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Abstract

Node labels for graphs are usually generated us-
ing an automated process, or crowd-sourced from
human users. This opens up avenues for malicious
users to compromise the training labels, making it
unwise to blindly rely on them. While robustness
against noisy labels is an active area of research,
there are only a handful of papers in the literature
that address this for graph-based data. Even more
so, the effects of adversarial label perturbations
are sparsely studied. A recent work revealed that
the entire literature on label poisoning for GNNs
is plagued by serious evaluation pitfalls and
showed how existing attacks render ineffective
post fixing these shortcomings. In this work, we
introduce two new simple yet effective attacks that
are significantly stronger (up to ∼ 8%) than the
previous strongest attack. Our work demonstrates
the need for more robust defense mechanisms, es-
pecially considering the transferability of our at-
tacks, where a strategy devised for one model can
effectively contaminate numerous other models.

1. Introduction
Graph Neural Networks (GNNs) have emerged as a pow-
erful tool to learn from graph-structured data. From so-
cial network analysis and recommendation systems, to bio-
informatics and traffic prediction, their wide-ranging ap-
plications highlight their importance (Wu et al., 2019b;
Akhondzadeh et al., 2023). Consequently, we need to under-
stand their robustness, especially if we aim to integrate them
in safety-critical domains. There is a large body of work
showing that GNNs are susceptible to feature and structure
perturbations, which can significantly degrade their perfor-
mance (see e.g. surveys by Sun et al. (2018), Chen et al.
(2020), and Jin et al. (2021)). These vulnerabilities expose
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them to potential adversarial attacks, thereby compromising
the integrity of their outputs.

Among the various attack vectors, label poisoning poses a
distinct threat. In many real-world scenarios, labels for train-
ing data are often generated through crowd-sourcing or other
non-expert sources. For example, in a federated learning
setting where multiple peers collaboratively train a shared
model, any peer may submit potentially poisoned labels.
Similarly, models are often trained on data scraped from the
internet without careful quality control. This opens up an
avenue for attackers to insert poisoned labels, thereby manip-
ulating the learning process of GNNs. For illustration pur-
poses, we compute the optimal label flipping attack for the
GCN model (Kipf & Welling, 2017) on a tiny version of the
Cora-ML dataset by exhaustively enumerating all possible
label flips ( subsection A.1). We observe that only a single
adversarial label flip can drop GCN’s test performance from
81.27 (5.64) to 64.36 (6.26), a staggering drop of ∼17%.

We will show that similar results hold in general – across
all datasets and models, a relatively few flips are enough
to significantly affect performance. Despite its potential
impact, label poisoning for GNNs has been relatively under-
explored in the research community, leaving a critical gap
in our understanding of their robustness. While label poi-
soning is better understood for non-graph data (Biggio et al.,
2011; Jin et al., 2021), graphs come with unique challenges
due to label sparsity and the interdependence between nodes.
Recently, Lingam et al. (2023a) have identified severe falla-
cies in the evaluation setup used by existing label poisoning
attacks, and showed how existing attacks are much weaker
than claimed after fixing these shortcomings.

In this work, we propose two simple, yet highly effective,
families of attacks that stem from different approximations
of the (NP-hard) bi-level optimization problem associated
with label poisoning. Our two strategies, each with different
advantages, rely on linear surrogates and meta learning
respectively. These attacks are significantly stronger than
previous ones, affecting both vanilla and noise-aware mod-
els. This demonstrates the urgent need for more robust
defense mechanisms, especially considering the transfer-
ability of our attacks, where a strategy devised for one model
can effectively contaminate numerous other models.
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2. Setup: Threat model and existing attacks
We focus on label poisoning attacks for semi-supervised
node classification. The adversary can perturb the labels of
a small fraction of training nodes, keeping the features and
the structure unperturbed.

Problem setting. We are given a graph represented by
its |V| × |V| adjacency matrix A and its |V| × D feature
matrix X , where V is the set of nodes. The D-dimensional
features can be discrete or continuous, and the graph can be
directed, undirected, weighted or unweighted. We represent
the ground-truth labels as one-hot encoded row vectors in a
matrix Y ∈ {0, 1}|V|×C where C is the number of classes.
We denote with Yl and Yu the labels corresponding to the
subset of training (labeled) nodes Vl and the test (unlabeled)
nodes Vu. Given A,X,Yl we learn the parameters θ∗ of
a model f(θ), e.g. a GNN, by minimizing some loss L
(usually cross-entropy).

Threat model. The goal of the attacker is to perturb the la-
bels Yl of a small fraction of training nodes Vl to reduce the
overall performance on the test nodes Vu. We assume that
the attacker has complete knowledge of A and X and is not
allowed to change them. We consider two settings where
the attacker knows: (i) all ground-truth labels Y , or (ii) only
the ground-truth for the training nodes Yl and just the pre-
dictions Ỹu for the test nodes (deferred to subsection A.6).
The first setting corresponds to the worst-cases scenario and
is important for understanding the intrinsic robustness of
our models, regardless of whether it is feasible to execute
such an attack in practice. Extensions where the attacker has
partial knowledge of A,X,Y or Ỹ are straightforward and
left for future work. We can write down the label poisoning
attack as the following bi-level optimization problem:

Ŷ ∗
l = argmax

Ŷl

L(θ∗;A,X,Yu)

s.t. θ∗ = argmin
θ

L(θ;A,X, Ŷl),

∥Yl − Ŷl∥0 ≤ 2ϵ|Vl|
(1)

where Ŷl denotes the poisoned training labels, ϵ ∈ (0, 1) is
the perturbation budget, and ϵ|Vl| is the maximum number
of labels that can be flipped.

The inner problem corresponds to training a model with
potentially poisoned training nodes, while the outer problem
maximizes the loss on the test nodes, given the optimal
parameters θ∗. Optimally solving Equation 1, or often even
just the inner problem itself, is intractable (NP-hard) in
general. Next, we briefly describe both heuristic-based and
learning-based attacks that currently exist in the literature.
In section 3 we describe our approach.

Heuristic-based attacks. The random label-flipping attack

(RND) randomly selects a subset of training nodes within
the budget, and then randomly selects incorrect labels for
each selected node. The degree-based label-flipping attack
(DEG) selects the highest degree nodes given a budget, and
then again randomly selects incorrect labels. As we will
show in section 4 even these simple baselines can outper-
form some prior attacks under a fair evaluation.

Learning-based attacks. All previous attacks approxi-
mately solve Equation 1 by using a fixed surrogate model.
They all replace the inner problem with a closed-form so-
lution, but differ in how they tackle the outer problem. The
poisoned labels are then applied to a target model.
Liu et al. (2019) propose a gradient-based label propagation
attack (LP) for graph-based semi-supervised learning (G-
SSL) models. Note that this attack was primarily designed
for binary-class datasets that are i.i.d in nature, with G-SSL
methods applied on top. Nonetheless, it can be adapted to
our graph setting. LP replaces the inner optimization in
Equation 1 with the closed-form solution of label propaga-
tion. They replace the loss in the outer problem with an
expectation over learnable Bernoulli variables that model
the probability of flipping the label of a given node. They
optimize this new loss using a reparametrization trick and
gradient descent.
Zhang et al. (2020) build on top of the LP attack and
propose LAFAK (LFK) that replaces the inner optimiza-
tion in Equation 1 with a regression-based closed-form
solution of a linearized GCN. They remove the non-
linearities in a 2-layer GCN (Kipf & Welling, 2017):
SOFTMAX(Â RELU(ÂXθ1) θ2) → SOFTMAX(Â2Xθ),
where Â is the symmetric normalized adjacency matrix,
and θ1 and θ2 are reparameterized into a single matrix
θ ∈ RD. Here, the (implicit) surrogate model is SGC (Wu
et al., 2019a). Next, they replace the cross-entropy loss
with a least squares loss, using regression to perform clas-
sification. That is, θ∗ = argminθ∥X̂lθ − ŷl∥22 + λ∥θ∥22,
where ŷl ∈ {−1,+1}|Vl| is the vector of (potentially poi-
soned) binary training labels, X̂ = Â2X are the diffused
features, (·)l select the subset of rows corresponding to train-
ing nodes, and λ is the regularization strength. Now, θ∗ =

(X̂T
l X̂l + λI)−1X̂T

l ŷl. Similar to LP, they substitute the
non-differentiable parts of the outer problem with continu-
ous surrogates and use a gradient descent-based optimizer.

Liu et al. (2022) propose the maximum gradient attack
(MG) based on label propagation. Unlike LP which uses a
similarity matrix that is constructed by applying a Gaussian
kernel to the feature matrix, MG proposes multiple ways to
construct a propagation matrix Ā (e.g., PageRank matrix,
higher-order adjacency matrix). Then, they greedily select
the top nodes within the budget with the highest gradient
w.r.t. the outer loss, and set their label to the max false class.

Binary vs. multi-class. A big limitation of LFK and LP is
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that they only support binary labels. Thus, for multi-class
datasets they consider only the subset of the graph whose
nodes belong to the two most frequent classes, restricting
their attack to flips among these two classes. Note, this
restriction is only for the attack phase, during evaluation
the entire (multi-class) graph is used. This mismatch may
be sub-optimal. Moreover, this binary approach may limit
the maximum perturbation budget. In subsection A.5 we
discuss the issue in detail and propose a minor baseline
extension to alleviate it.

Discussion. All these attacks have shortcomings. The LP at-
tack was primarily built for G-SSL datasets that do not
contain a graph, limiting its efficacy on message-passing
based GNNs. LFK relies on several continuous surrogates
to enable gradient flow. These approximations, along with
only being able to handle binary classes, hurt its perfor-
mance. MG’s greedy approach can be myopic. While these
existing label attacks claim severe degradation in GNNs
performance with minimal label perturbations, Lingam et al.
(2023a) identified serious flaws in their evaluation setup,
and proposed a new evaluation scheme. Existing label poi-
soning attacks for GNNs are not as effective as they claim
under the corrected evaluation setup.

3. Label poisoning attacks
Motivated by the results in (Lingam et al., 2023a) where pre-
vious attacks are not as effective as claimed, we design new
attacks. We propose two different approximation strategies
to solve the bi-level poisoning problem in Equation 1 that
rely on: (i) linear surrogate models and (ii) meta learning.

3.1. Linear surrogate attack

We start by replacing the inner optimization problem with a
linear surrogate for which we can obtain the optimal weights
θ∗ in closed-form. We explore two different variants. First,
similar to Zhang et al. (2020) we use an SGC (Wu et al.,
2019a) surrogate which is equivalent to linearizing a vanilla
2-layer GCN (Kipf & Welling, 2017). We use SGC, since
despite its simplicity it shows similar performance to its
non-linear counterpart across datasets. Second, we use the
Neural Tangent Kernel (NTK) for an infinitely-wide GCN
(Sabanayagam et al., 2022). We use the NTK since it is
theoretically well-founded and it has been show to capture
the behavior of its finite-width counterpart.

In both cases, unlike Zhang et al. (2020) which only support
binary labels, we replace the inner problem with θ∗ =

argminθ∥X̂lθ − Ŷl∥22 + λ∥θ∥22. In this multi-output ridge
regression problem, θ ∈ RD×C , we regress against the one-
hot labels Ŷl, thereby supporting mutli-class problems. For
the SGC variant X̂ = Â2X , and for the NTK variant X̂ is
the kernel matrix derived by Sabanayagam et al. (2022)(see

subsection A.3 for more detail). The closed-form solution
is readily obtained as θ∗ = X̃lŶl where X̃ = (X̂T X̂ +

λI)−1X̂T is a constant that can be pre-computed once1

for each dataset. Now, we rewrite the surrogate variant of
Equation 1 as the following mixed-integer linear program
(MILP):

min
H∈{0,1}n×C , b∈{0,1}n

L(Yu, Ỹu) (2a)

Ŷl = b⊙H + (1N − b)⊙ Yl (2b)
H ̸= Yl (2c)

Ỹu = X̂uX̃lŶl (2d)
H1C = 1N (2e)

bT1N ≤ ϵN (2f)

where H and b are binary variables, ⊙ is the Hadamard
(elementwise) product, N = |Vl| is the number of train-
ing nodes, and 1N is the all-ones vector of size N . Here,
Equation 2b and Equation 2c construct the final (poisoned)
labels, Equation 2d computes the predictions Ỹu for the
test nodes, Equation 2e enforces a one-hot encoding, and
Equation 2f enforces the budget constraint. We explore
several variants for the loss in Equation 2a. One choice is
L(Yu, Ỹu) = sum(Yu ⊙ Ỹu) which is equivalent to mini-
mizing the predicted “probability” for the true class. The
benefit of this loss is that it is linear in Yu and Ỹu. Al-
ternatively, we can compute the most likely label for each
node, by computing the argmax over the rows of Ỹu. This
requires additional auxiliary binary variables to encode the
argmax, making it inherently less scalable (see subsec-
tion A.6 for a more detailed discussion).

The MILP problem in Equation 2 finds the optimal subset
of nodes to perturb (via b) and which labels to perturb them
to (via H). We also explore another variant where H is
now fixed, e.g. we always choose to perturb to the false
label with the highest probability as predicted by a clean
model (see subsection A.4 for details). We call the first
variant SGC and the second SGC-BIN. For SGC-BIN we
only have to find the optimal subset of nodes which should
be significantly easier. In fact, we have the following result.

Proposition 3.1. For a fixed H the optimal b in prob-
lem Equation 2 can be obtained by returning the subset
of nodes corresponding to the smallest ϵN elements of an
N -dimensional vector c, where the n-th element of c is com-
puted as cn =

∑
ij QinPnjRij where Q = X̂uX̃l,P =

Yl −H and R = Yu.

See subsection A.4 for a proof. Intuitively, when H is
fixed we can rewrite the MILP in a canonical form as

1We use numerically stable algorithms to compute X̃ without
explicitly computing the matrix inverse. For very large datasets
we can also compute approximations using iterative solvers.



Rethinking Label Poisoning for GNNs: Pitfalls and Attacks

minb∈{0,1}N cT b subject to bT1N ≤ ϵN where c is a con-
stant, which can be efficiently solved by returning the ϵN
smallest (negative) elements in c.

3.2. Meta attacks

For the second family of attacks we take an orthogonal ap-
proach where we directly optimize the poisoned labels Ŷl

via gradient descent. Since Equation 1 is a bi-level prob-
lem we need to differentiate through the inner optimization.
Here, unlike the previous attack the inner problem is w.r.t.
the actual target model (e.g. the non-linear GCN) which is
itself trained with gradient descent. Therefore, we resort to
computing meta gradients by unrolling the inner optimiza-
tion for a fixed number of epochs and differentiating through
it. Unrolled optimization is common in the meta learning
literature, where the goal is e.g. to learn the optimal hyper-
parameters (or the structure) of a model. Intuitively, one can
think of Ŷl as “hyper-parameters” to be optimized for the
inner problem. We explore three different ways (standard,
fixed, expanded) to parametrize the poisoned labels.

Standard meta attack. We first initialize the free parameter
matrix H̃ ∈ RN×C to learn the log-probability of flipping
to a given target label for each training node. We obtain
H by sampling proportional to the log-probabilities in H̃
using the Gumbel-softmax trick (Jang et al., 2016) on each
row. In the forward pass H̃ is “hard“ (one-hot encoding),
while using the softmax probabilities in the backward pass.
We also initialize a parameter vector b̃ ∈ RN with the goal
of learning which subset of nodes are a good candidate
for poisoning. To enforce the budget we apply soft-top-
k followed by k-subset-selection (Paulus et al., 2020) to
obtain b = topk(b̃). We construct the final poisoned labels:

Ŷl = b⊙H + (1− b)⊙ Yl (3)

We feed Ŷl into the inner optimization problem which we
train for a fixed number of epochs, and use meta-gradients
of b w.r.t. the outer loss for learning. During the forward
pass we used hard top-k for b, sampled proportional to
the respective soft-top-k scores which are used during the
backward pass.

Gumbel-softmax loss. The choice of loss function in the
outer problem can impact the attack performance. The loss
of interest is the 0-1 loss (i.e. test accuracy), which is non-
differentiable. There are several options to circumvent this
issue by constructing different approximations. The sim-
plest idea is to just use the cross-entropy loss (which is also
used in the inner problem) on the “soft” predictions Ỹl. An-
other approach which was shown to perform better for other
attacks (see e.g. (Mujkanovic et al., 2023)) is the margin
loss, where we minimize the margin between the true and
the most probable false class. We propose a third alternative
that exploits the Gumbel-Softmax trick (Jang et al., 2016).

Specifically, in the forward pass we sample hard predic-
tions from Ỹu using the Gumbel-Softmax reparametriza-
tion trick, while using the soft predictions for the back-
ward pass. That is for node i we sample a prediction via
onehot(argmaxc{gc + pic}) where gc ∼ Gumbel(0, 1)
and pic is the predicted probability for class c obtained from
the (i, c)-th entry of Ỹu. Given the one-hot encoded hard
predictions we can compute the accuracy via the Hadamard
product with the ground-truth Yu. We study the choice of
loss functions and their effects in subsection A.6, since our
newly proposed loss performs the best on average we use it
in the main experiments.

Fixed and expanded meta attacks. We construct a fixed
one-hot H ∈ {0, 1}N×C similar to our SGC attack by
determining a fixed target label for each training node (the
most likely false class for a clean model).

Similar to the standard meta attack, we let b learn to select
the subset of poisoned labels, which now always flip to
a fixed target label. We discuss the expanded variant in
subsection A.2

Adaptive attacks. Our meta attacks are an instance of, so
called, adaptive attacks which were shown to be significantly
better than surrogate-based attacks. This bitter lesson was
learned for both computer vision (Carlini & Wagner, 2017;
Athalye et al., 2018; Tramèr et al., 2020) and GNNs (Mu-
jkanovic et al., 2023). As we will see in section 4, adaptive
attacks are not always superior for label poisoning.

3.3. Binary subset variants

We explore additional variants of all of our attacks, where
instead of allowing the attacker to select the poisoned labels
from the entire training set, we restrict their access only to a
subset of labels corresponding to two classes. We refer to
these as -BIN variants. This will allows us to compare the the
prior baselines on their own terms since they do not natively
support multi-class attacks. Similar to LAFAK we choose 2
candidate classes and always flip between them, e.g. the two
most frequent classes. As we will see, in practice the binary
variants perform surprisingly well, often even better than
their multi-class variants. This is interesting, since in theory
any feasible solution for the binary variants is also feasible
for the multi-class variants, i.e. multi-class is strictly more
powerful. Even the RND and DEG baselines benefit. We
investigate this phenomenon in more depth in section 4.

4. Experimental evaluation
We thoroughly compare our family of attacks against all
baselines. Additionally, for the first time, we evaluate
against two GNNs designed to be robust to perturbed
labels: CPGCN (Zhang et al., 2020) that introduces a
clustering-based loss, and RTGNN (Qian et al., 2023) that
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Figure 1. Different variants of the attacks that we propose. Binary variants are best on average.

uses self-reinforcement and consistency regularization. See
Appendix A for implementation, code, and tuning details.
In subsection A.6 we provide additional results, including
larger scale graphs and ablations. In all experiments, we
use the evaluation setting from (Lingam et al., 2023a).

Attack variants. We first study the different variants of our
attacks. We denote with -FIX and -BIN the fixed and binary
subset variants respectively. On Figure 1 we see that on
average linear surrogate attacks are better than meta-based
attacks. One reason is the fact that we are able to solve the
MILP in Equation 2 exactly (and efficiently for -FIX and
-BIN). That is, we find the optimal attack (given the surro-
gate), while the meta-based attacks suffer from optimization
issues. We also observe that binary variants are signifi-
cantly stronger than multi-class variants. Similar trends
hold for the baselines (see subsection A.6). This is sur-
prising since the solution space spanned by the multi-class
variants encompasses the binary space. To better understand
this strange phenomenon we design additional experiments.

Binary vs. multi-class. Our linear surrogate attacks use
regression to simulate classification which can be one cause
for the discrepancy between the binary and multi-class per-
formance. To study this we compute the optimal attacks and
compare models trained with least squares vs. cross-entropy.
Then we compute the difference in accuracy when we switch
from the regression setting (i.e. the attack’s surrogate) to the
classification setting (i.e. the defender’s actual evaluation)
denoted with ∆bin

acc for the binary attack (and ∆mul
acc for the

multi-class attack). In Table 1 we see that difference in ac-
curacy is negligible when using the binary attack, and quite
large for the multi-class attack, even growing with increased
budget ϵ. The loss shows no significant difference. Thus,
the binary variants perform better since they incur a smaller
“approximation gap” from regression to classification.

We also investigate the effect of hyper-parameter tuning.
In Table 2 we see that when we run the SGC attack on an
untuned model, the multi-class variant is better, however,
this is not true for the tuned model (see Figure 1). Both
findings indicate that the multi-class attacks are more likely
to overfit – to either the linear regression surrogate or the
untuned model – and thus are unable to find poisons that

generalize to the final tuned model used by the defender.
Attacks. For ease of comparison, we pick the best perform-
ing (on average) attack from each family that we introduced
in section 3, namely: SGC-BIN, NTK-BIN and META-BIN.
We compute the difference in test performance between
the clean-accuracy and poisoned accuracy for each budget
across attacks, and plot them on Figure 2. Higher difference
shows a stronger attack. We observe that all our attacks (in
solid), particularly SGC-BIN attack, outperform baseline
attacks with maximum gains of up to ∼ 13%. We observe
similar trends across different models and datasets as we
show in subsection A.6.
CPGCN and RTGNN are two recent defenses that have
been introduced to specifically tackle pairwise noise in la-
bels – where the flips between classes is fixed. Attacks like
LFK, LP, and the binary variants of our proposed attacks
can be viewed as (adversarial) pairwise noise. While RT-
GNN has claimed impressive recovery in performance with
pairwise noise rate of up to 40%, we find that our simple
attacks can cause a debilitating effect on its performance
with as low as 10% noise in labels.
Surprisingly the SGC-based attacks transfer well to a wide
range of vanilla GNNs as well as robust GNNs. More-
over, our simple attack formulation significantly outper-
forms prior attacks that use complicated routines. In con-
trast to the success of meta-gradient attacks for graph/feature
perturbations (Mujkanovic et al., 2023), we observe meta
attacks to be inferior on average.

On Figure 3 we show how many times a given attack wins,
i.e. leads to lowest accuracy, across all splits and all models
(for Cora-ML and Citeseer). Different variants of our linear
attacks win most often.

5. Related work
Adversarial attacks for machine learning (ML) have been
studied extensively in the literature (Jin et al., 2021; Sun
et al., 2018; Liang et al., 2022; Cinà et al., 2023). Attacks
can be broadly classified into evasion and poisoning. For
evasion attacks the model is fixed and the attacker perturbs
the input at test time. Poisoning attacks are conducted
before the model is trained, where the attacker can perturb
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Table 1. Difference in performance when training the model
with cross-entropy vs. least squares loss for Cora-ML. The
multi-class attack has significantly higher ∆ in accuracy, over-
fitting to the linear regression surrogate.

ϵ ∆bin
acc ∆mul

acc ∆bin
loss ∆mul

loss

5% -0.02 +1.79 +0.76 +0.78
10% +1.55 +3.76 +0.86 +0.88
15% +0.69 +6.01 +0.95 +0.96
20% -0.82 +8.36 +1.09 +1.06
30% -2.18 +9.88 +1.33 +1.27

Table 2. Accuracy comparison between multi-class and binary
SGC attacks without hyper-parameter tuning, on Cora-ML
and GCN. The multi-class attack is stronger here, but not after
tuning (see Figure 1) indicating overfitting.

ϵ multi binary
5% 74.49 (2.22) 75.01 (1.13)
10% 67.02 (2.43) 70.35 (1.80)
15% 59.10 (1.81) 65.50 (1.86)
20% 54.76 (1.46) 60.08 (3.04)
30% 47.76 (1.45) 45.78 (4.20)
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Figure 2. Our strongest attacks significantly outperform the baselines across various models.
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the training data with an intention to degrade model
performance or control model behavior. Poisoning is
significantly more challenging than evasion since it results
in a difficult bi-level optimization problem.

Robustness of GNNs. Currently, we have an extensive
body of work on the (adversarial) robustness of GNNs. The
overwhelming majority of studies focus on adversarial at-
tacks that add or remove a small fraction of edges and/or
perturb the node features. Consequently, various heuris-
tic defenses have been developed, as well as certificates
to provide provable robustness guarantees. For a detailed
overview of both attacks and defenses we recommend the
surveys by Sun et al. (2018), (Chen et al., 2020), and Jin et al.
(2021)). Label poisoning attacks, despite their importance

and potential impact, have been surprisingly sparse with
only a few exceptions (Liu et al., 2019; Zhang et al., 2020;
Liu et al., 2022). Interestingly, Mujkanovic et al. (2023)
recently showed that adaptive attacks – designed specifically
to circumvent a given target model or defense – are still able
to manipulate almost all models. In other words, we have
made significantly less progress than it initially appears to-
wards designing robust models. One conclusion from their
work is that we have to carefully think about the evaluation
setup to avoid overly optimistic results. This is echoed in
our pitfalls findings.

Poisoning attacks. Most poisoning attack assume that
the attacker has access to the training data, and position
the proposed attack as a worst-case robustness analysis.
Such attacks have been extensively studied for classical
ML models like SVMs (Biggio et al., 2011), as well as
recent (deep learning) models. Lots of different threat
models have been considered, including allowing arbitrary
changes (both features and labels), clean label poisoning
(only features), and poisoning only the labels, which is our
focus. See Jagielski et al. (2018) and Tian et al. (2022) for
a comprehensive overview.

6. Conclusion and discussion
Simple label poisoning attacks are surprisingly powerful
– all examined models, including those designed to be ro-
bust, are highly vulnerable. Interestingly, in our setting
linear surrogate attacks outperform adaptive meta attacks.
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Moreover, we observe that the binary variants where the
attacker’s threat model is limited outperform multi-class
variants, likely due to overfitting. Our findings highlight the
urgent need to further study poisoning attacks, as well as
develop robust defenses and certificates against them.

References
Akhondzadeh, M. S., Lingam, V., and Bojchevski, A. Prob-

ing graph representations. In Ruiz, F., Dy, J., and van de
Meent, J.-W. (eds.), Proceedings of The 26th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 206 of Proceedings of Machine Learn-
ing Research, pp. 11630–11649. PMLR, 25–27 Apr
2023. URL https://proceedings.mlr.press/
v206/akhondzadeh23a.html.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. ArXiv, abs/1907.10902, 2019.

Athalye, A., Carlini, N., and Wagner, D. A. Obfuscated
gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Con-
ference on Machine Learning, 2018.

Biggio, B., Nelson, B., and Laskov, P. Support vector ma-
chines under adversarial label noise. In Hsu, C.-N. and
Lee, W. S. (eds.), Proceedings of the Asian Conference on
Machine Learning, volume 20 of Proceedings of Machine
Learning Research, pp. 97–112, South Garden Hotels and
Resorts, Taoyuan, Taiwain, 14–15 Nov 2011. PMLR.
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A. Appendix
In subsection A.1, we provide additional details on the motivation experiment. In subsection A.2, we provide details on the
expanded meta attack. subsection A.3 contains details regarding our NTK-based attacks. In subsection A.4, we provide the
proof for the proposition introduced in the main paper and additional theoretical results on the MILP. In subsection A.6, we
provide additional experiments along with ablative studies to offer more insights. In subsection A.5, we provide details on
extending the baselines to multi-class. Finally, in subsection A.7, we provide details on dataset statistics. First, we discuss
how we tune the hyper-parameters in both the attack and the defense phase of our evaluation.

Attack phase tuning. For our LSA family of attacks, we tune the regularisation term λ in range [1e-3, 1e3] in logarithmic
steps. For the meta attacks, we set the learning rate for the inner and the outer routine optimization to 1e-2 and 1e-1. The
weight decay for both the optimizers is set to 5e-4. The number of inner optimization iterations (epochs) is set to 15.
Additional gains in the attack strength can be achieved by further fine-tuning these hyper-parameters. We refrain from doing
this due to lack of computational resources, since our evaluation setup is already quite expensive. For the learning-based
baseline attacks (LP, MG, LFK), we sweep through the hyper-parameters ranges suggested by the authors in their papers.

Defence phase tuning. Post obtaining the poisoned labels, we perform thorough hyper-parameter tuning of the target model.
Specifically, for the shared general hyper-parameters we sweep the following ranges: [0.1, 0.01, 0.05, 0.08] for the learning
rate, [0.0, 0.005, 0.0005, 0.00005] for weight decay, and [0.3, 0.5, 0.7] for dropout. We fix the hidden dimensions to 64,
again due to limited computation resources. Model specific hyper-parameters are tuned in the ranges suggested by the
respective papers. We empirically observe that higher learning rates allow models to recover better from label poisoning
attacks. We use Optuna (Akiba et al., 2019) to optimize the hyper-parameters search, and set the number of trials to 20. For
learning we use the Adam optimizer (Kingma & Ba, 2015), with 1000 maximum number of epochs and an early stopping
patience of 100. The majority of our experiments are run on an Nvidia k80 GPU with 24GB memory, and the remaining
experiments were run using an A100 GPU with 40GB of memory.

A.1. Motivation experiment

For the motivation experiment described in the main paper, we consider the Cora-ML dataset and sub-sample the largest-
connected-component with roughly 100 nodes. We refer to this dataset as Cora-ML-tiny. The final sampled dataset has
93 nodes and 3 classes. We create 10 different splits with training, validation and test set sizes equal to 19, 19 and 55
correspondingly. After exhaustively enumerating over all possible label flips with budget equal to 1, we find that a single
adversarial label flip can cause a staggering reduction of ∼17% in test performance.

A.2. Expanded meta attack

We first construct H ∈ {0, 1}N×C−1×C by enumerating over all possible false (one-hot) labels for every train node. Next,
we initialize a parameter matrix B ∈ RN×C−1×C from a uniform distribution. The idea is to learn B to select a good
subset of poisoned labels. To enforce the budget we apply soft-top-k followed by k-subset-selection (Paulus et al., 2020) on
top of vec(B) where vec(·) vectorizes the matrix.2 We construct the final poisoned labels as:

Ŷl =

C−1∑
c=0

(B ⊙H):,c,: + ((1−B)⊙ Yl):,c,: (4)

We feed Ŷl into the inner optimization problem which we train for a fixed number of epochs, and use meta-gradients of B
w.r.t. the outer loss for learning. During the forward pass we used hard top-k for B, sampled proportional to the respective
soft-top-k scores which are used during the backward pass.

A.3. NTK attack

Our variants of the NTK-based attacks are exactly the same as our SGC variants, except in how we construct X̂ . For the
NTK variants, X̂ corresponds to the NTK kernel matrix for a 2 layer ReLU GCN as derived by Sabanayagam et al. (2022)
(see Eq. 5 in their paper). Given X̂ we generate poisoned labels following the procedure in subsection 3.1.

2We place no additional constraints on B to ensure multiple flips are not selected for the same label. In practice this is not an issue,
since the optimizer learns to use the entire budget and select k-unique label flips.
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A.4. Additional detailed on the MILP formulation of our linear surrogate attacks

In one variation of our LSA attacks instead of learning H , we fix it to some preset target false labels. As we showed in
Theorem 3.1 the benefit of fixing H is that we can solve the MILP extremely efficiently. We provide the proof below. We
explore the following variants:

• H-MARGIN: we perturb labels to the false label with the highest probability as predicted by a clean model (trained
using ground truth training labels).

• H-RANDOM: we perturb labels to a randomly chosen false class.

• H-BINARY+: we sort all classes w.r.t their frequency in a descending order and pair consecutive classes to flip them.

We compare these variants for H in subsection A.6. In the main text we use H-MARGIN for the -FIX attacks.

Proof (Theorem 3.1). When H is fixed and L(Yu, Ỹu) = sum(Yu ⊙ Ỹu) we can rewrite the MILP in Equation 2 as

argmin
b∈{0,1}N

vec(Yu)
Tvec

(
X̂uX̃l (b⊙H + (1N − b)⊙ Yl)

)
bT1N ≤ ϵN (5)

We can simplify Equation 5 without changing the minimum by omitting the terms that do not depend on b:

argmin
b∈{0,1}N

vec(Yu)
Tvec

(
X̂uX̃l (b⊙ (H − Yl))

)
bT1N ≤ ϵN (6)

Now if we define Q = X̂uX̃l,P = Yl −H and R = Yu we can again rewrite as:

argmin
b∈{0,1}N

cT b bT1N ≤ ϵN

where the n-th element of c is computed as cn =
∑

ij QinPnjRij . Since the objective in Equation 6 equals
∑

ij

∑N
n=1(Qin ·

bn · Pnj · Rij), exchanging the order of the sums and taking bn outside we obtain
∑

n bncn = cT b. This problem is
equivalent to selecting up to ϵN elements from c such that their sum is minimized. The optimal solution is to select the ϵN
smallest negative elements.

Efficiently solving the original MILP. When H is fixed we can efficiently obtain the optimal solution from Theorem 3.1.
However, as well show next, even when we optimize over H (i.e. it is not fixed) we can still solve the MILP efficiently.
First we rewrite Equation 2 in the following equivalent form where we now only optimize over H , omitting b.

H∗ = argmin
H∈{0,1}N×C ,

sum(Yu ⊙ X̂uX̃lH) (7)

H1C = 1N

∥H − Yl∥1 ≤ ϵ2N

We multiple by 2 in the budget constraint since H and Yl differ in either 0 or 2 entries in each row.

We will show that relaxing H from {0, 1}N×C to [0, 1]N×C in Equation 7 still results in an integral (i.e. binary) solution.
Therefore, we can solve the MILP by solving the corresponding relaxed LP.

Proposition A.1. The optimal solution of Equation 7 is integral, i.e. H∗ ∈ {0, 1}N×C , when relaxing the MILP to an LP
such that H ∈ [0, 1]N×C .

Proof. Let M = N · C. We can rewrite Equation 7 in the following canonical form

min
x∈{0,1}2·M

cTx

Ax = b

Gx ≤ h
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where A = [IN , . . . , IN︸ ︷︷ ︸
C times

,O], IN is the identify matrix, O is an N × M [zero matrix, b = 1N is the ones vector,

G =

−IM −IM
IM −IM
0M 1M

, 0M is the zeros vector, and h = [−vec(Yl), vec(Yl), ϵ2N ]. Here, Ax = b implements the one-hot

constraint, while Gx ≤ h implements the L1-norm budget constraint, where we have twice the number of variables to
encode the absolute value. Since b and h are integral (because Yl is one-hot encoded), to show that the optimal solution is
integral we only need to show that A and G are totally unimodular. Since the identity matrix IN is totally unimodular, the
result directly follows given the fact that if T is totally unimodular then so are −T ,T T , [T , I], and [T ,−T ].

A.5. Extending the baselines to multi-class

As a consequence of the binary-class approach, the baselines might have a limit on the maximum perturbation budget. For
example, in the default (previously-used, non-CV) evaluation setting for the Cora-ML dataset the candidate set of potential
flips is of size at most 20% since Cora-ML has 7 classes and the two most frequent classes span up to 20% of the training set
depending on the split. Therefore, LAFAK and LPATTACK by default cannot accommodate higher budgets. To enable this,
while not deviating from the original design of the attack, we propose a minor extension. We first exhaust the 20% budget
by perturbing labels of the two most frequent classes and then we fix these perturbed labels. For the remaining budget, we
perturb the clean labels, but by restricting the attack scope to a candidate set consisting of the next two most frequent classes.
This process is repeated until the budget is completely exhausted. The multi-class setting can be handled better, however, we
restrain from such adaptations to remain true to the original design of the attack. This also means that for the 20% budget, in
the previous evaluation setting, LAFAK and LPATTACK become equivalent and deterministic because all the labels of the
nodes in the candidate set are flipped to their counterpart.

A.6. Additional experiments

A.6.1. ADDITIONAL EXPERIMENTS ON STRONGEST ATTACKS

To extend our main paper analysis on strongest attacks, we provide additional experimental results for our strongest attacks
( SGC-BIN and META-BIN) on several datasets and models. We plot the results in Figure 6. Our findings from the main
paper that our attacks significantly outperform previous attacks still hold.

A.6.2. SCALING OUR ATTACKS TO LARGER GRAPHS AND GRAPHS WITH LARGER NUMBER OF CLASSES

To further study the efficacy of our proposed attacks, we extend our analysis to two additional datasets. Specifically, we
evaluate on the CoraFull dataset (Bojchevski & Günnemann, 2017) that contains 70 output classes, and the OGBN-ArXiv
dataset (Hu et al., 2020) – a medium sized graph with ∼ 169K nodes. Following Lingam et al. (2023b), we apply a
dimensionality reduction on the node features of CoraFull using PCA (top 500 dimensions). The statistics for all 5 datasets
are tabulated in Table 7.

Larger number of classes. Since the number of classes for CoraFull is relatively higher compared to the other datasets,
the choice of how we fix H can be potentially more impactful. Therefore, we compare the three variants outlined in
subsection A.4 against the baselines. We can infer from Table 3 that our attacks outperforms existing attacks, and that the
-BINARY+ variant is the best on average. These results signify that our attacks also scale well to datasets with larger number
of classes.

Table 3. Comparing different attacks on the CoraFull dataset. The strategy for how to initialize H can impact the attack performance. The
-MARGIN and -BINARY+ variants outperform -RANDOM.

ϵ H-MARGIN H-BINARY+ H-RANDOM DEG RND LP MG
5% 56.14±0.53 55.96±0.61 57.41±0.52 55.70±0.42 57.01±0.45 57.38±0.26 56.19±0.53

10% 51.27±0.54 50.22±0.84 54.49±0.50 54.02±0.62 55.21±0.59 53.52±0.27 52.15±0.48

15% 46.31±0.57 43.99±0.27 51.67±0.69 52.86±0.66 54.74±0.73 49.66±0.12 47.58±0.53

20% 41.47±0.28 38.10±0.54 48.30±0.93 51.53±0.71 53.56±0.52 49.08±0.08 43.02±0.56

30% 33.29±0.68 27.92±0.30 40.93±1.60 48.56±0.86 51.29±0.75 49.10±0.10 31.71±0.08
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Table 4. Comparing different attacks on OGBN-ArXiv. Our SGC-BINattack
also scales to large graphs, and still outperforms existing attacks by a signifi-
cant margin. The LFKattack, with its current implementation, could not be
executed because of TLE (Time Limit Exceeded) error.

ϵ SGC-BIN RND DEG LP MG LFK
1% 64.31 67.14 66.56 66.15 67.21 TLE
3% 62.17 67.09 66.36 60.56 66.69 TLE
5% 48.20 66.90 66.12 55.62 66.72 TLE

Table 5. Evaluation of the extended variant of our meta
attack on a GCN model for different datasets.

ϵ CoraML Citeseer Pubmed
5% 80.68±1.65 70.62±1.31 76.15±1.34

10% 79.57±1.86 68.85±0.73 73.20±1.97

15% 77.76±1.30 66.96±1.80 69.02±3.60

20% 75.34±1.74 64.24±3.03 61.28±3.86

30% 71.73±2.13 60.08±3.41 50.51±6.71

Table 6. The effect of loss function on META-BIN attack’s performance on the Cora-ML dataset. The proposed Gumbel-softmax loss
function outperforms the regular cross-entropy loss and previously proposed margin loss.

ϵ Cross Entropy Loss Margin Loss Gumbel-softmax Loss
5% 78.51 (2.18) 79.25 (1.68) 79.80 (2.12)

10% 75.96 (1.39) 75.27 (1.93) 73.35 (2.34)
15% 67.78 (1.81) 68.75 (3.20) 65.81 (3.30)
20% 63.36 (3.56) 63.88 (2.90) 61.60 (3.37)
30% 56.13 (3.05) 56.17 (2.74) 54.53 (2.28)

Larger graphs. Next, we study the medium-sized OGBN-ArXiv dataset to test scalability to larger graphs. Since the
OGBN-ArXiv dataset contains large number of training nodes, we evaluate the attacks on budget ranges {1%, 3%, 5%}.
We also use the default splits since the data is chronologically split. In Table 4 we see that our proposed attack, SGC-BIN,
outperforms existing attacks.

A.6.3. CONFUSION MATRIX ANALYSIS

To analyse how the test node predictions are affected by the strongest baseline attack (LFK) and our strongest proposed attack
(SGC-BIN), we plot the confusion matrices for the 15% budget in Figure 4. Even though both LFK and SGC-BIN poison
the training nodes belonging to the same two classes (class 2 and class 4), after the SGC-BIN attack the model more
consistently confuses the test predictions for these two classes.

Figure 4. Confusion matrices for test set for a GCN model poisoned with the LFK (left) and SGC-BIN (right) attacks using a 15%
poisoning budget on the Cora-ML dataset.

A.6.4. EFFECT OF LOSS FUNCTION

We proposed a new Gumbel-Softmax based loss function in the main paper. To study the effect of loss function on attack
performance, we perform an ablative study by varying the loss function for the META-BINattack and tabulate the results
in Table 6. We observe that the proposed loss function performs better in general.
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Figure 5. Evaluating our attacks under the two different threat models given access to: ground-truth test labels vs. only test predictions.
Our attacks outperform the baselines even without access to ground-truth test labels.

A.6.5. EXTENDED META ATTACK

In Table 5 we evaluate the extended variant of our meta attack. Overall, we can conclude that this variant is weaker compared
to the other meta variants (and our surrogate attacks) while still outperforming some of the baselines. In any case, we include
these results for completeness.

A.6.6. ATTACKING WITHOUT ACCESS TO GROUND-TRUTH TEST LABELS

In our main paper, we described a second threat model, where the ground truth labels are only available for training nodes
and only the predictions are available for test nodes (no ground-truth labels). We evaluate our strongest attacks SGC-
BIN and META-BIN in this setting and plot the results on Figure 5. We observe that the performance of our attacks in this
setting is close to the worst-case setting where the attacker knows the test ground-truth labels. Especially for SGC-BIN there
is almost no difference between using the ground-truth labels vs. the predictions. Additionally, our attacks that use
predictions also outperform the baselines that use ground-truth labels.

A.7. Dataset statistics

In Table 7, we tabulate dataset statistics. We additionally include the train/val/test split statistics for the default and the
proposed CV setting. Note that in the CV setting, the test accuracy is measured over all the remaining unlabeled nodes, and
the train and val set have the same size.

Table 7. Dataset statistics.
Dataset Nodes Features Classes Default Train/Val/Test CV Train/Val/Test

Cora-ML 2,810 2,879 7 140 / 500 / 1000 140 / 140 / 2530
Citeseer 2,110 3,703 6 120 / 500 / 1000 120 / 120 / 1870
Pubmed 19717 500 3 60 / 500 / 1000 60 / 60 / 19597
CoraFull 18800 500 70 - 1400 / 1400 / 16000

OGBN-ArXiv 169343 128 40 90941 / 29799 / 48603 90941 / 29799 / 48603
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Figure 6. Our strongest attacks significantly outperform the baselines across various models and datasets.


