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ABSTRACT

While transfer learning is an advantageous strategy, it often overlooks the oppor-
tunity to leverage knowledge from numerous available models online. Addressing
this multi-source transfer learning problem is a promising path to boost adaptabil-
ity and cut re-training costs. However, existing approaches are inherently coarse-
grained, lacking the necessary precision for granular knowledge extraction and
the aggregation efficiency required to fuse knowledge from either a large number
of source models or those with high parameter counts. We address these limita-
tions by leveraging Singular Value Decomposition (SVD) to first decompose each
source model into its elementary, rank-one components. A subsequent aggrega-
tion stage then selects only the most salient components from all sources, thereby
overcoming the previous efficiency and precision limitations. To best preserve and
leverage the synthesized knowledge base, our method adapts to the target task by
fine-tuning only the principal singular values of the merged matrix. In essence,
this process only recalibrates the importance of top SVD components. The pro-
posed framework allows for efficient transfer learning, is robust to perturbations
both at the input level and in the parameter space (e.g., noisy or pruned sources),
and scales well computationally. Our code is provided in the supplementary.

1 INTRODUCTION

The increasing complexity of models and the immense computational costs associated with their
training necessitate the efficient utilization of existing resources. Transfer learning Zhuang et al.
(2020), which involves initializing networks with weights from a pretrained model, has emerged as
a standard practice. This practice relies on foundational models, such as large-scale vision trans-
formers Awais et al. (2025) and self-supervised models Caron et al. (2021), which learn robust and
generalized representations from vast, general-purpose datasets (e.g., ImageNet, LAION-5B). By
effectively leveraging this broad pre-existing knowledge, transfer learning significantly reduces the
demand for extensive task-specific data, accelerates training, and enhances overall model perfor-
mance across a wide range of computer vision tasks.

However, the wealth of specialized knowledge residing in other fine-tuned models remains largely
untapped. Each model represents a valuable knowledge asset, with hundreds of thousands of ver-
sions publicly available on platforms like Hugging Face. Each new adaptation typically requires
training from its original, pre-trained state, neglecting the specialized knowledge already acquired
by previously fine-tuned models for distinct tasks. This gap has sparked considerable interest in de-
veloping methods for combining multiple models into a unified model Shu et al. (2021); Yang et al.
(2022). Among these is model merging Yang et al. (2024), which presents a notable opportunity to
fuse capabilities at low cost, such as the aTLAS method Zhang et al. (2024), which addresses the
multi-source knowledge transfer for a new target task. It learns to scale and combine task vectors
anisotropically Ilharco et al. (2022), which are the weight differences between fine-tuned models
and their pre-trained state. The method operates by learning a distinct coefficient for each of the
T tasks, across each of the L layers, and for each of P partitions within a weight matrix. These
coefficients collectively form a learned tensor with dimensions T ×L×P , allowing for adjustments
to the model’s behavior for new tasks. While holding significant promise, aTLAS lacks mechanisms
for granular parameter selection, which restricts the precision of knowledge fusion. Furthermore,
aTLAS’s memory footprint scales linearly with the number of added sources due to its reliance on
using full task vectors. This design prevents the aggregation of larger models or a greater number
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Figure 1: Left: Accuracy versus the number of trainable parameters for our method and aTLAS,
averaged over all target tasks with ViT-B-32 architecture. Each data point corresponds to a fine-
tuning parameter budget defined by the top N singular values (N=10%, 20%, and 40%). The solid
line denotes the mean accuracy, while the shaded area represents the standard deviation. The varia-
tion is calculated over all source task vectors. Right: Scalability analysis for ViT-L-14 architecture
with N=10% trainable parameters. As the number of source task vectors increases, the runtime and
memory costs of aTLAS scale near-linearly. In contrast, our AXIS framework maintains a constant
computational footprint.

of source models. As a result, its training is confined to multi-GPU environments, undermining its
parameter-efficient benefits. This coarse-grained approach lacks a robust knowledge composition
mechanism, making it susceptible to perturbations from both corrupted and pruned parameters and
degraded inputs.

In this paper, we present a unified method that efficiently combines specialized knowledge from
multiple fine-tuned source models in the parameter space to facilitate transfer to a new, unseen
target task. We depart from the methodology proposed in the aTLAS paper, which assumes that the
entire set of full-rank task vectors is used throughout the entire training process. Instead, we propose
a more scalable approach that first aggregates knowledge and then allows for its efficient refinement
during adaptation. First, we leverage Singular Value Decomposition (SVD) to decompose each task
vector into its elementary, rank-one components. This allows us to identify and isolate granular
patterns learned for each source task. A subsequent combination stage aggregates these components
from all source models, performing a joint ranking to retain only a small, fixed number of the
most significant ones. We term this strategy AXIS, as it embodies the principle of Aggregation by
eXtraction of Important Singular components. Such selective aggregation ensures a stable memory
usage and constant wall-time footprint during training, irrespective of the number of source models
or original task matrix sizes (see Figure 1). Consequently, the proposed design is not only more
parameter-efficient, but it also proves to be more robust. Our key contributions include:

• We introduce a scalable approach, AXIS, which outperforms the state-of-the-art method, aTLAS,
across a wide spectrum of evaluation conditions, including 21 distinct tasks and various parameter
budgets, covering three vision model scales as well as the language domain.

• The computational efficiency of AXIS is a key advantage, allowing for the scaling of knowledge
transfer from a large number of source tasks and larger models.

• We demonstrate AXIS’s robustness to parameter and input degradations, as well as its potential
for transferring knowledge across models with diverse initializations.

• Through ablation studies, we offer insights into the underlying structure of knowledge composi-
tion and how it can be leveraged.

2 RELATED WORKS

Model merging is gaining traction as a promising approach to leverage fine-tuned models without
requiring access to training data or incurring increased model size and inference costs. The merging
stage itself demands low computational resources and could be entirely training-free. While sub-
stantial progress has been made in combining models with diverse architectures Du et al. (2025) or
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those trained without a shared initialization Rinaldi et al. (2025); Stoica et al. (2023); Ainsworth
et al. (2022), our work primarily focuses on distinct, yet highly prevalent paradigm where mod-
els originate from a common pre-trained base Akiba et al. (2025); Yang et al. (2023); Yadav et al.
(2023). This shared origin allows for the direct application of task arithmetic Ilharco et al. (2022),
enabling precise manipulation of weight differences to compose capabilities. Model merging can
enhance single-task performance Wortsman et al. (2022a); Ramé et al. (2023); Jang et al. (2024)
or be utilized in the creation of multitask models Marczak et al. (2025); Gargiulo et al. (2025).
While merged models for multitask performance show limited promise for cross-domain compo-
sitional generalization Tam et al. (2024), we focus on explicitly reusing weights for distinct, new
target tasks. Other prior works focus on merging reasoning skills with Chains-of-Thought Yin et al.
(2025) for better zero-shot knowledge composition.

Singular Value Decomposition (SVD) offers a valuable approach for parameter-efficient
fine-tuning (PEFT), allowing effective modifications within the eigenspectrum of pre-trained
weights Wang et al. (2024); Bałazy et al. (2024); Peng et al. (2024); Meng et al. (2024). While
many of these strategies achieve parameter efficiency by focusing on the singular values, diverse ap-
proaches exist Lingam et al. (2024). Others leverage SVD with reinforcement learning at inference
time, adapting to unseen target tasks Sun et al. (2025). We introduce a unique adaptation strategy
that diverges from prior work in two critical ways. First, we apply SVD to a multi-source merged
model. Second, departing from the more varied heuristics seen before, our adaptation is guided
exclusively by the largest singular values.

3 METHOD

3.1 PROBLEM STATEMENT

Let the parameters of the base, pre-trained model be denoted by θpre. We consider a set of T distinct
tasks. For a given task i, the model is fine-tuned on a corresponding dataset Di. The parameters
of this fine-tuned model are denoted as θi. Finally, the parameters for a specific layer l within this
model are represented by θ

(l)
i . A task vector is the element-wise difference between the parameters

of a fine-tuned model and its pre-trained counterpart. Building on this concept, we define a per-layer
task difference to capture these modifications with greater granularity. Denoting the parameters of
the base model for layer l as θ(l)pre and the fine-tuned parameters for task i at layer l as θ(l)i , we define
task vectors τ (l)i as:

τ
(l)
i = θ

(l)
i − θ(l)pre

For weight parameters that form a matrix (e.g., in linear or attention layers), we denote this difference
specifically as the task matrix ∆

(l)
i to emphasize the structure suitable for SVD. For all other modules

(e.g., biases, normalization), we retain the general term τ
(l)
i . For these non-matrix parameters, we

simply compute their element-wise average across all source tasks, similar to other works. The
entire procedure, from decomposition to adaptation, is performed independently for each relevant
layer in the model. For brevity, we will generally omit the layer index (l). While non-parametric
operations, such as activation functions, are applied during the model’s forward pass, they do not
have learnable weights and are therefore not represented in the task vector.

3.2 DECOMPOSING TASK MATRICES

To capture the structured modifications introduced by fine-tuning, we perform a granular analysis
of each task matrix, ∆i, using Singular Value Decomposition (SVD). For a given task matrix ∆i at
any generic layer, we consider its SVD:

∆i = UiΣiV
⊤
i

where Ui ∈ Rm×ri and Vi ∈ Rn×ri are the matrices of left and right singular vectors, respectively,
and Σi ∈ Rri×ri is a diagonal matrix containing the singular values σ ∈ Rri . The value ri denotes
the rank of the matrix ∆i and corresponds to the number of its singular components.

Given a pre-trained model, parameterized by θpre, and a library of T − 1 source task matrices,
{∆i}T−1

i=1 , our objective is to synthesize this knowledge to effectively adapt the model for a new,
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Algorithm 1 AXIS
1: Initialize SVD components: C ← ∅.
2: for each source task i ∈ {1, ..., T−1} do
3: Compute the SVD of ∆i = UiΣiV

⊤
i

4: C ← C ∪ {(uj , σj ,v
⊤
j )}

ri
j=1

5: end for
6: Select the top-K components to form B
7: Sortσk↓(C)→ B
8: Assemble non-orthogonal vectors:
9: Um ← [u1|u2| . . . |uK ]

10: Σm ← diag(σ1, σ2, . . . , σK)
11: Vm ← [v1|v2| . . . |vK ]
12: Reconstruct from components:
13: ∆m ← UmΣmV ⊤

m
14: Re-orthogonalize the basis via SVD:
15: ∆m = UtΣtV

⊤
t .

16: Define the set of learnable parameters Λ
as the top-N singular values from Σt:

17: Λ← [s1, . . . , sN ].
18: Define frozen singular values:
19: sfrozen ← diag(Σt) \ Λ
20: Reconstruct with learned values:
21: ∆t ← Ut diag(Λ, sfrozen)V

⊤
t .

22: return ∆t

Figure 2: An overview of the AXIS framework. The process consists of two stages: (1) Extraction
and aggregation: Each source task matrix (∆1,∆2, . . . ) is decomposed into its elementary singular
components using SVD. The most salient components from all sources are selected based on a global
Top-K ranking of their singular values. These K components are then summed to synthesize the
merged task matrix, ∆m. For clarity, the diagram illustrates this with K = 2. (2) Adaptation: To
form a stable and decorrelated transfer basis, ∆m is re-parameterized via a final SVD. The model
is then adapted to the target task by fine-tuning only a small subset (Top-N) of the most principal
singular values of the resulting matrix Σt in each layer.

unseen target task. The original training datasets for these source tasks, i.e., {D1, ..., DT−1}, are
not available. For the target task, we only have access to its labeled dataset, which is partitioned into
a training set Dtrain

t and a test set Dtest
t .

3.3 OUR TWO-STAGE COMPOSITION FRAMEWORK

STAGE 1: KNOWLEDGE EXTRACTION AND AGGREGATION.

Our core hypothesis is that the most transferable useful knowledge for the target task, encoded across
diverse source tasks {∆i}T−1

i=1 , is within the principal singular components, which represent the most
dominant structural patterns in the parameter space. Therefore, for each source task matrix ∆i, we
perform SVD to decompose it into a set of orthogonal components. Each component is a triplet
(ui,j , σi,j ,v

⊤
i,j), where j is the component index for a given task i. Consequently, we propose an

aggregation strategy based on a global ranking of all components from all source task matrices. We
then select the Top-K components with the highest singular values to construct the transfer basis:

B = {(uk, σk,v
⊤
k )}Kk=1, where σk ≥ σk+1, ∀k

Finally, the merged task matrix, ∆m, is synthesized by summing the Top-K selected rank-one com-
ponents:

∆m =

K∑
k=1

ukσkv
⊤
k .
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By prioritizing these high-magnitude components, we aim to build a new, effective pre-trained state
for any unknown downstream task. We empirically validate the quality of the merged model and the
component selection strategy against alternatives in our ablation studies.

STAGE 2: TARGET TASK ADAPTATION.

In the second stage, the merged knowledge ∆m is adapted to the specific target task. We define
the final target task vector ∆t as a function of ∆m and a small set of learnable parameters Λ that
minimize the cross-entropy loss L on the target dataset:

Λ∗ = argmin
Λ

E(x,y)∈Dt [L (f(x; θpre +∆t(Λ)), y)]

For a parameter-efficient adaptation, we apply gradient-based learning exclusively to the top-N
singular values of ∆t, which constitute the set Λ. The remaining singular vectors and less significant
components are kept frozen. The resulting full model parameters for the target task are θt = θpre +
∆t(Λ) and the full, step-by-step process is formalized in Algorithm 1 and Figure 2.

The synthesized matrix ∆m represents a rich but intermediate consolidation of knowledge from
multiple source tasks. To transform this aggregation into a computationally stable and effective
basis for adaptation, we re-parameterize it using a final SVD. This procedure, ∆m → UtΣtV

⊤
t ,

serves a dual purpose. First, it constructs a new set of orthogonal vectors, Ut and Vt, creating a
decorrelated basis that optimally represents the merged transformation in the sense of the Frobenius
norm. Second, it yields a new diagonal matrix Σt, whose values reflect the true importance of
the components within the combined matrix ∆m and also serve as the isolated set of learnable
parameters, Λ, for the subsequent fine-tuning.

4 RESULTS

4.1 EXPERIMENTAL SETUP

To evaluate the performance, scalability, and robustness of our method, we benchmark it against the
recent state-of-the-art method, aTLAS, which serves as our baseline. The experimental framework
is based on diverse image classification tasks, including texture recognition (DTD), satellite imagery
(EuroSAT), and fine-grained visual categorization (Flowers102). The experimental setup employs a
leave-one-out protocol. For each target task, we incrementally aggregate knowledge assets by vary-
ing the number of source task vectors from one up to the maximum of T − 1 in a fixed, predefined
sequence. By default, we use the pre-trained Vision Transformer (ViT-B-32) variant of the CLIP
model Radford et al. (2021). Our primary performance metric is the Top-1 accuracy evaluated on
the test set of each target task. All results are presented under a matched number of trainable pa-
rameters and within the range used by aTLAS method. Our evaluation adapts the comprehensive
benchmark, publicly released task vectors, and training protocols established by the authors of aT-
LAS to ensure a direct and fair comparison. For each target task adaptation, the fine-tuning process
utilizes the complete, standard training set. To provide a one-to-one comparison, we adopted the
same training configuration used for the aTLAS baseline and ran all its experiments within this con-
sistent framework. Specifically, each adaptation runs for 10 epochs with a learning rate of 10−1. All
setup details and results with seven textual datasets from Yadav et al. (2023) utilizing the T5-Base
language model (see Figure 10) are provided in the Appendix.

4.2 PERFORMANCE AND EFFICIENCY GAINS OVER ATLAS

For each target task, we incrementally build the merged task vector, ∆target, by aggregating an
increasing number of source task vectors. For example, a single model synthesized from 16 source
vectors is then independently fine-tuned 21 times - once for each distinct target task as illustrated in
Figure 3. This entire process is repeated for every aggregation level, and the outcomes are averaged
to produce the final performance curves. The parameter budgets N of 10%, 20%, and 40% are
determined by the percentage of trainable singular values selected from each task matrix; their sum
across all matrices results in total trainable parameter counts of approximately 3.6k, 7.3k, and 14.7k,
respectively, in the ViT-B-32 version. The results demonstrate that our approach outperforms aTLAS
across the entire spectrum of source task quantities on both the ViT-B-32 (illustrated in Figure 3)
and ViT-L-14 architectures (see Figure 9 in the Appendix).
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Figure 3: Left: Performance comparison with aTLAS varying the number of trainable parameters
with the ViT-B-32 architecture. Each point represents a model configuration that was independently
adapted to all target tasks. The plotted value is the mean performance across these tasks. Right:
Detailed per-task comparison of the merged models (AXIS vs. aTLAS) utilizing 16 task vectors. To
clarify performance differences in overlapping regions, the marker of the superior method for a given
task is rendered on top. Overall, AXIS achieves a higher average accuracy of 78.42% compared to
75.13% for aTLAS.

Our method shows higher parameter efficiency, as illustrated in Figure 1. The figure compares AXIS
with aTLAS, showing that for any given parameter budget, our approach yields higher average
accuracy. Furthermore, the noticeably smaller shaded area for AXIS indicates a lower standard
deviation, highlighting that our aggregation mechanism is more stable and less sensitive to variations
in the number of source task vectors used.

Memory and Runtime Scalability. A key advantage of our method is its significantly lower com-
putational overhead compared to baselines like aTLAS. The memory and runtime costs of aTLAS
scale near-linearly with the number of source models, as it learns a distinct coefficient for each of
the T source tasks across every layer and parameter partition P during the fine-tuning process. This
means that all source task vectors must be present in memory throughout the entire adaptation phase
for a new target task.

In stark contrast, AXIS decouples the process into two distinct stages. The first stage, knowledge
aggregation, is a fast, one-time operation. It efficiently processes all T − 1 source task vectors using
SVD and consolidates them into a single, fixed-size merged matrix, ∆m. The subsequent, and most
computationally intensive, fine-tuning stage operates only on this compact ∆m. As a result, the
memory footprint and runtime of the adaptation phase remain constant, regardless of the number of
source models initially aggregated. This design choice not only makes our approach more scalable
but also significantly reduces the resources required for fine-tuning, as is illustrated in Figure 1.

4.3 ROBUSTNESS TO NOISE AND SPARSITY IN SOURCE PARAMETERS

To evaluate the robustness of our method with unreliable Li et al. (2025) or compressed Iurada et al.
(2025); Li et al. (2025) source task vectors, we designed two specific scenarios. The first simulates
contamination from a single, low-quality source, for instance, due to training instabilities. The
second scenario evaluates how effectively these approaches leverage knowledge when all source
task vectors are heavily pruned. Both investigations explore the method’s capacity to merge a more
diverse and challenging spectrum of models, expanding its practical applicability.

We formed aggregations of source task vectors of varying sizes, ranging from three to eight, to
demonstrate the effect of a single faulty source. In each aggregation, one task vector was intention-
ally corrupted, while the others remained intact. The corruption was applied by adding zero-mean
Gaussian noise to the weights of an original task vector. To ensure a significant level of disruption,
the standard deviation of the noise was scaled to 50% of the Frobenius norm of that task matrix
(σ = 0.5 · ||∆i||F ). The results illustrated in Figure 4 demonstrate that while both methods experi-
ence some performance degradation in the presence of a corrupted source, the impact on our method
is significantly less pronounced. This indicates a more robust knowledge transfer mechanism. We
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Figure 4: Left: The heatmap illustrates the average accuracy across all target tasks. Results in-
dicate that AXIS outperforms the baselines under challenging conditions where input information
is partially hidden, with up to 80% of patches masked. Right: Results averaged across all tar-
get tasks summarize the robustness to a single corrupted source task vector (out of 3 to 8 total).
Our method, AXIS, demonstrates superior resilience to this scenario compared to aTLAS and other
merging methods.

observe that our SVD-based selection process, by focusing on components with the highest singular
values, is less susceptible to the unstructured perturbations introduced into a single source vector.

To assess the robustness of our method from a compression perspective, each of the source task
vectors underwent magnitude-based pruning (see Figure 20). We applied a high-level ratio, ensuring
that specialized knowledge was not catastrophically degraded. The subsequent analysis suggests
that our approach can more effectively leverage the knowledge contained within highly sparse task
vectors, showcasing a distinct advantage in utilizing compressed knowledge.

4.4 ROBUSTNESS TO INPUT DATA DEGRADATION

Building on findings that merging models fine-tuned with distinct hyperparameters on the same task
leads to greater stability under distribution shifts Wortsman et al. (2022a;b), we explore whether
aggregating knowledge from multiple, diverse models, each fine-tuned with the same set of hyper-
parameters, can similarly construct a more robust representation. For this experiment, the AXIS
and aTLAS models were built by aggregating the complete set of T − 1 source task vectors and
fine-tuning them for each target task.

The model’s accuracy on images with randomly omitted patches can serve as a direct test, which
was previously used to measure model robustness Paul & Chen (2022) or ability to perform predic-
tion with partial information Pardyl et al. (2025), providing unique insight into a model’s internal
representation, as this form of robustness is often less correlated with baseline model performance
than other image perturbations Malik et al. (2025). To ensure a fair comparison, a fixed seed guar-
antees that all methods are evaluated using the same masked patches for each dropout level. In
Figure 4, AXIS shows resilience when almost all complete information is available, and degrades
more slowly as input degradation becomes more severe. This capability is essential for real-world
scenarios with incomplete data and follows prior research aimed at improving model resilience
to partial visual information Liu et al. (2023); Tang et al. (2022) (see Table 8). Additionally, we
demonstrate better robustness capabilities of AXIS than aTLAS against a set of 12 common image
corruptions Hendrycks & Dietterich (2019) with five severity levels in the Appendix (see Figure 16
and Figure 17).

5 ANALYSIS

5.1 BROAD COMPARISON
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Figure 5: Performance comparison with com-
peting methods, including PEFT variants. The
proposed merge-and-tune paradigm in AXIS
achieves a more efficient performance-parameter
trade-off.

Method N = 10% N = 20% N = 40%
DARE + Stage 2 78.09± 0.06 79.69± 0.04 80.77± 0.09
Average + Stage 2 78.19± 0.15 79.45± 0.15 79.43± 0.70
TIES + Stage 2 77.39± 0.03 78.99± 0.05 80.27± 0.05
TSV-M + Stage 2 76.41± 0.05 78.69± 0.07 80.41± 0.11

aTLAS 75.50± 0.03 75.93± 0.44 77.66± 0.05
AXIS 78.46± 0.04 79.93± 0.11 81.13± 0.07

Table 1: Performance comparison with aTLAS
and merging methods when followed by our
Stage 2 adaptation. While the best results are
obtained by AXIS, the adaptation mechanism it-
self is a potent and versatile tool for refining di-
verse multi-capability models. Crucially, while
other merging baselines achieve lower, but com-
petitive accuracy, AXIS exhibits significantly su-
perior robustness against weights corruption (see
Figure 4). All results are averaged over 3 seeds.

To demonstrate the advantages of our approach, we compare it with different finetuning methods,
in particular with PEFT methods. This includes the widely-adopted LoRA Hu et al. (2022) and
its enhanced variant LoRA-XS Bałazy et al. (2024). Additionally we try to further adapt the pre-
trained weights as a single task vector. As the Fig 5 shows, our method efficiently outperform these
techniques, effectively reusing already finetuned weights.

We further take inspiration from model merging techniques and ask the question whether a gen-
eral, multi-task model serve as an effective knowledge base for our Stage 2 adaptation? To test
this hypothesis, we substitute our AXIS aggregation with several established multi-task merging
techniques, such as DARE Yu et al. (2024), TIES-Merging Yadav et al. (2023), TSV-M Gargiulo
et al. (2025) and simple averaging, treating their merged weights as alternative initializations. As
the results in Table 1 demonstrate, these multi-task models indeed form a potent foundation for our
adaptation mechanism, albeit slightly below the performance of the AXIS method. This suggests
that the Stage 2 is not rigidly dependent on a single aggregation method but can effectively re-
fine knowledge from various merged, multi-capability models. Crucially, these alternative merging
baselines lack the structural robustness inherent in our approach, as illustrated in Figure 4. They
exhibit significant performance degradation in realistic scenarios involving partial input information
or corrupted source models, whereas AXIS maintains superior resilience.

5.2 SCALABILITY AND PARAMETER SENSITIVITY OF AXIS

To assess the sensitivity of our method to the size of the transfer basis, we conducted an ablation
study on the number of selected components, K. This sole hyperparameter directly controls the
dimensionality of the aggregated knowledge consolidated into the merged task matrix, ∆m. In
this experiment, we varied the value of K used in our top components aggregation strategy, where
components from all source tasks are globally ranked by their singular values before the top K are
selected to form the transfer basis. Our default choice of K = 76 (approximating 10% of each
layer’s rank) proves to be a robust heuristic. The plot demonstrates that performance remains high,
with the drop being less than 1.5% even for large K (Figure 6). Overall, we find that limiting K to be
less than 20% of total parameters provides robust results. We hypothesize that including additional
components may introduce more task-specific details, which are not necessarily important for the
target task (see Figure 11 and Figure 12).

Additionally, we evaluate how scaling the number of trainable parameters (N ) affects model perfor-
mance (Figure 7). Specifically, setting N = 100% corresponds to fine-tuning all the singular values
in each AXIS task matrix. The improvements begin to diminish once N exceeds 60%. Thus, N
serves as a control parameter that balances computational requirements and final performance.

5.3 COMPONENTS SELECTIONS STRATEGY

To evaluate the quality of component aggregation, we test three selection criteria from a global
pool of all aggregated SVD components. We compare the impact of selecting components with
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Figure 6: Performance sensitivity to the number
of aggregated components K. Best averaged re-
sults are obtained for K < 20%. The default
setting is 10% (K = 76).

Figure 7: The AXIS scales consistently with
the number of trained parameters (N%), show-
ing improved performance as N increases, with
gains tapering off beyond 60%.

N (%) Top Arbitrary Bottom
10 78.46± 0.04 77.83± 0.04 77.56± 0.02
20 79.93± 0.11 79.79± 0.03 79.81± 0.05
40 81.13± 0.07 81.17± 0.08 81.13± 0.04

Table 2: Performance comparison of different
SVD component selection strategies within the
AXIS framework, demonstrating their compara-
ble effectiveness. However, the choice of com-
ponents is crucial for ensuring the resilience of
the model, as illustrated in the Figure. 4

w/
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12 14
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Figure 8: Skipping the final SVD orthogonal-
ization results in a decline in performance, es-
pecially when combining a moderate number of
task vectors.

the highest singular values (top components), the lowest (bottom components), and those chosen
arbitrarily (arbitrary components). The results of this comparison are presented in Table 2, which
indicates that the top components strategy yields the best performance. While selecting the top
components components yields the highest accuracy, this advantage is most pronounced at lower
parameter budgets. As the number of trainable parameters increases, the performance of all three
strategies converges, suggesting that the importance of the initial component selection decreases
as the model is given more trainable parameters. However, this convergence does not extend to
robustness; see Figure 4. In the Appendix, we provide additional evidence demonstrating that the
top components strategy captures the most transferable structural knowledge.

5.4 STABILIZING THE TRANSFER BASIS

Instead of performing the final SVD re-parameterization, the layer’s weights were reconstructed
directly from the aggregated components ∆m. For our primary strategy of top component selection,
this omission results in significant performance degradation when a moderate number of task vectors
are aggregated (Figure 8).

6 CONCLUSION

We presented AXIS, a framework that addresses multi-source knowledge transfer through the ex-
traction, aggregation, and adaptation of useful knowledge for the target task. Furthermore, the
framework enables efficient final adaptation while demonstrating robustness to degradations at both
the parameter and input levels. Although the AXIS assumes a shared architecture and pre-training
origin, our experiments in the Appendix demonstrate remarkable robustness to deviations from these
constraints. This enables effective knowledge transfer even across models with different initializa-
tions and architectural variants with different scales.
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A APPENDIX

OVERVIEW

The appendix provides supplementary material to support and expand upon the main findings of our
paper. Additionally, we provide code in the supplementary material. To ensure clarity the contents
are organized as follows:

• Evaluation Protocol in Vision Benchmark: We begin by providing comprehensive details
on the evaluation protocol and datasets used throughout our experiments.

• Performance on ViT-L-14 Architecture: We present a comparative performance anal-
ysis of AXIS and aTLAS using the larger ViT-L-14 architecture, demonstrating that the
advantages of our method scale effectively to more powerful models.

• Performance on T5-Base Language Models: We demonstrate the generalization of AXIS
beyond computer vision by evaluating its performance on the T5-Base architecture across
seven natural language processing tasks.

• Validation of Adaptation Flexibility: We empirically validate the efficiency of optimizing
singular values by comparing it against alternative SVD-based strategies.

• Investigating Transfer Boundaries: We explore the limits of our framework by applying
AXIS to cross-architecture and cross-initialization scenarios.

• Transferability by SVD Components: We provide an in-depth analysis justifying our
ranking strategy, showing that high-magnitude singular components consistently align best
with the ground-truth target task direction.

• AXIS Performance at Full Parameter Budget: We analyze the model’s behavior as the
number of trainable parameters budget approaches 100%.

• Multi-Task Performance of Axis: We evaluate a joint training strategy for simultaneous
adaptation to multiple tasks.

• Zero-Shot Transferability of Trained Models: We assess the cross-task generalization of
adapted models.

• Dynamic Top-K Selection: We benchmark our fixed K component selection strategy
against an dynamic method.

• Incremental Knowledge Aggregation: We introduce a streaming aggregation protocol
that updates the model sequentially.

• In-depth Robustness Analyses: We conduct a series of thorough evaluations to validate
the robustness of our framework under challenging conditions. These include:

– Resilience to 12 common image corruptions across five distinct severity levels.
– Performance evaluation across different levels of training data availability for the tar-

get task.
– Robustness against altered source parameters, including scenarios with noisy or heav-

ily pruned task vectors.
• Component Selection: We present a detailed ablation study comparing our default com-

ponent aggregation strategy (top components) against a range of alternative methods.
• Impact of Final SVD: We provide details of the role of the final SVD re-parameterization

step in stabilizing the transfer basis across a couple of selection strategies.
• Detailed Main Results: We then provide extensive results with the ViT-B-32 architecture.

These tables offer a granular performance breakdown, detailing per-target-task accuracy
for different numbers of aggregated source task vectors and varying budgets of trainable
parameters (N ).

A.1 EVALUATION PROTOCOL

To ensure a direct and fair comparison, we adopt the comprehensive benchmark, publicly re-
leased task vectors, and training protocols established by the authors of aTLAS. Their framework
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Dataset Classes Splits Epochs Fine-tuned accuracy (%)
train val test ViT-B/32 ViT-L/14

Cars 196 7,330 814 8,041 35 78.26 91.67
DTD 47 3,384 376 1,880 76 78.94 84.73
EuroSAT 10 21,600 2,700 2,700 12 98.89 99.81
GTSRB 43 23,976 2,664 12,630 11 99.14 99.30
MNIST 10 55,000 5,000 10,000 5 99.65 99.77
RESISC45 45 17,010 1,890 6,300 15 95.94 97.14
SUN397 397 17,865 1,985 19,850 14 75.40 81.98
SVHN 10 68,257 5,000 26,032 4 97.38 97.97
CIFAR10 10 45,000 5,000 10,000 5 98.05 99.22
CIFAR100 100 45,000 5,000 10,000 6 89.09 93.01
ImageNet 1,000 1,276,167 5,000 50,000 10 76.41 85.52
STL10 10 4,500 500 8,000 4 98.55 99.62
Food101 101 70,750 5,000 25,250 15 88.68 95.37
Caltech101 101 6,941 694 1,736 10 94.41 94.82
Caltech256 257 22,037 2,448 6,122 8 92.60 97.17
FGVCAircraft 100 3,334 3,333 3,333 60 40.65 68.11
Flowers102 102 1,020 1,020 6,149 40 90.08 97.84
OxfordIIITPet 37 3,312 368 3,669 5 92.15 95.91
CUB200 200 5,395 599 5,794 20 73.56 86.35
PascalVOC 20 7,844 7,818 14,976 10 88.42 92.05
Country211 211 31,650 10,550 21,100 15 21.99 38.06
UCF101 101 7,639 1,898 3,783 20 85.01 92.55

Table 3: Comparison of full fine-tuning model accuracy per dataset

provides task vectors obtained by fine-tuning the pre-trained CLIP Radford et al. (2021) model
on distinct image recognition datasets: Stanford Cars Krause et al. (2013), DTD Cimpoi et al.
(2014), EuroSAT Helber et al. (2019), GTSRB Stallkamp et al. (2011), MNIST LeCun (1998),
RESISC45 Cheng et al. (2017), SUN397 Xiao et al. (2016), SVHN Netzer et al. (2011), CI-
FAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), ImageNet Russakovsky et al.
(2015), STL10 Coates et al. (2011), Food101 Bossard et al. (2014), Caltech101 Fei-Fei et al. (2006),
Caltech256 Griffin et al. (2007), FGVCAircraft Maji et al. (2013), Flowers102 Nilsback & Zisser-
man (2008), Oxford Pets Parkhi et al. (2012), CUB200 Welinder et al. (2010), PascalVOC Ever-
ingham et al. (2015), Country211 Radford et al. (2021), and UCF101 Soomro et al. (2012). The
original fine-tuning for these vectors was performed using the AdamW optimizer Loshchilov &
Hutter (2017) with a learning rate of 10−5, a batch size of 128, and a weight decay of 0.1 for the
ViT-B-32 architecture. Table 3 provides dataset details, their corresponding hyperparameters, and
the fine-tuning accuracy achieved with full-finetuning.

During the target task adaptation stage, we fine-tune the merged model for each dataset indepen-
dently, using the same hyperparameters as the aTLAS baseline (each adaptation runs for 10 epochs
with a learning rate of 10−1). The batch size is adjusted based on the model architecture: 64 for
the ViT-B-32 and ViT-B-16 model and 128 for the larger ViT-L-14 model. For the ViT-L-14 archi-
tecture, both methods originally use two steps of gradient accumulation. To ensure a controlled and
reproducible evaluation provided by aTLAS, the source task vectors are aggregated incrementally
in a fixed, pre-defined sequence. The order of aggregation is as follows: Cars, DTD, EuroSAT, GT-
SRB, MNIST, RESISC45, SUN397, SVHN, CIFAR10, CIFAR100, ImageNet, STL10, Food101,
Caltech101, Caltech256, FGVCAircraft, Flowers102, OxfordIIITPet, CUB200, PascalVOC, Coun-
try211, and UCF101. Each experimental run was conducted once with a single random seed across
our comprehensive evaluation, which included 21 target tasks, multiple aggregation levels, and vary-
ing parameter budgets.
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A.1.1 COMPUTATIONAL ENVIRONMENT

All experiments were conducted within a high-performance computing (HPC) cluster equipped with
a heterogeneous GPU environment. The available resources included partitions with NVIDIA RTX
4090, NVIDIA V100, and NVIDIA A100 GPUs. The results reported in this paper, generated using
the ViT-L-14 architecture, were obtained with nodes equipped with NVIDIA A100-SXM4-80GB
GPUs. Our software stack was built upon the CUDA 12.2 toolkit with NVIDIA driver version
535.183.01.

A.2 PERFORMANCE ON VIT-L-14 ARCHITECTURE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of used task vectors
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Figure 9: AXIS outperforms aTLAS on the ViT-L-14 architecture with N = 10% and N = 20% of
trainable singular values. Each point is the mean accuracy across 21 independently evaluated target
tasks. The plot illustrates the accuracy gain as the number of aggregated source tasks increases.

To validate the scalability and effectiveness of our approach on larger models, we replicated our
experiments using the ViT-L-14 architecture. The results demonstrate the advantages of the AXIS
framework. The performance comparison for the N = 10% and N = 20% parameter budget is
illustrated in Figure 9, where AXIS consistently outperforms aTLAS as the number of aggregated
source tasks increases. Further analysis across different parameter budgets confirms these findings.
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Dataset AXIS (%) aTLAS (%) Absolute gain (AXIS)
CIFAR100 80.13 79.14 +0.99
CIFAR10 96.78 96.51 +0.27
CUB200 59.06 55.82 +3.24
Caltech101 94.47 94.18 +0.29
Caltech256 88.88 88.09 +0.79
Cars 65.30 62.82 +2.48
Country211 18.28 18.08 +0.20
DTD 68.09 55.69 +12.40
EuroSAT 97.74 95.67 +2.07
FGVCAircraft 30.63 24.96 +5.67
Flowers102 78.37 70.24 +8.13
Food101 86.23 85.63 +0.60
GTSRB 90.58 76.96 +13.62
MNIST 98.03 95.30 +2.73
RESISC45 87.76 78.95 +8.81
SUN397 67.62 66.50 +1.12
SVHN 88.65 86.32 +2.33
UCF101 74.31 69.60 +4.71
OxfordIIITPet 90.79 91.82 -1.03
PascalVOC 87.16 87.18 -0.02
STL10 97.91 98.33 -0.42

Average 78.42 75.13 +3.29

Table 4: The table clarifies that aTLAS holds a marginal advantage on only 3 datasets (OxfordII-
ITPet, PascalVOC, STL10), with two of these (PascalVOC, STL10) being statistically negligible,
likely falling within the variance of a single-seed run. This superior per-task performance with ViT-
B-32 architecture is visually detailed in the spider plot on the right side of Figure 3.

A.3 PERFORMANCE ON T5-BASE LANGUAGE MODELS.
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Figure 10: AXIS consistently outperforms the aTLAS baseline across seven diverse NLP bench-
marks under varying source task aggregation levels and parameter budgets.
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We extend the evaluation of the AXIS framework to the language domain using the T5-base archi-
tecture, adopting the multi-task merging protocol established in TIES-Merging. The evaluation en-
compasses seven NLP datasets: question answering (QASC Khot et al. (2020), WikiQA Yang et al.
(2015), and QuaRTz Tafjord et al. (2019)), Paraphrase Identification (PAWS Zhang et al. (2019)),
Sentence Completion (Story Cloze Sharma et al. (2018)), and Coreference Resolution (Winogrande
Sakaguchi et al. (2021) and WSC Levesque et al. (2012)).

Figure 10 reports the average performance for an increasing number of aggregated source models,
denoted by s (ranging from 1 to T − 1). To ensure statistical robustness and mitigate selection bias,
we performed an exhaustive evaluation of all valid source subsets. Specifically, for any given target
task with a pool of T −1 = 6 available sources, we averaged the results across all possible combina-
tions for each subset size s. This entailed computing the mean performance over
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= 20,

(
6
4

)
= 15,

(
6
5

)
= 6, and
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)
= 1 distinct source combinations per target task. The final

results are averaged over all target tasks. We benchmark AXIS across three distinct trainable param-
eter budgets, defined by the percentage of fine-tuned singular values (N ∈ {10%, 20%, 40%}). For a
direct and fair comparison of efficiency, the aTLAS baseline was evaluated using a matching budget
of trainable parameters. The empirical results demonstrate that AXIS consistently outperforms the
baseline across all aggregation levels, confirming that the method’s efficacy in multi-source knowl-
edge transfer generalizes beyond the vision domain.

Dataset AXIS (Tuning Σt Diag) A. FT in Singular Vectors B. FT in Σt Random
CIFAR10 98.29% 92.05% 97.92%
CIFAR100 86.61% 66.96% 84.31%
CUB200 70.85% 34.93% 65.17%
Caltech101 96.89% 81.11% 96.14%
Caltech256 93.24% 78.05% 91.56%
Cars 79.22% 48.35% 75.04%
Country211 24.84% 13.36% 21.01%
DTD 73.35% 31.28% 68.40%
EuroSAT 98.48% 72.00% 98.78%
FGVCAircraft 40.11% 14.10% 38.07%
Flowers102 86.03% 29.65% 72.08%
Food101 91.94% 81.29% 90.19%
GTSRB 95.30% 43.95% 94.75%
MNIST 99.04% 85.88% 99.05%
OxfordIIITPet 94.85% 77.00% 93.59%
PascalVOC 89.82% 45.83% 88.43%
RESISC45 94.08% 54.43% 93.10%
STL10 99.31% 89.78% 98.78%
SUN397 74.01% 46.19% 70.92%
SVHN 95.19% 77.77% 94.81%
UCF101 84.93% 41.69% 80.49%

Average 84.11% 57.41% 81.55%

Table 5: Comparison of adaptation strategies of Stage 2 across all target tasks for the ViT-B-16
model under different fine-tuning (FT) strategies. Our method (AXIS) outperforms alternative tun-
ing strategies while maintaining an identical parameter budget.

A.4 VALIDATION OF ADAPTATION FLEXIBILITY

To validate the hypothesis that tuning principal singular values does not limit adaptation flexibil-
ity, we conducted two comparative experiments while maintaining an identical budget of trainable
parameters (N ):

1. Values vs. Vectors: We compared our method (tuning values, freezing vectors) against an
alternative approach where the singular values are frozen, and a random subset of parame-
ters within the singular vectors is fine-tuned.

2. Diagonal vs. Random Elements: We investigated the structural importance of the singular
value matrix, Σt. We train randomly selected elements of Σt (allowing for off-diagonal
interactions).
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In both cases, the proposed approach outperformed the alternatives as seen in Table 5. These results
confirm that recalibrating the importance of stable basis vectors via the principal singular values is
superior to directly modifying the vectors or introducing arbitrary off-diagonal terms.

A.5 INVESTIGATING TRANSFER BOUNDARIES

While our primary objective was the direct comparison against the aTLAS baseline, necessitating
a shared initialization for our main evaluation, we designed an entirely new experiments to test the
practical boundaries of the AXIS methodology.

The study consisted of four distinct experimental runs, three of them utilizing a task vector derived
from the fine-tuning on the Cars dataset:

A. Baseline: We measured the fine-tuning performance of a randomly selected ViT-B/16 Cars
task vector on all target tasks, using the standard ViT-B/16 base model. This served as our
internal compatibility benchmark.

B. Cross-Initialization Transfer (Minor Architectural Changes): We tested transfer be-
tween two distinct base models (ViT-B/32 and ViT-B/16) that share the same pre-training
objective (CLIP) but represent different initializations and minor architectural differences
(patch size). The task vector was computed as the difference between the fine-tuned and
base parameters for ViT-B/32: ∆task = θViT-B-32, Cars − θViT-B-32, base. We applied our full
AXIS adaptation methodology to the ViT-B/16 base model, explicitly skipping the two
layers with shape mismatches while transferring knowledge from all other compatible lay-
ers. This configuration simultaneously tests cross-initialization transfer and adaptability to
minor architectural differences.

C. Different Pre-training (Same Source Task): To test the necessity of a shared initial-
ization history, we utilized an architecturally compatible model with an entirely different
pre-training source. We took the OpenClip ViT-B/16 model and fine-tuned it on the Cars
dataset using the standard aTLAS recipe to create a new source task vector. The task vec-
tor was calculated as ∆task = θOpenClip, Cars − θOpenClip, base, and then applied to the CLIP
ViT-B/16 base model without altering the AXIS procedure.

D. Out-of-Distribution Control: As a control, we employed Microsoft’s popular Biomed-
CLIP (ViT-B/16) from HuggingFace. This domain-specific model, fine-tuned on medical
images, serves as a highly distant reference point. The model is architecturally compatible
but pre-trained and fine-tuned on data completely unrelated to our broad category of tar-
get tasks. We computed the task vector as the difference between the fine-tuned and base
parameters of OpenClip (similar to C) and applied it to the CLIP ViT-B/16 base model.

The results for N=0.1 are presented in Table 6, which distinguishes the impact of the source task
vector across the tested boundaries.

Overall, the results demonstrate that AXIS successfully achieves knowledge transfer despite dif-
ferences in initialization and minor architectural changes. The hierarchy of transfer compatibility is
clear: the highest performance benchmark remains the most compatible version (the native ViT-B/16
baseline), followed closely by the ViT-B/32 task vector and the OpenClip task vector. This shows
a consistent relationship between base model compatibility and final performance, with both cross-
initialization and minor architectural changes only leading to a slight decrease in average accuracy
(from 80.59% to 79.41% and 79.16%, respectively).

The performance of the domain-distant BiomedCLIP source, while low on average, confirmed its
role as an extreme sanity check. Crucially, even this highly specialized model provided positive
transfer, exceeding the zero-shot capabilities of the ViT-B/16 base model on certain target tasks (e.g.,
EuroSAT). This result, expected given the model’s highly specific domain knowledge, confirms that
our method could function robustly even when provided with low-relevance source model.

The decision to utilize only a single source task vector for these boundary tests was deliberate,
allowing us to avoid the methodological ambiguity that incorporating many other compatible source
task vectors might mask poor performance.
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Dataset A. ViT-B/16 B. ViT-B/32 C. OpenCLIP ViT-B/16 D. BiomedCLIP
CIFAR10 97.17% 97.30% 97.11% 33.84%
CIFAR100 80.73% 80.91% 80.37% 5.71%
CUB200 63.43% 61.93% 61.13% 0.90%
Caltech101 96.14% 95.62% 94.87% 17.45%
Caltech256 91.49% 91.39% 90.85% 5.23%
Country211 23.89% 24.11% 23.40% 1.09%
DTD 59.84% 54.15% 54.63% 4.41%
EuroSAT 97.56% 97.19% 97.19% 51.30%
FGVCAircraft 34.05% 30.42% 30.78% 1.35%
Flowers102 78.13% 74.37% 74.09% 0.47%
Food101 91.01% 91.16% 90.96% 3.80%
GTSRB 90.91% 88.33% 87.93% 14.45%
MNIST 98.33% 97.98% 97.95% 20.60%
OxfordIIITPet 93.40% 93.49% 93.21% 3.82%
PascalVOC 88.42% 88.17% 87.87% 36.79%
RESISC45 89.46% 88.22% 88.65% 14.30%
STL10 99.02% 99.12% 99.08% 27.29%
SUN397 71.26% 70.02% 70.26% 0.63%
SVHN 90.56% 89.49% 90.13% 24.51%
UCF101 76.92% 74.83% 72.80% 4.47%

Average 80.59% 79.41% 79.16% 13.62%

Table 6: Transfer performance of the different task vectors under varying initialization and architec-
ture constraints (N=0.1).

A.6 TRANSFERABILITY BY SVD COMPONENTS

A.6.1 INDIVIDUAL COMPONENT ANALYSIS

In this experiment, we incrementally tested the performance of single components. Specifically,
during Stage 2, we fine-tuned only one singular value per 2D layer in ∆target. This allowed us to
evaluate which structural components contribute most effectively to the target task.

The averaged performance across all target tasks is illustrated in Figure 11. The results demonstrate
a clear trend: higher raw singular values correlate with a significantly better capacity to transfer
knowledge. As observed in the figure, the most structurally dominant component achieves an ac-
curacy of approximately 61.6%, whereas performance drops sharply for lower-ranked components
(stabilizing between 30% and 35%).
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Figure 11: Impact of singular value rank on transfer performance. The plot illustrates the
average accuracy obtained when fine-tuning individual singular components isolated by rank. The
sharp decline demonstrates that the most structurally dominant components encapsulate the majority
of transferable knowledge.

A.6.2 GROUND-TRUTH ALIGNMENT ANALYSIS

Our objective is to empirically demonstrate that the singular vectors corresponding to the largest
singular values in source tasks are, in fact, the most transferable to a new, unseen target task. We
show that these top component directions align most closely with the ground-truth update required
for the target task, independent of their original scalar singular values.

To quantify the transferability of specific components, we conduct an analysis where we assume
access to the ground-truth target task vector, denoted as ∆target. This allows us to measure how
well specific components from source tasks can reconstruct or ”explain” the target task update.

We assume access to the ground-truth target task vector ∆target. For each source task i, we decom-
pose its task matrix via SVD:

∆(i)
source =

T∑
k=1

σ
(i)
k u

(i)
k (v

(i)
k )⊤, (1)

where the singular values σ(i)
k are sorted in descending order and u

(i)
k ,v

(i)
k are the left and right sin-

gular vectors. We evaluate for each layer l the transferability of each rank-1 component (u(i)
k ,v

(i)
k )

using the Preserved Energy metric (ignoring σ
(i)
k ):

E(k, i) =
⟨∆target,u

(i)
k (v

(i)
k )⊤⟩2

∥∆target∥2F
, (2)

which measures the fraction of target variance explained by the component. To visualise the rela-
tionship between component rank k and transferability, we aggregate E(k, i) across all layers and
tasks, ordering components by their original rank (all k = 1 components first, then k = 2, etc.),
allowing comparison of average transferability of top versus bottom components globally.
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Figure 12: Normalized Energy Distribution (Preserved Energy) as a function of component rank.
The x-axis represents the component index, sorted by original singular value magnitude (descend-
ing), while the y-axis shows the projection of source components onto the ground-truth target update
∆target. The displayed values are averaged across all source models and unseen target tasks for ev-
ery layer matrix. The plot empirically confirms that components with the highest singular values in
source tasks exhibit the highest transferability to the target task.

The resulting plot, Figure 12, displays the Normalized Energy Distribution. The x-axis represents
the component index sorted by their original singular value rank (descending).

• Peak Energy at Low Ranks: The plot reveals a distinct concentration of high preserved
energy values at the very beginning of the x-axis. These correspond to the components with
the highest singular values (k = 1, 2, . . . ) in their respective source tasks.

• Rapid Decay: As we move to higher indices (corresponding to lower singular values in
source tasks), the preserved energy drops and plateaus.

• Consistency: This pattern holds true when averaged across all target tasks and layers,
indicating a universal property of the task vector space.

The experiment demonstrates a strong empirical link between singular value magnitude and cross-
task transferability. The components that are dominant (have large singular values) in the source
tasks are consistently the ones that align best with the ground-truth direction of the target task.

A.7 AXIS PERFORMANCE AT FULL PARAMETER BUDGET

The full-parameter performance of AXIS was evaluated by setting the singular value budget to
N=100%. The method achieved an average accuracy of 82.30%, which closely approaches the
standard full fine-tuning baseline 83.56%. Crucially, this near-equivalent performance was attained
using a fixed, significantly shorter training schedule of 10 epochs across all datasets, in contrast to
the baseline’s optimized, dataset-specific training that required up to 76 epochs. AXIS approaches
the performance of full fine-tuning while maintaining superior computational efficiency.

A.8 MULTI-TASK PERFORMANCE OF AXIS

In scenarios involving high-throughput streams of new tasks, restarting the adaptation process for ev-
ery individual target task may become a computational bottleneck. To evaluate the training efficiency
of our framework, we implemented a joint multi-task adaptation strategy. Instead of performing in-
dependent fine-tuning runs for each target dataset, we conducted a single training session where
the AXIS model was adapted simultaneously on a combined dataset comprising six distinct target
tasks (Flowers102, OxfordIIITPet, CUB200, PascalVOC, Country211, UCF101). In this setup, the
learnable singular values (Σt) were shared across all tasks, while task-specific classification heads
were maintained to handle distinct label spaces. The comparison between this joint approach and the
standard individual approach is illustrated in Figure 13. We conducted analysis using the ViT-B-32
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Dataset Name Fully Finetuned Axis

CIFAR10 98.05 97.67
CIFAR100 89.09 84.78
CUB200 73.56 66.30
Caltech101 76.41 94.89
Caltech256 92.60 90.64
Cars 78.26 72.33
Country211 21.99 19.79
DTD 78.94 74.49
EuroSAT 98.89 98.65
FGVCAircraft 40.65 44.74
Flowers102 90.08 85.92
Food101 94.41 87.88
GTSRB 99.14 95.92
MNIST 99.65 99.10
OxfordIIITPet 92.15 90.22
PascalVOC 88.42 86.79
RESISC45 95.94 93.53
STL10 88.68 97.09
SUN397 75.40 71.86
SVHN 97.38 94.67
UCF101 85.01 81.01

Average 83.56 82.30

Table 7: Comparison of AXIS with N=100% with the full-parameters finetuning in ViT-B-32 archi-
tecture.

architecture with three seeds across three trainable parameter budgets (N ∈ {10%, 20%, 40%}). To
ensure a fair comparison, the total computational budget was equalized between the two strategies.
Specifically, the joint multi-task model was trained for an extended number of epochs, equivalent to
the cumulative training steps of the six individual adaptations.

The standard individual adaptation strategy outperforms the joint approach across all parameter
budgets. Current AXIS design is optimized for high-fidelity, task-specific specialization. Effective
application in a simultaneous multi-task setting require further modifications to mitigate interference
between conflicting task gradients.

A.9 ZERO-SHOT TRANSFERABILITY OF TRAINED MODELS

To evaluate the specificity of the learned adaptations, we assessed the cross-task performance of
AXIS models. We selected a subset of six distinct target tasks and trained individual models using
the ViT-B-32 architecture with a parameter budget of N = 10%. Each adapted model was then eval-
uated on all other target datasets in a zero-shot manner. As illustrated in the heatmap in Figure 14,
the models exhibit strong task orientation: while they achieve high accuracy on their respective
target datasets, their performance on unseen tasks is significantly lower. This confirms that the
task-specific specialization achieved in Stage 2 comes at the natural cost of zero-shot transferability.
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Figure 13: Comparison of average accuracy across six target tasks between the joint multi-task adap-
tation strategy and the standard individual adaptation, demonstrating that task-specific fine-tuning
yields superior performance compared to simultaneous joint training across all trainable parameter
budgets

Pre-trained model

Country211

UCF101

PascalVOC

CUB200

OxfordIIITPet

Flowers102

7.7

9.4

8.0

6.0

17.2

11.2

62.3

59.3

49.5

52.9

48.2

38.8

76.8

75.9

67.4

63.3

65.7

51.4

53.0

38.9

22.9

26.8

32.6

23.8

87.4

71.2

68.4

64.6

75.6

62.8

66.3

56.5

34.2

37.4

46.2

38.6

C
ou

nt
ry

21
1

U
C

F
10

1

P
as

ca
lV

O
C

C
U

B
20

0

O
xf

or
dI

IIT
P

et

F
lo

w
er

s1
02

Test Dataset

A
cc

ur
ac

y 
(%

)

T
ar

ge
t D

at
as

et
 (

T
ra

in
in

g 
D

at
as

et
)

high

low

avg

Figure 14: Cross-task transferability heatmap (ViT-B-32, N = 10%) demonstrating that AXIS
models exhibiting limited zero-shot generalization to unseen datasets.

A.10 DYNAMIC TOP-K SELECTION

We compare fixed top-K selection with the Optimal Hard Thresholding Donoho & Gavish (2013)
method. This method automatically determines the optimal cut-off for singular values based on the
estimated noise level of the matrix. We compared the performance of AXIS using this automatic
thresholding against our fixed strategy on the ViT-B-32 architecture for each task matrix. The auto-
matic method achieved an average accuracy of 64.5%, compare to 78.42% achieved by AXIS. Given
that it does not provide a tangible performance gain, we retain the fixed strategy as the preferred ap-
proach for its balance of simplicity, performance, and computational predictability.
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A.11 INCREMENTAL KNOWLEDGE AGGREGATION

To evaluate the adaptability of AXIS to dynamic scenarios where source models arrive sequentially,
we examine an incremental aggregation protocol. While the default framework performs a global
ranking over the singular components of the entire pool of source task matrices {∆1, . . . ,∆T−1},
the incremental variant updates the merged knowledge base iteratively.

Specifically, we initialize the merged matrix ∆m with the first two source task vectors. For each
subsequent incoming source ∆i, we treat the currently accumulated matrix ∆

(i−1)
m as a consolidated

representation of prior knowledge and merge it with the new source. This recursive update rule
allows us to apply the aggregation mechanism defined in Stage 1 pairwise:

∆(i)
m = Stage1({∆(i−1)

m ,∆i}) (3)

In this setup, the aggregation step selects the top-K components from the union of the accumu-
lated basis and the new task vector. Crucially, this creates a memory-efficient online process where
historical source parameters are discarded immediately after integration, eliminating the need for a
persistent buffer of previous models.

With an average accuracy of 78.55%, the streaming approach performs on par with the standard
global ranking protocol (78.48%). Consequently, AXIS proves effective at real-time structural
knowledge accumulation, eliminating the overhead associated with iteratively processing the full
model history.

A.12 IN-DEPTH ROBUSTNESS ANALYSES

A.12.1 ROBUSTNESS TO INPUT PERTURBATIONS

To further probe the robustness capabilities of AXIS and aTLAS, we evaluate them against a set of
12 common image corruptions Hendrycks & Dietterich (2019). Each corruption type is applied to
the test set of target task images at five distinct severity levels to simulate a range of degradations. As
illustrated in Figure 16, our proposed method, AXIS, maintains a slightly average performance ad-
vantage (0.83 percentage points). This margin is particularly pronounced for corruption types where
overall accuracy remains high, indicating better robustness in moderately challenging conditions.
A detailed breakdown by severity level delineates this trend more clearly (see Figure 17). AXIS
demonstrates greater resilience across the initial four perturbation levels, outperforming aTLAS by
margins of 2.04 percentage points for the lowest corruption severity.

Furthermore, we extend our robustness evaluation to scenarios with partial input information, a
challenge simulated using patch dropout. A detailed, step-by-step analysis, presented in Table 8,
illustrates how the model’s resilience to input masking evolves as the incremental aggregation of
each source task vector is performed. This granular breakdown demonstrates that the fusion of
diverse knowledge sources enhances the model’s ability to perform predictions even when significant
portions of the input are omitted.

A.12.2 TRAINING DATA AVAILABILITY

To assess the data efficiency of our approach and its robustness in limited data scenarios, we in-
vestigate the performance of our method compared to aTLAS under varying levels of training data
availability for the target task. For this experiment, we reduce the size of the target task’s training
dataset, creating subsets with 5%, 10%, 25%, 50%, 75%, and 95% of the original samples. The
results, illustrated in Figure 18, demonstrate that our method maintains a significant performance
advantage over aTLAS across the broad majority of data availability levels.

A.12.3 ROBUSTNESS AGAINST ALTERED SOURCE PARAMETERS

For a detailed analysis of the framework’s robustness, we refer to Table 19 and Figure 20, which
provides a comprehensive performance breakdown under two challenging scenarios: contamination
by a single noisy source vector and aggregation of heavily pruned (95%) source vectors.
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Figure 15: AXIS with top-component selection is more robust against common corruptions (e.g.,
blur) than other strategies.
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Figure 16: The accuracy across each type of corruption is evaluated for all severity levels ranging
from 1 to 5 for all 21 target tasks.
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Figure 20: Robustness to altered source task vectors. The plot compares performance under two
distinct perturbation scenarios, with results averaged across all 21 target tasks. Our method AXIS
demonstrates substantially higher resilience to both scenarios compared to aTLAS.
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Figure 17: Severity levels average over all 12 image corruptions.

TV Input Patch Dropout (%)

1 77.31 75.53 72.78 67.51 63.61 56.86 52.11 44.66 39.79 28.74
2 77.51 (+0.20) 75.80 (+0.27) 73.40 (+0.62) 69.04 (+1.53) 65.38 (+1.77) 59.54 (+2.68) 55.17 (+3.05) 48.36 (+3.69) 43.63 (+3.84) 32.67 (+3.93)
3 77.52 (+0.21) 75.88 (+0.35) 73.49 (+0.71) 69.27 (+1.76) 65.72 (+2.12) 60.00 (+3.13) 55.87 (+3.75) 49.28 (+4.62) 44.84 (+5.05) 34.08 (+5.34)
4 77.85 (+0.54) 76.12 (+0.60) 73.68 (+0.89) 69.43 (+1.91) 65.92 (+2.31) 59.97 (+3.10) 55.74 (+3.62) 49.12 (+4.45) 44.58 (+4.79) 33.49 (+4.75)
5 77.81 (+0.50) 76.24 (+0.71) 73.98 (+1.20) 69.82 (+2.30) 66.51 (+2.90) 60.95 (+4.08) 56.87 (+4.76) 50.27 (+5.60) 45.65 (+5.86) 34.59 (+5.86)
6 78.02 (+0.71) 76.41 (+0.88) 73.96 (+1.18) 69.78 (+2.27) 66.40 (+2.80) 60.53 (+3.66) 56.54 (+4.42) 50.10 (+5.43) 45.63 (+5.84) 34.64 (+5.90)
7 78.08 (+0.76) 76.48 (+0.95) 74.23 (+1.45) 70.00 (+2.49) 66.82 (+3.21) 61.16 (+4.30) 57.01 (+4.90) 50.43 (+5.77) 45.74 (+5.95) 34.45 (+5.71)
8 78.33 (+1.02) 76.67 (+1.14) 74.27 (+1.49) 70.27 (+2.76) 66.96 (+3.35) 61.21 (+4.35) 57.13 (+5.01) 50.71 (+6.04) 46.12 (+6.33) 34.98 (+6.24)
9 78.41 (+1.10) 76.74 (+1.21) 74.42 (+1.64) 70.29 (+2.78) 66.88 (+3.27) 61.49 (+4.63) 57.63 (+5.52) 51.24 (+6.57) 47.02 (+7.23) 36.10 (+7.36)
10 78.16 (+0.85) 76.60 (+1.07) 74.20 (+1.42) 69.85 (+2.33) 66.37 (+2.77) 60.55 (+3.69) 56.32 (+4.20) 49.77 (+5.11) 45.17 (+5.38) 34.25 (+5.51)
11 78.40 (+1.09) 76.87 (+1.34) 74.44 (+1.66) 70.29 (+2.78) 66.81 (+3.20) 60.74 (+3.88) 56.21 (+4.09) 49.26 (+4.59) 44.47 (+4.68) 32.81 (+4.07)
12 78.51 (+1.20) 76.90 (+1.38) 74.56 (+1.78) 70.34 (+2.83) 66.92 (+3.32) 61.11 (+4.24) 57.05 (+4.93) 50.31 (+5.65) 45.78 (+5.99) 33.99 (+5.26)
13 78.37 (+1.06) 76.71 (+1.19) 74.34 (+1.55) 70.15 (+2.63) 66.78 (+3.17) 61.02 (+4.15) 56.85 (+4.74) 49.97 (+5.31) 45.32 (+5.53) 33.81 (+5.08)
14 78.41 (+1.10) 76.83 (+1.30) 74.42 (+1.64) 70.16 (+2.65) 66.75 (+3.15) 60.87 (+4.00) 56.71 (+4.60) 49.65 (+4.98) 44.90 (+5.10) 33.05 (+4.31)
15 78.34 (+1.02) 76.81 (+1.28) 74.50 (+1.71) 70.28 (+2.77) 66.82 (+3.21) 60.74 (+3.87) 56.32 (+4.20) 49.24 (+4.57) 44.64 (+4.85) 33.14 (+4.40)
16 78.42 (+1.11) 76.85 (+1.32) 74.70 (+1.92) 70.45 (+2.94) 67.11 (+3.50) 61.37 (+4.50) 56.96 (+4.85) 50.16 (+5.50) 45.73 (+5.94) 34.51 (+5.78)
17 78.41 (+1.09) 76.82 (+1.29) 74.57 (+1.79) 70.38 (+2.87) 67.06 (+3.45) 61.32 (+4.45) 57.10 (+4.98) 50.41 (+5.74) 45.93 (+6.14) 34.91 (+6.17)
18 78.54 (+1.23) 76.94 (+1.41) 74.63 (+1.85) 70.53 (+3.01) 67.36 (+3.76) 61.77 (+4.91) 57.62 (+5.51) 50.92 (+6.26) 46.45 (+6.66) 34.92 (+6.19)
19 78.58 (+1.27) 76.91 (+1.38) 74.61 (+1.83) 70.20 (+2.69) 66.87 (+3.26) 61.19 (+4.32) 56.97 (+4.86) 50.48 (+5.82) 46.05 (+6.26) 34.64 (+5.90)
20 78.50 (+1.19) 76.75 (+1.22) 74.51 (+1.73) 70.14 (+2.63) 66.93 (+3.32) 61.19 (+4.33) 57.25 (+5.13) 50.58 (+5.91) 46.31 (+6.52) 35.05 (+6.31)
21 78.48 (+1.16) 76.82 (+1.29) 74.68 (+1.90) 70.52 (+3.00) 67.37 (+3.76) 61.84 (+4.97) 57.82 (+5.71) 51.18 (+6.51) 46.63 (+6.83) 35.39 (+6.65)

Table 8: Performance analysis of AXIS under increasing input masking. The table illustrates that
aggregating more source task vectors (TV) enhances model robustness to input patch dropout. We
report the mean accuracy (%) across all target tasks for dropout rates from 0% to 50%. Each row
corresponds to a different number of aggregated sources, and values in parentheses show the im-
provement in percentage points (p.p.) over the first, single task vector baseline (first row).

A.13 COMPONENT SELECTION

To study our hypothesis that the most useful transferable knowledge is encapsulated within the
principal singular components, we conducted a comprehensive ablation study. We evaluated the
impact of different component selection and aggregation strategies on final model performance. The
goal was to ensure that our default approach, aggregating components with the highest singular
values, is effective to other plausible alternatives, especially with the highest number of source task
vectors. We compared the following seven strategies:

• Top Components (our default): As described in the main paper, we perform a global
ranking of all singular components from all source tasks and select the top-K based on
their singular values (σk) to form the merged matrix ∆m =

∑K
k=1 ukσkv

⊤
k .

• Bottom Components: A control strategy where we select the K components with the
lowest singular values from the global ranking.

• Arbitrary Components: A second control strategy where K components are arbitrarily
selected from the global pool.

• Average Top Components: This baseline first distills each source task matrix ∆i into its
top-K principal components. Next, all these resulting low-rank matrices are averaged into a
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Figure 18: AXIS performs better with smaller
amounts of training data in almost all cases.

Task
Vectors

aTLAS AXIS (ours)

intact corrupted pruned intact corrupted pruned

3 71.22 61.59 68.25 77.52 77.56 77.85
4 71.86 61.41 69.43 77.85 77.70 77.99
5 72.34 60.78 70.16 77.81 77.77 78.13
6 72.95 60.38 69.50 78.02 77.76 78.28
7 73.58 60.77 71.19 78.08 77.66 78.30
8 73.86 60.38 71.42 78.33 77.82 78.28

Figure 19: Robustness to altered source task vec-
tors. AXIS shows higher resilience to corruption
and pruning compared to aTLAS.

single matrix. Finally, we perform a new SVD on this averaged matrix and select its top-K
components to form the final ∆m.

• Average Bottom Components: The inverse of the ”average top components” baseline,
used as a control. First, each source task matrix is reduced to a low-rank approximation us-
ing only its own bottom-K singular components. Second, these resulting low-rank matrices
are averaged, and a final selection of the bottom-K components is performed via SVD on
this single, averaged matrix.

• Equal Top Contribution: This strategy ensures a balanced representation from all source
tasks. Instead of a global ranking, it selects an equal number of the top singular components
from each individual source task. If the total budget is K components and there are T − 1
sources, we select the top K/(T − 1) components from each task. These are then pooled
and summed to form ∆m.
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Figure 21: Performance comparison of seven different SVD component aggregation strategies K
with constant N=10%. The plot shows the average accuracy across all target tasks as the number of
used source task vectors increases. Our default strategy, top components, yields the best performance
with the largest number of sources.

The results, presented in Figure 21, demonstrate that the top components strategy slightly outper-
forms on average all other alternatives across a varying number of aggregated source tasks. For
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Figure 22: Detailed performance comparison of SVD component aggregation strategies, focusing
on small variations within top components. While all strategies show comparable performance, the
top components generally maintain a slight edge, particularly with a higher number of aggregated
source tasks.

Aggregated
Task Vectors

Top Bottom Average top Average bottom
SVD ✓ SVD SVD ✓ SVD SVD ✓ SVD SVD ✓ SVD

1 77.31 77.35 77.63 77.57 77.42 77.42 77.62 77.25
2 77.51 77.38 77.80 77.65 77.42 77.41 77.58 77.23
3 77.52 76.36 77.83 77.80 77.41 77.37 77.74 77.29
4 77.85 76.49 77.79 77.61 77.74 77.75 77.74 77.33
5 77.81 76.56 77.54 77.75 77.86 77.83 77.82 77.14
6 78.02 76.39 77.88 77.85 77.85 77.95 77.93 77.35
7 78.08 76.40 77.72 77.85 78.14 78.20 78.13 77.51
8 78.33 71.16 77.91 77.84 77.96 77.98 77.99 77.53
9 78.41 69.85 77.92 77.85 78.09 78.13 77.88 77.64
10 78.16 71.58 77.87 77.84 78.36 78.24 77.96 77.50
11 78.40 78.52 77.92 77.84 78.39 78.42 78.07 77.49
12 78.51 78.39 77.72 77.80 78.26 78.28 78.10 77.34
13 78.37 78.49 77.80 77.77 78.30 78.38 77.87 77.68
14 78.41 78.37 77.71 77.72 78.36 78.20 77.86 77.54
15 78.34 78.53 77.64 77.66 78.25 78.21 78.01 77.52
16 78.42 78.57 77.66 77.76 78.28 78.29 78.02 77.36
17 78.41 78.51 77.84 77.77 78.33 78.28 78.13 77.56
18 78.54 78.60 77.88 77.76 78.44 78.30 78.20 77.70
19 78.58 78.50 77.80 77.65 78.20 78.31 78.16 77.55
20 78.50 78.45 77.89 77.79 78.19 78.18 78.05 77.64
21 78.48 78.49 77.75 77.78 78.23 78.27 78.08 77.37

Table 9: Performance comparison of different aggregation strategies with and without the final
SVD step, across a varying number of aggregated task vectors and different component selection
strategies.

example, the top components strategy achieved an average score of 78.23 across all used task vec-
tors, slightly edging out the equal top contribution approach, which averaged 78.19.

Additionally, we compare how different selection strategies for the top-ranking components affect
accuracy when using the largest number of source task vectors, as illustrated in Figure 22. For this
configuration, the top components strategy yielded the highest accuracy. These results are averaged
across all target tasks. Additionally, we provided detailed results on the main aggregation strategies
per target dataset in the Table 13.
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A.14 IMPACT OF FINAL SVD

To empirically validate the importance of the final SVD re-parameterization, as discussed in the
main text, we conduct a detailed ablation study. Table 9 presents a performance comparison of four
different component aggregation strategies, each evaluated with and without the final SVD step.

The omission of the final SVD step (denoted as ‘SVD X‘) is particularly detrimental to the top
components strategy, resulting in a significant performance drop (e.g., over eight percentage points
when aggregating 9 task vectors). In contrast, strategies based on bottom or average components
exhibit significantly higher resilience to this omission. We hypothesize that two related factors drive
this phenomenon. First, the top components, representing high-magnitude task-specific knowledge,
likely exhibit more substantial destructive interference when their non-orthogonal vectors are di-
rectly summed. Second, this instability may be amplified during the fine-tuning process. Without
a shared orthogonal basis provided by the final SVD, the learnable parameters (a subset of singular
values) may conflict with the frozen components, as their underlying vectors are not decorrelated.
This could lead to an unstable optimization process where adjustments to learnable components neg-
atively interfere with the knowledge stored in the frozen ones. The relative stability of the bottom
components strategy suggests that the interference from low-magnitude components is negligible,
making the final orthogonalization beneficial but not as critical.

A.15 DETAILED MAIN RESULTS

For a comprehensive and granular evaluation of our proposed framework, Tables 10–12 present a
detailed, per-dataset comparison of AXIS and the aTLAS baseline.

STV Method CIFAR100 CIFAR10 CUB200 Caltech101 Caltech256 Cars Country211

1

aTLAS (N=10%) 72.95 93.76 54.47 89.86 85.10 61.21 17.69
aTLAS (N=20%) 73.62 94.15 55.38 91.65 85.53 62.12 17.92
aTLAS (N=40%) 75.09 95.20 56.80 93.38 87.59 63.77 18.05
AXIS (N=10%) 77.00 95.85 57.61 93.89 88.44 63.54 17.70
AXIS (N=20%) 79.28 96.63 60.15 94.41 89.19 65.58 18.39
AXIS (N=40%) 81.45 97.10 62.50 94.99 89.38 65.94 18.64

5

aTLAS (N=10%) 73.90 94.52 54.83 91.53 85.43 62.06 17.78
aTLAS (N=20%) 74.77 95.17 55.94 92.68 87.59 62.53 18.02
aTLAS (N=40%) 75.29 95.31 56.85 93.78 88.06 63.89 18.17
AXIS (N=10%) 77.51 96.50 58.41 93.61 88.01 63.95 18.17
AXIS (N=20%) 79.96 96.84 59.22 94.70 89.48 67.23 18.60
AXIS (N=40%) 82.28 97.13 62.46 94.24 89.89 69.69 18.86

10

aTLAS (N=10%) 78.92 96.40 55.11 91.88 86.21 62.37 18.06
aTLAS (N=20%) 79.68 96.58 55.78 93.72 86.82 62.90 18.24
aTLAS (N=40%) 80.65 96.90 55.47 94.82 88.29 64.15 18.41
AXIS (N=10%) 80.09 96.96 57.85 94.82 88.76 64.66 18.24
AXIS (N=20%) 81.31 97.10 59.58 94.82 89.53 67.07 18.08
AXIS (N=40%) 82.64 97.49 61.74 94.64 89.20 69.92 19.22

15

aTLAS (N=10%) 78.95 96.46 55.89 94.70 88.11 62.04 18.16
aTLAS (N=20%) 79.81 96.81 57.08 95.22 89.19 64.15 18.30
aTLAS (N=40%) 80.62 97.19 57.82 96.08 89.38 64.88 18.51
AXIS (N=10%) 80.14 96.85 58.68 94.64 88.65 65.43 18.31
AXIS (N=20%) 81.55 97.25 60.94 95.56 89.89 66.86 18.48
AXIS (N=40%) 82.83 97.38 63.00 95.28 90.33 69.99 19.24

21

aTLAS (N=10%) 78.91 96.53 55.85 94.53 88.81 63.29 18.07
aTLAS (N=20%) 79.94 96.79 57.46 94.64 89.43 64.21 18.36
aTLAS (N=40%) 80.84 97.14 58.01 95.28 89.89 65.09 18.32
AXIS (N=10%) 80.11 96.93 58.46 94.99 88.76 65.09 18.48
AXIS (N=20%) 81.69 97.13 61.10 94.64 89.95 66.88 18.58
AXIS (N=40%) 82.96 97.39 62.70 95.45 90.75 70.77 19.42

Table 10: Detailed results per target dataset for various numbers of source task vectors (STV). Part
1 of 3.
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STV Method DTD EuroSAT FGVCAircraft Flowers102 Food101 GTSRB MNIST

1

aTLAS (N=10%) 48.78 88.81 22.62 67.39 85.11 54.90 82.44
aTLAS (N=20%) 51.49 90.85 23.64 67.96 85.09 59.20 84.84
aTLAS (N=40%) 56.97 95.04 24.75 70.25 85.73 78.45 93.38
AXIS (N=10%) 67.02 97.30 29.70 77.49 85.81 89.57 97.36
AXIS (N=20%) 70.80 97.70 30.66 81.15 86.28 93.20 98.46
AXIS (N=40%) 74.15 98.30 19.65 81.20 86.93 94.22 98.76

5

aTLAS (N=10%) 53.03 94.11 22.86 68.56 85.27 66.85 89.08
aTLAS (N=20%) 54.04 94.48 24.15 68.26 85.41 71.35 91.97
aTLAS (N=40%) 58.67 95.44 24.83 69.58 85.86 79.96 93.44
AXIS (N=10%) 65.69 97.41 30.48 77.22 86.05 90.74 97.78
AXIS (N=20%) 70.96 97.63 33.75 80.09 86.62 93.45 98.57
AXIS (N=40%) 73.09 98.22 16.83 82.84 87.02 94.51 98.81

10

aTLAS (N=10%) 55.96 95.59 24.18 69.02 85.27 77.00 95.42
aTLAS (N=20%) 59.57 95.93 24.54 69.60 85.71 83.70 96.44
aTLAS (N=40%) 64.26 96.93 26.70 72.30 85.94 88.06 97.25
AXIS (N=10%) 68.14 98.00 31.95 76.65 86.15 90.02 98.02
AXIS (N=20%) 70.85 98.33 29.70 79.10 86.49 93.61 98.54
AXIS (N=40%) 71.91 98.19 19.20 77.82 87.07 94.73 98.96

15

aTLAS (N=10%) 56.44 95.15 24.93 70.22 85.60 78.31 96.15
aTLAS (N=20%) 60.21 96.11 25.86 73.61 85.99 83.08 96.94
aTLAS (N=40%) 62.71 96.81 28.14 74.48 86.17 87.39 97.06
AXIS (N=10%) 67.82 97.78 31.05 77.25 86.18 91.00 98.20
AXIS (N=20%) 70.59 98.19 34.92 82.09 86.61 93.67 98.70
AXIS (N=40%) 71.38 98.26 39.15 83.67 87.11 94.76 98.89

21

aTLAS (N=10%) 56.44 95.07 25.62 71.23 85.72 78.02 95.98
aTLAS (N=20%) 60.37 96.26 26.37 72.09 85.91 83.45 96.94
aTLAS (N=40%) 63.24 96.96 26.25 75.09 86.29 88.38 97.58
AXIS (N=10%) 67.98 97.81 30.75 77.87 86.32 91.06 98.11
AXIS (N=20%) 70.64 98.22 34.50 82.31 86.57 93.46 98.64
AXIS (N=40%) 72.18 98.52 38.97 83.74 87.15 94.43 98.96

Table 11: Detailed results per target dataset for various numbers of source task vectors (STV). Part
2 of 3.

STV Method OxfordIIITPet PascalVOC RESISC45 STL10 SUN397 SVHN UCF101

1

aTLAS (N=10%) 90.19 82.99 71.19 97.99 64.42 62.10 65.05
aTLAS (N=20%) 90.73 84.21 72.14 98.16 64.95 67.11 65.61
aTLAS (N=40%) 90.71 86.51 80.40 98.49 66.16 86.49 68.94
AXIS (N=10%) 89.92 85.77 87.51 97.65 66.80 86.63 71.00
AXIS (N=20%) 89.86 86.77 89.95 97.80 68.48 89.76 74.91
AXIS (N=40%) 90.24 86.53 91.84 97.08 70.05 91.35 77.98

5

aTLAS (N=10%) 90.62 85.49 74.56 97.91 64.85 83.23 65.95
aTLAS (N=20%) 91.31 86.16 77.16 98.35 65.43 84.09 67.94
aTLAS (N=40%) 91.99 86.72 80.43 98.34 66.29 86.34 68.86
AXIS (N=10%) 90.60 86.71 87.90 97.74 67.27 90.87 71.45
AXIS (N=20%) 90.19 87.09 90.41 97.65 68.69 92.18 76.37
AXIS (N=40%) 90.27 86.99 91.90 97.26 69.75 92.87 78.03

10

aTLAS (N=10%) 91.77 86.19 79.13 98.24 66.33 85.66 67.57
aTLAS (N=20%) 91.61 86.63 82.16 98.21 66.76 87.45 69.36
aTLAS (N=40%) 91.50 87.11 84.87 98.24 67.04 89.06 71.66
AXIS (N=10%) 90.11 86.50 88.38 97.73 67.28 87.92 73.17
AXIS (N=20%) 90.32 87.05 90.48 97.59 68.91 90.65 77.37
AXIS (N=40%) 89.53 86.75 92.75 96.86 70.41 92.61 78.09

15

aTLAS (N=10%) 91.63 86.87 78.79 98.50 66.43 85.62 68.68
aTLAS (N=20%) 92.78 87.39 82.40 98.70 67.48 87.66 70.90
aTLAS (N=40%) 92.18 87.62 84.97 98.53 67.82 89.14 72.51
AXIS (N=10%) 91.09 86.92 87.94 98.13 67.61 88.24 73.17
AXIS (N=20%) 91.03 87.64 90.54 97.89 68.70 89.97 75.87
AXIS (N=40%) 90.22 87.18 92.22 97.68 70.56 92.91 77.64

21

aTLAS (N=10%) 92.23 87.11 80.52 98.36 66.63 86.83 70.05
aTLAS (N=20%) 92.61 87.56 81.25 98.55 66.99 87.69 71.35
aTLAS (N=40%) 92.91 88.15 84.40 98.55 67.88 89.14 73.09
AXIS (N=10%) 91.25 87.25 88.25 98.05 67.62 88.56 74.28
AXIS (N=20%) 90.81 87.46 90.86 97.95 68.96 90.38 77.35
AXIS (N=40%) 90.71 86.97 91.97 97.30 70.29 92.64 79.96

Table 12: Detailed results per target dataset for various numbers of source task vectors (STV). Part
3 of 3.
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1 bottom components 76.58 95.95 58.15 94.64 88.52 64.07 17.59 67.87 97.78 29.61 79.62 85.20 87.87 97.31 91.09 86.78 88.73 98.20 66.90 84.79 72.98
top components 77.00 95.85 57.61 93.89 88.44 63.54 17.70 67.02 97.30 29.70 77.49 85.81 89.57 97.36 89.92 85.77 87.51 97.65 66.80 86.63 71.00

2 bottom components 77.27 95.96 58.42 94.70 88.52 63.97 17.82 65.48 97.74 29.73 79.31 85.68 88.58 97.67 91.44 87.20 88.16 98.15 67.44 86.38 74.17
arbitrary components 77.14 95.97 57.99 94.64 87.90 63.56 17.77 65.37 97.70 29.52 77.67 85.69 88.79 97.55 91.52 87.17 87.14 98.08 66.64 85.68 72.64
top components 77.81 96.18 57.44 93.84 87.70 63.51 17.75 67.45 96.89 29.43 75.18 85.88 90.40 97.83 89.94 86.61 88.11 97.96 66.90 87.81 73.06

3 bottom components 77.51 95.75 58.78 95.10 88.32 64.63 17.75 66.17 97.67 29.85 80.52 85.71 88.27 97.63 91.14 86.89 88.00 98.06 67.20 85.68 73.80
arbitrary components 77.46 96.12 57.90 94.41 87.85 63.79 17.88 66.17 97.93 29.49 78.06 85.54 88.36 97.57 90.76 86.36 87.73 98.10 66.43 86.51 71.85
top components 77.37 96.08 57.59 93.84 87.99 64.21 17.84 66.17 97.37 30.03 77.07 85.79 89.72 97.69 90.02 86.28 87.48 97.71 67.60 87.28 72.85

4 bottom components 77.36 96.11 58.35 94.47 88.37 64.18 17.91 67.02 97.63 30.30 80.19 85.77 88.61 97.75 91.11 86.87 87.37 98.21 67.11 85.56 73.25
arbitrary components 77.17 96.13 58.32 94.70 87.99 63.96 17.81 66.22 97.11 30.39 79.35 85.56 87.78 97.69 91.01 86.75 87.19 98.21 67.06 86.28 73.09
top components 78.32 96.01 57.89 93.15 88.32 64.23 17.91 66.86 97.85 29.82 77.72 85.88 90.32 98.00 90.11 86.79 87.41 97.84 67.35 89.26 73.80

5 bottom components 77.62 95.83 57.70 94.59 88.48 64.08 17.78 65.90 97.41 29.49 78.86 85.74 88.95 97.50 90.73 86.73 88.02 98.31 66.86 84.98 72.75
arbitrary components 77.04 96.19 58.01 94.12 87.98 64.07 17.73 66.70 97.74 30.18 77.82 85.75 89.49 97.81 90.49 87.05 88.02 98.21 66.63 87.38 73.09
top components 77.51 96.50 58.41 93.61 88.01 63.95 18.17 65.69 97.41 30.48 77.22 86.05 90.74 97.78 90.60 86.71 87.90 97.74 67.27 90.87 71.45

6 bottom components 78.01 95.96 58.25 94.82 88.73 64.28 18.22 66.81 97.70 30.42 79.48 85.89 88.87 97.70 91.28 87.17 88.02 98.19 66.94 86.08 72.75
arbitrary components 77.54 96.17 57.99 94.53 88.08 64.21 17.82 65.32 97.89 30.45 78.48 85.77 88.43 97.50 90.84 86.69 87.92 98.01 67.09 87.58 71.42
top components 77.63 96.11 58.46 94.35 88.68 65.03 18.45 66.91 97.56 30.09 76.94 85.91 90.73 98.02 90.38 86.31 88.19 97.91 67.90 90.84 72.01

7 bottom components 78.04 95.93 58.44 94.87 88.52 64.51 17.77 65.37 97.59 30.03 78.37 85.94 88.57 97.39 91.28 87.07 88.02 98.08 66.88 86.09 73.43
arbitrary components 77.92 95.83 57.94 95.28 87.83 64.35 17.99 65.96 97.63 28.92 78.37 85.90 88.73 97.81 90.65 86.97 87.79 98.28 66.92 85.92 73.38
top components 78.12 96.20 57.99 94.41 88.22 64.72 17.82 67.61 97.81 30.51 77.54 86.15 91.43 98.36 89.97 86.53 88.22 97.80 67.43 90.80 71.95

8 bottom components 78.16 95.97 58.13 94.53 88.58 64.59 17.96 65.80 97.81 30.36 80.24 85.74 88.50 97.35 91.47 86.91 87.95 98.41 67.41 86.21 73.94
arbitrary components 77.56 96.07 57.34 93.95 88.01 63.87 18.00 66.44 97.67 30.21 78.63 85.69 88.73 97.61 91.41 86.73 87.62 98.00 67.24 86.44 74.60
top components 79.05 96.45 58.42 93.84 88.91 64.64 18.04 66.65 97.59 30.75 79.13 86.15 91.44 98.39 90.73 86.88 88.48 97.80 67.43 90.96 73.14

9 bottom components 78.29 96.12 58.30 93.95 88.39 64.51 17.92 66.65 97.74 30.90 80.00 85.79 88.16 97.70 91.50 87.15 87.90 98.26 67.14 86.12 73.80
arbitrary components 77.95 96.13 56.94 94.64 88.50 64.11 17.85 67.45 96.96 29.43 78.50 85.86 88.49 97.85 90.57 87.03 87.84 98.20 67.04 86.20 73.09
top components 79.42 96.83 58.47 95.74 88.40 64.57 18.32 67.50 97.59 30.93 78.08 86.17 92.24 98.50 90.32 86.87 88.46 97.59 67.11 91.00 72.46

10 bottom components 77.86 96.12 57.49 95.10 88.66 64.36 18.03 66.01 98.04 30.39 80.37 85.95 88.28 97.59 91.50 87.13 87.56 98.11 67.37 85.85 73.49
arbitrary components 77.27 96.08 57.99 94.64 88.32 63.98 17.91 65.37 97.44 30.54 79.51 85.96 88.23 97.83 90.98 87.06 87.71 98.11 67.31 85.98 72.69
top components 80.09 96.96 57.85 94.82 88.76 64.66 18.24 68.14 98.00 31.95 76.65 86.15 90.02 98.02 90.11 86.50 88.38 97.73 67.28 87.92 73.17

11 bottom components 77.84 95.81 57.80 93.84 88.75 64.48 18.06 67.34 97.81 30.78 80.00 85.95 87.68 97.80 91.47 87.00 88.03 98.29 67.39 86.34 73.78
arbitrary components 78.16 96.12 57.13 93.72 88.66 64.02 17.82 65.43 97.93 29.64 79.05 86.02 89.25 97.73 90.81 86.97 86.83 97.99 67.12 86.79 71.58
top components 80.14 96.97 59.11 95.39 88.48 64.51 18.39 66.97 97.96 30.45 78.55 86.15 90.39 98.17 90.98 87.37 87.92 97.78 67.47 88.99 74.25

12 bottom components 77.83 95.69 58.06 94.24 88.52 64.06 17.99 66.91 97.81 29.94 79.31 85.82 88.84 97.76 90.52 87.09 87.89 98.18 67.48 86.09 72.03
arbitrary components 78.18 96.29 57.58 93.89 88.44 64.22 17.75 67.66 97.85 30.93 78.18 86.01 87.66 97.72 90.92 86.89 87.43 98.08 67.06 86.60 73.62
top components 80.11 96.92 58.99 95.45 88.61 64.54 18.34 68.40 98.15 31.65 78.44 86.19 90.32 98.28 90.71 87.07 88.60 98.04 67.44 88.71 73.80

13 bottom components 77.82 95.89 58.53 94.18 88.86 64.12 18.20 67.55 97.93 29.70 78.73 85.90 87.64 97.57 91.50 87.07 87.84 98.31 67.42 86.25 72.72
arbitrary components 78.41 95.96 58.06 95.05 88.26 64.37 18.09 66.49 97.78 29.19 79.61 85.82 88.60 97.76 90.52 86.92 87.29 98.20 67.38 86.35 72.88
top components 80.05 96.83 58.85 94.70 88.81 65.10 18.38 67.39 98.19 30.84 76.81 86.17 90.28 98.18 91.36 87.26 88.54 98.05 67.55 88.84 73.62

14 bottom components 77.75 95.82 58.16 94.76 88.91 64.26 18.04 67.07 97.52 29.37 78.96 85.84 88.27 97.67 90.98 86.62 87.92 98.39 67.28 85.74 72.51
arbitrary components 78.21 96.00 57.63 93.95 88.32 64.57 18.09 67.29 97.59 30.69 79.92 86.02 88.14 97.88 91.01 87.08 87.78 98.08 66.98 86.53 73.38
top components 80.10 96.83 58.60 95.33 88.78 64.66 18.13 67.29 98.04 30.93 77.46 86.23 90.68 98.22 91.09 87.06 88.73 98.23 67.56 88.73 73.94

15 bottom components 78.01 95.79 58.01 93.95 88.96 64.23 17.93 67.13 97.19 29.43 78.63 85.92 88.47 97.64 90.65 87.01 87.78 98.45 67.27 85.55 72.51
arbitrary components 77.94 96.24 57.27 94.53 88.71 64.28 17.79 65.90 97.85 30.33 78.66 85.97 88.90 97.92 90.73 87.02 88.24 98.21 66.95 86.53 72.98
top components 80.14 96.85 58.68 94.64 88.65 65.43 18.31 67.82 97.78 31.05 77.25 86.18 91.00 98.20 91.09 86.92 87.94 98.13 67.61 88.24 73.17

16 bottom components 77.94 95.90 57.73 94.30 88.48 64.66 18.21 65.32 98.00 28.98 79.74 85.93 88.27 97.56 91.06 87.13 87.65 98.28 67.39 85.97 72.32
arbitrary components 78.40 96.26 57.70 94.70 88.29 64.59 18.22 67.98 97.78 30.63 80.09 86.06 88.70 97.85 91.11 86.76 88.16 98.31 67.05 87.45 72.72
top components 80.13 96.78 59.06 94.47 88.88 65.30 18.28 68.09 97.74 30.63 78.37 86.23 90.58 98.03 90.79 87.16 87.76 97.91 67.62 88.64 74.31

17 bottom components 77.64 95.87 57.85 94.99 88.30 64.40 17.89 66.49 97.70 30.45 80.47 85.99 88.18 97.78 90.73 87.35 88.03 98.35 67.60 85.91 72.64
arbitrary components 78.15 96.27 57.90 94.47 88.14 64.61 17.97 65.74 97.59 30.06 79.35 86.03 88.47 97.70 91.25 87.23 87.78 98.21 66.98 86.42 73.20
top components 80.17 96.91 58.77 95.45 88.89 65.03 18.27 66.76 97.89 30.12 78.96 86.23 90.82 98.10 91.20 86.91 87.75 97.95 67.67 88.38 74.31

18 bottom components 77.55 96.01 58.47 94.18 88.91 64.71 17.88 66.81 98.04 29.37 80.89 85.93 89.04 97.51 90.65 87.09 87.68 98.39 67.50 86.62 72.22
arbitrary components 78.34 96.14 57.85 94.07 88.37 65.10 18.05 66.76 97.44 29.04 80.68 86.10 88.92 97.77 91.41 87.23 87.27 98.36 67.20 86.65 73.22
top components 80.00 96.86 58.70 94.87 89.10 65.10 18.22 68.78 97.74 31.95 77.74 86.17 90.67 98.19 91.20 86.90 88.37 97.89 67.58 88.29 75.05

19 bottom components 77.76 95.92 58.56 94.18 88.47 64.43 17.91 66.44 97.89 30.57 79.85 85.85 88.85 97.68 90.43 87.25 88.03 98.44 67.45 85.51 72.32
arbitrary components 77.71 96.37 58.32 94.82 88.89 65.00 17.95 66.28 97.89 29.79 79.28 85.86 89.68 97.97 90.68 86.99 87.52 98.20 67.05 86.93 72.91
top components 79.98 96.89 59.15 95.22 88.97 64.86 18.46 67.87 98.07 32.40 77.82 86.25 90.89 98.07 90.98 87.19 88.33 98.05 67.79 88.18 74.73

20 bottom components 77.62 96.04 58.61 94.12 88.45 64.81 17.94 66.54 98.00 29.91 79.67 85.88 88.65 97.84 90.84 87.25 88.02 98.44 67.49 86.67 72.96
arbitrary components 77.72 95.99 57.80 94.47 88.29 65.08 17.86 66.91 97.56 29.88 79.46 86.23 88.73 97.88 91.09 86.79 87.38 98.24 66.89 86.42 72.48
top components 80.07 96.93 58.94 95.10 88.88 64.83 18.44 68.94 97.70 30.00 78.03 86.35 90.69 98.11 91.14 87.37 88.29 97.99 67.65 88.30 74.86

21 bottom components 77.57 95.85 58.63 94.07 88.65 64.74 18.19 65.37 97.48 30.30 79.74 85.97 87.06 97.82 90.84 87.23 88.46 98.46 67.52 85.48 73.28
arbitrary components 78.05 96.16 57.61 94.99 87.98 64.82 17.98 66.49 97.22 29.64 77.65 86.08 88.52 97.55 90.60 86.96 87.38 98.28 67.11 87.73 73.88
top components 80.11 96.93 58.46 94.99 88.76 65.09 18.48 67.98 97.81 30.75 77.87 86.32 91.06 98.11 91.25 87.25 88.25 98.05 67.62 88.56 74.28

Table 13: A detailed, per-dataset performance comparison of different SVD component aggregation
strategies. The table reports the Top-1 accuracy (%) for each target task, illustrating how perfor-
mance evolves as the number of aggregated source task vectors (TV) increases. We compare our
primary top components strategy against bottom components and arbitrary components as baselines
to validate the robustness of our selection method across diverse data domains.
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