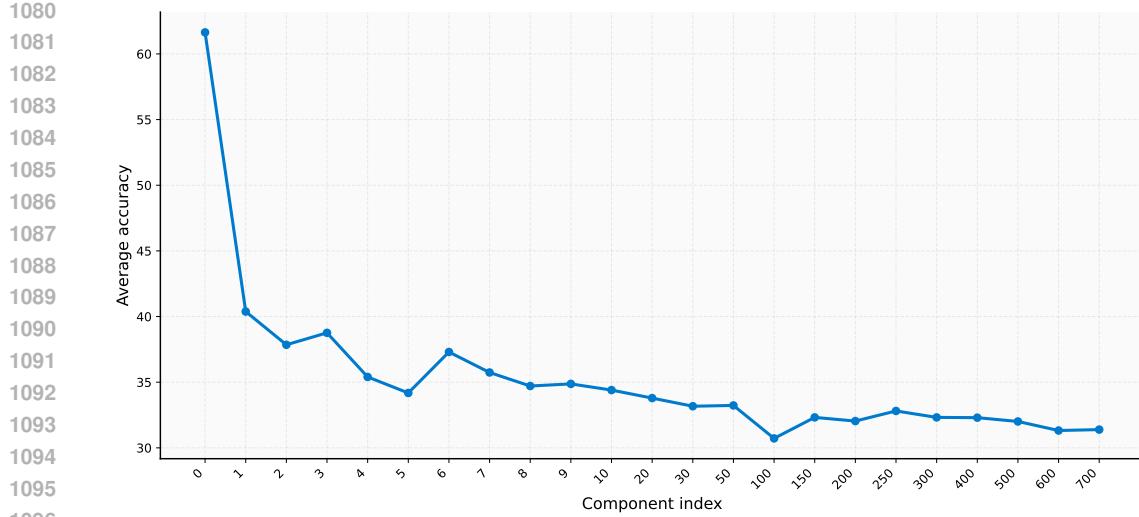


Figure 11: **Impact of singular value rank on transfer performance.** The plot illustrates the average accuracy obtained when fine-tuning individual singular components isolated by rank. The sharp decline demonstrates that the most structurally dominant components encapsulate the majority of transferable knowledge.

### A.6.2 GROUND-TRUTH ALIGNMENT ANALYSIS

Our objective is to empirically demonstrate that the singular vectors corresponding to the largest singular values in source tasks are, in fact, the most transferable to a new, unseen target task. We show that these top component directions align most closely with the ground-truth update required for the target task, independent of their original scalar singular values.

To quantify the transferability of specific components, we conduct an analysis where we assume access to the ground-truth target task vector, denoted as  $\Delta_{target}$ . This allows us to measure how well specific components from source tasks can reconstruct or "explain" the target task update.

We assume access to the ground-truth target task vector  $\Delta_{target}$ . For each source task  $i$ , we decompose its task matrix via SVD:

$$\Delta_{source}^{(i)} = \sum_{k=1}^T \sigma_k^{(i)} \mathbf{u}_k^{(i)} (\mathbf{v}_k^{(i)})^\top, \quad (1)$$

where the singular values  $\sigma_k^{(i)}$  are sorted in descending order and  $\mathbf{u}_k^{(i)}, \mathbf{v}_k^{(i)}$  are the left and right singular vectors. We evaluate for each layer  $l$  the transferability of each rank-1 component  $(\mathbf{u}_k^{(i)}, \mathbf{v}_k^{(i)})$  using the Preserved Energy metric (ignoring  $\sigma_k^{(i)}$ ):

$$E(k, i) = \frac{\langle \Delta_{target}, \mathbf{u}_k^{(i)} (\mathbf{v}_k^{(i)})^\top \rangle^2}{\|\Delta_{target}\|_F^2}, \quad (2)$$

which measures the fraction of target variance explained by the component. To visualise the relationship between component rank  $k$  and transferability, we aggregate  $E(k, i)$  across all layers and tasks, ordering components by their original rank (all  $k = 1$  components first, then  $k = 2$ , etc.), allowing comparison of average transferability of top versus bottom components globally.



Figure 12: Normalized Energy Distribution (Preserved Energy) as a function of component rank. The x-axis represents the component index, sorted by original singular value magnitude (descending), while the y-axis shows the projection of source components onto the ground-truth target update  $\Delta_{target}$ . The displayed values are averaged across all source models and unseen target tasks for every layer matrix. The plot empirically confirms that components with the highest singular values in source tasks exhibit the highest transferability to the target task.

The resulting plot, Figure 12, displays the Normalized Energy Distribution. The x-axis represents the component index sorted by their original singular value rank (descending).

- **Peak Energy at Low Ranks:** The plot reveals a distinct concentration of high preserved energy values at the very beginning of the x-axis. These correspond to the components with the highest singular values ( $k = 1, 2, \dots$ ) in their respective source tasks.
- **Rapid Decay:** As we move to higher indices (corresponding to lower singular values in source tasks), the preserved energy drops and plateaus.
- **Consistency:** This pattern holds true when averaged across all target tasks and layers, indicating a universal property of the task vector space.

The experiment demonstrates a strong empirical link between singular value magnitude and cross-task transferability. The components that are dominant (have large singular values) in the source tasks are consistently the ones that align best with the ground-truth direction of the target task.

### A.7 AXIS PERFORMANCE AT FULL PARAMETER BUDGET

The full-parameter performance of AXIS was evaluated by setting the singular value budget to  $N=100\%$ . The method achieved an average accuracy of 82.30%, which closely approaches the standard full fine-tuning baseline 83.56%. Crucially, this near-equivalent performance was attained using a fixed, significantly shorter training schedule of 10 epochs across all datasets, in contrast to the baseline’s optimized, dataset-specific training that required up to 76 epochs. AXIS approaches the performance of full fine-tuning while maintaining superior computational efficiency.

### A.8 MULTI-TASK PERFORMANCE OF AXIS

In scenarios involving high-throughput streams of new tasks, restarting the adaptation process for every individual target task may become a computational bottleneck. To evaluate the training efficiency of our framework, we implemented a joint multi-task adaptation strategy. Instead of performing independent fine-tuning runs for each target dataset, we conducted a single training session where the AXIS model was adapted simultaneously on a combined dataset comprising six distinct target tasks (Flowers102, OxfordIIITPet, CUB200, PascalVOC, Country211, UCF101). In this setup, the learnable singular values ( $\Sigma_t$ ) were shared across all tasks, while task-specific classification heads were maintained to handle distinct label spaces. The comparison between this joint approach and the standard individual approach is illustrated in Figure 13. We conducted analysis using the ViT-B-32

|      | Dataset Name  | Fully Finetuned | Axis  |
|------|---------------|-----------------|-------|
| 1188 | CIFAR10       | 98.05           | 97.67 |
| 1189 | CIFAR100      | 89.09           | 84.78 |
| 1190 | CUB200        | 73.56           | 66.30 |
| 1191 | Caltech101    | 76.41           | 94.89 |
| 1192 | Caltech256    | 92.60           | 90.64 |
| 1193 | Cars          | 78.26           | 72.33 |
| 1194 | Country211    | 21.99           | 19.79 |
| 1195 | DTD           | 78.94           | 74.49 |
| 1196 | EuroSAT       | 98.89           | 98.65 |
| 1197 | FGVCAircraft  | 40.65           | 44.74 |
| 1198 | Flowers102    | 90.08           | 85.92 |
| 1199 | Food101       | 94.41           | 87.88 |
| 1200 | GTSRB         | 99.14           | 95.92 |
| 1201 | MNIST         | 99.65           | 99.10 |
| 1202 | OxfordIIITPet | 92.15           | 90.22 |
| 1203 | PascalVOC     | 88.42           | 86.79 |
| 1204 | RESISC45      | 95.94           | 93.53 |
| 1205 | STL10         | 88.68           | 97.09 |
| 1206 | SUN397        | 75.40           | 71.86 |
| 1207 | SVHN          | 97.38           | 94.67 |
| 1208 | UCF101        | 85.01           | 81.01 |
| 1209 | Average       | 83.56           | 82.30 |
| 1210 |               |                 |       |

1211 Table 7: Comparison of AXIS with  $N=100\%$  with the full-parameters finetuning in ViT-B-32 archi-  
 1212 tecture.

1213  
 1214  
 1215 architecture with three seeds across three trainable parameter budgets ( $N \in \{10\%, 20\%, 40\%\}$ ). To  
 1216 ensure a fair comparison, the total computational budget was equalized between the two strategies.  
 1217 Specifically, the joint multi-task model was trained for an extended number of epochs, equivalent to  
 1218 the cumulative training steps of the six individual adaptations.

1219 The standard individual adaptation strategy outperforms the joint approach across all parameter  
 1220 budgets. Current AXIS design is optimized for high-fidelity, task-specific specialization. Effective  
 1221 application in a simultaneous multi-task setting require further modifications to mitigate interference  
 1222 between conflicting task gradients.

1223  
 1224 **A.9 ZERO-SHOT TRANSFERABILITY OF TRAINED MODELS**

1225  
 1226 To evaluate the specificity of the learned adaptations, we assessed the cross-task performance of  
 1227 AXIS models. We selected a subset of six distinct target tasks and trained individual models using  
 1228 the ViT-B-32 architecture with a parameter budget of  $N = 10\%$ . Each adapted model was then eval-  
 1229 uated on all other target datasets in a zero-shot manner. As illustrated in the heatmap in Figure 14,  
 1230 the models exhibit strong task orientation: while they achieve high accuracy on their respective  
 1231 target datasets, their performance on unseen tasks is significantly lower. This confirms that the  
 1232 task-specific specialization achieved in Stage 2 comes at the natural cost of zero-shot transferability.

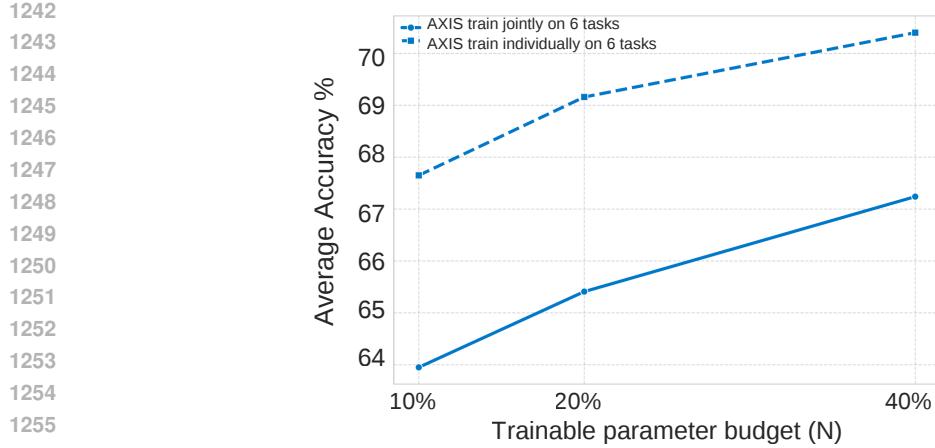


Figure 13: Comparison of average accuracy across six target tasks between the joint multi-task adaptation strategy and the standard individual adaptation, demonstrating that task-specific fine-tuning yields superior performance compared to simultaneous joint training across all trainable parameter budgets

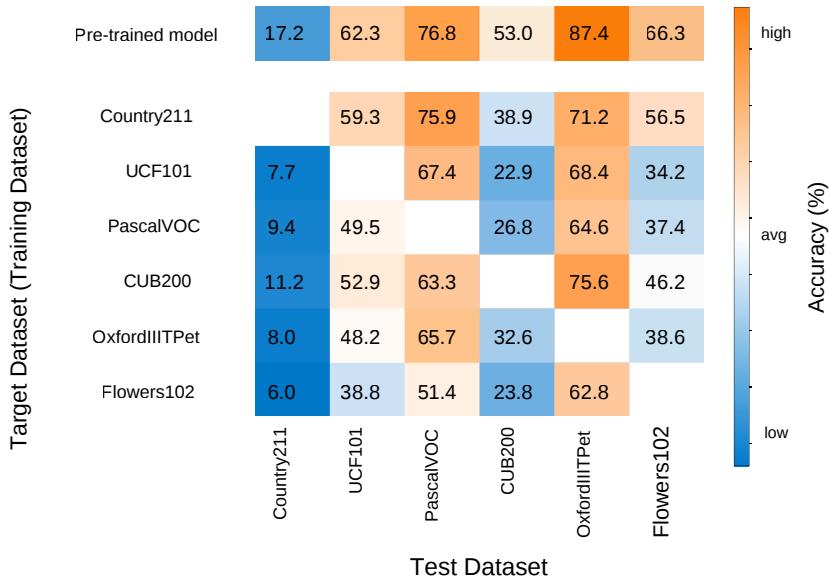


Figure 14: Cross-task transferability heatmap (ViT-B-32,  $N = 10\%$ ) demonstrating that AXIS models exhibiting limited zero-shot generalization to unseen datasets.

#### A.10 DYNAMIC TOP-K SELECTION

We compare fixed top- $K$  selection with the Optimal Hard Thresholding Donoho & Gavish (2013) method. This method automatically determines the optimal cut-off for singular values based on the estimated noise level of the matrix. We compared the performance of AXIS using this automatic thresholding against our fixed strategy on the ViT-B-32 architecture for each task matrix. The automatic method achieved an average accuracy of 64.5%, compare to 78.42% achieved by AXIS. Given that it does not provide a tangible performance gain, we retain the fixed strategy as the preferred approach for its balance of simplicity, performance, and computational predictability.

1296  
1297

## A.11 INCREMENTAL KNOWLEDGE AGGREGATION

1298  
1299  
1300  
1301

To evaluate the adaptability of AXIS to dynamic scenarios where source models arrive sequentially, we examine an *incremental aggregation protocol*. While the default framework performs a global ranking over the singular components of the entire pool of source task matrices  $\{\Delta_1, \dots, \Delta_{T-1}\}$ , the incremental variant updates the merged knowledge base iteratively.

1302  
1303  
1304  
1305  
1306

Specifically, we initialize the merged matrix  $\Delta_m$  with the first two source task vectors. For each subsequent incoming source  $\Delta_i$ , we treat the currently accumulated matrix  $\Delta_m^{(i-1)}$  as a consolidated representation of prior knowledge and merge it with the new source. This recursive update rule allows us to apply the aggregation mechanism defined in Stage 1 pairwise:

1307  
1308

$$\Delta_m^{(i)} = \text{Stage1}(\{\Delta_m^{(i-1)}, \Delta_i\}) \quad (3)$$

1309  
1310  
1311  
1312

In this setup, the aggregation step selects the top- $K$  components from the union of the accumulated basis and the new task vector. Crucially, this creates a memory-efficient online process where historical source parameters are discarded immediately after integration, eliminating the need for a persistent buffer of previous models.

1313  
1314  
1315  
1316  
1317

With an average accuracy of 78.55%, the streaming approach performs on par with the standard global ranking protocol (78.48%). Consequently, AXIS proves effective at real-time structural knowledge accumulation, eliminating the overhead associated with iteratively processing the full model history.

1318  
1319

## A.12 IN-DEPTH ROBUSTNESS ANALYSES

1320

## A.12.1 ROBUSTNESS TO INPUT PERTURBATIONS

1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329

To further probe the robustness capabilities of AXIS and aTLAS, we evaluate them against a set of 12 common image corruptions Hendrycks & Dietterich (2019). Each corruption type is applied to the test set of target task images at five distinct severity levels to simulate a range of degradations. As illustrated in Figure 16, our proposed method, AXIS, maintains a slightly average performance advantage (0.83 percentage points). This margin is particularly pronounced for corruption types where overall accuracy remains high, indicating better robustness in moderately challenging conditions. A detailed breakdown by severity level delineates this trend more clearly (see Figure 17). AXIS demonstrates greater resilience across the initial four perturbation levels, outperforming aTLAS by margins of 2.04 percentage points for the lowest corruption severity.

1330  
1331  
1332  
1333  
1334  
1335

Furthermore, we extend our robustness evaluation to scenarios with partial input information, a challenge simulated using patch dropout. A detailed, step-by-step analysis, presented in Table 8, illustrates how the model’s resilience to input masking evolves as the incremental aggregation of each source task vector is performed. This granular breakdown demonstrates that the fusion of diverse knowledge sources enhances the model’s ability to perform predictions even when significant portions of the input are omitted.

1336  
1337

## A.12.2 TRAINING DATA AVAILABILITY

1338

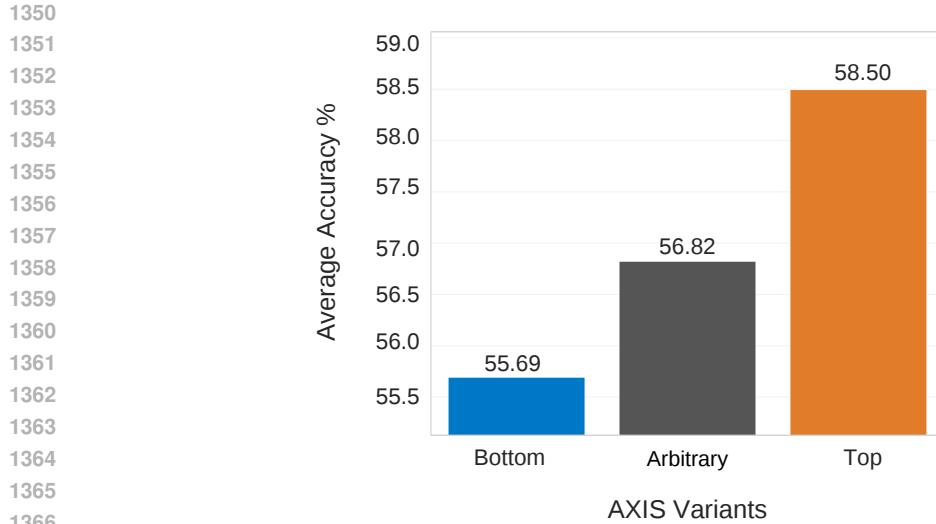
To assess the data efficiency of our approach and its robustness in limited data scenarios, we investigate the performance of our method compared to aTLAS under varying levels of training data availability for the target task. For this experiment, we reduce the size of the target task’s training dataset, creating subsets with 5%, 10%, 25%, 50%, 75%, and 95% of the original samples. The results, illustrated in Figure 18, demonstrate that our method maintains a significant performance advantage over aTLAS across the broad majority of data availability levels.

1344

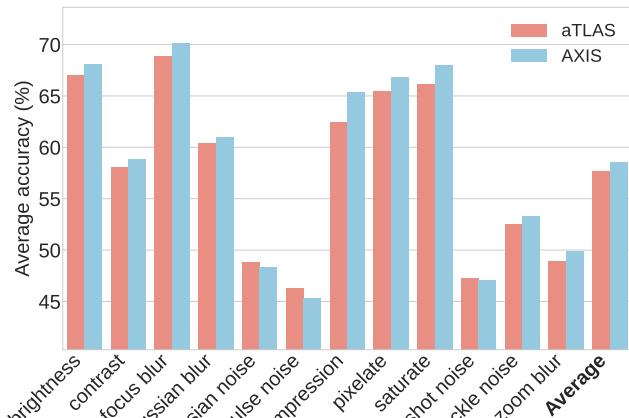
## A.12.3 ROBUSTNESS AGAINST ALTERED SOURCE PARAMETERS

1345  
1346  
1347  
1348  
1349

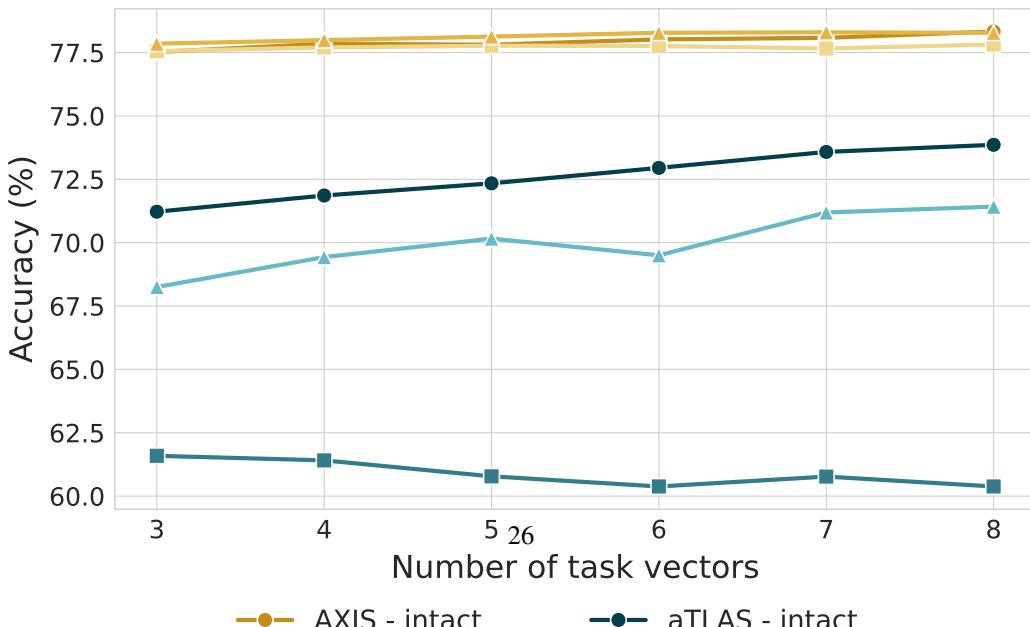
For a detailed analysis of the framework’s robustness, we refer to Table 19 and Figure 20, which provides a comprehensive performance breakdown under two challenging scenarios: contamination by a single noisy source vector and aggregation of heavily pruned (95%) source vectors.



1368 Figure 15: **AXIS** with top-component selection is more robust against common corruptions (e.g., blur) than other strategies.  
1369



1387 Figure 16: The accuracy across each type of corruption is evaluated for all severity levels ranging  
1388 from 1 to 5 for all 21 target tasks.  
1389



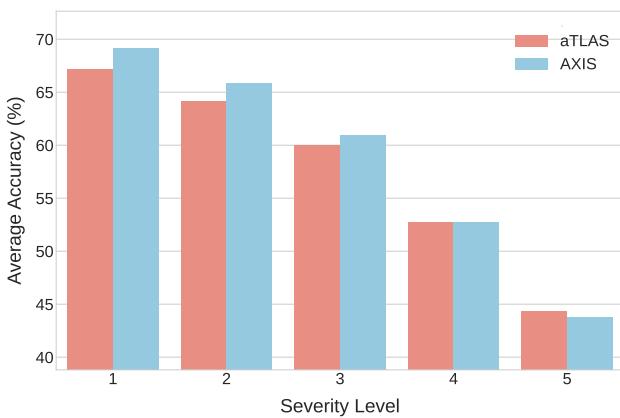


Figure 17: Severity levels average over all 12 image corruptions.

| TV | Input Patch Dropout (%) |                      |                      |                      |                      |                      |                      |                      |                      |                      |
|----|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 1  | 77.31                   | 75.53                | 72.78                | 67.51                | 63.61                | 56.86                | 52.11                | 44.66                | 39.79                | 28.74                |
| 2  | 77.51 (+0.20)           | 75.80 (+0.27)        | 73.40 (+0.62)        | 69.04 (+1.53)        | 65.38 (+1.77)        | 59.54 (+2.68)        | 55.17 (+3.05)        | 48.36 (+3.69)        | 43.63 (+3.84)        | 32.67 (+3.93)        |
| 3  | 77.52 (+0.21)           | 75.88 (+0.35)        | 73.49 (+0.71)        | 69.27 (+1.76)        | 65.72 (+2.12)        | 60.00 (+3.13)        | 55.87 (+3.75)        | 49.28 (+4.62)        | 44.84 (+5.05)        | 34.08 (+5.34)        |
| 4  | 77.85 (+0.54)           | 76.12 (+0.60)        | 73.68 (+0.89)        | 69.43 (+1.91)        | 65.92 (+2.31)        | 59.97 (+3.10)        | 55.74 (+3.62)        | 49.12 (+4.45)        | 44.58 (+4.79)        | 33.49 (+4.75)        |
| 5  | 77.81 (+0.50)           | 76.24 (+0.71)        | 73.98 (+1.20)        | 69.82 (+2.30)        | 66.51 (+2.90)        | 60.95 (+4.08)        | 56.87 (+4.76)        | 50.27 (+5.60)        | 45.65 (+5.86)        | 34.59 (+5.86)        |
| 6  | 78.02 (+0.71)           | 76.41 (+0.88)        | 73.96 (+1.18)        | 69.78 (+2.27)        | 66.40 (+2.80)        | 60.53 (+3.66)        | 56.54 (+4.42)        | 50.10 (+5.43)        | 45.63 (+5.84)        | 34.64 (+5.90)        |
| 7  | 78.08 (+0.76)           | 76.48 (+0.95)        | 74.23 (+1.45)        | 70.00 (+2.49)        | 66.82 (+3.21)        | 61.16 (+4.30)        | 57.01 (+4.90)        | 50.43 (+5.77)        | 45.74 (+5.95)        | 34.45 (+5.71)        |
| 8  | 78.33 (+1.02)           | 76.67 (+1.14)        | 74.27 (+1.49)        | 70.27 (+2.76)        | 66.96 (+3.35)        | 61.21 (+4.35)        | 57.13 (+5.01)        | 50.71 (+6.04)        | 46.12 (+6.33)        | 34.98 (+6.24)        |
| 9  | 78.41 (+1.10)           | 76.74 (+1.21)        | 74.42 (+1.64)        | 70.29 (+2.78)        | 66.88 (+3.27)        | 61.49 (+4.63)        | 57.63 (+5.52)        | 51.24 (+6.57)        | 47.02 (+7.23)        | 36.10 (+7.36)        |
| 10 | 78.16 (+0.85)           | 76.60 (+1.07)        | 74.20 (+1.42)        | 69.85 (+2.33)        | 66.37 (+2.77)        | 60.55 (+3.69)        | 56.32 (+4.20)        | 49.77 (+5.11)        | 45.17 (+5.38)        | 34.25 (+5.51)        |
| 11 | 78.40 (+1.09)           | 76.87 (+1.34)        | 74.44 (+1.66)        | 70.29 (+2.78)        | 66.81 (+3.20)        | 60.74 (+3.88)        | 56.21 (+4.09)        | 49.26 (+4.59)        | 44.47 (+4.68)        | 32.81 (+4.07)        |
| 12 | 78.51 (+1.20)           | 76.90 (+1.38)        | 74.56 (+1.78)        | 70.34 (+2.83)        | 66.92 (+3.32)        | 61.11 (+4.24)        | 57.05 (+4.93)        | 50.31 (+5.65)        | 45.78 (+5.99)        | 33.99 (+5.26)        |
| 13 | 78.37 (+1.06)           | 76.71 (+1.19)        | 74.34 (+1.55)        | 70.15 (+2.63)        | 66.78 (+3.17)        | 61.02 (+4.15)        | 56.85 (+4.74)        | 49.97 (+5.31)        | 45.32 (+5.53)        | 33.81 (+5.08)        |
| 14 | 78.41 (+1.10)           | 76.83 (+1.30)        | 74.42 (+1.64)        | 70.16 (+2.65)        | 66.75 (+3.15)        | 60.87 (+4.00)        | 56.71 (+4.60)        | 49.65 (+4.98)        | 44.90 (+5.10)        | 33.05 (+4.31)        |
| 15 | 78.34 (+1.02)           | 76.81 (+1.28)        | 74.50 (+1.71)        | 70.28 (+2.77)        | 66.82 (+3.21)        | 60.74 (+3.87)        | 56.32 (+4.20)        | 49.24 (+4.57)        | 44.64 (+4.85)        | 33.14 (+4.40)        |
| 16 | 78.42 (+1.11)           | 76.85 (+1.32)        | 74.70 (+1.92)        | 70.45 (+2.94)        | 67.11 (+3.50)        | 61.37 (+4.50)        | 56.96 (+4.85)        | 50.16 (+5.50)        | 45.73 (+5.94)        | 34.51 (+5.78)        |
| 17 | 78.41 (+1.09)           | 76.82 (+1.29)        | 74.57 (+1.79)        | 70.38 (+2.87)        | 67.06 (+3.45)        | 61.32 (+4.45)        | 57.10 (+4.98)        | 50.41 (+5.74)        | 45.93 (+6.14)        | 34.91 (+6.17)        |
| 18 | 78.54 (+1.23)           | 76.94 (+1.41)        | 74.63 (+1.85)        | 70.53 (+3.01)        | 67.36 (+3.76)        | 61.77 (+4.91)        | 57.62 (+5.51)        | 50.92 (+6.26)        | 46.45 (+6.66)        | 34.92 (+6.19)        |
| 19 | 78.58 (+1.27)           | 76.91 (+1.38)        | 74.61 (+1.83)        | 70.20 (+2.69)        | 66.87 (+3.26)        | 61.19 (+4.32)        | 56.97 (+4.86)        | 50.48 (+5.82)        | 46.05 (+6.26)        | 34.64 (+5.90)        |
| 20 | 78.50 (+1.19)           | 76.75 (+1.22)        | 74.51 (+1.73)        | 70.14 (+2.63)        | 66.93 (+3.32)        | 61.19 (+4.33)        | 57.25 (+5.13)        | 50.58 (+5.91)        | 46.31 (+6.52)        | 35.05 (+6.31)        |
| 21 | <b>78.48</b> (+1.16)    | <b>76.82</b> (+1.29) | <b>74.68</b> (+1.90) | <b>70.52</b> (+3.00) | <b>67.37</b> (+3.76) | <b>61.84</b> (+4.97) | <b>57.82</b> (+5.71) | <b>51.18</b> (+6.51) | <b>46.63</b> (+6.83) | <b>35.39</b> (+6.65) |

Table 8: Performance analysis of AXIS under increasing input masking. The table illustrates that aggregating more source task vectors (TV) enhances model robustness to input patch dropout. We report the mean accuracy (%) across all target tasks for dropout rates from 0% to 50%. Each row corresponds to a different number of aggregated sources, and values in parentheses show the improvement in percentage points (p.p.) over the first, single task vector baseline (first row).

### A.13 COMPONENT SELECTION

To study our hypothesis that the most useful transferable knowledge is encapsulated within the principal singular components, we conducted a comprehensive ablation study. We evaluated the impact of different component selection and aggregation strategies on final model performance. The goal was to ensure that our default approach, aggregating components with the highest singular values, is effective to other plausible alternatives, especially with the highest number of source task vectors. We compared the following seven strategies:

- **Top Components (our default):** As described in the main paper, we perform a global ranking of all singular components from all source tasks and select the top-K based on their singular values ( $\sigma_k$ ) to form the merged matrix  $\Delta_m = \sum_{k=1}^K u_k \sigma_k v_k^\top$ .
- **Bottom Components:** A control strategy where we select the K components with the lowest singular values from the global ranking.
- **Arbitrary Components:** A second control strategy where K components are arbitrarily selected from the global pool.
- **Average Top Components:** This baseline first distills each source task matrix  $\Delta_i$  into its top-K principal components. Next, all these resulting low-rank matrices are averaged into a

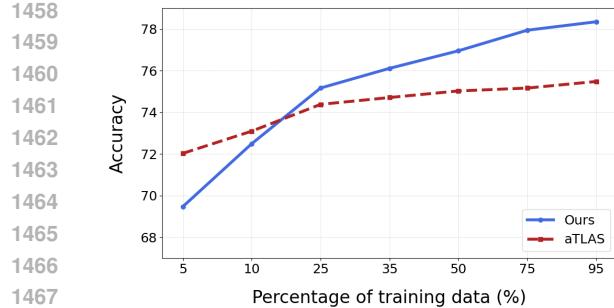


Figure 18: AXIS performs better with smaller amounts of training data in almost all cases.

single matrix. Finally, we perform a new SVD on this averaged matrix and select its top- $K$  components to form the final  $\Delta_m$ .

- **Average Bottom Components:** The inverse of the "average top components" baseline, used as a control. First, each source task matrix is reduced to a low-rank approximation using only its own bottom- $K$  singular components. Second, these resulting low-rank matrices are averaged, and a final selection of the bottom- $K$  components is performed via SVD on this single, averaged matrix.
- **Equal Top Contribution:** This strategy ensures a balanced representation from all source tasks. Instead of a global ranking, it selects an equal number of the top singular components from each individual source task. If the total budget is  $K$  components and there are  $T - 1$  sources, we select the top  $K/(T - 1)$  components from each task. These are then pooled and summed to form  $\Delta_m$ .

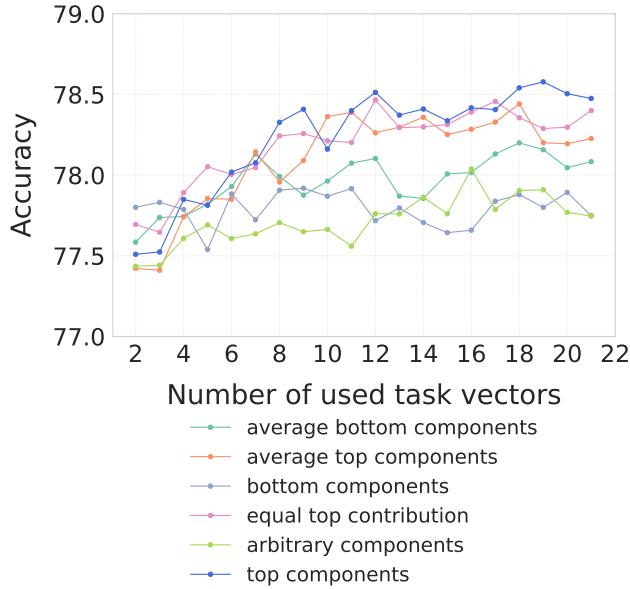


Figure 21: Performance comparison of seven different SVD component aggregation strategies  $K$  with constant  $N=10\%$ . The plot shows the average accuracy across all target tasks as the number of used source task vectors increases. Our default strategy, top components, yields the best performance with the largest number of sources.

The results, presented in Figure 21, demonstrate that the top components strategy slightly outperforms on average all other alternatives across a varying number of aggregated source tasks. For

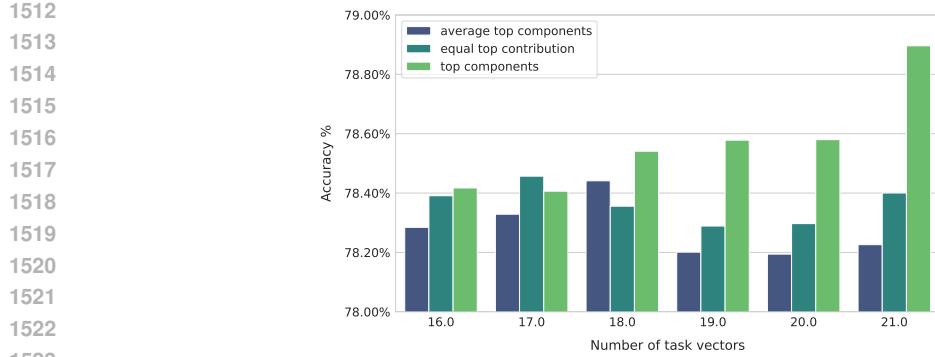


Figure 22: Detailed performance comparison of SVD component aggregation strategies, focusing on small variations within top components. While all strategies show comparable performance, the top components generally maintain a slight edge, particularly with a higher number of aggregated source tasks.

| Aggregated Task Vectors | Top   |       | Bottom |       | Average top |       | Average bottom |       |
|-------------------------|-------|-------|--------|-------|-------------|-------|----------------|-------|
|                         | SVD ✓ | SVD ✗ | SVD ✓  | SVD ✗ | SVD ✓       | SVD ✗ | SVD ✓          | SVD ✗ |
| 1                       | 77.31 | 77.35 | 77.63  | 77.57 | 77.42       | 77.42 | 77.62          | 77.25 |
| 2                       | 77.51 | 77.38 | 77.80  | 77.65 | 77.42       | 77.41 | 77.58          | 77.23 |
| 3                       | 77.52 | 76.36 | 77.83  | 77.80 | 77.41       | 77.37 | 77.74          | 77.29 |
| 4                       | 77.85 | 76.49 | 77.79  | 77.61 | 77.74       | 77.75 | 77.74          | 77.33 |
| 5                       | 77.81 | 76.56 | 77.54  | 77.75 | 77.86       | 77.83 | 77.82          | 77.14 |
| 6                       | 78.02 | 76.39 | 77.88  | 77.85 | 77.85       | 77.95 | 77.93          | 77.35 |
| 7                       | 78.08 | 76.40 | 77.72  | 77.85 | 78.14       | 78.20 | 78.13          | 77.51 |
| 8                       | 78.33 | 71.16 | 77.91  | 77.84 | 77.96       | 77.98 | 77.99          | 77.53 |
| 9                       | 78.41 | 69.85 | 77.92  | 77.85 | 78.09       | 78.13 | 77.88          | 77.64 |
| 10                      | 78.16 | 71.58 | 77.87  | 77.84 | 78.36       | 78.24 | 77.96          | 77.50 |
| 11                      | 78.40 | 78.52 | 77.92  | 77.84 | 78.39       | 78.42 | 78.07          | 77.49 |
| 12                      | 78.51 | 78.39 | 77.72  | 77.80 | 78.26       | 78.28 | 78.10          | 77.34 |
| 13                      | 78.37 | 78.49 | 77.80  | 77.77 | 78.30       | 78.38 | 77.87          | 77.68 |
| 14                      | 78.41 | 78.37 | 77.71  | 77.72 | 78.36       | 78.20 | 77.86          | 77.54 |
| 15                      | 78.34 | 78.53 | 77.64  | 77.66 | 78.25       | 78.21 | 78.01          | 77.52 |
| 16                      | 78.42 | 78.57 | 77.66  | 77.76 | 78.28       | 78.29 | 78.02          | 77.36 |
| 17                      | 78.41 | 78.51 | 77.84  | 77.77 | 78.33       | 78.28 | 78.13          | 77.56 |
| 18                      | 78.54 | 78.60 | 77.88  | 77.76 | 78.44       | 78.30 | 78.20          | 77.70 |
| 19                      | 78.58 | 78.50 | 77.80  | 77.65 | 78.20       | 78.31 | 78.16          | 77.55 |
| 20                      | 78.50 | 78.45 | 77.89  | 77.79 | 78.19       | 78.18 | 78.05          | 77.64 |
| 21                      | 78.48 | 78.49 | 77.75  | 77.78 | 78.23       | 78.27 | 78.08          | 77.37 |

Table 9: Performance comparison of different aggregation strategies with and without the final SVD step, across a varying number of aggregated task vectors and different component selection strategies.

example, the top components strategy achieved an average score of 78.23 across all used task vectors, slightly edging out the equal top contribution approach, which averaged 78.19.

Additionally, we compare how different selection strategies for the top-ranking components affect accuracy when using the largest number of source task vectors, as illustrated in Figure 22. For this configuration, the top components strategy yielded the highest accuracy. These results are averaged across all target tasks. Additionally, we provided detailed results on the main aggregation strategies per target dataset in the Table 13.

1566  
1567

## A.14 IMPACT OF FINAL SVD

1568  
1569  
1570

To empirically validate the importance of the final SVD re-parameterization, as discussed in the main text, we conduct a detailed ablation study. Table 9 presents a performance comparison of four different component aggregation strategies, each evaluated with and without the final SVD step.

1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583

The omission of the final SVD step (denoted as ‘SVD X’) is particularly detrimental to the top components strategy, resulting in a significant performance drop (e.g., over eight percentage points when aggregating 9 task vectors). In contrast, strategies based on bottom or average components exhibit significantly higher resilience to this omission. We hypothesize that two related factors drive this phenomenon. First, the top components, representing high-magnitude task-specific knowledge, likely exhibit more substantial destructive interference when their non-orthogonal vectors are directly summed. Second, this instability may be amplified during the fine-tuning process. Without a shared orthogonal basis provided by the final SVD, the learnable parameters (a subset of singular values) may conflict with the frozen components, as their underlying vectors are not decorrelated. This could lead to an unstable optimization process where adjustments to learnable components negatively interfere with the knowledge stored in the frozen ones. The relative stability of the bottom components strategy suggests that the interference from low-magnitude components is negligible, making the final orthogonalization beneficial but not as critical.

1584  
1585

## A.15 DETAILED MAIN RESULTS

1586  
1587  
1588

For a comprehensive and granular evaluation of our proposed framework, Tables 10–12 present a detailed, per-dataset comparison of AXIS and the aTLAS baseline.

1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609

| STV | Method        | CIFAR100 | CIFAR10 | CUB200 | Caltech101 | Caltech256 | Cars  | Country211 |
|-----|---------------|----------|---------|--------|------------|------------|-------|------------|
| 1   | aTLAS (N=10%) | 72.95    | 93.76   | 54.47  | 89.86      | 85.10      | 61.21 | 17.69      |
|     | aTLAS (N=20%) | 73.62    | 94.15   | 55.38  | 91.65      | 85.53      | 62.12 | 17.92      |
|     | aTLAS (N=40%) | 75.09    | 95.20   | 56.80  | 93.38      | 87.59      | 63.77 | 18.05      |
|     | AXIS (N=10%)  | 77.00    | 95.85   | 57.61  | 93.89      | 88.44      | 63.54 | 17.70      |
|     | AXIS (N=20%)  | 79.28    | 96.63   | 60.15  | 94.41      | 89.19      | 65.58 | 18.39      |
|     | AXIS (N=40%)  | 81.45    | 97.10   | 62.50  | 94.99      | 89.38      | 65.94 | 18.64      |
| 5   | aTLAS (N=10%) | 73.90    | 94.52   | 54.83  | 91.53      | 85.43      | 62.06 | 17.78      |
|     | aTLAS (N=20%) | 74.77    | 95.17   | 55.94  | 92.68      | 87.59      | 62.53 | 18.02      |
|     | aTLAS (N=40%) | 75.29    | 95.31   | 56.85  | 93.78      | 88.06      | 63.89 | 18.17      |
|     | AXIS (N=10%)  | 77.51    | 96.50   | 58.41  | 93.61      | 88.01      | 63.95 | 18.17      |
|     | AXIS (N=20%)  | 79.96    | 96.84   | 59.22  | 94.70      | 89.48      | 67.23 | 18.60      |
|     | AXIS (N=40%)  | 82.28    | 97.13   | 62.46  | 94.24      | 89.89      | 69.69 | 18.86      |
| 10  | aTLAS (N=10%) | 78.92    | 96.40   | 55.11  | 91.88      | 86.21      | 62.37 | 18.06      |
|     | aTLAS (N=20%) | 79.68    | 96.58   | 55.78  | 93.72      | 86.82      | 62.90 | 18.24      |
|     | aTLAS (N=40%) | 80.65    | 96.90   | 55.47  | 94.82      | 88.29      | 64.15 | 18.41      |
|     | AXIS (N=10%)  | 80.09    | 96.96   | 57.85  | 94.82      | 88.76      | 64.66 | 18.24      |
|     | AXIS (N=20%)  | 81.31    | 97.10   | 59.58  | 94.82      | 89.53      | 67.07 | 18.08      |
|     | AXIS (N=40%)  | 82.64    | 97.49   | 61.74  | 94.64      | 89.20      | 69.92 | 19.22      |
| 15  | aTLAS (N=10%) | 78.95    | 96.46   | 55.89  | 94.70      | 88.11      | 62.04 | 18.16      |
|     | aTLAS (N=20%) | 79.81    | 96.81   | 57.08  | 95.22      | 89.19      | 64.15 | 18.30      |
|     | aTLAS (N=40%) | 80.62    | 97.19   | 57.82  | 96.08      | 89.38      | 64.88 | 18.51      |
|     | AXIS (N=10%)  | 80.14    | 96.85   | 58.68  | 94.64      | 88.65      | 65.43 | 18.31      |
|     | AXIS (N=20%)  | 81.55    | 97.25   | 60.94  | 95.56      | 89.89      | 66.86 | 18.48      |
|     | AXIS (N=40%)  | 82.83    | 97.38   | 63.00  | 95.28      | 90.33      | 69.99 | 19.24      |
| 21  | aTLAS (N=10%) | 78.91    | 96.53   | 55.85  | 94.53      | 88.81      | 63.29 | 18.07      |
|     | aTLAS (N=20%) | 79.94    | 96.79   | 57.46  | 94.64      | 89.43      | 64.21 | 18.36      |
|     | aTLAS (N=40%) | 80.84    | 97.14   | 58.01  | 95.28      | 89.89      | 65.09 | 18.32      |
|     | AXIS (N=10%)  | 80.11    | 96.93   | 58.46  | 94.99      | 88.76      | 65.09 | 18.48      |
|     | AXIS (N=20%)  | 81.69    | 97.13   | 61.10  | 94.64      | 89.95      | 66.88 | 18.58      |
|     | AXIS (N=40%)  | 82.96    | 97.39   | 62.70  | 95.45      | 90.75      | 70.77 | 19.42      |

1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619

Table 10: Detailed results per target dataset for various numbers of source task vectors (STV). Part 1 of 3.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

| STV | Method        | DTD   | EuroSAT | FGVCAircraft | Flowers102 | Food101 | GTSRB | MNIST |
|-----|---------------|-------|---------|--------------|------------|---------|-------|-------|
| 1   | aTLAS (N=10%) | 48.78 | 88.81   | 22.62        | 67.39      | 85.11   | 54.90 | 82.44 |
|     | aTLAS (N=20%) | 51.49 | 90.85   | 23.64        | 67.96      | 85.09   | 59.20 | 84.84 |
|     | aTLAS (N=40%) | 56.97 | 95.04   | 24.75        | 70.25      | 85.73   | 78.45 | 93.38 |
|     | AXIS (N=10%)  | 67.02 | 97.30   | 29.70        | 77.49      | 85.81   | 89.57 | 97.36 |
|     | AXIS (N=20%)  | 70.80 | 97.70   | 30.66        | 81.15      | 86.28   | 93.20 | 98.46 |
|     | AXIS (N=40%)  | 74.15 | 98.30   | 19.65        | 81.20      | 86.93   | 94.22 | 98.76 |
| 5   | aTLAS (N=10%) | 53.03 | 94.11   | 22.86        | 68.56      | 85.27   | 66.85 | 89.08 |
|     | aTLAS (N=20%) | 54.04 | 94.48   | 24.15        | 68.26      | 85.41   | 71.35 | 91.97 |
|     | aTLAS (N=40%) | 58.67 | 95.44   | 24.83        | 69.58      | 85.86   | 79.96 | 93.44 |
|     | AXIS (N=10%)  | 65.69 | 97.41   | 30.48        | 77.22      | 86.05   | 90.74 | 97.78 |
|     | AXIS (N=20%)  | 70.96 | 97.63   | 33.75        | 80.09      | 86.62   | 93.45 | 98.57 |
|     | AXIS (N=40%)  | 73.09 | 98.22   | 16.83        | 82.84      | 87.02   | 94.51 | 98.81 |
| 10  | aTLAS (N=10%) | 55.96 | 95.59   | 24.18        | 69.02      | 85.27   | 77.00 | 95.42 |
|     | aTLAS (N=20%) | 59.57 | 95.93   | 24.54        | 69.60      | 85.71   | 83.70 | 96.44 |
|     | aTLAS (N=40%) | 64.26 | 96.93   | 26.70        | 72.30      | 85.94   | 88.06 | 97.25 |
|     | AXIS (N=10%)  | 68.14 | 98.00   | 31.95        | 76.65      | 86.15   | 90.02 | 98.02 |
|     | AXIS (N=20%)  | 70.85 | 98.33   | 29.70        | 79.10      | 86.49   | 93.61 | 98.54 |
|     | AXIS (N=40%)  | 71.91 | 98.19   | 19.20        | 77.82      | 87.07   | 94.73 | 98.96 |
| 15  | aTLAS (N=10%) | 56.44 | 95.15   | 24.93        | 70.22      | 85.60   | 78.31 | 96.15 |
|     | aTLAS (N=20%) | 60.21 | 96.11   | 25.86        | 73.61      | 85.99   | 83.08 | 96.94 |
|     | aTLAS (N=40%) | 62.71 | 96.81   | 28.14        | 74.48      | 86.17   | 87.39 | 97.06 |
|     | AXIS (N=10%)  | 67.82 | 97.78   | 31.05        | 77.25      | 86.18   | 91.00 | 98.20 |
|     | AXIS (N=20%)  | 70.59 | 98.19   | 34.92        | 82.09      | 86.61   | 93.67 | 98.70 |
|     | AXIS (N=40%)  | 71.38 | 98.26   | 39.15        | 83.67      | 87.11   | 94.76 | 98.89 |
| 21  | aTLAS (N=10%) | 56.44 | 95.07   | 25.62        | 71.23      | 85.72   | 78.02 | 95.98 |
|     | aTLAS (N=20%) | 60.37 | 96.26   | 26.37        | 72.09      | 85.91   | 83.45 | 96.94 |
|     | aTLAS (N=40%) | 63.24 | 96.96   | 26.25        | 75.09      | 86.29   | 88.38 | 97.58 |
|     | AXIS (N=10%)  | 67.98 | 97.81   | 30.75        | 77.87      | 86.32   | 91.06 | 98.11 |
|     | AXIS (N=20%)  | 70.64 | 98.22   | 34.50        | 82.31      | 86.57   | 93.46 | 98.64 |
|     | AXIS (N=40%)  | 72.18 | 98.52   | 38.97        | 83.74      | 87.15   | 94.43 | 98.96 |

Table 11: Detailed results per target dataset for various numbers of source task vectors (STV). Part 2 of 3.

| STV | Method        | OxfordIIIIPet | PascalVOC | RESISC45 | STL10 | SUN397 | SVHN  | UCF101 |
|-----|---------------|---------------|-----------|----------|-------|--------|-------|--------|
| 1   | aTLAS (N=10%) | 90.19         | 82.99     | 71.19    | 97.99 | 64.42  | 62.10 | 65.05  |
|     | aTLAS (N=20%) | 90.73         | 84.21     | 72.14    | 98.16 | 64.95  | 67.11 | 65.61  |
|     | aTLAS (N=40%) | 90.71         | 86.51     | 80.40    | 98.49 | 66.16  | 86.49 | 68.94  |
|     | AXIS (N=10%)  | 89.92         | 85.77     | 87.51    | 97.65 | 66.80  | 86.63 | 71.00  |
|     | AXIS (N=20%)  | 89.86         | 86.77     | 89.95    | 97.80 | 68.48  | 89.76 | 74.91  |
|     | AXIS (N=40%)  | 90.24         | 86.53     | 91.84    | 97.08 | 70.05  | 91.35 | 77.98  |
| 5   | aTLAS (N=10%) | 90.62         | 85.49     | 74.56    | 97.91 | 64.85  | 83.23 | 65.95  |
|     | aTLAS (N=20%) | 91.31         | 86.16     | 77.16    | 98.35 | 65.43  | 84.09 | 67.94  |
|     | aTLAS (N=40%) | 91.99         | 86.72     | 80.43    | 98.34 | 66.29  | 86.34 | 68.86  |
|     | AXIS (N=10%)  | 90.60         | 86.71     | 87.90    | 97.74 | 67.27  | 90.87 | 71.45  |
|     | AXIS (N=20%)  | 90.19         | 87.09     | 90.41    | 97.65 | 68.69  | 92.18 | 76.37  |
|     | AXIS (N=40%)  | 90.27         | 86.99     | 91.90    | 97.26 | 69.75  | 92.87 | 78.03  |
| 10  | aTLAS (N=10%) | 91.77         | 86.19     | 79.13    | 98.24 | 66.33  | 85.66 | 67.57  |
|     | aTLAS (N=20%) | 91.61         | 86.63     | 82.16    | 98.21 | 66.76  | 87.45 | 69.36  |
|     | aTLAS (N=40%) | 91.50         | 87.11     | 84.87    | 98.24 | 67.04  | 89.06 | 71.66  |
|     | AXIS (N=10%)  | 90.11         | 86.50     | 88.38    | 97.73 | 67.28  | 87.92 | 73.17  |
|     | AXIS (N=20%)  | 90.32         | 87.05     | 90.48    | 97.59 | 68.91  | 90.65 | 77.37  |
|     | AXIS (N=40%)  | 89.53         | 86.75     | 92.75    | 96.86 | 70.41  | 92.61 | 78.09  |
| 15  | aTLAS (N=10%) | 91.63         | 86.87     | 78.79    | 98.50 | 66.43  | 85.62 | 68.68  |
|     | aTLAS (N=20%) | 92.78         | 87.39     | 82.40    | 98.70 | 67.48  | 87.66 | 70.90  |
|     | aTLAS (N=40%) | 92.18         | 87.62     | 84.97    | 98.53 | 67.82  | 89.14 | 72.51  |
|     | AXIS (N=10%)  | 91.09         | 86.92     | 87.94    | 98.13 | 67.61  | 88.24 | 73.17  |
|     | AXIS (N=20%)  | 91.03         | 87.64     | 90.54    | 97.89 | 68.70  | 89.97 | 75.87  |
|     | AXIS (N=40%)  | 90.22         | 87.18     | 92.22    | 97.68 | 70.56  | 92.91 | 77.64  |
| 21  | aTLAS (N=10%) | 92.23         | 87.11     | 80.52    | 98.36 | 66.63  | 86.83 | 70.05  |
|     | aTLAS (N=20%) | 92.61         | 87.56     | 81.25    | 98.55 | 66.99  | 87.69 | 71.35  |
|     | aTLAS (N=40%) | 92.91         | 88.15     | 84.40    | 98.55 | 67.88  | 89.14 | 73.09  |
|     | AXIS (N=10%)  | 91.25         | 87.25     | 88.25    | 98.05 | 67.62  | 88.56 | 74.28  |
|     | AXIS (N=20%)  | 90.81         | 87.46     | 90.86    | 97.95 | 68.96  | 90.38 | 77.35  |
|     | AXIS (N=40%)  | 90.71         | 86.97     | 91.97    | 97.30 | 70.29  | 92.64 | 79.96  |

Table 12: Detailed results per target dataset for various numbers of source task vectors (STV). Part 3 of 3.

| 1674 | TV | Strategy             | CIFAR100 | CIFAR10 | CUB200 | Caltech101 | Caltech256 | Cars  | Country21 | DID   | EuroSAT | FGVC Aircraft | Flowers102 | Food101 | GTSRB | MNIST | OxfordIIITpet | PascalVOC | REISISC45 | STL10 | SUN397 | SVHN  | UCF101 |
|------|----|----------------------|----------|---------|--------|------------|------------|-------|-----------|-------|---------|---------------|------------|---------|-------|-------|---------------|-----------|-----------|-------|--------|-------|--------|
| 1675 | 1  | bottom components    | 76.58    | 95.95   | 58.15  | 94.64      | 88.52      | 64.07 | 17.59     | 67.87 | 97.78   | 29.61         | 79.62      | 85.20   | 87.87 | 97.31 | 91.09         | 86.78     | 88.73     | 98.20 | 66.90  | 84.79 | 72.98  |
| 1676 |    | top components       | 77.00    | 95.85   | 57.61  | 93.89      | 88.44      | 63.54 | 17.70     | 67.02 | 97.30   | 29.70         | 77.49      | 85.81   | 89.57 | 97.36 | 89.92         | 85.77     | 87.51     | 97.65 | 66.80  | 86.63 | 71.00  |
| 1677 | 2  | bottom components    | 77.27    | 95.95   | 58.42  | 94.70      | 88.52      | 63.97 | 17.82     | 65.48 | 97.74   | 29.73         | 79.31      | 85.68   | 88.58 | 97.67 | 91.44         | 87.20     | 88.16     | 98.15 | 67.44  | 86.36 | 74.17  |
| 1678 |    | arbitrary components | 77.14    | 95.97   | 57.99  | 94.64      | 87.90      | 63.56 | 17.77     | 65.37 | 97.70   | 29.52         | 77.67      | 85.69   | 88.79 | 97.55 | 91.52         | 87.17     | 87.14     | 98.08 | 66.64  | 85.68 | 72.64  |
| 1679 |    | top components       | 77.81    | 96.18   | 57.44  | 93.84      | 87.70      | 63.51 | 17.75     | 67.45 | 96.89   | 29.43         | 75.18      | 85.88   | 90.40 | 97.83 | 89.94         | 86.61     | 88.11     | 97.96 | 66.90  | 87.81 | 73.06  |
| 1680 | 3  | bottom components    | 77.51    | 95.75   | 58.78  | 95.10      | 88.32      | 64.63 | 17.75     | 66.17 | 97.67   | 29.85         | 80.52      | 85.71   | 88.27 | 97.63 | 91.14         | 86.89     | 88.00     | 98.06 | 67.20  | 85.68 | 73.80  |
| 1681 |    | arbitrary components | 77.46    | 96.12   | 57.90  | 94.41      | 87.85      | 63.79 | 17.88     | 66.17 | 97.93   | 29.49         | 78.06      | 85.54   | 88.36 | 97.57 | 90.76         | 86.36     | 87.73     | 98.10 | 66.43  | 86.51 | 71.85  |
| 1682 |    | top components       | 77.37    | 96.08   | 57.59  | 93.84      | 87.99      | 64.21 | 17.84     | 66.17 | 97.37   | 30.03         | 77.07      | 85.79   | 89.72 | 97.69 | 90.02         | 86.28     | 87.48     | 97.71 | 67.60  | 87.28 | 72.85  |
| 1683 | 4  | bottom components    | 77.36    | 96.11   | 58.35  | 94.47      | 88.37      | 64.18 | 17.91     | 67.02 | 97.63   | 30.30         | 80.19      | 85.77   | 88.61 | 97.75 | 91.11         | 86.87     | 87.37     | 98.21 | 67.11  | 85.50 | 73.25  |
| 1684 |    | arbitrary components | 77.19    | 96.13   | 58.32  | 94.70      | 87.99      | 63.96 | 17.81     | 66.22 | 97.11   | 30.30         | 79.93      | 85.53   | 87.78 | 97.69 | 91.01         | 86.75     | 87.19     | 98.21 | 67.06  | 86.20 | 73.09  |
| 1685 |    | top components       | 78.32    | 96.08   | 57.89  | 93.15      | 88.32      | 64.23 | 17.91     | 66.86 | 97.85   | 29.82         | 77.72      | 85.86   | 90.32 | 98.00 | 90.11         | 86.79     | 87.41     | 97.84 | 67.35  | 89.20 | 73.80  |
| 1686 | 5  | bottom components    | 77.62    | 95.83   | 57.70  | 94.59      | 88.48      | 64.08 | 17.78     | 65.90 | 97.41   | 29.49         | 78.86      | 85.74   | 88.95 | 97.50 | 90.73         | 86.73     | 88.02     | 98.31 | 66.86  | 84.99 | 72.75  |
| 1687 |    | arbitrary components | 77.04    | 95.19   | 58.01  | 94.12      | 87.98      | 64.07 | 17.73     | 66.70 | 97.74   | 30.18         | 77.82      | 85.75   | 89.49 | 97.81 | 90.49         | 87.05     | 88.02     | 98.21 | 66.63  | 87.38 | 73.09  |
| 1688 |    | top components       | 77.51    | 96.50   | 58.41  | 93.61      | 88.01      | 63.95 | 18.17     | 65.69 | 97.41   | 30.49         | 77.22      | 86.05   | 90.74 | 97.78 | 90.60         | 86.71     | 87.90     | 97.74 | 67.27  | 90.87 | 71.45  |
| 1689 | 6  | bottom components    | 78.01    | 95.96   | 58.25  | 94.82      | 88.73      | 64.28 | 18.22     | 66.81 | 97.70   | 30.42         | 79.48      | 85.89   | 88.87 | 97.70 | 91.28         | 87.17     | 88.02     | 98.19 | 66.94  | 86.08 | 72.75  |
| 1690 |    | arbitrary components | 77.54    | 96.17   | 57.99  | 94.53      | 88.08      | 64.21 | 17.82     | 65.32 | 97.89   | 30.45         | 78.48      | 85.77   | 88.43 | 97.50 | 90.84         | 86.69     | 87.92     | 98.01 | 67.09  | 87.58 | 71.42  |
| 1691 |    | top components       | 77.63    | 96.11   | 58.46  | 94.35      | 88.68      | 65.03 | 18.45     | 66.91 | 97.56   | 30.09         | 79.84      | 85.91   | 90.73 | 98.02 | 90.38         | 86.31     | 88.19     | 97.91 | 67.90  | 90.84 | 72.01  |
| 1692 | 7  | bottom components    | 78.08    | 95.93   | 58.44  | 94.87      | 88.52      | 64.51 | 17.77     | 65.37 | 97.59   | 30.03         | 78.37      | 85.94   | 88.57 | 97.39 | 91.28         | 87.07     | 88.02     | 98.08 | 66.88  | 86.09 | 73.43  |
| 1693 |    | arbitrary components | 77.92    | 95.83   | 57.94  | 95.28      | 88.33      | 64.35 | 17.99     | 65.96 | 97.63   | 28.92         | 78.37      | 85.90   | 88.73 | 97.81 | 90.65         | 86.97     | 87.79     | 98.28 | 66.92  | 85.92 | 73.38  |
| 1694 | 8  | bottom components    | 78.16    | 95.97   | 58.13  | 94.53      | 88.58      | 64.59 | 17.96     | 65.80 | 97.81   | 30.36         | 80.24      | 85.74   | 88.50 | 97.35 | 91.47         | 86.91     | 87.95     | 98.41 | 67.41  | 86.21 | 73.94  |
| 1695 |    | arbitrary components | 77.56    | 96.07   | 57.34  | 93.95      | 88.01      | 63.87 | 18.00     | 66.44 | 97.67   | 30.21         | 78.63      | 85.69   | 88.73 | 97.61 | 91.41         | 86.73     | 87.62     | 98.00 | 67.24  | 86.44 | 74.60  |
| 1696 |    | top components       | 79.05    | 96.45   | 58.42  | 93.84      | 88.91      | 64.64 | 18.04     | 66.65 | 97.59   | 30.75         | 79.13      | 86.15   | 91.44 | 97.39 | 90.73         | 86.88     | 87.80     | 97.43 | 69.06  | 90.96 | 73.14  |
| 1697 | 9  | bottom components    | 78.29    | 96.12   | 58.30  | 93.95      | 88.39      | 64.51 | 17.92     | 66.65 | 97.74   | 30.90         | 80.00      | 85.79   | 88.16 | 97.70 | 91.50         | 87.15     | 87.90     | 98.26 | 67.14  | 86.12 | 73.80  |
| 1698 |    | arbitrary components | 79.42    | 96.83   | 58.47  | 95.74      | 88.40      | 64.57 | 18.32     | 67.50 | 97.59   | 30.93         | 79.08      | 86.17   | 92.24 | 98.50 | 90.32         | 86.87     | 88.46     | 97.59 | 67.11  | 91.00 | 72.46  |
| 1699 | 10 | bottom components    | 77.86    | 96.12   | 57.49  | 95.10      | 88.66      | 64.36 | 18.03     | 66.01 | 97.04   | 30.39         | 80.37      | 85.95   | 88.28 | 97.59 | 91.50         | 87.13     | 87.56     | 98.11 | 67.37  | 85.85 | 73.49  |
| 1700 |    | arbitrary components | 77.27    | 96.06   | 57.99  | 94.64      | 88.32      | 63.98 | 17.91     | 65.37 | 97.44   | 30.54         | 79.51      | 85.96   | 88.23 | 97.83 | 90.98         | 87.06     | 87.71     | 98.11 | 67.31  | 85.99 | 72.69  |
| 1701 |    | top components       | 80.09    | 96.59   | 58.24  | 94.82      | 88.76      | 64.66 | 18.24     | 68.14 | 98.00   | 31.95         | 76.65      | 86.15   | 90.02 | 98.02 | 90.11         | 86.50     | 88.38     | 97.73 | 67.28  | 93.71 | 73.17  |
| 1702 | 11 | bottom components    | 77.84    | 95.81   | 57.80  | 93.84      | 88.75      | 64.18 | 18.06     | 67.34 | 97.81   | 30.78         | 80.00      | 85.95   | 87.68 | 97.80 | 91.47         | 87.00     | 88.03     | 98.29 | 67.39  | 86.34 | 73.78  |
| 1703 |    | arbitrary components | 78.16    | 96.12   | 57.13  | 93.72      | 88.66      | 64.02 | 17.82     | 65.43 | 97.93   | 29.64         | 79.05      | 86.02   | 89.25 | 97.73 | 90.81         | 86.97     | 86.83     | 97.99 | 67.12  | 86.79 | 71.58  |
| 1704 |    | top components       | 80.14    | 96.97   | 59.11  | 95.39      | 88.48      | 64.51 | 18.39     | 66.97 | 97.96   | 30.45         | 78.55      | 86.15   | 90.39 | 98.17 | 90.98         | 87.37     | 87.92     | 97.78 | 67.47  | 88.99 | 74.25  |
| 1705 | 12 | bottom components    | 77.83    | 95.69   | 58.06  | 94.24      | 88.52      | 64.06 | 17.99     | 66.91 | 97.81   | 29.94         | 79.31      | 85.82   | 88.84 | 97.76 | 90.52         | 87.09     | 87.89     | 98.18 | 67.49  | 86.69 | 72.08  |
| 1706 |    | arbitrary components | 78.18    | 96.29   | 57.58  | 93.89      | 88.44      | 64.22 | 17.75     | 66.76 | 97.85   | 30.93         | 78.18      | 86.01   | 87.66 | 97.72 | 90.92         | 86.89     | 87.43     | 98.08 | 67.04  | 86.20 | 73.62  |
| 1707 |    | top components       | 80.11    | 96.59   | 58.99  | 95.45      | 88.61      | 64.54 | 18.34     | 68.40 | 98.15   | 31.65         | 78.44      | 86.19   | 90.52 | 98.28 | 90.71         | 87.07     | 88.60     | 98.04 | 67.44  | 88.71 | 73.80  |
| 1708 | 13 | bottom components    | 77.82    | 95.89   | 58.53  | 94.18      | 88.86      | 64.12 | 18.20     | 67.55 | 97.93   | 29.70         | 78.73      | 85.90   | 87.64 | 97.57 | 91.50         | 87.07     | 87.84     | 98.31 | 67.42  | 86.25 | 72.72  |
| 1709 |    | arbitrary components | 78.41    | 95.98   | 58.06  | 95.05      | 88.26      | 64.37 | 18.09     | 66.49 | 97.78   | 29.19         | 79.61      | 85.82   | 88.60 | 97.76 | 90.52         | 86.92     | 87.29     | 98.20 | 67.38  | 86.35 | 72.88  |
| 1710 |    | top components       | 80.05    | 96.83   | 58.60  | 95.33      | 88.78      | 64.66 | 18.13     | 67.29 | 98.04   | 30.93         | 76.44      | 86.17   | 90.28 | 98.18 | 91.36         | 87.26     | 88.54     | 98.05 | 67.55  | 88.84 | 73.62  |
| 1711 | 14 | bottom components    | 77.75    | 95.82   | 58.16  | 94.76      | 88.91      | 64.26 | 18.04     | 67.07 | 97.52   | 29.37         | 78.96      | 85.84   | 88.27 | 97.67 | 90.98         | 86.62     | 87.92     | 98.39 | 67.28  | 85.74 | 72.51  |
| 1712 |    | arbitrary components | 78.21    | 96.00   | 57.63  | 93.95      | 88.32      | 64.57 | 18.09     | 67.29 | 97.59   | 30.69         | 79.92      | 86.02   | 88.14 | 97.88 | 91.01         | 87.08     | 87.78     | 98.08 | 66.98  | 86.53 | 73.38  |
| 1713 |    | top components       | 80.10    | 96.83   | 58.60  | 95.33      | 88.78      | 64.66 | 18.13     | 67.29 | 98.04   | 30.93         | 76.44      | 86.23   | 90.68 | 98.22 | 91.09         | 87.06     | 88.73     | 98.23 | 67.56  | 88.73 | 73.94  |
| 1714 | 15 | bottom components    | 78.01    | 95.79   | 58.01  | 93.95      | 88.96      | 64.23 | 17.93     | 67.13 | 97.19   | 29.43         | 78.63      | 85.92   | 88.47 | 97.64 | 90.65         | 87.01     | 87.78     | 98.45 | 67.27  | 85.55 | 72.51  |
| 1715 |    | arbitrary components | 77.94    | 95.90   | 57.73  | 94.30      | 88.48      | 64.66 | 18.21     | 65.32 | 98.00   | 28.98         | 79.74      | 85.93   | 88.27 | 97.56 | 91.06         | 87.07     | 87.65     | 98.28 | 67.30  | 85.97 | 72.32  |
| 1716 |    | top components       | 78.40    | 96.26   | 57.70  | 94.70      | 88.29      | 64.59 | 18.59     | 67.98 | 97.78   | 30.63         | 80.09      | 86.00   | 88.70 | 97.85 | 91.11         | 86.76     | 88.16     | 98.31 | 67.05  | 87.45 | 72.72  |
| 1717 | 16 | bottom components    | 77.74    | 95.87   | 58.85  | 94.18      | 88.47      | 64.43 | 17.94     | 66.54 | 97.89   | 30.57         | 79.85      | 85.85   | 88.85 | 97.68 | 90.43         | 87.27     | 88.03     | 98.35 | 67.40  | 85.91 | 72.64  |
| 1718 |    | arbitrary components | 78.15    | 96.27   | 57.90  | 94.47      | 88.14      | 64.61 | 17.97     | 65.74 | 97.59   | 30.06         | 79.35      | 86.03   | 88.47 | 97.70 | 91.25         | 87.23     | 87.78     | 98.21 | 66.98  | 86.42 | 73.20  |
| 1719 |    | top components       | 80.17    | 96.91   | 58.77  | 95.45      | 88.89      | 65.03 | 18.27     | 66.76 | 97.89   | 30.12         | 78.94      | 86.23   | 90.82 | 98.10 | 91.20         | 86.91     | 87.75     | 97.95 | 67.67  | 88.38 | 74.31  |
| 1720 | 17 | bottom components    | 77.64    | 95.87   | 57.85  | 94.99      | 88.30      | 64.40 | 17.89     | 66.49 | 97.70   | 30.45         | 8          |         |       |       |               |           |           |       |        |       |        |