EXPLAINABLE TRANSFER LEARNING ON GRAPHS US ING A NOVEL LABEL FREQUENCY REPRESENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graphs are characterized by their versatility in representing objects from a wide range of domains, such as social networks or protein structures. This flexibility and power poses a significant challenge for transfer learning between graph domains. Current methods of transfer learning between graph domains tend to focus exclusively on the structure of the underlying graphs, neglecting the characteristics of the nodes and not addressing the difficulties in comparing nodes that represent very dissimilar entities, such as atoms and people for instance. In this paper, we propose a novel universal representation of graphs based on the relative frequency of the node labels. This novel representation enables explainable transfer learning between labeled graphs from different domains for the first time, without the need for additional adaptations. That is, we show that our novel representation can be readily combined with a data alignment technique that in turn allows transfer learning between data from different domains. Experimental results show that knowledge can be acquired from graphs belonging to chemical and biological domains to improve the accuracy of classification models in social network analysis. A comparison with state-of-the-art techniques indicates that our approach outperforms existing non-topological methods and, in some cases, even graph neural networks. In summary, our technique represents a major advance in graph node representation for transfer learning between different domains, opening up new perspectives for future research.

029 030 031

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

1 INTRODUCTION AND RELATED WORK

033 In pattern recognition and machine learning, graphs are often used for representing complex data. 034 The reason for this is twofold. First, graphs can explicitly model the intricate relationships that might exist between entities, and second, graphs can adapt their size and complexity to the size and complexity of the actual data objects. For instance, graphs can be used to describe the structure of 037 molecules (Hu et al., 2020a), where nodes can be used to represent atoms and edges might encode the chemical bonds between the atoms. Another example can be found in social network analysis (Yanardag & Vishwanathan, 2015), where nodes might represent persons and edges then indicate their relationships. Graphs are also successfully applied in image representations (Li & Gupta, 040 2018), where nodes can represent clusters of pixels, for instance, and edges can then be used to 041 measure the similarity between these clusters. 042

043 Despite the growing interest in graph-based pattern recognition and machine learning, both their 044 complex structures and the scarcity of suitable datasets (Manchanda et al., 2023) pose significant research challenges. These challenges somehow limit the application of diverse powerful pattern recognition and machine learning techniques to graphs. In recent years, solutions have been pro-046 posed to address these obstacles, such as the expansion of datasets by data augmentation techniques 047 (Fuchs & Riesen, 2022), or the use of unsupervised approaches for pre-training networks (Hu et al., 048 2020b). Another promising approach would be to adapt transfer learning to the graph domain. Transfer learning is a machine learning technique in which a model, pre-trained to perform a task, is reused and optimized to face a related (but different) task by exploiting previously acquired knowl-051 edge (Pan & Yang, 2010). 052

Some approaches for transfer learning on graphs have been proposed. For example, (Zhao et al., 2023) and (Roncoli et al., 2023) focus on transfer learning between graphs that share similar seman-

Figure 1: Illustration of creating the novel representation for three sample graphs g_1 , g_2 and g_3 stemming from a dataset G based on the label frequencies.

tics, viz. social networks and physical environments, respectively. However, generalization of these
methods to completely different domains remains problematic. Some studies (Zhu et al., 2021) have
explored joint learning techniques that attempt to overcome these limitations. These approaches
have shown promising potential, but their ability to generalize across very different domains is still
limited. Other research directions (Verma & Zhang, 2019) propose dataset-specific solutions that
require domain-specific adaptations.

075 In this paper, we propose a novel representation of graphs that facilities the transfer of learning between graphs of very different domains. In particular, our approach is based on a frequency analysis 076 077 of the underlying node labels including a frequency alignment operation between different graph datasets. By representing graphs and their nodes as frequency vectors, the method becomes applicable to any dataset (regardless of what the nodes represent). That is, unlike existing solutions, our 079 representation does not require specific adaptations. Moreover, as suggested by recent proposals 080 (Gillioz & Riesen, 2023), we focus on nodes and their labeling rather than the global topology. This 081 is also corroborated by recent studies suggesting that relatively simple non-topological methods 082 for graph classification can compete with more sophisticated techniques. For example, it has been 083 shown that Global Sum Pooling, followed by a Multilayer Perceptron (MLP), can achieve similar, 084 or better, results than more complex models on some datasets (Errica et al., 2020). Last but not least, 085 our novel method not only achieves general applicability and high flexibility but also a high degree of explainability, thus enabling a clear understanding of how and why transfer learning occurs.

The remaining paper is structured as follows. In Section 2, we detail the creation and operation of the representation itself as well as the transfer learning process. In Section 3, we present an experimental evaluation using two chemical datasets to improve the classification performance on a social network dataset. Finally, in Section 4, we draw conclusions, discuss the limitations of our approach and propose possible future research directions.

092 093 094

095 096

097

065

066

067

2 Methods

In this section, we first introduce our novel representation of graphs based on relative node label frequencies (described in Section 2.1), and then discuss the alignment of these representations in a common space (explained in Section 2.2).

098 099 100

101

2.1 Representing Graphs as absolute frequency vectors

102 Graphs are mathematical structures useful for modeling complex entities and their relationships. 103 Formally, a graph can be defined as a triple $g = (V, E, \mu)$, where V is the set of nodes, $E \subseteq \{(u, v) | u, v \in V, u \neq v\}$ is the set of edges, and $\mu : V \rightarrow L$ is a function that assigns a label 104 $\mu(v) = l \in L$ to each node $v \in V$ (where L is a given label alphabet). Sometimes this definition 106 is complemented with a second function, which also assigns a label to the edges in the graph – in 107 this paper, however, we only use node-labeled graphs (in fact, the methods proposed in this section 108 could also be adapted to labeled edges).

REPLACE Z_1 0 0 0 0 V₁ V₂ V₃ V₄ V₅ 0 0 0 0 REE DATASET Z0 0 0 Z_{i} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V₁ V₂ V₃ V₄ Z'_{I} 0 V2 V3 V4 Z_{N} 0 0 0 0 0 V₁ 0 0 0 0 0 0 0 0 REF. DATASET REF. DATASET (A) (B)

Figure 2: Illustration of the alignment process between relative frequency vectors.

From now on, we suppose that the label alphabet L consists of n discrete symbols l_1, \ldots, l_n , and 123 the dataset of graphs $G = \{g_1, \ldots, g_N\}$ consists of N graphs of the type $g = (V, E, \mu)$. To carry 124 out the transfer of knowledge, we propose to create a new representation of the graphs consisting 125 of a vector of relative frequencies of all labels $l_i \in L$. In a first step, for each label $\mu(v) = l_i \in L$ 126 that can be observed in the dataset G, we compute its relative frequency $f(l_i)$ with respect to all N 127 graphs from G and round its value to the fourth decimal place (see Fig. 1, Step 1). Next, we define a 128 k-dimensional vector termed $\mathbf{r}_G = (f_1, \dots, f_k)$, which is common to all graphs in the same dataset 129 G (see Fig. 1, Step 2). This vector r_G contains all the relative frequencies f_i , that actually occur 130 on the nodes of all graphs from G, in ascending order (without duplicates). Since multiple labels 131 in L may have the same relative frequency, the size k of r_G may be smaller than the total number n of unique labels in L. Next, for each graph $g_i \in G$ we count how often each relative frequency 132 $f(l_i) \in r_G$ appears among the nodes of g_j based on the vector r_G . That is, we replace $g_j \in G$ with 133 a k-dimensional vector $x_{G_j} = (\nu_1, \dots, \nu_K) \in \mathbb{R}^n$ where ν_i is the absolute frequency of the relative 134 frequency f_i actually observed on the nodes in set V_i of g_i . This produces a representation that 135 reflects the distribution of relative label frequencies into a vector-based representation of the graph 136 (see Fig. 1, Step 3). 137

To ensure that only information from the training set is actually used in this transformation (and thus avoid data leakage), the dataset must be split into a training and a test set before calculating the new representation. Of course, this can lead to a situation where we see a particular label, for which we need to calculate the relative frequency, for the first time in the test set. In such cases, we use the minimum relative frequency for this unknown label (present in r_G) to represent the corresponding label. Since the label was not observed in the training set (and therefore tends to have a low relative frequency), this heuristic seems reasonable.

145

108

110

111

112

113 114

115

116 117

118 119

121 122

146 147

2.2 ALIGNMENT OF REPRESENTATIONS FOR TRANSFER OF KNOWLEDGE

In the previous section, we show how we can transform graphs from arbitrary graph datasets into a new k-dimensional vector representation. In the following, we assume that we have N different graph datasets G_1, \ldots, G_N available. For each of these N datasets, we calculate the relative frequency vectors $\mathbf{r}_{G_1}, \ldots, \mathbf{r}_{G_N}$ of size k_1, \ldots, k_N respectively. By means of this information, we now have a k_i -dimensional vector space for each of the N graph datasets, in which the graphs are mapped ($i = 1, \ldots, N$). Note that, each vector space (or the associated graph domain) can have different dimensions and represent objects from very different domains.

The transfer of knowledge between these different domains is now achieved by aligning the Nseparate graph representations in a common representation space. In this paper, our main goal is to preserve explainability during the transfer process. Thus, instead of using methods for learning the representations (Ganin et al., 2016), which might improve the transfer of knowledge but neglect interpretability, we thus propose the following suboptimal alignment approach.

The proposed alignment strategy (described in Algorithm 1) requires a machine learning model M(e.g., a classification model) and a metric β , that measures the model performance (e.g., the classification accuracy of M). In addition to these two inputs, the algorithm expects N common spaces

162 Algorithm 1 Dataset Alignment $(M, \beta, Z_1, \ldots, Z_N)$ 163 1: Train Model M on Z_1 164 2: for 1, ..., K do 3: for each $j \in \{2, ..., N\}$ do 166 evaluate Z_j with model $M \to \beta_{\Theta}$ 4: 167 5: for each index $(j, p) \in \{(j, 1), \dots, (j, k_j)\}$ do for each index $(1,t) \in \{(1,1),\ldots,(1,k_1)\}$ do 6: 169 7: $Z'_{i} = Z_{j}$ 170 replace features with indices (j, p) and (1, t) in Z'_{j} 8: 171 Q٠ evaluate Z'_j with model $M \to \beta_j$ if $\beta_j > \beta_{\Theta}$ then $\beta_{\Theta} = \beta_j$ $Z_j = Z'_j$ end if 172 10: 173 11: 174 12: 175 13: 176 end for 14: 177 15: end for 178 end for 16: 179 17: end for 181 Z_1, \ldots, Z_N (for each relative frequency vector r_{G_1}, \ldots, r_{G_N}). The dimension of all these common spaces Z_i is equal to $\sum_{j=0}^N k_j$, i.e., the sum of the sizes of the N frequency vectors r_{G_1}, \ldots, r_{G_N} . 183 184 The common space based on the relative frequencies r_{G_1} associated with the graph dataset G_1 is 185 termed Z_1 from now on. In vector Z_1 , we have actual values between indices $1, \ldots, k_1$, while the 186 remaining values at indices $(k_1 + 1), \ldots, N$, are set to 0. In general, we consider the representation 187 Z_j , associated to the relative frequency vector r_{G_j} , with values uniquely between indices $k_{j-1} + 1$ 188 to k_j , while all other values are set to 0 (see Fig. 2 (A)). For clarity of the indices, we introduce 189 the following notation. Each entry in vector Z_i can be referred to with an index pair (q, p), where 190 q represents one of the N dataset graphs and lies between $1, \ldots, N$, and p represents one of the k_j frequencies of the relative frequency vector r_{G_j} and lies between $1, \ldots, k_j$. The valid indices of any 191 vector space Z_j are therefore $((1, 1), \ldots, (1, k_1), (2, 1), \ldots, (2, k_2), \ldots, (N, k_n))$. 192 193 Algorithm 1 starts by training the model M on the training set Z_1 to distinguish classes based on 194 the first indices $(1, 1), \ldots, (1, k_1)$ (line 1 of Algorithm 1). After that, in a loop (starting at line 3), for each dataset G_j with j = 2, ..., N, the corresponding representation Z_j is evaluated by model 196 M resulting in a metric β_{Θ} . The value β_{Θ} is the basis for the next comparisons, since the examined dataset has not yet been aligned and therefore has no values in the first indices $(1, 1), \ldots, (1, k_1)$. 197 Now, modified versions Z'_{j} of Z_{j} are constructed in two further for loops (starting at line 5 and 199 6 respectively). Formally, during these loops, replacement of the elements with indices (j, p) and 200 (1,t) are applied (with p between $1, \ldots, k_j$, and t between $1, \ldots, k_1$) (see Fig. 2 (B)). This new representation Z'_i is then again analyzed by model M (line 9), yielding a new value β_i . If β_i is 201 202 greater than the reference value β_{Θ} , the change is consolidated by updating both the reference value β_{Θ} and the representation Z_i that led to this improvement. 203 204 The procedure of Algorithm 1 can be repeated in a global loop up to K times (starting at line 2), 205 making the overall computational complexity of the algorithm equal to $O(K \times N \times \max_{j \in \{2,...,N\}} (k_j) \times \sum_{j \in \{2,...,$ 206 k_1). This iterative approach allows the alignment to be progressively refined, optimizing the dataset 207 representations with respect to the reference dataset. 208 209 210 3 EXPERIMENTAL EVALUATION AND DISCUSSION 211

The experimental evaluation consists of four parts. In Section 3.1, we provide a visual analysis that
allows us to observe the transfer of knowledge between significantly different domains. Next, in
Section 3.2, we investigate the impact of the transfer of knowledge in a classification experiment. In
Section 3.3, a comparison of our best model with state-of-the-art methods is presented. Finally, in
Section 3.4, we conduct an ablation study to verify the benefit of having similar distributions.

Figure 3: Distributions of node label frequencies f (on the Y-axis) with respect to class memberships (on the X-axis). The X-axis represents the normalized imbalance of the labels with respect to one of the two classes (values close to -1 for negative classes, values close to +1 for positive classes).

All experiments are conducted on three publicly available graph datasets (Morris et al., 2020) viz.
DD and MUTAG, which contain graphs representing proteins and molecules, respectively, and
REDDIT-BINARY (REDDIT-B), that contains graphs representing social networks. For DD and
MUTAG we use the original labels on the nodes, for REDDIT-B we use the node degree as labels (the nodes of these graphs are unlabeled). Further details on the datasets can be found in
Appendix A.3.

236 237

238

225

226

227

228 229

3.1 VISUAL ANALYSIS

239 The differences in the number of nodes with the same relative frequency for each class of graphs 240 are crucial for both classification (Bishop & Nasrabadi, 2007) and transfer learning. To visualize 241 these differences, we present the plots shown in Fig. 3 for all datasets. Each dot in Fig. 3 represents 242 a unique relative frequency f on the Y-axis and the corresponding relative class memberships on 243 the X-axis. That is, on the Y-axis dots close to 1 represent common labels, dots close to 0 indicate 244 uncommon labels. On the X-axis we show the normalized difference in the relative number of nodes 245 associated with the same relative frequency from the graph classes. Values close to -1 indicate that more nodes of graphs from the negative class have this frequency value f, while values close to +1 246 indicate that more nodes of graphs from the positive class have this frequency value f (an X-value 247 of 0.0 means that half of the nodes having frequency f, originate from one or the other class). 248

249 When we compare the distributions of the three datasets, we notice the following. First, the rather 250 rare labels of REDDIT-B are similar to the rare labels of DD in terms of their relative class membership. Our basic hypothesis is that these similarities can be used to transfer the knowledge between 251 these two domains. If, on the other hand, one compares REDDIT-B with MUTAG, there is no 252 obvious correspondence. Therefore, for the MUTAG dataset, we also show the distribution of fre-253 quencies when the underlying classes are mirrored – this dataset will be referred to as MUTAG-M 254 from now on. We now see that the common labels of REDDIT-B are similarly distributed to those 255 of MUTAG-M. Hence, the presence of many nodes with a common label should increase the prob-256 ability of a graph being labeled negatively, regardless of the actual domain. 257

To summarize, we see that the distribution profiles of REDDIT-B, DD and MUTAG-M are visibly similar despite the different domains, which at least makes a transfer of knowledge possible.

260 261

262

3.2 EVALUATION OF TRANSFER OF KNOWLEDGE

For the following evaluations, we use four state-of-the-art classification models, viz. a K-Nearest Neighbors (k-NN), a Support Vector Machine (SVM), a Random Forest (RFC) and a Multi-Layer Perceptron (MLP). Each model is trained with class balancing and optimized by cross-validated grid search (exclusively applied on the reference dataset). Details of the evaluation parameters for all models are given in Appendix A.2. To evaluate the performance, we use a *stratified K-Fold cross-validation* with *K=10*, measuring the average balanced accuracy in a binary classification scenario. This metric ensures a baseline accuracy of 50% for random classification, which is essential for testing the discrimination ability of our novel representation.

270 271 272

274 275 276

278 279

281

284

287

289 290 291

293

295

			TEST DATASET					1	TEST DATASETS		
		DD	MUTAG-M	REDDIT-	<u>B</u>			DD	MUTAG-M	REDDIT	
ET	DD	78.0 ± 1.0	66.6 ± 9.9	76.6 ± 4.5	5	č. ET	DD	77.5 ± 2.3	50.0 ± 0.0	50.0 ± 0	
REI [AS]	MUTAG-	M 71.6 \pm 3.2	$2 82.0 \pm 5.3$	67.8 ± 1.9)	ASI	MUTAG-M	1 70.3 \pm 6.0	81.6 ± 5.8	67.0 ± 3	
DAJ	REDDIT-	B 73.1 \pm 3.3	$8 81.1 \pm 7.7$	79.3 ± 2.1	<u> </u>	DAJ	REDDIT-H	68.1 ± 7.7	80.9 ± 7.9	83.9 ± 1	
	Table 1: k-NN model						Table 2: RFC model				
			TEST DATASI	ETS				1	FEST DATASE	ETS	
		DD	MUTAG-M	REDDIT-	В			DD	MUTAG-M	REDDI	
EI	DD	77.8 ± 3.9	$9 51.5 \pm 4.6$	57.7 ± 6.1		EI	DD	80.1 ± 3.4	50.0 ± 0.0	50.0 ± 0	
ASI	MUTAG-	M 59.6 \pm 8.4	4 83.4 ± 5.1	65.8 ± 5.0)	REF	MUTAG-M	$1 50.0 \pm 0.0$	82.3 ± 6.7	51.6 ± 3	
	REDDIT-	B 58.8 \pm 6.9	$9 55.9 \pm 9.7$	80.3 ± 1.6	5	DAT	REDDIT-H	3 77.9 \pm 4.0	78.8 ± 9.7	81.1 ± 1	
9											
<u> </u>	ŗ	Table 3: M	LP model	RF	rc.		Т	able 4: SV	M model	м	
DA	TASETS	Table 3: M	LP model	RF	<u>°C</u> JOINT		T <u>mi</u> original	able 4: SV	M model	<u>M</u> JOINT	
 	TASETS DD	K-N 6 0 78.0 ± 1.6	LP model $\overline{\text{JOINT}}$ 78.9 ± 2.1	RF ORIGINAL 77.5 ± 2.3	C JOINT 78.7 ± 2.7		MI ORIGINAL 77.8 ± 3.9	able 4: SV JOINT 78.0 \pm 4.4	M model $\frac{SVN}{ORIGINAL}$ 80.1 ± 3.4	M JOINT 80.2 ± 3.3	
 	TASETS DD UTAG-M	Гable 3: М <u>k-N</u> ОRIGINAL 78.0 ± 1.6 82.0 ± 5.3	LP model JOINT 78.9 \pm 2.1 82.7 \pm 5.3	RF ORIGINAL 77.5 ± 2.3 81.6 ± 5.8	<u>°C</u> JOINT 78.7 ± 2.7 85.3 ± 3.2	 ;	Т ОRIGINAL 77.8 ± 3.9 83.4 ± 5.1	able 4: SV <u>JOINT</u> 78.0 \pm 4.4 83.4 \pm 5.3	M model <u>SVM</u> ORIGINAL 80.1 ± 3.4 82.3 ± 6.7	M JOINT 80.2 ± 3.3 77.3 ± 8.3	

The first evaluation aims to assess whether the training of a classifier exclusively on a reference dataset, can lead to a classification accuracy on the aligned datasets superior to that of a random classification (suggesting a possible transfer of knowledge). For each test, we first select the reference dataset and standardize the data with parameters computed on this reference dataset only.

Next, we train the selected model to distinguish classes on the reference dataset and use it in the predictive phase to align the training sets of the other datasets. Once the alignment is complete, we test in the predictive phase the model on both the test set of the reference dataset and the test sets of the aligned datasets. The results of this experiment are visible in Tables 1, 2, 3 and 4 for *k*-NN, RFC, MLP and SVM models, respectively. In these tables, the rows represent the reference datasets used for alignment and training, while the columns represent the datasets on which the learned models are tested.

In the main diagonal of all four tables we notice the highest accuracies. This makes sense as these 307 values represent the models trained and tested on training and test sets stemming from the same 308 dataset. The non-diagonal accuracies reveal the effects of a potential transfer learning. We observe, 309 in general, that the proposed method enables a certain transfer of knowledge. For example, in 310 the first row of Table 1 we see that a k-NN trained on DD and then evaluated on the other two 311 datasets leads to a substantial increase of the accuracy when compared to a random classification of 312 50% (viz. a gain of 18.6 and 26.6 percentage points for MUTAG-M and REDDIT-B, respectively). 313 Considering that this model is not trained directly on these two datasets, this is quite an interesting 314 result. Similar results are observable for other models and datasets (although there are also some 315 cases where obviously no, or only little, transfer of knowledge takes place, e.g. in Table 2 in row 1 where the accuracy remains at 50% for both test sets). 316

The goal of second experiment is to evaluate whether training the models on a joint dataset can improve the classification performance compared to models trained on single datasets. Hence, after the alignment, we merge the different training sets with the reference dataset, creating a joint dataset for training. Next, we apply standardization on the joint dataset and train the models to distinguish the classes. During the training process, we assign a weight to each dataset, which is 1.0 for data from the reference dataset, and a weight equal to the ratio of the number of elements in the dataset and the total number of elements in the joint dataset for the other datasets. This approach ensures a higher weight to the reference dataset on which we aim to improve the classification performance.

DD **REDDIT-B** MODELS MUTAG 76.8 ± 3.8 85.4 ± 2.4 DGCNN (Wang et al., 2019) 88.2 ± 2.6 GNN 89.4 ± 1.8 DiffPool (Ying et al., 2018) 75.6 ± 3.0 82.7 ± 6.5 GIN (Xu et al., 2019) 76.2 ± 3.6 $\textbf{86.6} \pm \textbf{5.2}$ $\textbf{90.3} \pm \textbf{1.5}$ 73.0 ± 3.0 GraphSAGE (Hamilton et al., 2017) 84.8 ± 7.3 85.5 ± 1.5 77.4 ± 2.2 79.1 ± 8.1 82.2 ± 3.0 MLP (Errica et al., 2020) NTC SVM rbf (Gillioz & Riesen, 2023) 77.3 ± 3.6 79.6 ± 7.4 78.3 ± 2.4 k-NN_{L2} (Gillioz & Riesen, 2023) 76.3 ± 2.7 80.7 ± 5.9 77.5 ± 2.9 Joint-RFC (Our) $\textbf{78.7} \pm \textbf{2.7}$ 85.3 ± 3.2 84.1 ± 2.5

Table 6: Average accuracy in a balanced binary classification scenario using the RFC model with joint training compared to state-of-the-art methods viz, *Graph Neural Networks* (GNN) and *Non-Topological Classification* methods (NTC). The best values are highlighted in bold face.

The results of this experiment are shown in Table 5. More comprehensive tables can be found in Appendix A.5. We observe in 11 out of 12 cases a slight increase in performance when the joint datasets is used (rather than the single datasets). The average increase is 0.8 percentage points (ranging from 0.1 percentage points for REDDIT-B and DD using an SVM to 3.7 percentage points for MUTAG-B using an RFC). The observed increase is in line with other studies, e.g., (Verma & Zhang, 2019), in which the methods achieve an increase in performance due to transfer learning between 0.4% and 1.0%.

345 The somehow limited increase in the classification accuracy could be due to several factors, includ-346 ing the suboptimal alignment of the common space and the relatively small sizes of the training 347 datasets (approximately 1,000, 150, and 1,800 samples for DD, MUTAG, and REDDIT-BINARY, 348 respectively). It is known that larger datasets are often needed to learn and transfer common knowl-349 edge. Moreover, in some situations, such as on MUTAG-M trained with the SVM, we even observe 350 a deterioration of the accuracy with the joint dataset. This may be due to the addition of noise along 351 with useful signals when expanding the dataset, which makes it difficult to maintain good perfor-352 mance given the sensitivity of SVMs (Singla & Shukla, 2020). A strategy to mitigate this issue 353 might be to assign higher weights to the reference datasets, or to increase the number of alignment cycles during joint training. For instance, assigning a weight of 10^5 to the MUTAG-M data during 354 SVM training and after K = 4 alignment cycles, the balanced accuracy increases from 77.3% to 355 80.6% (though with negative effects on the classification accuracy of the aligned datasets). 356

357 358

359

324

325

326

327

328

330

331

332 333

334

335

336 337

3.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our best model trained on the joint dataset (namely the RFC model) with different state-of-the-art methods, including four graph neural networks, viz. DGCNN (Wang et al., 2019), DiffPool (Ying et al., 2018), GIN (Xu et al., 2019) and GraphSAGE (Hamilton et al., 2017), and three non-topological methods proposed by (Errica et al., 2020) and (Gillioz & Riesen, 2023).

The results in Table 6 show that the RFC model trained on joint datasets shows a performance in line with those obtained with the current state of the art. Specifically, we achieve better results than methods working on non-topological representations (Errica et al., 2020; Gillioz & Riesen, 2023). Moreover, it turns out that our novel method outperforms DiffPool and GraphSAGE on the MUTAG dataset. However, on the REDDIT-B dataset, although it achieves quite good results, our model is still quite far from the best performing GNN models. The results are nevertheless interesting considering that our model works without any topological information.

371 372

373 3.4 ABLATION STUDIES

374

The distribution of the node labels is crucial for our method as it allows the models to effectively transfer the knowledge. For example, we use a mirrored version of MUTAG (MUTAG-M) to better match the distribution of the other two datasets. For our ablation study, we investigate the effect of not using this mirroring of MUTAG.

7

378

379

380

381

382

384

386 387

388 389 390

391

392

393

396

397

399

400 401 402

403 404

405

406 407 408

409 410

от

0 1 2 3 4 5

MODELS DD MUTAG MODELS DD MUTAG-M REDDIT-B k-NN 53.9 ± 6.8 82.0 ± 5.3 k-NN $\textbf{71.6} \pm \textbf{3.2}$ 82.0 ± 5.3 67.8 ± 1.9 Single Dataset Single Dataset RFC 52.0 ± 5.0 81.6 ± 5.8 RFC $\textbf{70.3} \pm \textbf{6.0}$ 81.6 ± 5.8 67.0 ± 3.9 MLP 49.8 ± 6.8 83.4 ± 5.1 MLP 83.4 ± 5.1 65.8 ± 5.1 59.6 ± 8.4 SVM 50.0 ± 0.0 82.3 ± 6.7 SVM 50.0 ± 0.0 82.3 ± 6.7 51.6 ± 3.4 82.7 ± 5.3 k-NN 76.0 ± 2.4 81.0 ± 5.7 k-NN 77.4 ± 2.7 $\textbf{80.0} \pm \textbf{2.0}$ Joint Datasets Joint Datasets RFC 77.9 ± 3.0 82.8 ± 3.9 RFC 78.0 ± 3.3 85.3 ± 3.2 81.6 ± 3.4 MLP 74.7 ± 4.5 80.1 ± 10.3 MLP 78.3 ± 4.7 83.4 ± 5.3 78.9 ± 2.5 $\textbf{78.5} \pm \textbf{2.8}$ SVM 72.9 ± 5.0 $\textbf{78.0} \pm \textbf{8.0}$ SVM 77.3 ± 8.3 77.2 ± 3.0 Table 8: MUTAG original Table 7: MUTAG mirrored 1.0 1.0 O DD MUTAG-M 0.8 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -0.75 -0.50 0.00 0.25 0.50 0.75 1.00 -0,75 -0.50 -0.25 0.00 0.25 -1.00 -0.25 -1 00 MUTAG-

9 10 11 12 13 14 15 16 17 18 19 20

DD

REDDIT-B

 51.3 ± 1.9

 65.0 ± 5.8

 48.9 ± 4.7

 50.5 ± 3.2

 78.2 ± 2.7

 83.6 ± 2.5

 78.2 ± 2.5

 65.7 ± 4.8

o DD

0.50 0.75 1.00

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DD

• MUTAG

Figure 4: Alignment between MUTAG-M and MUTAG respect DD with k-NN.

от

0 1 2 3

à

411 Tables 7 and 8 show the classification accuracies for both original and mirrored MUTAG, with 412 training on either a single dataset limited to MUTAG (upper part of both tables) or the joint datasets where DD and REDDIT-B are joined to MUTAG (lower part of the tables). 413

414 In the upper part of both tables, it can be seen that the mirrored MUTAG (MUTAG-M) provides a 415 more informative alignment, as it allows a better prediction of DD and REDDIT-B than the non-416 mirrored dataset. This effect is also reflected in the lower part of the tables, where the use of the mirrored MUTAG shows an overall improvement in accuracy in 10 of the 12 possible combinations. 417

418 To further confirm that good classification results require a favorable match between the frequency 419 distributions of the labels and their respective class memberships, we analyze the indices obtained 420 from the alignment process. Fig. 4 shows an example of matching DD with MUTAG-M (left side) 421 and DD with MUTAG original (right side) – both using the k-NN model. The results of the same 422 analysis with REDDIT-B (rather than DD) are provided in Appendix A.4.

423 At the top of Fig. 4 we have an illustration that shows the distributions of the two datasets. Moreover, 424 it is depicted which relative frequencies of the reference dataset are matched to which relative fre-425 quencies of the aligned dataset. In the lower part of Fig. 4, a matrix displays the relative frequencies 426 of the reference dataset in the rows, while the columns show the relative frequencies of the aligned 427 dataset (both in ascending order). An entry in this matrix is colored if the corresponding frequencies 428 are assigned to each other. For example, it can be seen that the relative frequency of DD with index 429 7 on the X-axis is assigned to the second relative frequency of MUTAG-M (index 1 on the Y-axis). This information is also shown graphically in the figure above the matrix. Frequencies that are not 430 associated are shown in the last row "OTHER" (made less visible in the plot above the matrix since 431 they are less interesting for our analysis).

In the case of MUTAG-M and DD (on the left), the *k*-NN model does not associate any label of MUTAG-M with the relative frequencies with index 0, 2, 3, and 6 (despite, for instance, the visible proximity of the frequency with index 1 of DD to the frequency with index 3 of MUTAG-M in the upper part of the figure). Yet, on the same dataset DD the indices 5, 6, and 7, show a strong association with MUTAG-M indices. This can also be clearly seen in the upper part of the figure. The index pairs assigned to each other show very similar relative frequencies and a comparable degree of class imbalance in two out of three cases.

Let us now focus on the right side of Fig. 4, which shows the alignment of the DD and MUTAG
datasets. We observe that the frequency alignment between the two datasets often involves frequency labels that are quite far away from each other (e.g., index 15 of DD with index 6 of MUTAG). Clearly, this alignment provides less informative connections, which may explain the poorer
performance of MUTAG compared to its mirrored version.

- 444
- 445
- 446
- 447

4 CONCLUSION AND FUTURE WORK

Both the complexity of the underlying data structures and the scarcity of large datasets pose considerable challenges for the application of transfer learning in the field of graphs. Furthermore, the main limitation for transfer learning with graphs is given by the fact that the nodes in a graph can represent very different entities (e.g., atoms in one graph and users in another graph). This makes it complex to abstract this information and make transfer learning possible.

453 In this paper, we propose to first represent graphs based on the distribution of their node labels and 454 second align these features using a reference dataset. By means of this specific alignment of the 455 features multi-domain transfer learning can be performed on graphs. In an experimental evaluation, 456 we show that it is possible to transfer at least part of the knowledge between proteins, molecules, 457 and social network datasets. Moreover, we show that joint training on aligned datasets produces a 458 transfer of knowledge that increases the classification performance by an average of 0.8 percentage 459 points. Finally, our evaluation shows that the proposed method is able to outperform methods that 460 rely on non-topological graph representations only.

461 Although the results are encouraging, the proposed method has some significant limitations. The 462 main limitation is related to the absence of the use of graph topology, which is an important source 463 of information and its non-use might significantly reduce the performances in some datasets. In 464 addition, the high computational complexity of the alignment method hinders its application to more 465 than three datasets. Moreover, the alignment process requires some similarity of distributions and 466 possible mirroring of the underlying classes to fit other datasets. Another important limitation is that the novel representation is not learned directly from a model. This means that it is necessary to use 467 one dataset as a reference to align the others, which can lead to suboptimal results if the reference 468 dataset is not representative enough. 469

Future research is focused on both overcoming current limitations and finding other parameters that allow information to pass between graphs with labeled nodes from different domains. In particular, we plan to apply the concept discussed in this paper to graph neural networks, thus integrating the topology of graphs. For instance, we could use autoencoders to learn new generic representations of nodes and optimize dataset alignment, reducing dependence on reference datasets and minimizing manual inspections of node label distributions.

476

477 478

5 REPRODUCIBILITY STATEMENT

479

We use *K*-fold cross-validation to evaluate the performance of our models and report the mean and
 standard deviation. To ensure the repeatability of the experiments, we set the seed of the random
 generators to 0. The source code, written in Python, is publicly available, commented and accompa nied by a documentation that includes instructions for installing dependencies and configuring the
 virtual environments for running the experiments. The datasets used are public. The hyperparame ters used are given both in the source code and in the Appendix(A.2 and A.1 respectively) of this

486 REFERENCES

- Christopher M. Bishop and Nasser M. Nasrabadi. Pattern Recognition and Machine Learning. J. Electronic Imaging, 16(4):049901, 2007. doi: 10.1117/1.2819119. URL https://doi.org/10.1117/1.2819119.
- Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural networks for graph classification. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020. URL https: //openreview.net/forum?id=HygDF6NFPB.
- Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. *CoRR*, abs/1903.02428, 2019. URL http://arxiv.org/abs/1903.02428.
- Mathias Fuchs and Kaspar Riesen. Graph augmentation for neural networks using matchinggraphs. In Artificial Neural Networks in Pattern Recognition 10th IAPR TC3 Workshop,
 ANNPR 2022, Dubai, United Arab Emirates, November 24-26, 2022, Proceedings, pp. 315, 2022. doi: 10.1007/978-3-031-20650-4_1. URL https://doi.org/10.1007/
 978-3-031-20650-4_1.
- Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural
 networks. J. Mach. Learn. Res., 17:59:1-59:35, 2016. URL https://jmlr.org/papers/
 v17/15-239.html.
- Anthony Gillioz and Kaspar Riesen. Graph-based vs. vector-based classification: A fair comparison. In *Graph-Based Representations in Pattern Recognition 13th IAPR-TC-15 International Workshop, GbRPR 2023, Vietri sul Mare, Italy, September 6-8, 2023, Proceedings*, pp. 25–34, 2023. doi: 10.1007/978-3-031-42795-4_3. URL https://doi.org/10.1007/978-3-031-42795-4_3.
- William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.
- Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
 graphs. In Advances in Neural Information Processing Systems 33: Annual Conference *on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020a.* URL https://proceedings.neurips.cc/paper/2020/hash/
 fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.
- Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
 Leskovec. Strategies for pre-training graph neural networks. In 8th International Conference on
 Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020b. URL https://openreview.net/forum?id=HJlWWJSFDH.
- Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. Understanding isomorphism bias in graph data sets. *CoRR*, abs/1910.12091, 2019. URL http://arxiv.org/abs/1910.12091.
- Yin Li and Abhinav Gupta. Beyond grids: Learning graph representations for visual recognition. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 9245–9255, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/ 4efb80f630ccecb2d3b9b2087b0f9c89-Abstract.html.
- Sahil Manchanda, Shubham Gupta, Sayan Ranu, and Srikanta J. Bedathur. Generative modeling of
 labeled graphs under data scarcity. In Soledad Villar and Benjamin Chamberlain (eds.), *Learn- ing on Graphs Conference, 27-30 November 2023, Virtual Event*, volume 231 of *Proceedings of Machine Learning Research*, pp. 32. PMLR, 2023. URL https://proceedings.mlr.
 press/v231/manchanda24a.html.

- 540 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion 541 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR, 542 abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663. 543 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Trans. Knowl. Data Eng.*, 22 544 (10):1345-1359, 2010. doi: 10.1109/TKDE.2009.191. URL https://doi.org/10.1109/ TKDE.2009.191. 546 547 Andrea Roncoli, Aleksandra Ciprijanovic, Maggie Voetberg, Francisco Villaescusa-Navarro, and 548 Brian Nord. Domain adaptive graph neural networks for constraining cosmological parameters 549 across multiple data sets. CoRR, abs/2311.01588, 2023. doi: 10.48550/ARXIV.2311.01588. URL https://doi.org/10.48550/arXiv.2311.01588. 550 551 Manisha Singla and K. K. Shukla. Robust statistics-based support vector machine and its variants: a 552 survey. Neural Comput. Appl., 32(15):11173–11194, 2020. doi: 10.1007/S00521-019-04627-6. 553 URL https://doi.org/10.1007/s00521-019-04627-6. 554 Saurabh Verma and Zhi-Li Zhang. Learning universal graph neural network embeddings with aid of 555 transfer learning. arXiv: Learning, 2019. URL https://api.semanticscholar.org/ 556 CorpusID:208310129. 558 Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. 559 Solomon. Dynamic graph CNN for learning on point clouds. ACM Trans. Graph., 38(5):146:1-146:12, 2019. doi: 10.1145/3326362. URL https://doi.org/10.1145/3326362. 561 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural 562 networks? In 7th International Conference on Learning Representations, ICLR 2019, New 563 Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/forum?id= 564 ryGs6iA5Km. 565 566 Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, 567 568 Australia, August 10-13, 2015, pp. 1365-1374, 2015. doi: 10.1145/2783258.2783417. URL https://doi.org/10.1145/2783258.2783417. 569 570 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure 571 Leskovec. Hierarchical graph representation learning with differentiable pooling. In Ad-572 vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-573 tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 574 4805-4815, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/ 575 e77dbaf6759253c7c6d0efc5690369c7-Abstract.html. 576 Wentao Zhao, Qitian Wu, Chenxiao Yang, and Junchi Yan. Graphglow: Universal and generaliz-577 able structure learning for graph neural networks. In Proceedings of the 29th ACM SIGKDD 578 Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, 579 August 6-10, 2023, pp. 3525-3536, 2023. doi: 10.1145/3580305.3599373. URL https: 580 //doi.org/10.1145/3580305.3599373. 581 Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Trans-582 fer learning of graph neural networks with ego-graph information maximization. In Ad-583 vances in Neural Information Processing Systems 34: Annual Conference on Neural In-584 formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 585 1766-1779, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/ 586 Odd6049f5fa537d41753be6d37859430-Abstract.html. 588 589
- 592
- 593

594 A APPENDIX

A.1 CODE

The code used is available at: https://github.com/GraphsAI/tl-graphs-label

A.2 GRID SEARCH PARAMETERS

Table 9 presents the parameters used to classify the graphs in vector form, selected with attention to the nature of the problem. The vectors represent sparse structures, and the datasets used are of limited size. During joint training, a weight is applied to the data to emphasize the influence of certain samples on model learning. In this context, *k*-NN and RFC prove most suitable, while SVM and MLP are less effective. The choice of parameters for the latter models reflects a delicate balance between avoiding complete overfitting on high-weight data and maintaining generalization capability. With these parameters, we achieve good performance on both joint and individual datasets.

609	Model	Teste	Alignment Cycles K	
610	I Numer Nutshing (I NIN)	Num. of Neighbors	5, 7, 9	2
611	κ -mearest meignbors (κ -mm)	Weights	distance	2
612		Num. of Estimators	100, 150, 200	
613	Random Forest (RFC)	Criterion	gini, entropy, log loss	2
614		Min. samples split	2.3	
615		Hidden size	32	
616	MultiLayer Perceptron (MLP)	Learning rate	0.01	1
617		Epochs	50	
618		Kernel	rbf	
619	Support Vector Machines (SVM)	С	10	1
621		γ	(1 / number of features)	

Table 9: Tested parameters for classifiers

A.3 DATASETS

Table 10 provides a summary of the characteristics of the datasets used in this study. All datasets are publicly available. For our experiments, we use the datasets available (Ivanov et al., 2019) in the PyTorch-Geometric library (Fey & Lenssen, 2019), a popular research and development framework in the field of deep learning on graphs.

	Datasets			
	DD	MUTAG	REDDIT-BINARY	
Туре	Chemical	Chemical	Social networks	
Num. of Classes	2	2	2	
Num. of Classes per Node	89	7	565	
Num. of Graphs	1178	188	2000	
Avg. Number of Nodes	284.32	17.93	429.63	
Avg. Number of Edges	715.66	19.79	497.75	
Tal	ole 10: Datas	set details		

648 A.4 ALIGNMENT ANALYSIS OF THE ABLATION STUDIES

La Fig. 5 illustrates the index alignment in our ablation studies. The absence of mirroring in the dis-tribution disrupts the uniformity of index alignment, impacting the REDDIT-B dataset as well. This results in less consistent matches, often characterized by distant and less informative associations. Notably, on the left side of the figure, the mirrored MUTAG dataset (MUTAG-M) demonstrates more coherent alignments. In contrast, the right side reveals a negative point from REDDIT-BINARY be-ing matched with a strongly positive component from MUTAG. This misalignment diminishes the informational value, adversely affecting predictive performance on individual datasets and hindering transfer of knowledge between them, ultimately leading to a drop in overall classification accuracy.

Figure 5: Alignment between DD and REDDIT-BINARY respect MUTAG with k-NN.

A.5 COMPLETE TABLE OF ACCURACY ON THE JOINT DATASET

The Tables 11, 12, 13, 14 show the complete results of the joint dataset, providing more detail than the partial analysis in the paper. Columns represent test datasets, while the rows represent reference datasets used to align the others prior to merging. This illustrates how the alignment process influences the performance across the datasets.

		TEST DATASETS						TEST DATASETS		
		DD	MUTAG-M	REDDIT-B				DD	MUTAG-M	REDDIT-B
ET	DD	$\textbf{78.9} \pm \textbf{2.1}$	79.8 ± 5.9	79.5 ± 2.3	-	REF. IASET	DD	$\textbf{78.7} \pm \textbf{2.7}$	82.4 ± 5.1	83.6 ± 2.7
M SE	IUTAG-M	77.4 ± 2.7	$\textbf{82.7} \pm \textbf{5.3}$	79.9 ± 2.1			MUTAG-M	78.0 ± 3.3	$\textbf{85.3} \pm \textbf{3.2}$	81.6 ± 3.4
	REDDIT-B	77.8 ± 3.0	82.2 ± 5.6	$\textbf{80.8} \pm \textbf{3.4}$	_	DAJ	REDDIT-B	78.1 ± 2.3	81.2 ± 5.1	$\textbf{84.1} \pm \textbf{2.5}$

Table 11: k-NN model

DD 78.0 ± 4.4 79.2 ± 10.2 80.9 ± 2.4 MUTAG-M REDDIT-B MUTAG-M REDDIT-B MUTAG-M 78.3 ± 4.7 83.4 ± 5.3 78.9 ± 2.5 REDDIT-B 76.3 ± 3.4 80.9 ± 8.3 81.0 ± 2.8

Table 13: MLP model

Table 12: RFC model

		TEST DATASETS				
		DD	MUTAG-M	REDDIT-B		
ET	DD	$\textbf{80.2} \pm \textbf{3.3}$	$\textbf{79.33} \pm \textbf{8.7}$	80.3 ± 2.9		
REI	MUTAG-M	78.5 ± 2.8	77.3 ± 8.3	77.2 ± 2.9		
LAD	REDDIT-B	77.9 ± 3.9	78.4 ± 9.7	$\textbf{81.2} \pm \textbf{2.6}$		

Table 14: SVM model