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ABSTRACT

Sparse Mixture-of-Experts (MoE) is a neural architecture design that adds learnable
parameters to Large Language Models (LLMs) without increasing FLOPs. Instruc-
tion tuning is a technique for training LLMs to follow instructions. We advocate
combining these two approaches, as we find that MoE models benefit more from
instruction tuning than dense models. In particular, we conduct empirical studies
across three experimental setups: (i) Direct finetuning on individual downstream
tasks devoid of instruction tuning; (ii) Instruction tuning followed by in-context
few-shot or zero-shot generalization on downstream tasks; and (iii) Instruction tun-
ing supplemented by further finetuning on individual downstream tasks. In the first
scenario, MoE models overall underperform dense models of identical computa-
tional capacity. This narrative, however, dramatically changes with the introduction
of instruction tuning (in the second and third scenarios), used independently or
in conjunction with task-specific finetuning. Our best model, FLAN-MOE32B,
surpasses the performance of FLAN-PALM62B on four benchmark tasks, while
using only a third of the FLOPs. The advancements embodied by FLAN-MOE
inspire a re-evaluation of the design principles of large-scale, high-performance
language models in the framework of task-agnostic learning.

1 INTRODUCTION

The development of increasingly large and sophisticated deep learning models drives the recent
advancements in the field of natural language processing (NLP). Among these models, transformer-
based language models Vaswani et al. (2017) have emerged as the de facto standard for a wide range
of NLP tasks, owing to their unparalleled capabilities in capturing complex linguistic patterns and
generalizing across diverse contexts. One particularly successful paradigm for training such models
is instruction-tuning Sanh et al. (2022); Wei et al. (2022a); Chung et al. (2022); Longpre et al. (2023);
Muennighoff et al. (2022a); Ouyang et al. (2022a), which enhances their performance on specific
tasks by adapting their pre-trained representations to follow natural language instructions.

While the benefits of Large Language Models (LLMs) (Chowdhery et al., 2022; Anil et al., 2023;
Touvron et al., 2023a;b; OpenAI, 2023; Brown et al., 2020; Scao et al., 2022) are indisputable, their
rapidly growing size and computational requirements pose significant challenges in terms of training
efficiency, and deployment costs. Thus, there is a pressing need for developing scalable techniques
that can harness the power of these models without incurring prohibitive computational overheads.
On the other hands, models with sparsely activated Mixture of Experts (MoEs) significantly reduce
the computational complexity of LLMs. However, we show that conventional, task-specific finetuning
MoE models lead to suboptimal performance, often even worse than finetuning dense models with
the same computational cost. One possible reason is that MoE models were prone to overfitting on
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task-specific datasets which have different data distributions compared to the general pretraining
data (Zoph et al., 2022). We propose to use instruction-tuning to alleviate this problem, since it adds
training losses from multiple tasks, which can be viewed as regularization terms.

We demonstrate this through a two-fold analysis: (1) we expand on the known benefits of instruction-
tuning for task-specific downstream finetuning Longpre et al. (2023), illustrating its significantly
larger impact when applied to MoE models compared to their dense equivalents. (2) we emphasize
the necessity of an instruction-tuning stage for MoE models Shazeer et al. (2017); Du et al. (2022);
Fedus et al. (2021); Lepikhin et al. (2020) to surpass the performance of dense models on downstream
and held-out tasks. Our unique amalgamation, FLAN-MOE, is an instruction-tuned model built on
the Flan mixture Chung et al. (2022), which successfully harnesses the strengths of both instruction-
tuning and the sparse MoE technique. Compared to instruction-tuning dense models, FLAN-MOE
effectively and efficiently scales up language models, without necessitating a rise in carbon footprint.

We subject our model, FLAN-MOE, to tests across an array of tasks encompassing natural language
understanding, reasoning, and question answering. Our evaluation consists of three distinct setups:
(i) Direct finetuning of the model on individual downstream tasks; (ii) Instruction tuning succeeded
by in-context, few-shot, or zero-shot generalization on downstream tasks; and (iii) Instruction tuning
enhanced with subsequent finetuning on individual downstream tasks. The results show FLAN-
MOE’s marked superiority over its dense counterparts in the second and third settings. Notably,
these advancements materialize without the need for augmented computational resources or memory
requisites. Our best model manages to eclipse the performance of a FLAN-PALM equivalent,
requiring only a third of the computational cost per token on four benchmarks. To summarize:

• We establish the critical role of instruction-tuning in the efficacy of MoE models:

– In the absence of instruction tuning, MoE models fall short in performance when
compared to dense models on downstream tasks.

– With instruction tuning, MoE models exceed the performance of dense models on
downstream tasks, as well as on held-out zero-shot and few-shot tasks.

• We analyze the performance of various MoE models subjected to instruction-tuning.

2 METHOD

We leverage sparsely activated Mixture-of-Experts (MoE) Lepikhin et al. (2020); Fedus et al. (2021);
Zhou et al. (2022) in FLAN-MOE models. Similar to the Switch Transformer Fedus et al. (2021), we
replace the feed-forward component of every other Transformer layer with an MoE layer. Each MoE
layer consists of a collection of independent feed-forward networks as the ‘experts’. A gating function
then uses a softmax activation function to model a probability distribution over these experts. Each
MoE layer’s learnable gating network is trained to use its input to activate the best one/two experts
for each token of an input sequence. During inference, the learned gating network dynamically picks
the two best experts for each token. For an MoE layer with E experts, this essentially provides a
collection of O(E2) different combinations of feed-forward networks instead of one in the classic
Transformer architecture, enabling greater computational flexibility. The final learned representation
of a token will be the weighted combination of the outputs from the selected experts.

We fine-tune FLAN-MOE using the language model objective on the FLAN collective dataset Chung
et al. (2022); Longpre et al. (2023). Each FLAN-MOE will inherit the auxiliary loss setting during
pre-training. All the model parameters will be updated. We adapt the sequence length of each
FLAN-MOE to 2, 048 for input and 512 for output based on the relative position embedding. The
dropout rate is 0.05 and the expert dropout rate is 0.2. The learning rate is 1e−4 and the batch size is
32. The optimizer setting follows Chung et al. (2022) using AdaFactor Shazeer & Stern (2018). All
the FLAN-MOE are pretrained with the same objective and data as Raffel et al. (2020), except that
ST-MOE uses GLaM Du et al. (2022); Chowdhery et al. (2022) dataset.

3 EXPERIMENT

We study FLAN-MOE in the context of instruction-tuning. We first perform a controlled comparison
of FLAN-MOE to an equivalent “standard” dense encoder-decoder Transformer (T5), across a range
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Model FLOPs Total MMLU BBH Reasoning QA Norm. Avg.per token # Params Direct CoT Direct CoT CoT Direct

T5SMALL 0.06G 80M 26.7 7.2 26.7 5.6 10.3 33.8 26.3
FLAN-T5SMALL 0.06G 80M 28.7 12.1 29.1 19.2 15.0 40.9 28.7 (+2.4)

T5BASE 0.3G 250M 25.7 14.1 27.7 14.6 14.7 35.3 26.2
FLAN-T5BASE 0.3G 250M 35.6 33.3 30.3 26.8 16.4 48.8 33.9 (+7.7)

T5LARGE 1.0G 780M 25.1 15.3 27.7 16.2 11.9 36.4 25.7
FLAN-T5LARGE 1.0G 780M 44.7 38.9 34.7 28.5 22.2 64.6 42.0 (+16.3)

T5XL 3.6G 3B 25.3 14.1 27.4 19.3 14.2 38.2 25.9
FLAN-T5XL 3.6G 3B 50.3 46.1 40.2 35.9 33.9 74.1 48.0 (+22.1)

T5XXL 13.9G 11B 26.1 19.1 29.5 19.3 21.4 47.4 27.7
FLAN-T5XXL 13.9G 11B 52.6 47.9 45.6 41.6 46.3 80.4 51.7 (+24.0)

PaLM 12.6G 8B 24.3 24.1 30.8 30.1 24.9 47.6 27.1
FLAN-PaLM 12.6G 8B 49.3 41.3 36.4 31.1 36.9 75.1 47.5 (+20.4)

PaLM 91.6G 62B 55.1 49.0 37.4 43.0 50.6 70.4 51.0
FLAN-PaLM 91.6G 62B 59.6 56.9 47.5 44.9 59.7 85.3 57.6 (+6.6)

PaLM 847G 540B 71.3 62.9 49.1 63.7 72.6 86.0 66.2
FLAN-PaLM 847G 540B 73.5 70.9 57.9 66.3 76.5 89.9 70.3 (+4.1)

SwitchBASE 0.3G 3.5B 28.3 13.6 0.1 1.4 5.2 35.8 20.2
FLAN-SwitchBASE 0.3G 3.5B 38.0 34.2 33.2 29.4 18.6 58.0 36.8 (+16.6)

SwitchLARGE 1.0G 26B 24.0 23.1 0.2 7.2 12.4 33.7 17.7
FLAN-SwitchLARGE 1.0G 26B 46.1 40.3 36.3 28.0 25.3 66.5 43.5 (+25.8)

SwitchXXL 13.9G 395B 24.6 15.1 0.0 6.7 9.2 32.5 17.8
FLAN-SwitchXXL 13.9G 395B 55.6 50.1 47.9 43.5 46.6 78.8 54.2 (+36.4)

GSSMALL 0.06G 0.3B 23.9 0.0 0.2 0.8 0.8 24.1 16.7
FLAN-GSSMALL 0.06G 0.3B 32.6 26.9 29.6 20.9 16.1 48.9 31.8 (+15.1)

GSBASE 0.3G 1.3B 25.0 15.9 0.0 4.8 3.8 26.8 17.6
FLAN-GSBASE 0.3G 1.3B 39.9 33.6 33.7 25.1 22.0 57.9 38.3 (+20.7)

GSLARGE 1.0G 9.2B 26.4 12.8 0.2 14.3 13.0 31.9 19.2
FLAN-GSLARGE 1.0G 9.2B 47.8 40.8 35.0 29.2 27.6 69.5 44.5 (+25.3)

GSXL 03.6G 17.4B 25.7 10.0 0.0 0.0 10.4 35.0 18.7
FLAN-GSXL 3.6G 17.4B 51.1 42.3 40.1 31.4 34.3 73.9 48.7 (+30.0)

ECSMALL 0.06G 0.3B 25.3 1.2 0.1 2.3 0.8 36.0 18.1
FLAN-ECSMALL 0.06G 0.3B 34.1 25.1 29.2 22.1 16.6 58.1 33.1 (+15.0)

ECBASE 0.3G 1.3B 25.0 25.9 0.0 1.4 14.3 35.7 18.5
FLAN-ECBASE 0.3G 1.3B 42.7 33.0 34.0 26.7 22.2 61.5 40.3 (+21.8)

ECLARGE 1.0G 9.2B 23.4 12.6 0.0 8.6 6.7 40.1 17.3
FLAN-ECLARGE 1.0G 9.2B 48.3 44.5 37.9 32.0 32.2 73.1 46.4 (+29.1)

ECXL 3.6G 17.4B 26.7 11.0 0.0 1.9 12.4 34.2 19.4
FLAN-ECXL 3.6G 17.4B 52.1 41.4 40.3 33.2 38.1 74.3 49.4 (+30.0)

STBASE 0.3G 1.3B 25.2 17.7 0.0 14.0 12.6 25.7 18.1
FLAN-STBASE 0.3G 1.3B 42.4 35.5 34.9 26.4 22.5 61.5 40.4 (+21.8)

ST32B 32.1G 259B 25.5 15.1 0.0 5.5 9.8 32.1 18.4
FLAN-ST32B 32.1G 259B 65.4 63.0 54.4 47.4 66.3 63.9 63.6 (+45.2)

Table 1: MoE models improve instruct fine-tuning performance on top of dense counterparts. The
benchmark suites are MMLU (57 tasks), BBH (23 tasks), Reasoning (4 Tasks), and QA (4 Tasks).
The evaluation metric across all benchmarks is few-shot prompted accuracy, specifically the exact
match. To calculate this metric, we take an unweighted average across all tasks. For a comprehensive
evaluation, we report the normalized average of MMLUDirect, BBHDirect, ReasoningCoT, and QADirect.
The MMLU and BBH evaluation benchmarks are held-out (not included in the finetuning data.) while
the Reasoning and QA evaluation benchmarks are held-in. (Noted that FLAN-ST32B outperforms
FLAN-PALM62B while being <30% of the FLOPS.)
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Figure 1: The effect of instruction tuning on MOE models versus dense counterparts for base-size
models (same flops across all models in this figure). We perform single-task finetuning for each
model on held-out benchmarks. Compared to dense models, MoE models benefit more from
instruction-tuning, and are more sensitive to the number of instruction-tuning tasks. Overall,
the performance of MoE models scales better as to the number of tasks, than the number of experts.

of model sizes in Section 3.2. We subsequently demonstrate in Section 3.3 that scaling up our model,
referred to as FLAN-MOE, can attain remarkable performance levels. Our most extensive model,
FLAN-ST32B, surpasses the performance of FLAN-PALM62B while utilizing less than 30% of FLOPs
per token. We further ablate the various design decisions in the Section 4.

3.1 SETTINGS

Traning Data. By default, all models are trained on the 1,836 finetuning tasks introduced by Chung
et al. (2022). Specifically, Muffin comprises 80 tasks from Wei et al. (2022a) and 26 dialog/program
synthesis tasks; T0-SF comprises 193 tasks from Sanh et al. (2022); NIV2 comprises 1554 tasks from
Wang et al. (2022b); CoT comprises 9 reasoning tasks.

Evaluations. We conduct both zero-shot and few-shot evaluations on held-out tasks as in Chung
et al. (2022) which were not included as part of the finetuning data. We use MMLU Hendrycks et al.
(2020), BigBench Hard (BBH) Srivastava et al. (2022), and 4 reasoning benchmarks: GSM8K Cobbe
et al. (2021), SVAMP Patel et al. (2021), ASDIV Miao et al. (2020), and StrategyQA Geva et al.
(2021)

For MMLU and BBH, we evaluate both the ability of directly predicting the answer via direct
prompting, as well as via chain-of-thought (CoT) prompting Wei et al. (2022b). For reasoning tasks,
we only measure CoT prompting accuracy. For all benchmarks except for QA we use the exact
evaluation prompts used in prior work: five-shot for MMLU, three-shot for BBH, eight-shot for
reasoning tasks, and zero-shot for QA. For a given model we also report a single “normalized average”
metric, following the “normalized preferred metric” in BIG-Bench Srivastava et al. (2022). Our
normalized average metric is the macro-average over four normalized scores: MMLUDirect, BBHDirect,
ReasoningCoT, and QADirect. Results for every subtask in each benchmark are reported in Appendix B.

3.2 CONTROLLED STUDY ACROSS SCALES

We instruction finetune a range of FLAN-MOE models at batch size 32 and sequence length 2048 for
200k steps. This matches the number of training examples used for FLAN-T5 Chung et al. (2022).
We re-finetuning our own FLAN-T5 variants for fair comparisons.

1We use 64 experts for SMALL, BASE, 32B, XL and 128 experts for all the other model sizes following Fedus
et al. (2021); Zhou et al. (2022); Zoph et al. (2022)
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Figure 2: Average zeroshot performance of FLAN-MOE models versus FLAN-T5 dense models for
similar effective FLOPs per token over the 57 MMLU tasks and 23 BBH tasks.1

Dense Model Size. Figure 2 shows the performance of each model (dense and sparse) against
forward-pass FLOPs. The cost-performance Pareto frontier for FLAN-MOE dominates the dense
models by a wide margin, indicating FLAN-MOE offers strong improvements across all scales from
small, up to xxl. The effect is particularly large on zero-shot and few-shot MMLUDirect, with absolute
performance improvements of 7.1%. For challenging tasks in BBHDirect, FLAN-MOE offers a strong
boost at small scales, while at larger scales the gains are more modest but still significant.

Expert Number. The performance of FLAN-MOE models has been observed to scale with the
number of experts included in the architecture, but it tends to saturate beyond a certain threshold.
Initially, as the number of experts increases in Figure 3, the model benefits from a richer repertoire of
specialized sub-networks. This diverse ensemble enables the MoE model to demonstrate enhanced
adaptability and efficiency in processing complex tasks, leading to improved performance overall.
However, as the number of experts continues to grow, the performance gains begin to diminish,
eventually reaching a point of saturation for BASE-sized model.

Routing Strategy Routing strategy is an essential component of Mixture-of-Experts (MoE) models,
playing a pivotal role in determining the effectiveness and efficiency of these models. This distribution
process is crucial for maximizing the utilization of the model’s capacity while minimizing the risk of
overfitting. An effective routing strategy not only ensures that the appropriate experts are selected
for a given input, but also that resources are allocated optimally, leading to enhanced computational
efficiency and faster training times. Consequently, there have been two trending strategies, token-
choice Lepikhin et al. (2020) which lets the token select the top-K experts, and expert-choice Zhou
et al. (2022) which lets the experts select the top-K tokens.

We presented a detailed study about how different routing decisions affect the instruct fine-tuning
performance in Figure 3 and Table 1, which includes the checkpoints from Switch Transformer top-1
token-choice gating (FLAN-Switch), GShard top-2 token-choice gating (FLAN-GS) and expert-choice
top-2 gating (FLAN-EC) models pre-trained on the same T5 Raffel et al. (2020) dataset. Among these
benchmarks, the MMLUDirect model shows the most significant improvement, with an increase from
38.0% to 39.9% for BASE/LARGE-sized models. Although the gains at the extra-large scale are more
modest, they remain noteworthy and meaningful. It’s noteworthy that instruction-tuning significantly
amplifies the performance of both held-out MMLU, BBH, and held-in QA and reasoning benchmarks
for MoE models versus dense models of equivalent capacity. The advantages are amplified even
further for larger MoE models. For instance, instruction-tuning enhances the performance of ST32B
by a substantial 45.2%, while the improvement observed for FLAN-PALM62B is comparatively
modest at around 6.6%.

Furthermore, the FLAN-EC strategy consistently outshines the FLAN-GS approach for the given
model across various scales and tasks. It is noteworthy that the performance gap between the
token-choice and expert-choice models can be bridged when we incorporate advanced auxiliary loss
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Figure 3: Average few-shot performance of FLAN-MOE models over the 57 MMLU tasks and 23
BBH tasks. (orange, blue, green stands for small, bsae, large model sizes.)

and pre-training strategy as exhibited in ST-MOE Zoph et al. (2022). This integration led to the
development of our FLAN-ST models. Considering that the largest ST-MOE set the benchmark in
a variety of NLP tasks when appropriately fine-tuned, we have also decided to scale up FLAN-ST,
employing instruction fine-tuning. We presented learnining efficiency experiments in Appendix A.1.

3.3 SCALING UP FLAN-MOE

We increase the architecture size to assess the performance of FLAN-MOE in the large-scale regime.
As discussed above, we instruction fine-tune the largest ST-MoE32B Zoph et al. (2022) model with
12 expert layers in encoder, and decoder, respectively; these are non-uniformly distributed, with 64
experts per layer, and K = 2 activated per token. It was trained at a batch size of 32 and sequence
length of 2048 for 200k steps. We average checkpoints towards the end of training. The model
FLAN-ST32B, comprising a total of 32 billion parameters, only utilizes 32.1 GFLOPs per token,
which amounts to merely one-third of the computational power required by a FLAN-PALM62B model.
Additionally, all the routers combined account for less than 4 million parameters. Table 1 illustrates
the performance of this model alongside current state-of-the-art instruct fine-tuned models.

FLAN-ST32B achieves a 65.4% few-shot MMLU benchmark accuracy and a 54.4% few-shot BBH
benchmark accuracy, with a relatively modest architectural size and training count. Notably, FLAN-
ST32B surpasses the performance of FLAN-PALM62B, which consumes nearly triple the compute
resources, by a substantial margin across all four benchmarks. However, it is important to ac-
knowledge the considerable performance gap that persists between the largest FLAN-PALM540B and
FLAN-ST32B models.

4 DISCUSSION & LIMITATIONS

4.1 ABLATION STUDIES

Sparse models have performed remarkably well in the regime of large datasets, but have sometimes
performed poorly when finetuning data is limited Zoph et al. (2022); Fedus et al. (2021). Instruction
tuning can also be viewed as a continual finetuning stage, so we present a detailed study on how
different factors impact the instruct finetuning performance of FLAN-MOE and offer a practical
recipe. All the discussion is based on instruction tuning FLAN-ECBASE/FLAN-STBASE for 100k steps.

Auxiliary Loss. The incorporation of auxiliary loss Lepikhin et al. (2020); Zoph et al. (2022)
helps mitigate the risk of overfitting by promoting the diversification of the experts’ knowledge and
improving the model’s generalization capabilities for sparsely gated mixture-of-expert models. Fur-
thermore, auxiliary losses can be employed to address specific issues, such as load balancing among
experts or preventing expert collapse, which can further enhance the model’s overall performance.
We experiment with both balancing loss that is used in Lepikhin et al. (2020) and router Z-loss
that is used in Zoph et al. (2022) in Table 2. The implementation of balancing loss contributed to
enhanced performance on MMLU, BBH, and GSM8K for FLAN-ECBASE, whereas Z-loss resulted in
a deterioration of performance. Conversely, for FLAN-STBASE, we observed a contrasting trend. We
conjecture that the discordance between the auxiliary loss during pre-training and instruction-tuning
could potentially disrupt the optimization process, thereby leading to a suboptimal FLAN-MOE.
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Figure 4: Average few-shot performance of FLAN-MOE with different finetuning strategy.

Finetuning MMLU BBH GSM8K Avg.Strategy Direct Direct CoT

BaselineFLAN-ECBASE
40.0 33.2 6.6 37.7

Freeze-GateFLAN-ECBASE
40.2 33.9 6.6 38.0

Freeze-ExpertFLAN-ECBASE
38.3 32.5 5.4 36.2

Freeze-MoEFLAN-ECBASE
38.4 32.2 5.3 36.2

Z-lossFLAN-ECBASE
38.9 32.8 5.7 36.8

Balance-lossFLAN-ECBASE
40.8 33.4 7.1 38.3

Finetuning MMLU BBH GSM8K Avg.Strategy Direct Direct CoT

BaselineFLAN-STBASE
40.1 33.3 6.4 37.8

Freeze-GateFLAN-STBASE
40.6 33.5 6.4 38.2

Freeze-ExpertFLAN-STBASE
39.6 32.9 4.5 37.3

Freeze-MoEFLAN-STBASE
39.2 32.9 3.6 36.9

Z-lossFLAN-STBASE
40.6 33.4 6.5 38.1

Balance-lossFLAN-STBASE
38.8 31.3 3.6 36.2

Table 2: Ablations on different finetuning strategies of FLAN-ECBASE and FLAN-STBASE.

Expert/Gating Freeze. In an effort to enhance the generalization capabilities of sparse models and
combat overfitting, researchers have discovered that finetuning a subset of model parameters results in
improved generalization performance for ST-MoE models, as noted in the study by ST-MoE Zoph et al.
(2022). Interestingly, it was observed that updating non-MoE parameters yields similar outcomes
to updating all parameters, while updating only expert parameters performs slightly better. We
conducted experiments by freezing the gating function, expert modules, and MoE parameters of
the given model, as presented in Table 2. The results indicate that freezing either the expert or
MoE components negatively impacts performance. Conversely, freezing the gate slightly improves
performance, albeit not significantly. We postulate that this observation is related to the under-fitting
of the FLAN-MOE, as in Figure 4, which depicts the finetuning data efficiency ablation study.

Finetuning v.s. Instruction tuning. To compare the gap between finetuning MoE directly and
FLAN-MOE, we experiment with single-task finetuned MoE, single-task finetuned FLAN-MOE, and
dense counterparts in Figure 5. We perform hyper-parameter search for each finetuning setting. On
Held-Out tasks, we observed that the improvement of FLAN-MOE over finetuning MoE is noticeably
larger compared to the improvement of FLAN-T5 over finetuning T5. This difference becomes even
more pronounced when there is a scarcity of labeled data or when the model size is increased. This
suggests that FLAN-MOE mitigates the overfitting issue associated with directly finetuning MoE.
Despite their advantages such as increased adaptability and efficiency in managing complex tasks,
MoE architectures are prone to overfitting during the finetuning process, as discussed in (Zoph et al.,
2022; Artetxe et al., 2022), which may be attributed to the additional hyperparameters for stabilizing
MoEs and the aforementioned increased sizes. This can be seen in Figures 5 and 1, where single-task
fine-tuned MoE models sometimes underperform their dense T5 counterparts. Interestingly, compared
to dense models, MoE models benefits more from instruction-tuning. In addition, MoE models scale
better with respect to the number of tasks rather than the number of experts. We hypothesize this is
due to the specialized nature of individual experts, which can lead to heightened sensitivity to noise
and limited generalization capabilities when exposed to unseen data.2 Noted that we follow (Chung
et al., 2022) for the task-specific fine-tuning datasets, which could be domain-specific and present
extra challenges for MoE models and therefore suboptimal performance. The findings are consistent
with those in (Artetxe et al., 2022), which observed mixed fine-tuning performance in MoE models

2Appendix A shows details on hyperparameter sensitivity, LM adaptation, and decoder-only MoE.
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Figure 5: FLAN-MOE Outperforms MoE (the pretrained MoE) on Single-Task Finetuning. In other
words, adding an instruction-tuning stage significantly improves the performance. We compare single-
task finetuned MoE, single-task finetuned FLAN-MOE, and dense counterparts. The performance
gap between FLAN-MOE and MoE is noticeably larger than that between FLAN-T5 and T5.

across 8 tasks, both with and without fine-tuning. Notably, in all instances, MoE models produced
inferior results compared to their Dense model counterparts.

4.2 TRAINING AND INFERENCE COST OF FLAN-MOE

4.3 LIMITATIONS

Expert Specialization. As the size of a FLAN-MOE model increases in Figure 6, a notable rise in
expert specialization tends to occur. Larger models entail a higher number of parameters and more
complex structures, which inherently provide a broader scope for each expert to specialize in specific
facets of the problem space. This increased specialization can be understood as a form of division of
labor, where each expert sub-network becomes adept at handling a certain type of task or data pattern.
Consequently, the overall model can demonstrate a higher degree of adaptability and precision in
tackling diverse and complex tasks. We also observe that after instruction-tuning, the MoE models
exhibit better expert usage, which may help prevent the expert collapse for generalization after
instruction-tuning as in Zuo et al. (2021).

50 100 150 200
Number of Steps (k)

63

64

65

66

Ex
pe

rt
 U

sa
ge

 (
%

)

Figure 6: Expert usage of FLAN-EC small /
base / large during instruction tuning, where
larger models entail smaller expert usage.

Failure Cases. The fine-grained specialization of
FLAN-MOE models, particularly when fine-tuned on
English-only instructions, can inadvertently lead to a
narrowing of the model’s capacity to effectively pro-
cess and generate content in multiple languages. We
found all the FLAN-MOE perform poorly on multi-
lingual benchmarks including TyDiQA and MGSM.
Even the largest FLAN-ST32B only achieves 15.5%
on MGSM and 25.1% on TyDiQA, which is only
comparable to the vanilla PaLM62B with 18.2% on
MSGM, and PaLM8B with 25.0% on TyDiQA. It also
underperform FLAN-PALMvariants. We hypothe-
ses that this issue may stems from the model’s over-
optimization towards the specificities of the English
language during finetuning, which can impede its
ability to navigate the complexities of other languages. Consequently, while MoE models offer
significant benefits in terms of task-specific adaptability and efficiency, their potential shortcomings
in multilinguality highlight the importance of incorporating diverse linguistic data during the training
process to ensure broad and effective language coverage.
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5 RELATED WORK

Instruction Tuning. Instruction tuning has evolved as a strategy to enhance the functionality and
interactivity of large language models (LLMs) for dialogues and complex tasks. Prior studies,
including Raffel et al. (2020); Liu et al. (2019); Aribandi et al. (2021), have delved into large-scale
multi-task fine-tuning to enhance the downstream single target fine-tuning, albeit without instruction
prompts. Initiatives such as UnifiedQA Khashabi et al. (2020); McCann et al. (2018); Keskar et al.
(2019) have amalgamated a multitude of NLP tasks into a singular generative question answering
format, utilizing prompt instructions for multi-task fine-tuning and evaluation. Efforts like Natural
Instructions Mishra et al. (2021), Flan 2021 Wei et al. (2022a), and P3 (the Public Pool of Prompts,
Sanh et al. (2022)) have collated vast NLP task collections, templatizing them with instructions
for fine-tuning models to enhance their adaptability to unseen instructions. Some studies, such as
Super-Natural Instructions Wang et al. (2022b) and OPT-IML Iyer et al. (2022), took this a step
further by combining numerous datasets and tasks into a single resource. In the meantime, others
like xP3 Muennighoff et al. (2022b) introduced multilingual instruction tuning and Flan 2022 [4]
employed Chain-of-Thought training prompts. Recently, there has been a move towards expanding
task diversity more assertively using synthetic data generation, particularly for creative and open-
ended dialogue Wang et al. (2022a); Honovich et al. (2022); Zhou et al. (2023). Some researchers
have also tried to provide human feedback on language model responses Ouyang et al. (2022b);
Glaese et al. (2022); Nakano et al. (2021); Bai et al. (2022b;a), or bridge the modality gap with
multi-modal instruction fine-tuning Liu et al. (2023); Dai et al. (2023); Li et al. (2023).

Sparse Mixture of Experts models. The foundation of our work is built on the concept of deep
sparse Mixture-of-Experts (MoEs), a topic that has been independently explored in both Computer
Vision Riquelme et al. (2021); Lou et al. (2021); Mustafa et al. (2022); Shen et al. (2023) and Natural
Language Processing Lou et al. (2021); Mustafa et al. (2022); Shazeer et al. (2017); Lepikhin et al.
(2020); Fedus et al. (2021); Du et al. (2022); Zoph et al. (2022); Clark et al. (2022); Zhou et al.
(2022); Komatsuzaki et al. (2022); Kudugunta et al. (2021); Zuo et al. (2021); Artetxe et al. (2022).
The idea revolves around conditional computation, which aims to enhance the number of model
parameters without a corresponding rise in computational expense. MoE models leverage a learned
gating mechanism that triggers only a select subset of k experts out of a total of E for a given
input. This approach allows an input to either select all experts Eigen et al. (2013) or merely a
sparse mixture of them, as observed in recent massive language models Fedus et al. (2021); Du et al.
(2022). While a number of studies have sought to enhance the gating mechanism itself Hazimeh
et al. (2021); Lewis et al. (2021); Roller et al. (2021); Zhou et al. (2022), MoE models have also been
explored in the context of multitask learning Hazimeh et al. (2021); Kudugunta et al. (2021); Ma
et al. (2018). This essentially permits an input to choose the most relevant expert(s) for a given task,
thereby optimizing the processing and results. Nevertheless, the instability of MoE models during
fine-tuning or multitask learning has consistently been a challenge. Our study aims to investigate
whether instruction fine-tuning with scaled tasks might contribute to mitigating the generalization
issues inherent to MoE models.

6 CONCLUSION

In this work, we have introduced FLAN-MOE, an innovative method to amplify the scalability of
instruction-tuned language models by employing the sparse Mixture-of-Experts (MoE) technique. Our
strategy amalgamates the merits of instruction-finetuning, which bolsters task-specific performance,
and MoE, which provides computational efficiency coupled with diminished memory requirements.
We have substantiated the effectiveness of FLAN-MOE through comprehensive experiments across a
wide spectrum of Natural Language Processing (NLP) tasks, such as natural language understanding,
question answering, and reasoning. Our results consistently underscore the superior performance
of FLAN-MOE over current state-of-the-art methods, marking substantial advancements in both
accuracy and efficiency. Notably, compared to dense models, these advancements are attained without
necessitating an increase in computational resources or memory usage during training and inference,
often even reducing the resource requirements in the process.
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A ADDITIONAL RESULTS

A.1 LEARNING EFFICIENCY

We present a detailed learning efficiency experiment in Figure 7 across number of steps. It shows that
MoE starts to outperform Dense counterparts right after 25k steps with instruction tuning.

A.2 HYPERPARAMETER SENSITIVITY

Following ST-MoE Zoph et al. (2022), we further experiment with expert dropout (0.0, 0.1, 0.5),
varying the learning rate (1e−4, 5e−4, 1e−3) and batch size (16, 32, 64) to examine the hyperpa-
rameter sensitivity of FLAN-MOE. We found that the performance varies in different tasks but not
significantly with all the hyperparameters, but lower learning rate and small batch size lead to a more
stable instruction finetuning process of the model at extra-large scales.

Noted that we conduct instruct-tuning for 100k steps following (Chung et al., 2022). The instruction-
tuned models introduce 10% of the pre-training cost, or 10× of the single-task finetuning cost
regardless of Dense or MoE models.

A.3 DECODER-ONLY MOE

We perform a further ablation on the effects of instruction tuning on decoder-only MoE models (Du
et al., 2022) as shown in Figure 8 at xl scale. It can be seen that decoder-only model benefits more
from instruction tuning, which shows the potential of FLAN-MOE at more generalized architecture
and objective setting. We leave the study of scaling decoder-only FLAN-MOE to future works.

A.4 LANGUAGE MODEL ADAPTATION

Another possible effect of why instruction-tuing could be effective is because the additional steps
of language model objective pretraining, which previous studies Lester et al. (2021) found could
make T5 more adept at handling task-specific challenges. In Figure 9, we ablate this factor and show
detailed analyses regarding token dropping ratio. We can see that the scalabity of MoE is largely
improved after lm adaptation, but the gaps persists from Dense couterparts. Also, the large token
dropping rate presented using common capacity factor during 0shot evaluation is improved after lm
adapation. After instruction-tuning, we can see the token dropping behavior is much similar to which
shown in the pretraining. Scalable generalization gains on 0shot MMLU can be promised here as well.
We also try to increase the capacity factor to 64 which alleviates the token dropping ratio but yields
worse performance even compared to activating two experts in our default experiment setting. We
attribute this to the significant discrepancy of capacity factor in pretraining and evaluation, which may
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Figure 7: Learning efficiency comparison. Average zero-shot, and few-shot performance of FLAN-
SWITCH models versus FLAN-T5 dense models as more tokens are processed during training on
FLAN Tasks. (the colors blue, orange, and green correspond to small, base, and large models
respectively, while the shapes - dots represent Dense models and triangles represent MoE models.)
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Figure 9: Effect of Language Model Adaptation and Instruction Tuning on token dropping ratio and
0shot MMLU.

cause the behavior of MoE deviating drastically. We leave the further study towards understanding
the effect of token dropping and evaluation performance to future works.

Qualitatively, we noted that post-instruction tuning, the MoE models exhibited a reduced tendency to
drop formatting tokens (such as “\n” and certain stop words). This change is crucial, particularly for
multiple-choice questions and other evaluation benchmarks employed in our study.

A.5 INFERENCE AND TRAINING OVERHEAD OF MOE

We’ve conducted a comparative analysis of disk memory, GPU memory and throughput under
optimal batch sizes on 16 A100 DGX, using different engineering techniques and public libraries.
Our analysis shows that disk memory scales linearly with the number of experts in MoE models.
However, employing a proper parallelism strategy, like expert parallelism, can substantially reduce
GPU memory usage. For instance, a 16-expert model using expert parallelism maintains the same
GPU memory footprint as a dense model but can achieve a 28% increase in throughput. This can be
further optimized, reducing the difference to 13% with optimizations outlined in (Hwang et al., 2022;
Rasley et al., 2020). It’s also worth noting that when GPUs are limited, inference costs may increase
due to less efficient data locality, as each GPU processes more data for expert parameters. We plan to
expand on this discussion in the final version, benchmarking additional model variants. Regarding
training, we utilize 4x8x8 TPU Pods and internal infrastructure with carefully annotated tensor, model,
and expert parallelism strategy. The overall overhead in step time for 128 expert MoE models can
be kept within a range of 13%-27%, depending on the base model size to dense counterparts, when
optimal batch sizes are used. In summary, while FLOPs for MoE and dense models are comparable,
throughput and per-GPU memory can also be similar with appropriate optimization and batch size.
However, the increase in disk memory usage is an unavoidable cost factor.
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B SUBTASK RESULTS IN EACH BENCHMARK

B.1 MMLU

In the case of five-shot MMLU, we employ the "dev" set as the small sample exemplars.
The performance of individual tasks in MMLU on the "validation" set is detailed in this
section (refer to https://www.tensorflow.org/datasets/community_catalog/
huggingface/hendrycks_test for more information). Please note, all MMLU findings
presented in this paper correspond to the "validation" set. We employ the prompts in Chung et al.
(2022).

Table 3: MMLU[:10] individual task performance.

MMLU

Abstract
Algebra Anatomy Astronomy Business

Ethics
Clinical

Knowledge
College
Biology

College
Chemistry

College
Comp. Sci.

College
Math

College
Medicine

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 27.3 27.3 50.0 42.9 25.0 31.2 45.5 36.4 31.0 34.5 43.8 25.0 12.5 25.0 18.2 36.4 27.3 9.1 36.4 31.8
- text-davinci-002 9.1 27.3 57.1 28.6 62.5 56.2 63.6 72.7 51.7 55.2 68.8 43.8 12.5 37.5 63.6 36.4 54.5 36.4 63.6 54.5
- text-davinci-003 18.2 36.4 50.0 57.1 62.5 62.5 63.6 63.6 62.1 65.5 62.5 81.2 25.0 25.0 54.5 45.5 81.8 72.7 72.7 68.2
- code-davinci-002 18.2 27.3 71.4 35.7 68.8 56.2 54.5 63.6 69.0 65.5 62.5 50.0 25.0 37.5 45.5 27.3 72.7 45.5 77.3 86.4
80M T5-Small 18.2 0.0 42.9 0.0 31.2 0.0 27.3 0.0 27.6 3.4 18.8 0.0 37.5 0.0 72.7 0.0 27.3 0.0 18.2 0.0

Flan-T5-Small 27.3 9.1 42.9 7.1 18.8 6.2 18.2 27.3 34.5 20.7 31.2 18.8 12.5 0.0 18.2 0.0 36.4 9.1 50.0 18.2

250M T5-Base 18.2 18.2 28.6 0.0 37.5 12.5 45.5 0.0 34.5 6.9 18.8 6.2 62.5 25.0 45.5 9.1 18.2 18.2 18.2 18.2
Flan-T5-Base 18.2 18.2 42.9 35.7 37.5 37.5 36.4 36.4 34.5 27.6 37.5 18.8 12.5 25.0 27.3 36.4 18.2 0.0 40.9 22.7

780M T5-Large 18.2 0.0 21.4 0.0 25.0 18.8 45.5 9.1 6.9 10.3 18.8 0.0 37.5 37.5 45.5 18.2 18.2 9.1 18.2 9.1
Flan-T5-Large 18.2 27.3 35.7 28.6 37.5 31.2 36.4 45.5 44.8 37.9 43.8 43.8 25.0 12.5 27.3 36.4 45.5 27.3 45.5 45.5

3B T5-XL 18.2 0.0 14.3 0.0 31.2 0.0 9.1 0.0 10.3 17.2 31.2 12.5 25.0 12.5 45.5 0.0 9.1 9.1 18.2 0.0
Flan-T5-XL 27.3 36.4 35.7 35.7 50.0 62.5 45.5 45.5 55.2 55.2 56.2 50.0 25.0 37.5 45.5 27.3 18.2 27.3 50.0 50.0

11B T5-XXL 27.3 0.0 21.4 0.0 31.2 0.0 9.1 0.0 10.3 31.0 43.8 0.0 50.0 12.5 36.4 0.0 9.1 0.0 54.5 0.0
Flan-T5-XXL 36.4 45.5 28.6 28.6 62.5 50.0 63.6 54.5 58.6 44.8 68.8 56.2 25.0 50.0 36.4 18.2 27.3 36.4 68.2 45.5

8B PaLM 36.4 9.1 28.6 7.1 18.8 37.5 18.2 36.4 24.1 24.1 25.0 43.8 12.5 12.5 9.1 9.1 27.3 0.0 13.6 9.1
Flan-PaLM 36.4 18.2 42.9 35.7 43.8 50.0 36.4 45.5 48.3 41.4 56.2 50.0 25.0 25.0 54.5 63.6 18.2 27.3 50.0 18.2

62B PaLM 27.3 9.1 50.0 21.4 50.0 43.8 63.6 81.8 51.7 62.1 68.8 31.2 37.5 25.0 54.5 18.2 36.4 9.1 59.1 45.5
Flan-PaLM 18.2 18.2 57.1 42.9 68.8 68.8 63.6 54.5 51.7 55.2 68.8 75.0 12.5 37.5 54.5 27.3 36.4 45.5 81.8 63.6

540B PaLM 27.3 18.2 78.6 42.9 68.8 81.2 63.6 72.7 72.4 75.9 87.5 62.5 50.0 25.0 54.5 36.4 36.4 27.3 77.3 77.3
Flan-PaLM 0.0 9.1 50.0 71.4 81.2 75.0 63.6 54.5 79.3 62.1 87.5 62.5 62.5 62.5 81.8 63.6 36.4 63.6 86.4 86.4

250M SwitchBASE 9.1 18.2 14.3 21.4 43.8 31.2 36.4 0.0 10.3 10.3 37.5 37.5 37.5 50.0 36.4 0.0 36.4 18.2 40.9 0.0
FLAN-SwitchBASE 18.2 27.3 28.6 50.0 43.8 37.5 36.4 36.4 31.0 24.1 31.2 6.2 37.5 12.5 36.4 36.4 27.3 18.2 36.4 22.7

780M SwitchLARGE 27.3 9.1 35.7 21.4 12.5 31.2 18.2 0.0 24.1 27.6 31.2 31.2 12.5 50.0 9.1 0.0 18.2 27.3 22.7 45.5
FLAN-SwitchLARGE 18.2 18.2 35.7 35.7 37.5 25.0 36.4 45.5 48.3 41.4 43.8 37.5 12.5 37.5 45.5 36.4 27.3 9.1 54.5 50.0

11B SwitchXXL 18.2 0.0 7.1 50.0 18.8 6.2 45.5 0.0 10.3 6.9 18.8 6.2 37.5 12.5 45.5 18.2 36.4 18.2 9.1 22.7
FLAN-SwitchXXL 45.5 9.1 42.9 42.9 56.2 56.2 54.5 45.5 55.2 44.8 68.8 56.2 0.0 12.5 45.5 27.3 36.4 27.3 54.5 36.4

80M FLAN-GSSMALL 18.2 18.2 35.7 35.7 12.5 18.8 27.3 9.1 31.0 34.5 25.0 12.5 25.0 12.5 36.4 9.1 9.1 18.2 50.0 27.3
250M FLAN-GSBASE 18.2 18.2 50.0 35.7 50.0 18.8 45.5 63.6 41.4 34.5 43.8 18.8 12.5 0.0 36.4 27.3 18.2 27.3 50.0 45.5
780M FLAN-GSLARGE 18.2 18.2 35.7 35.7 56.2 50.0 45.5 27.3 51.7 37.9 43.8 43.8 25.0 12.5 54.5 36.4 45.5 36.4 59.1 50.0

80M FLAN-ECSMALL 18.2 9.1 35.7 28.6 31.2 18.8 36.4 18.2 34.5 31.0 31.2 12.5 37.5 0.0 54.5 0.0 18.2 18.2 40.9 22.7
250M FLAN-ECBASE 27.3 18.2 50.0 42.9 43.8 37.5 27.3 45.5 48.3 24.1 37.5 43.8 0.0 12.5 45.5 36.4 27.3 18.2 36.4 31.8
780M FLAN-ECLARGE 9.1 36.4 35.7 28.6 50.0 43.8 63.6 63.6 51.7 55.2 43.8 50.0 0.0 12.5 45.5 36.4 27.3 36.4 72.7 45.5
3B FLAN-ECXL 17.7 18.3 35.2 36.1 37.0 27.8 45.0 44.0 58.1 43.6 49.5 37.7 -0.5 38.0 45.0 36.4 17.7 10.1 58.6 49.6

250M STBASE 18.2 18.2 7.1 21.4 31.2 12.5 45.5 45.5 10.3 6.9 12.5 37.5 25.0 37.5 45.5 45.5 36.4 18.2 18.2 9.1
FLAN-STBASE 11.5 9.1 45.3 28.6 21.1 31.2 47.9 36.4 47.2 31.0 27.4 37.5 52.4 25.0 56.9 18.2 20.6 18.2 56.9 22.7

32B ST32B 27.3 0.0 35.7 0.0 37.5 18.8 18.2 18.2 27.6 6.9 12.5 25.0 37.5 25.0 18.2 9.1 18.2 0.0 13.6 18.2
FLAN-ST32B 18.2 18.2 50.0 71.4 68.8 81.2 72.7 81.8 79.3 65.5 87.5 68.8 25.0 25.0 54.5 9.1 18.2 18.2 68.2 72.7
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Table 4: MMLU[10:20] individual task performance.

MMLU

College
Physics

Computer
Security

Conceptual
physics Econometrics Electrical

Engineering
Elementary

Mathematics
Formal
Logic

Global
Facts

High School
Biology

High School
Chemistry

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 45.5 36.4 72.7 54.5 38.5 46.2 25.0 33.3 25.0 50.0 24.4 29.3 14.3 14.3 20.0 20.0 28.1 34.4 31.8 13.6
- text-davinci-002 54.5 81.8 81.8 81.8 53.8 61.5 58.3 50.0 50.0 37.5 56.1 73.2 7.1 28.6 50.0 70.0 71.9 71.9 18.2 36.4
- text-davinci-003 36.4 45.5 81.8 63.6 42.3 57.7 58.3 58.3 50.0 56.2 48.8 75.6 42.9 42.9 40.0 50.0 71.9 75.0 36.4 36.4
- code-davinci-002 45.5 72.7 90.9 81.8 53.8 57.7 66.7 41.7 50.0 50.0 56.1 75.6 50.0 42.9 40.0 50.0 71.9 65.6 40.9 40.9

80M T5-Small 18.2 18.2 18.2 0.0 19.2 3.8 25.0 0.0 6.2 6.2 24.4 4.9 21.4 0.0 20.0 0.0 15.6 0.0 27.3 0.0
Flan-T5-Small 36.4 9.1 54.5 27.3 26.9 30.8 16.7 0.0 25.0 12.5 29.3 17.1 35.7 0.0 50.0 20.0 25.0 6.2 36.4 22.7

250M T5-Base 9.1 18.2 0.0 9.1 23.1 26.9 25.0 0.0 18.8 25.0 24.4 22.0 14.3 0.0 20.0 20.0 25.0 9.4 27.3 18.2
Flan-T5-Base 72.7 45.5 27.3 27.3 19.2 26.9 41.7 33.3 25.0 37.5 26.8 14.6 28.6 42.9 40.0 20.0 37.5 28.1 45.5 31.8

780M T5-Large 18.2 18.2 18.2 18.2 26.9 23.1 25.0 0.0 37.5 12.5 29.3 19.5 7.1 0.0 0.0 20.0 9.4 6.2 40.9 9.1
Flan-T5-Large 54.5 36.4 54.5 54.5 26.9 23.1 16.7 16.7 37.5 37.5 36.6 17.1 42.9 35.7 40.0 20.0 40.6 25.0 27.3 27.3

3B T5-XL 18.2 9.1 9.1 18.2 19.2 23.1 41.7 0.0 37.5 25.0 39.0 17.1 42.9 0.0 30.0 10.0 31.2 0.0 27.3 4.5
Flan-T5-XL 72.7 36.4 36.4 36.4 38.5 46.2 33.3 16.7 56.2 25.0 34.1 24.4 28.6 14.3 20.0 30.0 37.5 34.4 31.8 36.4

11B T5-XXL 18.2 18.2 27.3 45.5 23.1 34.6 16.7 0.0 31.2 25.0 26.8 19.5 42.9 0.0 20.0 10.0 15.6 0.0 31.8 0.0
Flan-T5-XXL 54.5 27.3 27.3 54.5 34.6 42.3 25.0 16.7 43.8 43.8 48.8 36.6 28.6 35.7 30.0 40.0 53.1 46.9 31.8 40.9

8B PaLM 18.2 36.4 36.4 27.3 26.9 30.8 16.7 33.3 12.5 18.8 24.4 24.4 14.3 0.0 30.0 20.0 15.6 21.9 18.2 22.7
Flan-PaLM 45.5 27.3 72.7 45.5 38.5 38.5 33.3 25.0 37.5 37.5 34.1 34.1 21.4 28.6 30.0 20.0 50.0 25.0 18.2 18.2

62B PaLM 54.5 45.5 63.6 54.5 42.3 42.3 16.7 33.3 62.5 56.2 24.4 51.2 21.4 21.4 30.0 40.0 59.4 31.2 36.4 31.8
Flan-PaLM 72.7 45.5 45.5 45.5 61.5 65.4 50.0 33.3 56.2 50.0 41.5 61.0 28.6 28.6 20.0 50.0 71.9 59.4 27.3 40.9

540B PaLM 63.6 36.4 81.8 81.8 61.5 65.4 66.7 41.7 87.5 62.5 61.0 73.2 28.6 35.7 40.0 50.0 68.8 59.4 54.5 40.9
Flan-PaLM 63.6 72.7 90.9 81.8 69.2 65.4 66.7 58.3 81.2 75.0 58.5 70.7 42.9 57.1 60.0 70.0 71.9 71.9 68.2 40.9

250M SwitchBASE 9.1 9.1 18.2 9.1 23.1 26.9 16.7 0.0 43.8 50.0 26.8 17.1 28.6 0.0 30.0 10.0 12.5 25.0 31.8 0.0
FLAN-SwitchBASE 36.4 36.4 27.3 18.2 42.3 42.3 16.7 25.0 31.2 31.2 9.8 31.7 35.7 7.1 30.0 20.0 25.0 18.8 22.7 18.2

780M SwitchLARGE 27.3 36.4 36.4 18.2 30.8 26.9 25.0 25.0 18.8 0.0 26.8 24.4 7.1 28.6 30.0 10.0 37.5 25.0 22.7 36.4
FLAN-SwitchLARGE 63.6 45.5 45.5 36.4 42.3 26.9 41.7 25.0 37.5 31.2 43.9 19.5 35.7 42.9 20.0 30.0 40.6 43.8 27.3 13.6

11B SwitchXXL 9.1 9.1 18.2 9.1 26.9 19.2 25.0 0.0 31.2 31.2 22.0 14.6 21.4 14.3 10.0 0.0 21.9 0.0 36.4 9.1
FLAN-SwitchXXL 36.4 45.5 36.4 36.4 57.7 50.0 25.0 33.3 37.5 43.8 39.0 39.0 21.4 35.7 60.0 20.0 71.9 46.9 22.7 36.4

80M FLAN-GSSMALL 45.5 45.5 9.1 9.1 23.1 11.5 25.0 33.3 25.0 25.0 41.5 31.7 28.6 21.4 40.0 40.0 28.1 21.9 18.2 18.2
250M FLAN-GSBASE 63.6 45.5 18.2 27.3 23.1 23.1 41.7 33.3 18.8 25.0 22.0 14.6 35.7 35.7 40.0 40.0 25.0 18.8 13.6 27.3
780M FLAN-GSLARGE 54.5 45.5 45.5 36.4 30.8 38.5 41.7 50.0 43.8 50.0 29.3 34.1 50.0 14.3 40.0 20.0 50.0 43.8 18.2 18.2

80M FLAN-ECSMALL 72.7 27.3 63.6 27.3 26.9 15.4 25.0 16.7 25.0 6.2 17.1 31.7 21.4 7.1 30.0 40.0 34.4 12.5 31.8 40.9
250M FLAN-ECBASE 63.6 27.3 27.3 27.3 38.5 38.5 33.3 25.0 37.5 18.8 24.4 26.8 35.7 28.6 40.0 20.0 21.9 25.0 13.6 18.2
780M FLAN-ECLARGE 36.4 45.5 36.4 36.4 46.2 34.6 33.3 33.3 37.5 31.2 36.6 36.6 35.7 14.3 30.0 40.0 53.1 50.0 27.3 22.7
3B FLAN-ECXL 54.0 47.3 35.9 37.4 41.8 26.3 41.2 24.3 37.0 30.9 50.7 20.7 13.8 43.1 49.5 31.0 52.6 45.0 17.7 14.4

250M STBASE 9.1 45.5 18.2 18.2 26.9 15.4 25.0 0.0 31.2 25.0 14.6 26.8 35.7 14.3 10.0 10.0 21.9 6.2 40.9 27.3
FLAN-STBASE 47.9 18.2 11.5 18.2 29.3 38.5 44.1 25.0 46.1 37.5 26.8 34.1 52.4 28.6 62.4 40.0 30.5 21.9 16.0 40.9

32B ST32B 54.5 0.0 27.3 27.3 23.1 42.3 41.7 0.0 31.2 12.5 24.4 12.2 21.4 0.0 50.0 20.0 15.6 12.5 13.6 22.7
FLAN-ST32B 36.4 36.4 36.4 45.5 65.4 57.7 58.3 58.3 62.5 68.8 51.2 65.9 50.0 57.1 40.0 50.0 78.1 68.8 31.8 40.9
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Table 5: MMLU[20:30] individual task performance.

MMLU

High School
Comp. Sci.

High School
European History

High School
Geography

High School
Gvmt & Politics

High School
Macroeconomics

High School
Math

High School
Microeconomics

High School
Physics

High School
Psychology

High School
Statistics

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 55.6 44.4 38.9 33.3 63.6 63.6 52.4 52.4 39.5 51.2 13.8 10.3 34.6 46.2 29.4 11.8 50.0 65.0 34.8 26.1
- text-davinci-002 100.0 66.7 83.3 83.3 81.8 77.3 76.2 76.2 62.8 74.4 34.5 24.1 76.9 73.1 47.1 23.5 88.3 90.0 52.2 43.5
- text-davinci-003 66.7 55.6 83.3 77.8 95.5 77.3 81.0 81.0 67.4 62.8 44.8 51.7 80.8 76.9 29.4 23.5 95.0 91.7 52.2 52.2
- code-davinci-002 88.9 55.6 83.3 77.8 90.9 86.4 85.7 85.7 67.4 67.4 48.3 51.7 88.5 80.8 23.5 29.4 95.0 90.0 65.2 65.2

80M T5-Small 22.2 0.0 33.3 0.0 36.4 0.0 28.6 33.3 25.6 4.7 13.8 13.8 34.6 3.8 35.3 0.0 25.0 0.0 34.8 17.4
Flan-T5-Small 0.0 0.0 22.2 0.0 27.3 18.2 38.1 4.8 32.6 7.0 13.8 10.3 26.9 7.7 47.1 11.8 28.3 3.3 34.8 0.0

250M T5-Base 33.3 0.0 27.8 0.0 4.5 13.6 38.1 52.4 27.9 23.3 17.2 13.8 23.1 23.1 17.6 23.5 20.0 11.7 34.8 34.8
Flan-T5-Base 44.4 22.2 50.0 55.6 50.0 50.0 66.7 47.6 23.3 32.6 13.8 17.2 42.3 38.5 11.8 17.6 30.0 38.3 30.4 17.4

780M T5-Large 22.2 22.2 33.3 0.0 18.2 27.3 38.1 42.9 30.2 25.6 27.6 31.0 26.9 26.9 17.6 17.6 33.3 5.0 34.8 39.1
Flan-T5-Large 55.6 55.6 50.0 44.4 63.6 45.5 61.9 57.1 37.2 34.9 24.1 13.8 57.7 46.2 23.5 17.6 63.3 58.3 34.8 26.1

3B T5-XL 22.2 0.0 33.3 5.6 27.3 31.8 23.8 52.4 30.2 32.6 20.7 3.4 26.9 15.4 17.6 17.6 15.0 15.0 34.8 13.0
Flan-T5-XL 66.7 33.3 77.8 77.8 63.6 63.6 71.4 47.6 34.9 46.5 24.1 13.8 46.2 53.8 17.6 29.4 78.3 63.3 43.5 26.1

11B T5-XXL 11.1 0.0 38.9 0.0 22.7 40.9 38.1 57.1 30.2 37.2 27.6 3.4 26.9 42.3 17.6 17.6 38.3 21.7 34.8 4.3
Flan-T5-XXL 44.4 55.6 72.2 72.2 72.7 68.2 81.0 66.7 44.2 39.5 34.5 27.6 50.0 26.9 17.6 17.6 86.7 78.3 34.8 34.8

8B PaLM 22.2 33.3 27.8 27.8 36.4 27.3 9.5 23.8 25.6 18.6 17.2 24.1 19.2 30.8 17.6 11.8 25.0 23.3 13.0 26.1
Flan-PaLM 44.4 44.4 72.2 55.6 68.2 45.5 57.1 57.1 44.2 44.2 17.2 20.7 57.7 46.2 17.6 35.3 68.3 45.0 39.1 26.1

62B PaLM 66.7 66.7 61.1 55.6 63.6 72.7 47.6 57.1 41.9 51.2 27.6 34.5 57.7 65.4 29.4 17.6 83.3 75.0 47.8 52.2
Flan-PaLM 55.6 55.6 88.9 72.2 81.8 77.3 76.2 71.4 58.1 60.5 17.2 34.5 69.2 69.2 23.5 29.4 88.3 85.0 52.2 30.4

540B PaLM 100.0 88.9 88.9 77.8 90.9 90.9 95.2 81.0 81.4 74.4 41.4 31.0 96.2 76.9 23.5 35.3 93.3 80.0 52.2 52.2
Flan-PaLM 100.0 77.8 83.3 72.2 95.5 90.9 95.2 85.7 79.1 72.1 31.0 44.8 100.0 88.5 5.9 29.4 93.3 93.3 69.6 47.8

250M SwitchBASE 0.0 0.0 33.3 0.0 18.2 18.2 38.1 28.6 37.2 11.6 37.9 3.4 26.9 23.1 17.6 17.6 25.0 8.3 34.8 34.8
FLAN-SwitchBASE 44.4 55.6 50.0 38.9 59.1 68.2 61.9 42.9 37.2 32.6 20.7 6.9 57.7 42.3 29.4 29.4 60.0 35.0 26.1 39.1

780M SwitchLARGE 22.2 33.3 27.8 16.7 27.3 18.2 9.5 33.3 25.6 30.2 10.3 24.1 34.6 38.5 41.2 17.6 21.7 15.0 13.0 26.1
FLAN-SwitchLARGE 33.3 55.6 61.1 27.8 72.7 54.5 66.7 61.9 46.5 46.5 27.6 13.8 65.4 46.2 5.9 23.5 68.3 55.0 52.2 39.1

11B SwitchXXL 44.4 0.0 27.8 27.8 18.2 27.3 52.4 4.8 20.9 16.3 41.4 0.0 23.1 0.0 17.6 5.9 15.0 13.3 43.5 26.1
FLAN-SwitchXXL 55.6 44.4 72.2 72.2 72.7 81.8 85.7 76.2 62.8 48.8 34.5 20.7 53.8 53.8 23.5 29.4 85.0 78.3 39.1 34.8

80M FLAN-GSSMALL 22.2 0.0 33.3 16.7 50.0 27.3 38.1 23.8 30.2 27.9 24.1 10.3 23.1 34.6 23.5 41.2 38.3 28.3 21.7 30.4
250M FLAN-GSBASE 44.4 11.1 50.0 38.9 50.0 54.5 52.4 38.1 34.9 23.3 20.7 17.2 46.2 15.4 58.8 17.6 46.7 35.0 39.1 34.8
780M FLAN-GSLARGE 44.4 22.2 61.1 27.8 72.7 59.1 81.0 76.2 41.9 32.6 27.6 31.0 61.5 50.0 29.4 41.2 80.0 66.7 30.4 34.8

80M FLAN-ECSMALL 44.4 11.1 33.3 22.2 45.5 36.4 42.9 38.1 30.2 18.6 27.6 13.8 19.2 15.4 23.5 23.5 46.7 30.0 39.1 21.7
250M FLAN-ECBASE 44.4 22.2 61.1 22.2 63.6 59.1 57.1 42.9 44.2 37.2 31.0 31.0 50.0 42.3 29.4 17.6 63.3 56.7 26.1 30.4
780M FLAN-ECLARGE 66.7 44.4 61.1 22.2 77.3 86.4 57.1 57.1 37.2 37.2 27.6 27.6 50.0 53.8 41.2 17.6 83.3 75.0 30.4 30.4
3B FLAN-ECXL 55.1 57.7 71.7 29.4 81.3 53.9 80.5 62.2 55.3 47.4 20.2 14.9 64.9 47.5 17.1 23.7 91.2 56.5 38.6 40.6

250M STBASE 33.3 0.0 33.3 11.1 18.2 0.0 47.6 28.6 18.6 30.2 44.8 24.1 19.2 0.0 29.4 17.6 15.0 23.3 26.1 34.8
FLAN-STBASE 58.0 33.3 63.5 55.6 61.5 36.4 54.8 57.1 32.6 27.9 30.0 31.0 60.1 46.2 31.8 35.3 64.1 51.7 24.1 39.1

32B ST32B 11.1 0.0 27.8 16.7 31.8 13.6 23.8 28.6 32.6 23.3 24.1 3.4 23.1 15.4 23.5 11.8 26.7 10.0 13.0 17.4
FLAN-ST32B 66.7 66.7 77.8 77.8 95.5 81.8 95.2 90.5 76.7 69.8 37.9 41.4 76.9 76.9 17.6 11.8 95.0 86.7 65.2 60.9
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Table 6: MMLU[30:40] individual task performance.

MMLU

High School
US History

High School
World History

Human
Aging

Human
Sexuality

International
Law Jurisprudence Logical

Fallacies
Machine
Learning Management Marketing

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 54.5 36.4 38.5 46.2 30.4 60.9 16.7 50.0 84.6 38.5 18.2 9.1 55.6 50.0 27.3 18.2 45.5 63.6 56.0 64.0
- text-davinci-002 86.4 72.7 69.2 73.1 78.3 87.0 66.7 58.3 92.3 84.6 63.6 45.5 77.8 66.7 45.5 36.4 72.7 72.7 80.0 80.0
- text-davinci-003 81.8 81.8 80.8 76.9 78.3 73.9 66.7 58.3 84.6 84.6 63.6 54.5 83.3 83.3 45.5 54.5 81.8 72.7 84.0 76.0
- code-davinci-002 100.0 77.3 76.9 84.6 78.3 78.3 75.0 58.3 100.0 92.3 63.6 72.7 83.3 72.2 54.5 63.6 90.9 81.8 80.0 80.0

80M T5-Small 40.9 0.0 30.8 0.0 34.8 13.0 41.7 25.0 30.8 0.0 27.3 27.3 33.3 0.0 27.3 0.0 18.2 9.1 24.0 4.0
Flan-T5-Small 50.0 31.8 15.4 7.7 4.3 13.0 33.3 16.7 23.1 7.7 27.3 9.1 22.2 16.7 18.2 0.0 18.2 9.1 44.0 20.0

250M T5-Base 18.2 0.0 30.8 0.0 30.4 30.4 33.3 25.0 7.7 7.7 27.3 18.2 33.3 27.8 36.4 27.3 18.2 0.0 20.0 24.0
Flan-T5-Base 59.1 50.0 50.0 50.0 30.4 30.4 50.0 33.3 38.5 46.2 18.2 18.2 44.4 66.7 18.2 36.4 36.4 18.2 64.0 60.0

780M T5-Large 13.6 0.0 30.8 0.0 47.8 39.1 41.7 41.7 7.7 0.0 18.2 0.0 33.3 22.2 36.4 9.1 18.2 27.3 20.0 16.0
Flan-T5-Large 54.5 54.5 57.7 42.3 52.2 56.5 41.7 41.7 53.8 30.8 45.5 36.4 77.8 55.6 18.2 18.2 63.6 63.6 84.0 68.0

3B T5-XL 18.2 0.0 30.8 7.7 21.7 30.4 41.7 33.3 7.7 30.8 27.3 9.1 27.8 27.8 27.3 0.0 18.2 27.3 28.0 20.0
Flan-T5-XL 72.7 72.7 57.7 69.2 56.5 47.8 75.0 50.0 84.6 61.5 54.5 45.5 72.2 66.7 45.5 18.2 54.5 72.7 84.0 84.0

11B T5-XXL 22.7 0.0 34.6 0.0 8.7 43.5 25.0 25.0 46.2 0.0 27.3 9.1 22.2 44.4 9.1 0.0 54.5 45.5 20.0 60.0
Flan-T5-XXL 63.6 63.6 73.1 73.1 73.9 60.9 75.0 50.0 76.9 53.8 54.5 36.4 66.7 77.8 27.3 27.3 72.7 45.5 72.0 76.0

8B PaLM 36.4 31.8 15.4 23.1 47.8 34.8 16.7 16.7 53.8 46.2 27.3 9.1 16.7 22.2 18.2 18.2 18.2 36.4 32.0 24.0
Flan-PaLM 72.7 54.5 61.5 61.5 52.2 56.5 66.7 50.0 76.9 38.5 72.7 36.4 61.1 72.2 45.5 45.5 81.8 36.4 72.0 68.0

62B PaLM 77.3 40.9 57.7 38.5 69.6 65.2 58.3 25.0 76.9 61.5 45.5 27.3 61.1 66.7 45.5 18.2 72.7 81.8 84.0 80.0
Flan-PaLM 81.8 54.5 80.8 76.9 60.9 69.6 83.3 50.0 84.6 69.2 63.6 63.6 61.1 66.7 27.3 36.4 81.8 81.8 72.0 72.0

540B PaLM 90.9 72.7 88.5 76.9 78.3 73.9 91.7 75.0 100.0 61.5 63.6 72.7 83.3 66.7 27.3 27.3 81.8 81.8 84.0 84.0
Flan-PaLM 90.9 95.5 88.5 80.8 82.6 69.6 91.7 75.0 100.0 84.6 81.8 81.8 72.2 66.7 45.5 54.5 81.8 90.9 84.0 84.0

250M SwitchBASE 27.3 0.0 11.5 0.0 34.8 4.3 58.3 0.0 46.2 7.7 45.5 36.4 27.8 0.0 27.3 9.1 54.5 27.3 32.0 8.0
FLAN-SwitchBASE 50.0 36.4 46.2 19.2 47.8 47.8 25.0 25.0 46.2 30.8 36.4 18.2 55.6 50.0 18.2 45.5 45.5 54.5 68.0 56.0

780M SwitchLARGE 31.8 31.8 11.5 23.1 21.7 30.4 0.0 33.3 38.5 30.8 27.3 18.2 22.2 27.8 27.3 18.2 18.2 27.3 32.0 16.0
FLAN-SwitchLARGE 59.1 36.4 42.3 50.0 47.8 60.9 41.7 33.3 61.5 53.8 45.5 45.5 66.7 50.0 9.1 18.2 72.7 72.7 80.0 76.0

11B SwitchXXL 13.6 31.8 30.8 26.9 26.1 8.7 16.7 8.3 7.7 0.0 27.3 0.0 27.8 22.2 27.3 18.2 18.2 27.3 20.0 0.0
FLAN-SwitchXXL 68.2 59.1 65.4 61.5 52.2 69.6 66.7 41.7 100.0 76.9 27.3 27.3 77.8 66.7 36.4 36.4 63.6 72.7 92.0 80.0

80M FLAN-GSSMALL 50.0 27.3 38.5 19.2 30.4 30.4 16.7 25.0 30.8 30.8 27.3 18.2 38.9 33.3 45.5 9.1 36.4 18.2 64.0 40.0
250M FLAN-GSBASE 54.5 36.4 57.7 34.6 34.8 34.8 66.7 66.7 46.2 46.2 36.4 18.2 61.1 61.1 9.1 27.3 36.4 45.5 64.0 52.0
780M FLAN-GSLARGE 59.1 36.4 65.4 34.6 56.5 39.1 58.3 41.7 76.9 61.5 18.2 9.1 55.6 55.6 9.1 27.3 54.5 63.6 76.0 68.0

80M FLAN-ECSMALL 27.3 31.8 50.0 30.8 21.7 26.1 50.0 25.0 30.8 30.8 36.4 9.1 44.4 27.8 27.3 0.0 54.5 27.3 32.0 64.0
250M FLAN-ECBASE 72.7 27.3 57.7 26.9 52.2 43.5 25.0 41.7 76.9 53.8 45.5 36.4 77.8 61.1 18.2 18.2 36.4 18.2 76.0 48.0
780M FLAN-ECLARGE 68.2 45.5 65.4 38.5 56.5 60.9 41.7 50.0 61.5 23.1 36.4 18.2 66.7 55.6 36.4 18.2 72.7 72.7 80.0 68.0
3B FLAN-ECXL 76.8 38.4 61.0 50.7 73.4 60.9 66.2 35.2 68.7 53.7 45.0 47.1 71.7 51.9 26.8 19.7 72.2 73.1 95.5 78.1

250M STBASE 13.6 31.8 30.8 19.2 26.1 13.0 41.7 41.7 7.7 0.0 27.3 0.0 27.8 22.2 27.3 18.2 18.2 45.5 24.0 0.0
FLAN-STBASE 75.1 54.5 63.9 46.2 37.2 34.8 44.1 50.0 63.9 46.2 29.7 36.4 46.8 61.1 29.7 9.1 38.8 36.4 66.4 60.0

32B ST32B 31.8 9.1 26.9 11.5 34.8 13.0 33.3 25.0 0.0 15.4 27.3 18.2 22.2 22.2 27.3 27.3 54.5 18.2 12.0 16.0
FLAN-ST32B 81.8 81.8 84.6 84.6 73.9 78.3 66.7 50.0 92.3 100.0 72.7 81.8 83.3 77.8 54.5 45.5 90.9 81.8 80.0 76.0
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Table 7: MMLU[40:50] individual task performance.

MMLU

Medical
Genetics Misc. Moral

Disputes
Moral

Scenarios Nutrition Philosophy Prehistory Professional
Accounting

Professional
Law

Professional
Medicine

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 72.7 90.9 50.0 65.1 57.9 39.5 24.0 34.0 54.5 45.5 44.1 61.8 45.7 42.9 29.0 35.5 31.2 26.5 32.3 38.7
- text-davinci-002 90.9 90.9 79.1 81.4 63.2 65.8 46.0 40.0 75.8 69.7 67.6 67.6 60.0 65.7 64.5 41.9 45.3 38.8 64.5 71.0
- text-davinci-003 100.0 100.0 82.6 87.2 71.1 52.6 43.0 65.0 78.8 69.7 76.5 76.5 65.7 74.3 54.8 38.7 48.8 47.1 74.2 67.7
- code-davinci-002 100.0 100.0 84.9 87.2 68.4 50.0 41.0 60.0 69.7 66.7 79.4 76.5 77.1 77.1 51.6 51.6 54.7 38.2 77.4 80.6

80M T5-Small 9.1 0.0 27.9 22.1 15.8 0.0 22.0 21.0 21.2 15.2 26.5 17.6 25.7 0.0 38.7 6.5 21.2 0.0 29.0 0.0
Flan-T5-Small 18.2 9.1 34.9 19.8 21.1 5.3 23.0 19.0 33.3 12.1 26.5 11.8 42.9 20.0 32.3 22.6 32.4 14.1 12.9 16.1

250M T5-Base 27.3 9.1 24.4 26.7 15.8 0.0 31.0 1.0 36.4 33.3 20.6 8.8 17.1 17.1 35.5 16.1 23.5 1.2 29.0 3.2
Flan-T5-Base 27.3 54.5 36.0 29.1 34.2 42.1 24.0 21.0 39.4 33.3 35.3 35.3 45.7 28.6 19.4 35.5 27.6 23.5 22.6 25.8

780M T5-Large 27.3 0.0 26.7 29.1 15.8 0.0 24.0 14.0 33.3 0.0 23.5 23.5 17.1 11.4 32.3 12.9 23.5 0.0 29.0 0.0
Flan-T5-Large 45.5 72.7 47.7 51.2 50.0 39.5 24.0 27.0 45.5 42.4 52.9 52.9 45.7 40.0 35.5 19.4 32.4 30.0 41.9 29.0

3B T5-XL 18.2 0.0 27.9 24.4 15.8 7.9 24.0 27.0 33.3 9.1 17.6 29.4 20.0 8.6 22.6 6.5 23.5 1.2 32.3 0.0
Flan-T5-XL 72.7 72.7 60.5 61.6 42.1 34.2 33.0 18.0 60.6 54.5 55.9 52.9 45.7 51.4 25.8 41.9 37.1 27.6 48.4 45.2

11B T5-XXL 18.2 36.4 34.9 43.0 18.4 7.9 31.0 0.0 30.3 24.2 23.5 44.1 17.1 45.7 16.1 22.6 23.5 0.0 29.0 0.0
Flan-T5-XXL 90.9 72.7 62.8 68.6 44.7 39.5 37.0 32.0 63.6 42.4 61.8 64.7 54.3 57.1 41.9 38.7 35.9 32.9 58.1 51.6

8B PaLM 54.5 27.3 30.2 32.6 34.2 39.5 22.0 23.0 21.2 15.2 26.5 26.5 28.6 28.6 32.3 25.8 25.9 22.9 9.7 19.4
Flan-PaLM 63.6 54.5 68.6 59.3 39.5 36.8 25.0 29.0 57.6 33.3 61.8 61.8 45.7 45.7 35.5 45.2 32.4 27.6 51.6 35.5

62B PaLM 100.0 100.0 68.6 70.9 63.2 57.9 31.0 41.0 72.7 60.6 61.8 61.8 51.4 57.1 45.2 29.0 40.0 26.5 64.5 58.1
Flan-PaLM 90.9 90.9 81.4 76.7 65.8 60.5 22.0 38.0 72.7 60.6 67.6 67.6 51.4 57.1 35.5 32.3 45.3 32.4 61.3 71.0

540B PaLM 100.0 100.0 75.6 86.0 73.7 57.9 53.0 55.0 69.7 57.6 85.3 76.5 74.3 68.6 51.6 51.6 53.5 41.8 83.9 64.5
Flan-PaLM 90.9 100.0 83.7 84.9 76.3 71.1 54.0 71.0 87.9 75.8 79.4 79.4 82.9 77.1 64.5 61.3 60.6 54.7 90.3 77.4

250M SwitchBASE 45.5 18.2 25.6 17.4 7.9 2.6 24.0 5.0 30.3 27.3 29.4 8.8 11.4 28.6 19.4 0.0 24.1 0.0 35.5 0.0
FLAN-SwitchBASE 36.4 45.5 41.9 47.7 36.8 34.2 32.0 33.0 48.5 27.3 38.2 29.4 40.0 31.4 19.4 32.3 26.5 17.1 29.0 38.7

780M SwitchLARGE 0.0 9.1 27.9 24.4 26.3 21.1 22.0 20.0 21.2 21.2 29.4 11.8 48.6 22.9 32.3 32.3 27.6 4.1 16.1 19.4
FLAN-SwitchLARGE 54.5 54.5 53.5 59.3 47.4 28.9 24.0 23.0 60.6 30.3 41.2 35.3 42.9 60.0 38.7 25.8 36.5 25.3 51.6 38.7

11B SwitchXXL 36.4 27.3 22.1 26.7 18.4 0.0 21.0 24.0 15.2 15.2 35.3 38.2 20.0 25.7 32.3 29.0 25.3 22.9 19.4 25.8
FLAN-SwitchXXL 90.9 100.0 70.9 67.4 63.2 50.0 27.0 25.0 66.7 60.6 61.8 58.8 57.1 54.3 41.9 41.9 48.8 38.2 41.9 35.5

80M FLAN-GSSMALL 36.4 27.3 32.6 25.6 42.1 50.0 29.0 25.0 45.5 54.5 20.6 23.5 34.3 28.6 29.0 35.5 31.2 22.4 22.6 12.9
250M FLAN-GSBASE 54.5 63.6 46.5 46.5 44.7 39.5 27.0 25.0 45.5 30.3 38.2 47.1 34.3 25.7 16.1 19.4 24.7 24.7 45.2 25.8
780M FLAN-GSLARGE 81.8 72.7 66.3 61.6 31.6 42.1 35.0 28.0 48.5 51.5 55.9 52.9 51.4 34.3 19.4 29.0 34.7 20.0 54.8 29.0

80M FLAN-ECSMALL 9.1 45.5 38.4 39.5 39.5 44.7 30.0 17.0 48.5 54.5 14.7 29.4 31.4 17.1 16.1 32.3 27.1 24.1 38.7 22.6
250M FLAN-ECBASE 45.5 54.5 52.3 53.5 36.8 28.9 24.0 17.0 48.5 36.4 41.2 41.2 48.6 34.3 29.0 22.6 31.2 20.0 41.9 25.8
780M FLAN-ECLARGE 63.6 72.7 67.4 65.1 36.8 39.5 25.0 23.0 57.6 42.4 47.1 47.1 51.4 45.7 29.0 35.5 32.9 25.9 41.9 38.7
3B FLAN-ECXL 90.4 56.4 68.1 60.7 52.1 31.4 24.5 25.7 66.2 32.3 55.4 35.5 59.5 61.4 35.0 27.8 43.6 26.2 41.4 40.6

250M STBASE 27.3 0.0 26.7 20.9 15.8 0.0 23.0 0.0 24.2 12.1 29.4 5.9 17.1 5.7 35.5 6.5 23.5 1.2 19.4 29.0
FLAN-STBASE 47.9 54.5 41.9 50.0 31.3 36.8 22.4 25.0 44.8 36.4 40.6 50.0 45.3 28.6 21.8 16.1 31.2 25.3 47.6 32.3

32B ST32B 18.2 0.0 27.9 36.0 36.8 2.6 29.0 0.0 24.2 36.4 14.7 11.8 14.3 25.7 25.8 9.7 24.7 7.1 22.6 3.2
FLAN-ST32B 90.9 90.9 84.9 82.6 65.8 52.6 31.0 32.0 81.8 75.8 70.6 58.8 71.4 60.0 54.8 45.2 53.5 48.2 74.2 67.7
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Table 8: MMLU[50:57] individual task performance.

MMLU

Professional
Psychology

Public
Relations

Security
Studies Sociology US Foreign

Policy Virology World Religions Average

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 37.7 43.5 50.0 50.0 44.4 40.7 63.6 59.1 45.5 63.6 33.3 27.8 63.2 68.4 39.7 40.5
- text-davinci-002 65.2 58.0 50.0 50.0 77.8 48.1 90.9 86.4 81.8 81.8 44.4 33.3 84.2 78.9 63.1 60.0
- text-davinci-003 68.1 63.8 50.0 50.0 70.4 63.0 86.4 95.5 81.8 90.9 50.0 50.0 84.2 84.2 64.8 64.6
- code-davinci-002 76.8 66.7 50.0 58.3 74.1 51.9 86.4 90.9 90.9 72.7 50.0 44.4 84.2 78.9 68.2 64.5

80M T5-Small 20.3 4.3 33.3 16.7 18.5 0.0 22.7 0.0 27.3 9.1 27.8 5.6 21.1 15.8 26.7 5.6
Flan-T5-Small 24.6 7.2 25.0 16.7 14.8 0.0 36.4 9.1 36.4 9.1 38.9 16.7 31.6 26.3 28.7 12.1

250M T5-Base 21.7 13.0 41.7 16.7 37.0 7.4 18.2 4.5 18.2 18.2 33.3 11.1 21.1 21.1 25.7 14.5
Flan-T5-Base 39.1 40.6 41.7 33.3 29.6 29.6 54.5 59.1 36.4 45.5 44.4 33.3 31.6 15.8 35.6 33.3

780M T5-Large 18.8 23.2 25.0 16.7 14.8 0.0 18.2 22.7 18.2 18.2 33.3 27.8 31.6 26.3 25.1 15.0
Flan-T5-Large 56.5 56.5 58.3 50.0 22.2 29.6 68.2 59.1 54.5 27.3 61.1 38.9 47.4 52.6 44.7 38.8

3B T5-XL 24.6 20.3 33.3 41.7 29.6 7.4 40.9 27.3 27.3 27.3 16.7 27.8 47.4 31.6 25.7 14.5
Flan-T5-XL 56.5 52.2 58.3 50.0 44.4 48.1 77.3 59.1 54.5 72.7 38.9 50.0 73.7 63.2 50.3 46.1

11B T5-XXL 17.4 30.4 8.3 16.7 25.9 0.0 27.3 27.3 18.2 36.4 16.7 16.7 15.8 68.4 25.9 18.7
Flan-T5-XXL 68.1 58.0 58.3 41.7 59.3 44.4 86.4 63.6 54.5 45.5 44.4 50.0 31.6 63.2 52.6 47.9

8B PaLM 17.4 31.9 33.3 25.0 22.2 25.9 31.8 40.9 36.4 18.2 16.7 27.8 21.1 10.5 24.3 24.1
Flan-PaLM 46.4 43.5 50.0 41.7 40.7 40.7 72.7 31.8 63.6 54.5 44.4 27.8 68.4 73.7 49.3 41.3

62B PaLM 58.0 58.0 58.3 58.3 40.7 40.7 81.8 68.2 81.8 72.7 61.1 44.4 73.7 78.9 55.1 49.0
Flan-PaLM 71.0 63.8 50.0 50.0 70.4 55.6 81.8 77.3 90.9 100.0 55.6 44.4 89.5 73.7 59.6 56.9

540B PaLM 73.9 60.9 66.7 58.3 74.1 40.7 95.5 81.8 100.0 100.0 61.1 44.4 89.5 89.5 71.3 62.9
Flan-PaLM 76.8 79.7 58.3 66.7 74.1 55.6 95.5 90.9 100.0 100.0 50.0 44.4 89.5 89.5 73.5 70.9

250M SwitchBASE 34.8 13.0 16.7 16.7 25.9 0.0 27.3 13.6 18.2 18.2 22.2 5.6 36.8 26.3 28.3 13.6
FLAN-SwitchBASE 42.0 39.1 50.0 50.0 18.5 22.2 68.2 72.7 63.6 45.5 44.4 33.3 42.1 52.6 38.0 34.1

780M SwitchLARGE 23.2 17.4 33.3 16.7 33.3 22.2 22.7 31.8 18.2 18.2 33.3 11.1 15.8 26.3 24.0 23.1
FLAN-SwitchLARGE 58.0 46.4 41.7 25.0 51.9 48.1 72.7 54.5 63.6 54.5 44.4 44.4 57.9 73.7 46.0 40.3

11B SwitchXXL 26.1 17.4 16.7 25.0 29.6 3.7 22.7 18.2 18.2 18.2 27.8 16.7 26.3 15.8 24.6 15.1
FLAN-SwitchXXL 65.2 62.3 50.0 50.0 66.7 55.6 90.9 63.6 81.8 90.9 55.6 44.4 84.2 78.9 55.6 50.1

80M FLAN-GSSMALL 31.9 26.1 58.3 33.3 37.0 44.4 54.5 54.5 36.4 45.5 44.4 38.9 31.6 31.6 32.5 26.8
250M FLAN-GSBASE 50.7 42.0 41.7 33.3 29.6 40.7 63.6 40.9 36.4 36.4 55.6 50.0 42.1 36.8 39.9 33.6
780M FLAN-GSLARGE 62.3 53.6 50.0 50.0 25.9 33.3 72.7 50.0 45.5 45.5 38.9 27.8 52.6 68.4 47.8 40.8

80M FLAN-ECSMALL 31.9 31.9 33.3 25.0 33.3 29.6 45.5 50.0 36.4 36.4 33.3 16.7 21.1 26.3 34.1 25.1
250M FLAN-ECBASE 52.2 39.1 33.3 25.0 40.7 25.9 54.5 36.4 54.5 36.4 50.0 44.4 63.2 36.8 42.7 33.0
780M FLAN-ECLARGE 52.2 52.2 50.0 58.3 40.7 25.9 77.3 68.2 63.6 54.5 55.6 55.6 73.7 68.4 48.3 43.4
3B FLAN-ECXL 61.8 47.6 49.5 24.9 51.4 47.9 85.9 55.5 81.3 56.2 49.5 43.4 67.9 74.9 52.1 41.4

250M STBASE 26.1 15.9 16.7 16.7 29.6 3.7 31.8 31.8 27.3 0.0 33.3 27.8 15.8 31.6 25.2 17.7
FLAN-STBASE 44.4 34.8 60.7 41.7 32.0 40.7 43.3 27.3 47.9 36.4 41.3 38.9 44.5 42.1 42.4 35.5

32B ST32B 34.8 11.6 8.3 33.3 25.9 18.5 27.3 4.5 18.2 27.3 16.7 16.7 26.3 26.3 25.5 15.0
FLAN-ST32B 72.5 63.8 50.0 58.3 70.4 55.6 90.9 86.4 100.0 100.0 44.4 44.4 84.2 84.2 65.4 63.0
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B.2 BBSH

BBH refers to a subset of difficult tasks from BIG-Bench, handpicked by Suzgun et al. (2022) in
2022, where the model proposed by Srivastava et al. (2022) in the same year outperformed the average
human rater. Suzgun et al. (2022) mentions 23 tasks, two of which consist of three subtasks each.
For ease of interpretation, we treat these subtasks as standalone tasks and calculate an unweighted
average. We utilize the prompts provided in Suzgun et al. (2022)’s study.

Table 9: BBH[:9] individual task performance.

BBH

Boolean
Expressions

Causal
Judgement

Date
Understanding

Disambiguation
QA

Dyck
Languages

Formal
Fallacies

Geometric
Shapes Hyperbaton Logical Deduction

Five Objects

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 54.0 69.2 57.8 48.1 37.6 52.4 40.0 40.8 28.0 0.0 47.2 52.8 10.4 10.8 49.6 47.6 24.4 34.4
- text-davinci-002 90.0 87.6 57.8 56.1 55.6 81.6 66.4 70.8 42.0 32.0 52.4 58.4 35.2 56.0 67.2 72.4 31.6 51.2
- text-davinci-003 90.0 90.8 63.6 63.6 58.8 82.0 68.4 66.8 14.8 40.0 58.0 55.2 36.8 60.4 60.8 53.2 44.0 58.0
- code-davinci-002 88.4 92.8 63.6 54.0 63.6 87.2 67.2 76.0 46.8 56.8 52.4 50.4 32.0 54.4 60.4 66.4 32.4 54.8

80M T5-Small 40.0 0.0 51.3 2.7 20.0 10.8 34.8 14.0 2.4 0.0 52.8 0.0 8.4 0.0 52.0 0.0 17.2 7.6
Flan-T5-Small 54.0 39.6 48.1 42.8 22.4 20.4 31.2 2.0 0.0 0.0 53.2 46.8 8.8 4.0 65.2 13.2 22.0 19.2

250M T5-Base 46.0 45.6 51.9 38.0 20.0 19.6 33.6 30.8 1.6 0.0 46.8 31.2 22.0 0.0 51.2 0.0 19.2 9.6
Flan-T5-Base 48.4 46.4 52.4 47.1 18.0 20.4 54.8 44.8 7.6 0.0 53.2 49.2 0.4 12.8 67.6 58.8 27.2 22.0

780M T5-Large 46.0 49.2 51.9 26.2 20.8 20.0 34.8 10.8 0.4 0.0 46.8 6.0 29.6 0.0 50.0 0.0 19.6 14.8
Flan-T5-Large 64.0 58.0 56.1 20.9 24.4 26.8 67.6 61.2 0.8 0.0 22.8 39.6 0.8 8.0 72.4 56.0 47.6 22.4

3B T5-XL 55.2 47.2 52.4 26.7 21.6 22.4 32.4 4.8 6.0 0.0 47.2 7.2 8.4 0.0 52.0 0.0 22.0 22.8
Flan-T5-XL 52.4 56.0 62.0 56.1 46.8 48.8 70.0 70.4 0.0 0.0 56.4 48.0 15.2 4.4 55.6 56.8 54.0 32.4

11B T5-XXL 49.6 65.2 52.4 1.6 35.2 54.0 35.2 0.0 2.0 0.0 52.4 0.0 15.6 0.0 55.6 0.0 18.0 37.2
Flan-T5-XXL 56.8 60.8 60.4 53.5 69.6 53.6 71.2 71.2 0.8 0.4 55.6 46.4 14.0 24.8 71.6 53.2 55.6 46.4

8B Flan-PaLM 48.8 52.8 60.4 54.0 10.8 28.8 58.0 55.6 20.8 0.0 52.0 50.8 15.6 4.0 65.6 36.8 25.2 22.4
62B PaLM 69.2 70.8 59.4 54.5 39.2 58.8 52.8 54.0 19.2 3.2 53.2 54.0 34.4 9.6 48.4 72.8 24.8 26.0

Flan-PaLM 66.8 73.6 64.2 62.6 42.8 54.4 69.2 39.2 13.2 0.0 55.6 49.2 18.0 13.2 74.4 59.2 54.0 42.8

540B PaLM 83.2 80.0 61.0 59.4 53.6 79.2 60.8 67.6 28.4 28.0 53.6 51.2 37.6 0.0 70.8 90.4 39.6 49.2
Flan-PaLM 86.0 83.2 65.2 63.1 58.0 74.0 76.8 69.6 29.2 23.6 62.4 52.8 40.0 43.6 67.6 88.8 54.4 52.4

250M SwitchBASE 0.0 0.0 2.7 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.4 0.0 0.8
FLAN-SwitchBASE 51.2 42.8 55.1 55.6 18.8 18.4 63.6 53.6 0.0 0.0 56.8 54.8 9.6 8.8 64.8 62.0 34.8 22.0

780M SwitchLARGE 0.0 26.0 5.3 5.3 0.0 10.8 0.0 0.0 0.0 0.0 0.0 15.2 0.0 8.4 0.0 48.4 0.0 0.0
FLAN-SwitchLARGE 54.0 22.0 56.7 50.8 25.2 24.0 67.2 59.2 0.8 0.0 54.8 43.6 11.6 3.6 56.8 30.0 47.2 28.0

11B SwitchXXL 0.0 3.2 0.0 37.4 0.0 2.4 0.0 8.8 0.0 0.0 0.0 21.6 0.0 0.4 0.0 30.4 0.0 0.4
FLAN-SwitchXXL 56.2 57.3 65.5 61.4 60.9 55.3 70.4 66.4 0.8 0.4 57.3 47.7 12.8 8.8 58.1 58.0 61.2 54.9

80M FLAN-GSSMALL 60.0 46.0 51.9 50.8 21.2 21.6 30.4 28.4 1.2 0.0 54.8 35.2 9.6 12.4 56.0 0.0 21.6 16.4
250M FLAN-GSBASE 48.0 34.0 53.5 51.9 27.6 11.2 65.2 26.0 0.0 0.0 53.2 51.6 9.6 18.4 59.6 1.2 35.6 20.4
780M FLAN-GSLARGE 46.8 41.2 53.5 50.8 5.6 37.2 68.8 66.0 2.0 0.0 51.2 12.4 19.2 12.8 54.0 50.8 47.6 28.4

80M FLAN-ECSMALL 59.6 39.2 49.7 53.5 21.6 17.2 34.0 36.4 1.2 0.0 54.4 45.6 9.6 0.4 58.0 0.4 20.4 23.2
250M FLAN-ECBASE 57.6 43.6 50.3 50.8 34.4 24.8 67.6 34.4 0.8 0.0 53.6 17.2 9.6 7.6 72.0 44.0 33.6 24.0
780M FLAN-ECLARGE 58.8 48.0 58.8 50.8 35.6 43.2 69.2 70.0 0.0 0.0 53.2 30.8 4.8 5.6 68.4 52.8 41.6 21.6
3B FLAN-ECXL 54.3 49.7 59.9 56.2 48.4 37.4 69.0 32.9 -1.3 0.4 53.0 50.0 9.9 4.0 61.2 40.1 50.4 38.9

250M STBASE 0.0 9.2 0.0 35.8 0.0 14.4 0.0 0.8 0.0 0.0 0.0 52.8 0.0 0.0 0.0 0.4 0.0 18.8
FLAN-STBASE 48.0 49.3 59.6 54.1 11.6 36.1 66.1 64.2 1.0 0.0 50.0 44.2 19.5 12.1 51.4 49.9 49.6 21.4

32B ST32B 0.0 0.0 0.0 0.0 0.0 32.8 0.0 0.4 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.4 0.0 6.4
FLAN-ST32B 63.6 67.6 67.9 65.8 66.4 62.0 70.8 74.8 15.2 0.0 58.8 42.0 22.8 5.2 60.0 54.4 64.0 49.6
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Table 10: BBH[9:18] individual task performance.

BBH

Logical Deduction
Seven Objects

Logical Deduction
Three Objects

Movie
Recommendation

Multistep
Arithmetic Navigate Object

Counting
Penguins
in a Table

Reasoning about
Colored Objects

Ruin
Names

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 20.0 27.2 38.0 52.0 58.8 71.2 0.8 1.6 58.0 66.0 33.2 49.6 28.1 35.6 13.2 41.2 18.4 33.2
- text-davinci-002 26.8 38.0 45.2 87.6 72.0 78.8 1.2 53.2 68.0 88.8 44.0 77.2 47.3 81.5 47.6 78.4 65.6 62.8
- text-davinci-003 40.0 52.4 62.0 88.0 79.2 83.6 1.2 49.6 53.2 94.4 33.2 82.0 52.1 83.6 67.2 86.8 82.0 58.8
- code-davinci-002 26.0 38.8 52.8 87.6 84.8 90.4 1.2 47.6 50.4 96.4 45.2 93.2 66.4 79.5 67.6 91.6 75.2 68.4

80M T5-Small 13.2 5.2 31.6 14.0 26.0 14.8 0.0 0.0 55.2 40.0 10.0 0.0 21.9 19.2 16.0 11.2 22.4 1.6
Flan-T5-Small 16.8 11.2 30.8 30.0 43.2 20.4 0.0 1.6 58.0 58.0 5.6 3.2 21.9 10.3 17.2 10.8 13.2 0.8

250M T5-Base 14.8 2.4 29.6 22.4 27.6 0.4 0.4 0.0 48.0 42.0 8.8 0.0 21.9 19.2 15.6 12.4 28.0 2.4
Flan-T5-Base 24.4 19.2 42.8 40.8 39.6 32.4 0.4 0.0 62.8 32.4 22.8 11.2 17.8 9.6 22.4 23.6 13.6 10.4

780M T5-Large 13.2 8.0 32.4 26.0 24.8 23.2 0.4 0.0 42.0 42.0 9.6 6.4 21.9 23.3 10.4 14.8 27.6 0.4
Flan-T5-Large 46.8 22.4 53.2 36.8 41.6 28.0 0.4 0.4 44.8 34.0 32.8 16.8 22.6 22.6 43.6 38.4 28.8 25.6

3B T5-XL 13.6 15.2 35.2 35.6 25.2 23.6 0.8 0.8 42.0 38.0 6.4 25.2 21.2 25.3 12.8 14.8 26.0 0.8
Flan-T5-XL 53.6 25.2 66.0 50.8 46.4 36.4 0.4 0.4 48.4 46.4 42.4 30.8 37.7 35.6 50.8 46.0 42.0 28.4

11B T5-XXL 18.0 18.0 36.8 42.8 46.0 45.2 0.0 0.0 41.6 37.2 31.6 33.2 21.2 24.7 16.4 22.8 20.8 0.0
Flan-T5-XXL 54.8 48.8 76.0 58.8 53.2 53.2 0.4 0.4 60.4 54.0 50.8 34.0 39.0 39.0 58.8 46.8 52.4 53.2

8B PaLM 13.2 14.8 35.6 36.4 28.4 26.4 0.8 1.2 58.0 58.0 36.8 18.8 25.3 19.9 18.0 18.8 21.2 24.4
Flan-PaLM 25.6 12.8 47.6 40.8 72.8 43.6 0.8 0.8 58.4 55.6 30.0 24.8 26.7 30.1 28.4 34.0 36.8 32.0

62B PaLM 19.6 20.0 36.8 52.4 60.8 70.8 0.8 1.6 56.4 55.2 41.6 50.4 24.0 37.0 17.2 48.0 50.4 54.0
Flan-PaLM 48.8 34.0 74.0 56.0 82.0 72.8 1.2 1.6 60.4 49.2 50.4 51.2 37.0 49.3 50.4 46.0 63.6 54.8

540B PaLM 24.8 43.6 63.6 78.0 87.2 92.0 1.6 19.6 62.4 79.6 51.2 83.2 44.5 65.1 38.0 74.4 76.0 61.6
Flan-PaLM 50.8 48.4 85.6 87.2 85.6 82.4 0.8 29.6 68.4 78.0 54.0 88.8 55.5 72.6 66.4 82.4 81.2 68.0

250M SwitchBASE 0.0 0.4 0.0 1.2 0.0 3.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0
FLAN-SwitchBASE 38.4 23.2 47.2 41.6 41.6 33.2 0.0 0.0 59.2 54.0 30.8 18.4 34.9 19.9 36.8 24.8 12.4 10.4

780M SwitchLARGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 17.8 0.0 4.0 0.0 0.4
FLAN-SwitchLARGE 44.8 22.8 57.2 42.0 61.2 47.2 0.4 0.8 45.6 43.2 41.6 33.2 38.4 29.5 42.0 32.4 11.6 10.8

11B SwitchXXL 0.0 0.0 0.0 4.0 0.0 1.2 0.4 0.0 0.0 0.0 0.0 1.6 0.0 6.8 0.0 2.0 0.0 2.0
FLAN-SwitchXXL 61.1 46.9 80.6 70.6 58.5 54.1 1.5 0.4 58.4 58.2 47.2 40.3 47.6 44.2 62.8 55.7 66.4 50.4

80M FLAN-GSSMALL 16.8 12.4 33.6 34.4 42.8 13.2 0.0 0.4 62.4 40.0 20.0 9.2 13.0 15.8 25.6 19.2 9.2 6.4
250M FLAN-GSBASE 36.0 17.2 48.4 35.6 54.0 47.2 0.0 0.0 61.2 53.6 27.2 29.6 29.5 20.5 34.0 24.4 10.8 14.0
780M FLAN-GSLARGE 46.8 26.0 60.8 34.4 45.2 39.6 1.6 0.4 57.6 44.8 36.0 21.6 31.5 25.3 25.6 32.4 29.6 32.4

80M FLAN-ECSMALL 14.8 12.8 33.6 29.6 40.4 36.0 0.8 0.4 64.4 57.6 19.6 4.0 13.7 17.8 21.6 18.8 8.8 8.0
250M FLAN-ECBASE 35.2 24.0 50.8 34.8 24.8 34.0 0.4 0.4 62.0 50.4 32.8 24.8 31.5 26.0 33.2 26.0 18.0 15.2
780M FLAN-ECLARGE 50.0 22.8 57.2 30.0 50.8 45.2 0.0 0.8 58.8 59.6 38.4 31.2 33.6 27.4 34.4 39.6 20.0 26.4
3B FLAN-ECXL 53.4 48.6 60.8 56.5 48.6 38.4 66.7 35.1 0.0 0.4 53.6 49.2 11.0 4.5 61.4 40.3 53.0 37.9

250M STBASE 0.0 13.2 0.0 28.8 0.0 4.0 0.0 1.6 0.0 42.0 0.0 6.4 0.0 15.8 0.0 6.4 0.0 0.8
FLAN-STBASE 43.5 22.7 53.7 42.6 42.9 33.9 0.4 0.4 48.1 47.2 33.1 31.6 35.0 27.7 40.0 40.7 18.9 21.0

32B ST32B 0.0 1.6 0.0 20.8 0.0 0.4 0.4 0.4 0.0 0.0 0.4 3.2 0.0 0.0 0.0 10.4 0.0 0.0
FLAN-ST32B 62.4 44.8 90.8 79.6 69.6 66.0 0.8 0.4 63.2 48.0 52.4 49.6 61.6 55.5 78.0 72.0 72.8 64.4
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Table 11: BBH[18:27] individual task performance.

BBH

Salient Translation
Error Detection Snarks Sports

Understanding
Temporal
Sequences

Tracking Shuffled
Objects (5)

Tracking Shuffled
Objects (7)

Tracking Shuffled
Objects (3)

Web of
Lies

Word
Sorting Average

Model Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT

- davinci 22.4 5.2 52.2 47.8 54.4 94.0 22.8 22.4 32.0 18.0 13.6 14.8 33.6 32.0 48.8 59.2 11.2 6.0 33.6 38.3
- text-davinci-002 61.6 62.4 65.2 60.7 71.6 92.0 33.6 67.2 23.2 60.8 17.2 59.6 34.8 62.8 51.6 92.0 36.8 44.4 48.6 67.2
- text-davinci-003 68.0 60.8 67.4 74.2 72.4 96.0 37.6 58.0 18.0 80.8 16.0 81.2 30.4 68.4 53.2 100.0 45.6 41.6 50.9 70.7
- code-davinci-002 62.0 60.8 61.2 59.6 72.8 97.6 77.6 96.8 20.4 89.6 14.4 85.6 37.6 78.4 51.6 95.2 50.4 40.4 52.8 73.7

80M T5-Small 12.0 0.0 46.1 15.2 46.4 35.6 28.4 1.6 20.8 0.0 15.2 0.0 32.8 0.0 51.2 0.0 0.4 0.0 27.0 7.2
Flan-T5-Small 22.4 15.2 46.6 9.6 54.8 54.0 28.4 17.2 22.4 15.2 14.0 8.8 30.8 25.6 53.6 36.8 2.0 1.2 29.1 19.2

250M T5-Base 22.0 0.8 46.1 5.1 46.4 38.4 28.4 28.4 20.4 5.6 15.2 5.6 31.6 9.6 51.6 22.4 0.8 3.2 27.8 14.6
Flan-T5-Base 11.6 18.0 42.7 46.1 52.8 46.4 18.4 20.4 16.8 19.2 10.4 11.2 33.2 32.0 52.4 47.2 4.0 2.0 30.3 26.8

780M T5-Large 22.4 0.0 46.1 14.6 46.8 48.4 28.0 28.4 22.0 16.4 15.2 9.2 32.0 22.8 49.2 22.8 3.2 0.0 27.7 16.1
Flan-T5-Large 41.6 25.6 57.9 52.8 52.0 45.2 8.4 23.2 12.4 11.2 8.4 10.4 33.6 31.6 51.2 48.4 0.8 2.4 34.7 28.5

3B T5-XL 22.8 6.8 47.2 30.3 50.8 44.8 28.4 22.8 15.2 14.8 12.4 12.0 32.4 31.2 48.8 43.2 2.4 2.4 27.4 19.2
Flan-T5-XL 34.4 30.4 72.5 75.8 51.2 55.6 22.8 31.2 12.4 15.6 8.4 10.0 29.2 29.6 49.6 46.8 4.8 0.0 40.2 35.9

11B T5-XXL 15.2 0.0 53.9 25.3 47.2 60.0 19.2 17.2 18.4 1.6 10.0 0.0 33.2 30.0 48.8 4.4 3.2 2.0 29.5 19.3
Flan-T5-XXL 46.4 50.0 74.7 76.4 64.4 66.0 25.6 21.2 18.0 12.0 9.6 16.8 28.8 24.8 54.0 53.2 7.2 4.4 45.6 41.6

8B PaLM 21.6 12.0 53.9 51.1 54.0 76.8 25.6 28.8 20.4 19.6 12.8 10.8 32.0 31.6 51.2 48.8 4.4 4.4 30.8 30.1
Flan-PaLM 23.2 0.8 69.1 59.6 64.4 69.6 15.6 24.0 17.2 11.2 16.8 13.6 33.2 32.0 52.0 49.2 6.0 1.2 36.4 31.1

62B PaLM 28.0 21.6 52.8 48.3 78.4 95.6 21.2 26.4 19.6 18.8 13.6 13.6 30.4 36.4 48.8 80.8 7.6 8.4 37.4 42.3
Flan-PaLM 45.2 40.4 83.1 78.1 79.2 81.2 30.8 36.0 21.2 18.0 15.2 18.0 22.0 29.6 48.4 92.0 11.2 10.0 47.5 44.9

540B PaLM 48.8 54.0 78.1 61.8 80.4 98.0 39.6 78.8 16.8 57.6 13.6 42.4 28.4 58.8 51.2 100.0 32.0 21.6 49.1 62.0
Flan-PaLM 53.2 51.6 85.4 76.4 83.2 87.2 81.6 91.6 24.4 50.8 21.6 38.0 32.4 71.6 62.4 100.0 32.0 33.2 57.9 66.3

250M SwitchBASE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.4
FLAN-SwitchBASE 27.2 25.6 39.3 39.9 53.2 54.4 10.4 15.6 11.6 13.2 14.4 14.4 32.0 33.6 49.6 53.2 2.4 1.2 33.2 29.4

780M SwitchLARGE 0.0 0.4 0.0 45.5 0.0 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.2 7.2
FLAN-SwitchLARGE 27.6 8.8 52.8 52.8 57.2 54.4 18.4 14.8 12.4 12.8 8.4 10.8 33.6 30.4 51.2 48.0 4.0 0.4 36.4 28.0

11B SwitchXXL 0.0 6.8 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.6 0.0 0.0 0.0 6.7
FLAN-SwitchXXL 51.7 41.1 81.1 74.3 68.8 74.3 40.0 36.4 19.5 18.0 21.0 14.0 20.8 25.7 50.3 49.7 8.3 4.7 47.9 43.4

80M FLAN-GSSMALL 20.8 0.0 46.6 37.1 54.0 52.8 22.4 22.4 23.6 18.0 12.4 8.8 34.4 32.0 51.6 32.0 2.4 0.0 29.6 20.9
250M FLAN-GSBASE 23.2 0.0 47.8 35.4 56.4 52.8 22.8 19.2 12.4 15.6 8.4 10.8 32.4 34.8 50.0 52.8 3.6 0.4 33.7 25.1
780M FLAN-GSLARGE 16.8 14.8 61.8 53.9 59.2 55.2 12.4 20.8 12.4 5.6 8.4 5.6 34.0 19.2 52.4 56.0 3.2 1.6 35.0 29.2

80M FLAN-ECSMALL 23.2 3.6 48.3 23.6 54.0 54.4 17.6 23.6 24.8 18.8 11.6 14.0 30.0 28.8 50.8 30.8 2.8 0.0 29.2 22.2
250M FLAN-ECBASE 22.4 13.2 41.6 44.4 57.2 54.0 16.0 11.2 14.4 14.8 8.0 10.0 34.0 34.0 53.2 52.4 2.8 1.2 34.0 26.6
780M FLAN-ECLARGE 42.0 15.6 55.6 56.7 59.2 58.4 19.6 20.8 12.4 12.8 8.4 9.2 33.6 32.0 54.4 49.2 3.6 2.8 37.9 32.0
3B FLAN-ECXL 38.6 21.2 64.0 53.7 63.2 59.2 16.6 22.4 13.2 17.0 8.6 8.6 26.8 28.1 50.8 48.8 6.8 2.3 40.3 33.2

250M STBASE 0.0 10.8 0.0 44.4 0.0 47.2 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.2 0.0 0.0 0.0 14.0
FLAN-STBASE 13.3 11.6 61.0 58.1 56.0 52.2 18.4 20.2 12.2 12.3 7.9 12.2 33.9 34.5 52.5 48.6 3.3 2.2 34.7 26.6

32B ST32B 0.0 10.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 18.0 0.0 9.2 0.0 32.8 0.0 0.0 0.0 0.0 0.0 5.5
FLAN-ST32B 57.6 52.8 88.2 86.0 73.2 75.6 75.6 44.8 27.2 18.4 28.0 19.6 21.6 28.0 40.4 48.8 15.6 4.8 54.4 47.4

B.3 REASONING

The four reasoning tasks are held-in, which means we perform instruction finetuning on the training
set while evaluating on the “validation” set in a few-shot way. The detailed performance is presented
here.
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Table 12: Reasoning[:4] individual task performance.

Reasoning

GSM8K ASDIV StrategyQA SVAMP Average

Model CoT CoT CoT CoT CoT

80M T5-Small 1.1 1.7 37.1 1.3 10.3
Flan-T5-Small 2.1 2.8 53.2 2.1 15.0

250M T5-Base 2.0 1.8 52.8 2.0 14.7
Flan-T5-Base 3.9 4.9 53.3 3.5 16.4

780M T5-Large 1.6 2.0 42.8 1.0 11.9
Flan-T5-Large 8.6 14.5 54.2 11.6 22.2

3B T5-XL 2.7 5.2 45.9 2.9 14.2
Flan-T5-XL 16.9 28.2 64.6 25.9 33.9

11B T5-XXL 2.5 15.0 55.0 12.9 21.4
Flan-T5-XXL 26.7 47.4 69.9 41.4 46.3

8B Flan-PaLM 21.4 37.5 65.5 23.1 36.9
62B Flan-PaLM 47.5 64.5 76.4 50.2 47.7
540B Flan-PaLM 73.0 77.7 83.0 72.2 76.5

250M SwitchBASE 0.6 1.0 17.5 1.5 5.2
FLAN-SwitchBASE 6.4 8.4 53.3 6.3 18.6

780M SwitchLARGE 1.9 2.4 43.2 2.0 12.4
FLAN-SwitchLARGE 12.7 19.0 56.3 13.0 25.3

11B SwitchXXL 0.2 0.4 36.2 0.1 9.2
FLAN-SwitchXXL 27.0 47.8 70.1 41.7 46.6

80M FLAN-GSSMALL 3.7 5.0 53.3 3.3 16.1
250M FLAN-GSBASE 11.1 13.9 53.7 9.9 22.2
780M FLAN-GSLARGE 16.7 22.2 54.6 17.0 27.6

80M FLAN-ECSMALL 5.2 5.6 53.3 5.4 16.6
250M FLAN-ECBASE 10.7 13.7 53.3 10.5 22.0
780M FLAN-ECLARGE 15.9 25.7 65.5 21.7 32.2
3B FLAN-ECXL 21.3 33.6 67.2 30.3 38.1

250M STBASE 2.0 1.9 45.0 1.3 12.6
FLAN-STBASE 11.2 11.1 59.8 8.0 22.5

ST32B 2.7 18.4 1.7 16.2 9.8
FLAN-ST32B 51.1 65.3 80.8 68.1 66.3
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Table 13: QA[:5] individual task performance.

QA

UnifiedQA
Elementary Science

ARC
easy

ARC
challlenge BoolQ Average

Model Direct Direct Direct Direct Direct

80M Flan-T5-Small 27.6 40.4 31.9 63.7 40.9
250M Flan-T5-Base 34.1 46.1 38.7 76.2 48.8
780M Flan-T5-Large 43.9 76.3 53.2 84.0 64.4
3B Flan-T5-XL 53.7 88.4 66.2 88.0 74.1
11B Flan-T5-XXL 63.4 94.2 74.6 89.3 80.4
8B Flan-PaLM 72.4 83.4 61.7 83.0 75.1
62B Flan-PaLM 85.4 92.0 77.3 86.3 85.3
540B Flan-PaLM 92.7 95.2 88.7 83.0 89.9

250M FLAN-SwitchBASE 48.1 61.4 43.2 79.3 58.0
780M FLAN-SwitchLARGE 50.3 70.3 61.7 83.8 66.5
11B FLAN-SwitchXXL 60.2 73.7 91.7 89.7 78.8

80M FLAN-GSSMALL 39.0 48.5 36.0 72.0 48.9
250M FLAN-GSBASE 43.9 59.3 45.9 82.5 57.9
780M FLAN-GSLARGE 53.7 69.4 66.7 88.2 69.5

80M FLAN-ECSMALL 37.4 61.4 50.0 83.4 58.1
250M FLAN-ECBASE 51.2 61.4 50.0 83.4 61.5
780M FLAN-ECLARGE 59.3 71.8 71.3 90.1 73.1
3B FLAN-ECXL 60.1 71.8 75.3 90.1 74.3

250M FLAN-STBASE 47.2 58.3 57.7 82.6 61.5
32B ST32B 31.7 25.8 30.1 40.6 32.1

FLAN-ST32B 69.9 99.2 90.8 92.1 88.0

B.4 QA

We perform evaluation on four held-out QA tasks and the results are summarized in this section.
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