
HybridGS: High-Efficiency Gaussian Splatting Data Compression using
Dual-Channel Sparse Representation and Point Cloud Encoder

Qi Yang 1 Le Yang 2 Geert Van Der Auwera 3 Zhu Li 1

Abstract

Most existing 3D Gaussian Splatting (3DGS)
compression schemes focus on producing com-
pact 3DGS representation via implicit data em-
bedding. They have long encoding and decoding
times and highly customized data format, mak-
ing it difficult for widespread deployment. This
paper presents a new 3DGS compression frame-
work called HybridGS, which takes advantage of
both compact generation and standardized point
cloud data encoding. HybridGS first generates
compact and explicit 3DGS data. A dual-channel
sparse representation is introduced to supervise
the primitive position and feature bit depth. It
then utilizes a canonical point cloud encoder to
carry out further data compression and form stan-
dard output bitstreams. A simple and effective
rate control scheme is proposed to pivot the in-
terpretable data compression scheme. HybridGS
does not include any modules aimed at improv-
ing 3DGS quality during generation. But experi-
ment results show that it still provides comparable
reconstruction performance against state-of-the-
art methods, with evidently faster encoding and
decoding speed. The code is publicly available
at https://github.com/Qi-Yangsjtu/
HybridGS.

1. Introduction
3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) exhibits
exceptional capabilities in 3D scene reconstruction, over-
coming limitations that previously hindered the practical
deployment of real-time radiance field rendering methods.

1School of Science and Engineering, University of Missouri-
Kansas City, Kansas, US 2Electrical and Computer Engineer-
ing, University of Canterbury, Christchurch, New Zealand
3Qualcomm, San Diego, US. Correspondence to: Qi Yang
<qiyang@umkc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Multiview
Image

Compact
Representation Bitrate Synthesized

View

Training

Different Data Format
Complex Neural Network

Encoding Decoding

Multiview
Image

Explicit,
Compact

Representation
Bitrate Synthesized

View

Training

Sparse
Representation

Encoding Decoding

Point Cloud Codec

Highly Customized
Processing

Standardized Point
Cloud Data Format

Standardized Point Cloud
Compression Processing

Slow

Fast

Compatible Various
Standard Codec

Current
Strategy

Proposed
Strategy

Figure 1. Existing generative compression frameworks and the
proposed HybridGS.

However, due to the use of the explicit data format and prim-
itive densification strategy, 3DGS has a huge data volume,
which is challenging for storage and transmission. 3DGS
compression has attracted considerable attention from both
industry and academia, which is also the focus of this paper.

In the recent 148-th Moving Picture Expert Group (MPEG)
meeting (Liao et al., 2024c), experts from Video Coding
(WG4) and Coding of 3D Graphics and Haptics (WG7)
reached two consensuses. 1) The generation process of
3DGS has significant room for optimization such as us-
ing less primitive, since 3DGS is surjective: two or more
distinctly different 3DGS samples may correspond to per-
ceptually close content and quality. This direction will be
pursued by WG4 to achieve the compact 3DGS represen-
tation, where the input and output can be ground-truth and
synthetic views with 3DGS or its variants as intermediate
results. 2) Vanilla 3DGS shares the same data format with
3D point clouds. It is reasonable to extend existing point
cloud encoders such as the Geometry-based Point Cloud
Compression (GPCC) to support the compression of 3DGS
data. WG7 suggested that in this case, both the input and
output should be 3DGS data. We shall refer to the above
two approaches as generative compression methods and
traditional compression methods.

In literature, most research efforts have been put into gener-
ative compression methods and already achieved impressive
compression ratios (Chen et al., 2024b; Liu et al., 2024;
Niedermayr et al., 2024; Fan et al., 2024). Meanwhile, tra-
ditional compression methods have also been considered
in some work (Yang et al., 2024; Huang et al., 2025; Chen

1

https://github.com/Qi-Yangsjtu/HybridGS
https://github.com/Qi-Yangsjtu/HybridGS

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

et al., 2024a). There are significant pros and cons associated
with both types of techniques. Specifically, with generative
compression, superior compression efficiency without no-
ticeable distortion is realizable. However, current generative
compression methods normally embed 3DGS primitive in-
formation into neural networks or other highly customized
data formats, resulting in long encoding and decoding times.
In some scenes, the coding latency could become longer
than 1 min (see Table 2). Empirical video-on-demand and
video live streaming studies indicate that 1s is probably the
limit for the user’s flow of thought to stay uninterrupted,
and 10s is the limit for keeping the user’s attention focused
on the dialogue (Nielsen, 1994). Besides, to obtain good
reconstruction quality over different datasets, some methods
need handcrafted selection of hyperparameters or incorpo-
rate extra optimization for 3DGS generation, occasionally
resulting in compressed data with quality even far exceeding
that of the original 3DGS. From the quality evaluation per-
spective (Yang et al., 2022), the impact of compression then
becomes difficult to quantify. These factors make generative
compression methods challenging to be standardized and
widely deployed (see the upper part of Figure 1).

In contrast, traditional compression methods work with well-
defined explicit data formats. With appropriate algorith-
mic optimizations, real-time encoding and decoding can be
achieved, as exemplified by video codecs such as H.264
and HEVC (Sullivan et al., 2012). This suggests that ex-
plicit data representations are more conducive to high-speed
processing, standardization, and practical deployment. How-
ever, due to the huge volume of 3DGS data, the achievable
bitrates under lossless compression may still be too large.
Lossy compression thus is more attractive but we need to re-
duce the possible noticeable distortion due to indispensable
operations such as quantization (Zaghetto et al., 2024).

With the above observations in mind, we present in this
paper a novel hybrid 3DGS compression framework, Hy-
bridGS, that takes advantage of both the generative and
traditional compression approaches, as shown in the lower
part of Figure 1. It leverages the generative compression to
produce explicit and compact 3DGS data, which have the
same format as point clouds and are then further compressed
using available point cloud encoders. This design has the
distinct feature of being able to accelerate both the encoding
and decoding processes, typically ranging between 0s and
2s. Thanks to the surjective nature of 3DGS, the operations
of lossy processing inherent in the downstream point cloud
encoder such as quantization can be taken into account in the
generation of 3DGS. This property results in the potential
for mitigating the distortion while keeping the feasibility of
effectively predicting the quality of the compressed 3DGS.

Correspondingly, HybridGS is implemented using a two-
step architecture. In the first step, we pre-define the Bit

Depth (BD) of the primitive position and attributes. A dual-
channel sparse 3DGS generation scheme is proposed to
obtain the desired explicit and compact 3DGS. The dual-
channel sparsity here refers to the sparsity of the primitive at-
tributes and position distributions. For compressible 3DGS
attributes (i.e., color and rotation), we use the “learnable
low-dimensional latent feature + trainable lightweight de-
coder” to reconstruct them. This can be considered as a
generalized Principal Component Analysis (PCA), leading
to the desired low-rank representation of compressible at-
tributes with reduced information loss. We integrate a newly
proposed differentiable quantization method (Ye et al., 2024)
into 3DGS generation to quantize the learnable primitive
features. For primitive position, we propose a Learnable
Quantizer-based Method (LQM) to generate unique primi-
tives with integer coordinates. Here, owing to the alignment
between scene and 3DGS scaling, position de-quantization
is not necessarily needed before rendering. The primitive
pruning proposed in (Fan et al., 2024) is used to control the
primitive number, resulting in two simple but effective rate
control strategies. In the second step, GPCC is adopted to
produce the standard output bitstream: we split 3DGS data
such that the primitive position is compressed in the Oc-
tree mode, while other attributes are compressed by RAHT
(De Queiroz & Chou, 2016) as normal point cloud attributes.

A significant advantage of the proposed HybridGS is its full
compatibility with canonical point cloud encoders, mean-
ing that existing achievements in point cloud compression
can be inherited and applied. Compared to state-of-the-art
(SOTA) generative compression methods, HybridGS ex-
hibits obviously faster encoding and decoding. To limit the
scope of this work and, more importantly, gain interpretabil-
ity when evaluating compression-related losses, HybridGS
is based on the original 3DGS implementation. We delib-
erately do not incorporate any methods to optimize 3DGS
generation and improve the reconstruction quality. As such,
the upper bound for the reconstruction quality of HybridGS
is the vanilla 3DGS. This also implies that optimizations
such as Mip-splatting (Yu et al., 2024) targeting 3DGS re-
construction can potentially be included in our method in
the future. Our contribution is summarized as follows.

• We develop a new 3DGS compression framework, Hy-
bridGS, which takes advantage of both the generative and
traditional compression methods.

• We propose a dual-channel sparse 3DGS generation
method. The lossy operations in the downstream encoder
are considered in the 3DGS generation process, reducing
the amount of distortion. Two effective rate control methods
are established based on the sparsification strategy.

• Extensive experiments show that HybridGS can provide
comparable reconstruction performance against generative
compression methods with greatly decreased encoding and

2

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

decoding time, as well as flexible rate control capability.

2. Preliminaries
In this section, we first summarize the requirement of using
point cloud encoders for 3DGS compression coding. Then,
two quantization methods for neural networks are presented.

2.1. 3DGS Encoding with Point Cloud Encoders

Point cloud encoders can be broadly categorized into two
classes, hand-crafted and learning-based. The hand-crafted
encoders are studied by MPEG WG7, which have two sub-
categories, Video-based Point Cloud Compression (VPCC)
and GPCC (Schwarz et al., 2019). VPCC uses existing video
codecs to compress the geometry and texture information
of a dense point cloud. This is achieved essentially by con-
verting the point cloud into a set of video sequences. GPCC
was initially designed to compress highly irregular sparse
point cloud samples by exploiting an octree-based encoding
strategy. The learning-based point cloud encoders are inves-
tigated under MPEG WG7 AI-PCC. UniFHiD (Pang et al.,
2024), which is based on SparseConv (Choy et al., 2019), is
selected as the study anchor.

Point cloud encoders require that the input data be in the
form of integers regardless of they representing geometry or
attributes. SparseConv requires point uniqueness: if dupli-
cated geometry points exist, current learning-based methods
will directly remove them. In summary, the requirements of
using point cloud encoders to compress 3DGS data are: 1)
explicit point-wise primitive description of dimensionality
n×(3+M), with n primitives, each having xyz coordinates
and M -channel features; 2) integer primitive position and
feature; and 3) unique primitive for geometrical positions.

2.2. Quantization

Uniform Quantizer For a learnable feature f in integers
and subject to lossless quantization with respect to N -bit
BD after training, the simplest is to use Uniform Quantiza-
tion (UQ) combined with Straight-Through Estimator (STE)
(Bengio et al., 2013). Quantization can be formulated as

qi =

⌊
(fi − fmin) × (2N − 1)

fmax − fmin
+

1

2

⌋
, ∀i ∈ 0, ..., S − 1, (1)

where S is the number of floating values, ⌊x⌋ is the floor
function, and fmax, fmin are the maximum and minimum
possible values. De-quantization is achieved using

ri =
qi × (fmax − fmin)

2N − 1
+ f

min
, ∀i ∈ 0, ..., S − 1. (2)

Considering that the floor function in Equation (1) is not
differentiable, STE is used for backpropagating the gradient
for training.

Robust Quantizer Recently, (Ye et al., 2024) presented

a Robust Quantizer (RQ) for neural network quantization
that can mitigate perturbation-induced distortion. It has two
steps: Perturbation injected Affine Transform for Quantiza-
tion (PAT-Q) and Denoising Affine Transform for Recon-
struction (DAT-R).

•PAT-Q: the quantization of a feature f is formulated as

q = A(f) + σ, A(f) =
f − fmin

fmax − fmin + ϵ
· (2N − 1),

σ = round(A(f)) − A(f), σ ∈ [−0.5, 0.5].

σ is the perturbation due to UQ, ϵ is a small constant for
preventing division by zero. The introduction of σ avoids op-
erations such as clipping, which can degrade performance.

•DAT-R: the reconstruction (de-quantization) is cast into
a ridge regression problem. The regularization factor λ is
introduced, and the de-quantization is realized via solving

min
a,b

1

2M
||a · q + b − f ||2 +

λ

2
a
2
, (3)

where M is the dimension of f . Taking the partial deriva-
tives with respect to a and b, and setting the results to zero
yield the stationary points, which are

a =
Covfq

V arq + λ
, b = f̄ − aq̄, (4)

where ¯ , Cov, and V ar represent the averaging, covari-
ance, and variance operators. Finally, the reconstruction of
the learnable feature is calculated using

r = R(q) = a · q + b = f̄ +
Covfq

V arq + λ
(q − q̄). (5)

Equation (5) reflects that the reconstructed feature has a
smooth component f̄ as well as a non-smooth component
Covfq

V arq+λ (q−q̄). By suppressing the non-smooth term, which
contributes to training instability, RQ can better balance be-
tween the feature fidelity and quantization noise by adjusting
λ. This could facilitate quantization-aware training.

3. Method
The framework of HybridGS is depicted in Figure 2. It has
two parts: a dual-channel sparse representation module to
generate explicit compact 3DGS, and a downstream point
cloud encoder to realize encoding and rate control.

3.1. Dual-Channel Sparse Representation

3.1.1. SPARSE REPRESENTATION OF ATTRIBUTES

For 3DGS, the sparse representation of attributes can be
realized in two aspects: feature channels and precision of
feature values. Feature dimensionality reduction is intro-
duced to sparsify feature channels, while quantization is
applied to decrease the representation precision of the fea-
ture value.

• Feature Channels. Besides the geometry position, vanilla
3DGS has 56 feature channels: 3 channels for color Direct

3

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Primitive Position

Color Feature
(DC and SH)

Rotation Feature
Decoder

Color Latent Feature

Opacity

Scaling

Rotation Latent Feature Vanilla
3DGS

Rendering Loss

Ground Truth
Image

LQM

HybridGS
learnable Parameters

Sparsification

Point Cloud Encoder Bitstream: 010100...

Training

Quantization

Compact and Explicit
3DGS File

....

vs

Rendering

Figure 2. Framework of HybridGS.

Current (DC) components, 45 channels for color Spheri-
cal Harmonic (SH) coefficients, 1 channel for opacity, 3
channels for scaling, and 4 channels for rotation. Exclud-
ing opacity, PCA can be used to partition the remaining
55 features into compressible and compression-vulnerable
ones. The concentration of the feature variance in a limited
number of principal vectors suggests that a certain feature
is compressible. However, using PCA directly in an offline
manner leads to loss of high-frequency details and degra-
dation in terms of reconstruction PSNR, as summarized in
Appendix A.2. This indicates a training-based approach for
representing compressible features should be pursued.

Noting that PCA works as a linear autoencoder (AE) (Lind-
holm et al., 2022), we employ low-dimensional latent fea-
tures f and a lightweight decoder D (Girish et al., 2025),
a MultiLayer Perceptron (MLP) with one hidden layer, to
reconstruct the high-dimensional compressive attributes. In
other words, we only constrain the latent feature dimen-
sionality to realize low-rank approximation of features (see
Appendix A.2). Mathematically, we have

Fr = Dr(fr) ∈ R
n×4

, fr ∈ R
n×kr , kr < 4, (6)

where Fr denotes the 3DGS primitive rotation feature to be
compressed. fr and Dr are the corresponding latent feature
and decoder.

PCA analysis indicates that color and rotation attributes
are compressible features, while scaling is a compression-
vulnerable feature especially for complex samples such as
those in the “bicycle” dataset. Therefore, in HybridGS, we
use low-dimensional latent features for color and rotation
reconstruction (see Equation (6)). Moreover, for color DC
and SH, they share the latent feature and the decoder.

•Feature Precision. For vanilla 3DGS, all primitive at-
tributes are in floating-point numbers. Quantization is thus
required before the downstream point cloud encoder can
be used. Taking quantization into account in 3DGS gen-
eration can significantly reduce quality degradation than
using it as a post-processing step (see Appendix A.7). We

propose a robust training method inspired by neural network
quantization.

PAT-Q DAT-Rf
q

r

a b

Explicit 3DGS
file

Meta data

Rendering

Loss

Bitrate

Encoder

Decoder

q
a,b

rVanilla 3DGS
file

Transmission
f: Primitive Feature
q: Quantized Feature
r: Reconstructed Feature
a/b: Reconstruction Parameters

Figure 3. Robust Quantization of 3DGS features.

For the latent representations of color and rotation, opac-
ity, and scaling, we initialize a quantizer for each attribute.
Using RQ as an example, the training process is shown in
Figure 3. The reconstructed features r are used to calcu-
late the rendering loss, while the quantized features q are
used for compression and transmission. For RQ, two addi-
tional meta data, a and b are required to de-quantize q and
compute r. A similar technique can be established when
employing UQ. We only need to save different meta data for
the de-quantization operation. After quantization, we can
calculate the number of bits per primitive. Assume that the
channel numbers for latent color and rotation features are kc
and kr, and the BD for position, color, opacity, scaling, and
rotation attributes are BDp, BDc, BDo, BDs, and BDr.
The number of bits per primitive is thus

Pbit = 3 · (BDp + BDs) + kc · BDc + BDo + kr · BDr. (7)

3.1.2. PRIMITIVE SPARSIFICATION

Primitive positions determine the skeleton of 3DGS. More
primitives should lead to more detailed texture informa-
tion but larger data volume. However, (Fan et al., 2024)
showed that approximately 60% of the primitives contribute
marginally to the reconstruction quality. An improperly
large number of primitives can even undermine the repre-

4

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

sentational capacity of some primitives (see Appendix A.5).
Hence, the sparsification of primitives needs to control prim-
itive number via pruning, and it also has to satisfy the re-
quirement of position uniqueness as specified in Section 2.1.

Primitive position can adopt the same quantization method
(UQ or RQ) as other attributes. Here, we additionally design
a LQM to generate integer position that can be rendered di-
rectly without de-quantization. This corresponds to that the
quantized position can illustrate the same content through
adjusting the camera position accordingly.

Define the coordinate range as −2N−1 + 1 <= x, y, z <=
2N−1 − 1. Therefore, for different N , LQM will gener-
ate 3DGS samples with different scales. LQM consists of
four steps as shown in the upper part of Figure 4: 3DGS
warm-up, 3DGS translation and scaling, primitive position
decomposition, and primitive uniqueness and pruning. A
naı̈ve 3DGS is first generated after warm-up training based
on the vanilla 3DGS. Then, we shift the 3DGS sample to
ensure that its Bounding Box (Bbox) center is at the origin.
Next, we rescale the 3DGS sample according to the space
size circled by BD, in which the primitive position, 3D co-
variance matrix, and camera position all need to be adjusted
(see Appendix A.3). After that, we round the positions coor-
dinates to integers and decompose these integer positions as
the inner products of two vectors, namely the basis vector
and coding vector (see Appendix A.4). Considering that
the basis vector is fixed as [2N−2, 2N−3, ..., 4, 2, 1] given a
certain BD, the training reduces to optimizing the coding
vector consists of -1, 0, and 1. In each training epoch, we
use the basis vector and coding vector to recover the integer
position and calculate the loss after rendering.

Training End: T

Training Start Top Quality: Ttop

Densification

Densification
End: Td

...

Uniqueness

Uniqueness End: Tu

...

Pruning

Pruning
Start: Tp

 :Densification Interval
 :Uniqueness Interval
 :Pruning Interval

3DGS Warm-Up

Multiview
Image

Naive 3DGS

Primitive
Position

Basis
Vector

Coding
Vector

Translated & Scaled 3DGS Primitive Position
Uniqueness and Pruning

Quantized
Primitive Position Inner Product

Quantized
Position3DGS Translation & Scaling

Step 1

Step 2

Step 3

Bit Depth

Step 4

LQM

Integer
Decomposition

Figure 4. Scheme of LQM.
For uniqueness and pruning, a naı̈ve approach is to adopt
one time node after 3DGS converges to a stable good perfor-
mance, where uniqueness and pruning are performed, and
then fix the primitive position until the optimization of other
attributes pivoting new geometry skeleton is finished. How-
ever, in some cases, pruning and uniqueness may remove a
few essential primitives, resulting in substantial degradation
of the 3DGS quality.

To avoid this, we propose a progressive integer primitive
uniqueness and pruning training strategy, which can re-
duce quality fluctuations and satisfy the rate control for
random access. Given the entire training time T , four time

nodes are set during 3DGS training: the densification end
point Td, the uniqueness end point Tu, the pruning start
point Tp, and the top quality point Ttop. We expect the
best reconstruction quality to be reached after densifica-
tion. We then gradually decrease the number of primitives
by removing a certain percentage of less important primi-
tives. The uniqueness ensures that the final 3DGS do not
have geometrically duplicated primitive. Therefore, we set
Td < Ttop < Tp < Tu ≈ T . The uniqueness operation
should be less frequent than the densification in order to pre-
vent immediately reverting the densification result, and we
keep the primitive that has the largest size based on scaling
attributes. An example of primitive sparsification training is
shown in the lower part of Figure 4. Intuitively, Ttop is the
theoretically optimal in terms of reconstruction performance
for stopping the training. But after operations like pruning,
the quality of 3DGS may not degrade much and in some
cases, could even exhibit an improvement.

3.2. High-Efficiency Coding

The generated 3DGS samples consist of several parts: an
explicit and compact point cloud file, meta data for de-
quantization, and two small MLPs for latent features. Meta
data and MLPs take several kB, which can be directly stored
or transmitted, while the compression is performed on the
point cloud file. Considering that GPCC is more stable and
effective for point cloud geometry and attribute compression,
we use it as the output encoder.

3.2.1. IMPLEMENTATION

Vanilla GPCC supports two types of input, “xyzr” or
“xyzrgb”. “r” stands for reflectance and “rgb” denotes the
color. Both reflectance and color compression are based on
RAHT or Predlift. At the implementation level, there are
thus two feasible approaches. 1) We may improve the inter-
face of GPCC to allow 3DGS data as input. Primitive po-
sition then inherits the compression method of point cloud,
while using RAHT/Predlift to compress other primitive at-
tributes. Since the compression of different channels can be
treated independently, parallel computing methods can be
utilized to accelerate encoding and decoding (e.g., OpenMP
(Chandra, 2001)). 2) Considering that the first method needs
to modify the internal codebase, another strategy is to di-
vide the generated samples into multiple subsamples with
“xyza” or “xyza1a2a3”, while “a” represents one channel of
primitive attributes. The GPCC can be then used directly.
After decoding, we may merge the subsamples together to
recover the 3DGS file.

3.2.2. RATE CONTROL

Rate control is important for practical applications. How-
ever, with the current generative compression methods,

5

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

which use the rate-distortion (RD) optimization as the loss
function, the final data rate is difficult to predict. On the
contrary, the proposed HybridGS is easier to realize accurate
rate control. The bit number of the explicit 3DGS gener-
ated in the first step is easy to calculate (see (7)), since we
know the primitive number and the assigned bits for each
primitive. For the downstream compression, using lossless
compression as an example, the compression ratio of the cur-
rent point cloud encoder is relatively stable. For GPCC, the
lossless compression ratio is around 3-4× for dense point
clouds, 2× for large-scale sparse point clouds. Therefore,
we can perform rate control by controlling the size of the
explicit 3DGS with downstream compression ratios.

Intuitively, there are three factors that can influence the size
of the explicit 3DGS: feature channels, feature BD, and
primitive number. For a given scene, we do not know the
vanilla data volume before Ttop, which indicates that we
need to change these parameters to satisfy the bandwidth
requirement after Ttop. Changing feature channels during
training results in unstable results and extremely expensive
training costs, while changing feature BD and primitive
number are more promising for rate control. Therefore, we
propose two rate control methods here. We only consider
lossless mode of the point cloud encoder for simplicity.

• Method 1 - Controlling Primitive Number: the progres-
sive pruning proposed in Section 3.1.2 can realize the soft
primitive number control. Given the bandwidth limitation
as B, the rate control can be formulated as the following
optimization problem:

max
n

Q(GS),

s.t., R(GS) ≤ B and R(GS) =
n · Pbit

L
,

(8)

where GS represents the explicit 3DGS samples, n repre-
sents the target primitive number, Q(·) and R(·) represent
the quality and bitstream of GS, and L is the lossless com-
pression ratio of the downstream encoder. The number of
primitives in Ttop is ntop, the number of primitive need
to be pruned is np = ntop − n. Based on the training
epoch and the pruning interval Ip, the pruning is performed
Fp =

T−Tp

Ip
times. Each time N

′
=

Np

Fp
primitives are

pruned until the training ends.

• Method 2 - Adapting Feature BD: reducing the feature
BD can also lower the bitrate but this is more complex theo-
retically. In Section 3.1.1, we have demonstrated that fea-
tures show heterogeneous compressibility. The bandwidth
savings are ideally derived from the feature that contributes
the least to distortion. Accurate modeling of the distortion
sensitivity across different features in 3DGS is currently ab-
sent. Hence, we focus on the most straightforward method:
bandwidth savings are distributed evenly among all features
except for the primitive position as (9), where ∆pbit is the
bits needed to be reduced for each primitive, and ∆ is the
BD reduced for each features. A progressive BD reduc-

tion is proposed to mitigate pronounced quality fluctuations:
the difference between target BDtar and initial BDini is
∆ = BDini−BDtar. With disabling pruning, we gradually
reduce BDini with step size 1 until ∆ = 0.

max
∆

Q(GS),

s.t., R(GS) ≤ B and R(GS) =
N · (pbit − ∆pbit)

L
,

∆pbit = ∆ · (kc + 1 + 3 + kr),

(9)

4. Experiment
4.1. Experiment Settings

Datasets: To comprehensively evaluate the performance
of the proposed methods and clearly illustrate the loss
caused by compression, we select five scenes from dif-
ferent datasets: “playroom” from deep blending (Hedman
et al., 2018), “train” from tanks&temples (Knapitsch et al.,
2017), ‘bicycle” and “room” from Mip-NeRF360 outdoor
and indoor scenes (Barron et al., 2022), and first frame of
“Dance dunhuang pair” (dance) from PKU-DyMVHumans
(Zheng et al., 2024). The partition of training and test im-
ages follows the same rule as for the vanilla 3DGS project.
The results of overall and other scenes in the above datasets
are given in Appendix A.8.

Comparison methods: We employ 3DGS as an anchor
method and compare both types of representative methods.
For generative compression methods, we select Scaffold-GS
(Lu et al., 2024), Compact3D (Lee et al., 2024), C3DGS
(Niedermayr et al., 2024), CompGS(ECCV) (Navaneet et al.,
2025), LightGaussian (Fan et al., 2024), Eagles (Girish et al.,
2025), HAC (Chen et al., 2024b), and CompGS(MM) (Liu
et al., 2024); for traditional compression methods, we select
GGSC (Yang et al., 2024) and HGSC (Huang et al., 2025).
The results of these methods are from their original paper
or official code.

Model Parameters: The BD of the primitive position and
other attributes are set to be 16. Training epochs are fixed
at 70, 000. Td, Tp, and Tu are set as 15, 000, 36, 000,
and 66, 000 epochs. We report the results of HybridGS
with kc = 3/6 and kr = 2 as for latent representation. RQ
(λ = 1e−2) is used to introduce quantization during training.
Other hyperparameters are shown in Appendix A.1. Over
the course of pruning, the explicit compact 3DGS will has
fewer primitives, resulting in a lower bitrate. We select the
samples in the 50, 000 and 70, 000 epochs as High and
Low (i.e., pruning 47% and 75% primitives) Rate (HR, LR)
points of HybridGS. We use the second implementation in
Section 3.2.1 with the “xyza” mode of the GPCC test model
v23 (WG7, 2023). The lossless octree and RAHT mode are
applied (see Appendix A.7 for results using other encoders).

6

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Table 1. Performance of HybridGS. “p” represents the pruning rate of LightGaussian, “λ” represents the RD loss weighting factor.
Dataset playroom train bicycle room dance

Type Metric PSNR SIZE (MB) PSNR SIZE (MB) PSNR SIZE (MB) PSNR SIZE (MB) PSNR SIZE (MB)
Anchor 3DGS 30.03 550.67 21.89 256.73 24.49 1443.84 31.55 370.14 39.83 41.34

Generative Compression

Scaffold-GS 30.62 63.00 22.15 66.00 24.50 248.00 31.93 133.00 39.97 7.28
Compact3D 30.65 36.86 21.69 35.52 24.83 59.19 30.61 32.86 39.59 4.23

Eagles 30.32 44.00 21.74 25.00 24.91 112.00 31.84 36.00 39.89 2.93
C3DGS 29.89 21.66 21.86 13.25 24.97 47.15 31.14 15.03 39.67 2.42

CompGS(ECCV) 30.35 10.00 21.78 12.00 25.07 29.00 31.13 9.00 39.82 1.89

LightGaussian p=0.66 28.36 35.64 21.50 17.17 24.51 94.65 30.75 24.32 39.05 2.90
p=0.9 28.15 10.61 20.94 5.21 23.95 28.10 30.25 7.27 36.86 0.91

HAC λ = 0.0005 30.84 6.86 22.73 12.26 25.00 44.07 31.89 8.23 39.20 0.45
λ = 0.004 30.63 3.95 22.53 7.98 24.81 26.99 31.44 5.54 36.89 0.27

CompGS
(MM)

λ = 0.001 30.11 6.31 22.08 8.06 24.74 22.09 30.90 8.99 37.43 2.84
λ = 0.005 28.98 4.89 21.78 6.21 24.43 14.62 30.35 7.16 35.35 2.69

Traditional Compression
GGSC HR 29.16 260.15 18.85 50.16 19.23 224.80 29.07 166.90 33.83 14.86

LR 27.30 132.24 16.64 19.30 18.31 106.36 26.42 96.03 33.42 8.30

HGSC HR 29.29 131.21 20.33 57.54 20.99 292.29 30.38 76.27 35.46 9.26
LR 28.83 96.82 19.99 41.79 20.54 223.26 29.48 57.61 34.59 7.21

Proposed

HybridGS
kc = 3, kr = 2

HR 29.89 12.15 21.26 4.19 24.08 22.88 29.52 6.43 39.25 1.04
LR 29.49 5.88 20.96 2.03 23.53 11.01 29.23 3.14 37.65 0.51

HybridGS
kc = 6, kr = 2

HR 29.89 16.08 21.49 5.63 24.10 30.21 29.75 8.28 39.31 1.32
LR 29.68 7.79 21.04 2.72 23.76 14.52 29.61 4.00 37.78 0.64

4.2. Experiment Results

4.2.1. QUANTITATIVE RESULTS

Table 1 reports the results of HybridGS and other SOTA
3DGS compression methods. We see that: 1) SOTA genera-
tive compression methods, e.g., HAC and CompGS(MM),
show impressive compression ratios, sometimes with even
better PSNR than vanilla 3DGS; 2) SOTA traditional com-
pression methods report significantly larger bitstreams than
generative compression methods at similar PSNR, e.g., for
“playroom”, CompGS(MM) reports 28.98 PSNR with 4.89
MB, while HGSC shows 28.83 PSNR with 96.82 MB.
Therefore, only using vanilla 3DGS output as the com-
pression target without modifying the generation process
cannot achieve a satisfactory bitstream size; 3) HybridGS
can realize a comparable compression ratio with the SOTA
generative compression methods with close PSNR, some-
times even better. For example, on “playroom”, HybridGS
HR has the same PSNR as C3DGS while having a smaller
size. On “dance”, HybridGS is better than CompGS(MM)
in all cases. HybridGS is better than LightGaussian ex-
cept “room”; 4) for HybridGS, increasing the dimension-
ality of the latent features can improve PSNR, at the cost
of a larger bitstream; 4) RD curves of HybridGS, HAC,
and CompGS(MM) on “dance” and “bicycle” are shown
in Figure 5. HAC reports a non-strictly monotonic curve
on “bicycle” caused by stochasticity, which lies in the ren-
dering nature of 3DGS itself. HybridGS shows slightly
higher PSNR than the upper bound on “dance”, which is
caused by the elimination of redundant primitives via prun-
ing. HybridGS does not outperform HAC in terms of the
RD curve, but it offers a notable improvement in encoding
and decoding speed, as reported in the next section.

Figure 5. RD curve.

4.2.2. CODING TIME

One of the advantages of HybridGS is faster encoding
and decoding. We use three SOTA methods, i.e., HAC
(λ = 0.0005), CompGS(MM) (λ = 0.001) and HGSC, as
benchmark techniques. LR and HR coding times of Hy-
bridGS with kc = 3, kr = 2 are tested, and the results of
“bicycle” and “dance” are shown in Table 2. We employ
serial encoding and decoding while recording the CPU com-
putation time for HybridGS with GPCC. Data I/O time is
excluded. The time for processing primitive position and
other attributes is presented separately for the HybridGS
LR case. We can see that the coding time of HybridGS is
obviously faster than the current SOTA methods. If paral-
lelization techniques are employed to accelerate the GPCC
encoder, real-time coding is possible for 3DGS, which is
extremely valuable for dynamic 3DGS streaming. We also
test de-quantization time tdeq and latent decoding time tmlp

as preprocessing before rendering. For “bicycle”, color tdeq
and tmlp are around 1s and 0.9s, while 0.6s and 0.001s for
rotation. For other attributes, the processing time can be
estimated proportionally.

4.2.3. RATE ALLOCATION

Table 3 provides a detailed explanation of bitrate distribu-
tion. Data in the parentheses denote the size before GPCC.
The primary position accounts for 10% of the bitstream,
while other attributes exhibit a bitstream roughly propor-
tional to their respective channel numbers. However, the
compression ratio of GPCC on position is larger than other
attributes, indicating that: 1) RAHT needs to be further
improved for 3DGS attributes, and 2) HybridGS generates
extremely compact attributes. The size of the latent feature
decoders is only related to the feature channels. The quan-
tized metadata, as well as the feature decoders, are very
small and can be ignored during rate control.

4.2.4. RATE CONTROL

Two different methods for performing rate control are pro-
posed in Section 3.2.2. Four rate points are chosen for “train”
and “dance” and the results are presented in Table 4. The

7

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Table 2. Coding time.
Method bicycle room

Enc/Dec (second)
HAC 85.03/80.09 17.04/15.90
CompGS(MM) 36.29/22.47 7.82/6.28
HGSC HR 132.32/72.13 35.65/16.45
HGSC LR 124.22/52.94 31.64/13.39
HybridGS HR 1.67/1.77 0.44/0.47
HybridGS LR 0.66/0.92 0.26/0.46

-position 0.09/0.08 0.03/0.04
-attribute 0.57/0.84 0.23/0.32

Table 3. Rate allocation of HybridGS.
Components bicycle dance
Total Size 22.88 MB 1.04 MB

-primitive number 1,286,284 56,490
-position 2.72MB (7.36) 0.16 MB (0.32)
-color (latent feature) 6.39 MB (7.36) 0.28 MB (0.32)
-opacity 2.40 MB (2.45) 0.11 MB (0.11)
-scaling 7.07 MB (7.36) 0.31 MB (0.32)
-rotation (latent feature) 4.30 MB (4.91) 0.18 MB (0.22)
-metadata 4 KB 4 KB
-color decoder weights 13 KB 13 KB
-rotation decoder weights 4 KB 4 KB

Table 4. Rate control of HybridGS.
Dataset train

Type Method 1 Method 2
Target Rate PSNR Real Rate PSNR Real Rate

4 MB 21.13 3.96 18.20 2.20
6 MB 21.60 5.82 21.54 5.15
8 MB 21.44 7.56 21.75 7.33
10 MB 21.54 8.59 21.75 9.86

dance
0.5 MB 37.40 0.54 * *
1 MB 38.99 1.06 38.80 0.77

1.5 MB 39.76 1.59 39.86 1.40
2 MB 39.90 2.07 39.96 1.95

lossless compression ratio L of GPCC in 3DGS takes values
within the range of 1.3 to 1.5 based on preliminary experi-
ments, we set L = 1.3 here. We see that: 1) in most cases,
method 1 demonstrates a more precise approximation to
the target bitrate compared to method 2; 2) “*” in “dance”:
method 2 means that we cannot achieve the target rate solely
by adapting BD. The primitive position rate is larger than
the target rate, resulting in attribute BDs reduced to 0; 3)
method 1 reports larger rate error for 10 MB of “train” than
other rates. The reason is that different primitive densities
will influence the lossless compression ratio. For GPCC,
the denser the point cloud, the higher the compression ratio.
An improvement of the proposed rate control strategy is to
first calculate the point density to obtain a more accurate
estimation of L; 4) L on 3DGS is lower than the traditional
point cloud. The geometric distribution of 3DGS is charac-
terized by local density, global sparsity, and the presence of
solid regions, distinguishing it from traditional dense point
clouds that are hollow with only surface representations.
There is a room to further optimize GPCC on 3DGS com-
pression. We also find after Tp, although we allow optimize
primitive position, LQM will not generate duplicated primi-
tive position at most cases because 3DGS is very sparse, so
uniqueness will not influence rate control methods proposed
in Section 3.2.2.

Table 5. HybridGS with different BDs and quantizers.
Dataset train

Type RQ UQ
Rate High Rate Low Rate High Rate Low Rate
BD PSNR SIZE PSNR SIZE PSNR SIZE PSNR SIZE
12 20.06 1.54 19.71 0.74 19.95 1.45 19.58 0.70
13 20.95 2.50 20.48 1.21 20.72 2.50 20.37 1.22
14 21.14 3.37 20.95 1.62 21.20 3.48 20.80 1.71
15 21.30 4.96 20.96 2.40 21.42 5.09 20.92 2.46
16 21.49 5.63 21.04 2.72 21.66 5.60 21.24 2.89

dance
12 39.23 0.84 37.58 0.41 39.32 0.84 37.69 0.41
13 39.28 0.99 37.59 0.48 39.35 0.93 37.59 0.45
14 39.50 1.16 37.86 0.56 39.33 1.14 37.92 0.56
15 39.43 1.20 37.91 0.58 39.49 1.25 37.93 0.61
16 39.31 1.32 37.78 0.64 39.35 1.37 37.85 0.66

4.2.5. INFLUENCE OF BD AND QUANTIZER

Table 5 reports the performance of HybridGS with different
BDs on “train” and “dance”. 12 to 16 BDs are tested with
kc = 3, kr = 2. We can see that: 1) with the increase of
BD, HybridGS generally presents better PSNR and larger
size; 2) for “train”, we can use BD larger than 16 to fur-
ther approach the upper bound; 3) based on “dance”, when
reaching a certain threshold, only increasing BD will not

improve PSNR. It indicates that selecting a proper BD can
facilitate saving bandwidth. For different quantizers, we
can see that: 1) for “train”, RQ reports higher PSNR un-
der low BD cases; 2) for “dance”, RQ and UQ have close
performance; 3) “train” is more challenging than “dance”,
therefore we believe that RQ is a more robust method for
complex content and low bitrate conditions.

5. Related Work
Our work is inspired by previous efforts in 3DGS compact
generation and 3DGS data compression. In this section,
we will first briefly introduce the achievement of 3DGS
compact generation in academia, then summarize the explo-
rations of 3DGS data compression within MPEG.

5.1. 3DGS Compact Generation

Multiple methods have been proposed to produce a more
compact 3DGS, in which additional constraints are injected
into the training process to affect and control data generation.
Considering that excessive primitive growth is one of the
main reasons for the huge data volume, CompGS(ECCV)
(Navaneet et al., 2025) and C3DGS (Niedermayr et al.,
2024) proposed using the codebook to restrict the number
of primitives during densification, which can be regarded as
the pioneer of the 3DGS compact representation. Scaffold-
GS (Lu et al., 2024) realized structured GS generation by
introducing MLP during training, in which data are implic-
itly stored in MLP and significantly reduced storage and
memory cost. Based on Scaffold-GS, HAC (Chen et al.,
2024b) proposed using multiresolution hash coding to train
a context model, which can realize approximately 60 × re-
duced storage. CompGS(MM) (Liu et al., 2024) shared a
close concept with Scaffold-GS, in which a group of anchor
primitives is selected to realize inter-primitive prediction.
They also formulated a rate-constrained optimization to bal-
ance the quality and bitrate. LightGaussian (Fan et al., 2024)
proposed a Gaussian pruning strategy, followed by a SH
distillation and vector quantization. Due to fewer primitives
and lower SH dimensions, LightGaussian realizes a 15 ×
reduction and 200+ FPS. ContextGS (Wang et al., 2024)
designed an autogressive model that encodes GS primitives
with multiple anchor levels, which achieved a higher com-
pression ratio than HAC. Based on these studies, MPEG
WG4 (Liao et al., 2024b) decided to add 3DGS to the work-

8

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

ing draft and standardize its compact generation method.
Several exploratory experiments are presented and discussed
in the 147-th MPEG meeting, such as performance analysis
of LightGaussian compression using neural network com-
pression (Kim et al., 2024) and 3DGS for light field video
transmission (Kawai & Nakagami, 2024). The industry held
an optimistic outlook on the practical applications of 3DGS,
advancing the standardization process of 3DGS compres-
sion and streaming.

5.2. 3D GS Data Compression

The vanilla 3DGS primitive consists of multiple attributes:
position, DC color, SH coefficients, opacity, scale, and ro-
tation. It can be regarded as a sparse point cloud with
high-dimension point features. Inspired by the point cloud
compression method, GGSC (Yang et al., 2024) is the first
traditional 3DGS compression benchmark, which is based
on graph signal processing and uses two branches to com-
press the primitive center and other attributes. At the same
time, MPEG WG7 established a joint EE with WG4 to ex-
plore how to make 3DGS compatible with the current 3D
data compression codec, such as GPCC (WG7, 2023), which
is the so-called traditional compression method. Some pre-
liminary experiments have been conducted base on current
GPCC codec. The proposal (Fujii et al., 2024) treated each
3DGS as a point cloud with attributes of opacity, size, quater-
nion, and SH coefficients for coding. They used Octree to
code the center and RAHT (De Queiroz & Chou, 2016) to
code other attributes. All attributes are quantized by being
multiplied by 1000 and then converted to an integer. The
conclusion is that the current GPCC implementation is not
effective enough to deal with GS attributes. To better ana-
lyze the reason, proposal (Zaghetto et al., 2024) explored the
influence of center quantization. The conclusion is that the
optimal quantization BD is around 14 to 18 BD correspond-
ing to different datasets: 16 to 18 BD for Mip-NeRF360
(Barron et al., 2022), 18 BD for Tanks&Temples (Knapitsch
et al., 2017), and 14 BD for Deep Blending (Hedman et al.,
2018). Compared with general point cloud samples used in
the PCC study, 3D GS samples require a higher BD. There-
fore, 3DGS center quantization introduces quite a large
distortion corresponding to the current PCC method.

Besides GPCC, Learning-based Point Cloud Compression
(LPCC) framework studied in MPEG AI-PCC (WG2 &
Requirements, 2024) should theoretically also be able to
handle 3DGS data. The requirement of adding radiance field
coding as a new section for MPEG AI has been proposed
(Liao et al., 2024a). SparseConv (Choy et al., 2019) is the
key technology used in the current SOTA LPCC framework,
such as PCGC (Wang et al., 2021) and SparsePCGC (Wang
et al., 2022). However, SparseConv requires that the spa-
tial coordinates be integers, and each spatial location must
contain only one primitive. Vanilla 3D GS allows multiple

primitives to occupy the same spatial location; therefore,
primitive uniqueness is a necessary step after quantization
before using the SOTA LPCC method. Based on the results
in Appendix A.7, it will incur severe quality loss. Other re-
lated topics were also studied: (Gao et al., 2024) compared
the 2D rendering loss and 3D reconstruction supervision
for 3D GS compression, they found 2D rendering loss is
more effective than point-wise point cloud quality metric
(i.e., point-to-point). Although SOTA point cloud metrics
(Meynet et al., 2020; Yang et al., 2022; Zhu et al., 2024;
Yang et al., 2023) have not been tested, it indicates that
3D GS requires specialized quality assessment studies with
respect to lossy compression.

Taking into account the above evidence, using the point
cloud codec to compress 3DGS data deserves commensurate
attention and technological improvement. Therefore, in this
paper, we solve the problem of 3DGS quantization and
primitive uniqueness, serving as a catalyst for new research
endeavors on 3DGS compression.

6. Conclusion
This paper presents a new 3DGS compression method Hy-
bridGS, which first generates an explicit and compact 3DGS
file and then uses canonical point cloud encoders to realize
high-efficient coding and flexible rate control. HybridGS
has dual-channel sparse representation during 3DGS gener-
ation, including feature dimensionality reduction, quantiza-
tion, and progressive primitive position control. HybridGS
reports comparable performance with SOTA methods and
faster coding and decoding, as well as demonstrating char-
acteristics of interpretability, compatibility, and alignment
with the demands of standardization.

Limitations: The optimal compression efficiency of Hy-
bridGS is lower than end-to-end generation compression
methods using RD loss (Liu et al., 2024) as supervision.

Future Work: HybridGS requires hyperparameters like
latent feature dimension and BD. An adaptive parameter
selection algorithm may help HybridGS achieve a better
quality and size tradeoff. For rate control, different from
reducing the BD and primitive pruning, decreasing the latent
feature dimension during 3DGS generation can lead to fea-
ture space collapse, as well as training a new decoder with
extra time. How to achieve smooth latent feature dimension
reduction without significantly affecting the rendering qual-
ity is thus a research topic worthy of investigation. Besides
2D rendering loss, explicit 3DGS generation might bene-
fit from new loss functions in 3D space such as Chamfer
distance to optimize primitive distribution to improve point
cloud encoder efficiency (Yang et al., 2023).

9

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Acknowledgments
This work is supported in part by an award from NSF
2148382, and a gift grant from Qualcomm.

Impact Statement
This paper presents work whose goal is to advance the field
of 3D Gaussian Splatting Compression and Machine Learn-
ing. There are many potential societal consequences of our
work, none which we feel must be specifically highlighted
here.

References
Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P.,

and Hedman, P. Mip-nerf 360: Unbounded anti-aliased
neural radiance fields. In Proc. IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition, pp. 5470–5479,
2022.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Chandra, R. Parallel Programming in OpenMP. Academic
Press, 2001.

Chen, Y., Wu, Q., Li, M., Lin, W., Harandi, M., and Cai,
J. Fast feedforward 3d gaussian splatting compression.
arXiv preprint arXiv:2410.08017, 2024a.

Chen, Y., Wu, Q., Lin, W., Harandi, M., and Cai, J. Hac:
Hash-grid assisted context for 3d gaussian splatting com-
pression. In European Conference on Computer Vision,
pp. 422–438. Springer, 2024b.

Choy, C., Gwak, J., and Savarese, S. 4d spatio-temporal con-
vnets: Minkowski convolutional neural networks. In Proc.
IEEE/CVF conf. Computer Vision and Pattern Recogni-
tion, pp. 3075–3084, 2019.

De Queiroz, R. L. and Chou, P. A. Compression of 3d point
clouds using a region-adaptive hierarchical transform.
IEEE Trans. Image Processing, 25(8):3947–3956, 2016.
doi: 10.1109/TIP.2016.2575005.

Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z., et al.
Lightgaussian: Unbounded 3d gaussian compression with
15x reduction and 200+ fps. Advances in neural informa-
tion processing systems, 37:140138–140158, 2024.

Fujii, D., Unno, K., Nonaka, K., and Kawamura, K. Pre-
liminary evaluation results of g-pcc for 3dgs contents.
ISO/IEC JTC 1/SC 29/WG 7 m68773, 2024.

Gao, X., Li, S., Li, H., Liao, Y., and Yu, L. Ee2: Comparison
of 2d rendering and 3d reconstruction supervision in 3dgs
compression. ISO/IEC JTC 1/SC 29/WG 4 m68849, 2024.

Girish, S., Gupta, K., and Shrivastava, A. Eagles: Efficient
accelerated 3d gaussians with lightweight encodings. In
European Conference on Computer Vision, pp. 54–71.
Springer, 2025.

Hedman, P., Philip, J., Price, T., Frahm, J.-M., Drettakis,
G., and Brostow, G. Deep blending for free-viewpoint
image-based rendering. ACM Trans. Graphics, 37(6):
1–15, 2018.

Huang, H., Huang, W., Yang, Q., Xu, Y., and Li, Z. A hier-
archical compression technique for 3d gaussian splatting
compression. In IEEE Int. Conf. Acoustics, Speech and
Signal Processing, pp. 1–5, 2025.

Kawai, W. and Nakagami, O. 3d gaussian splatting for light
field video transmission. ISO/IEC JTC 1/SC 29/WG 4
m68726, 2024.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. 3d
gaussian splatting for real-time radiance field rendering.
ACM Trans. Graph., 42(4):139–1, 2023.

Kim, D., Lee, J., Kim, J., Jeong, J., and Lee, G. Ee 2.2:per-
formance analysis of lightgaussian compression using
nnc. ISO/IEC JTC 1/SC 29/WG 4 m68771, 2024.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. Tanks
and temples: Benchmarking large-scale scene reconstruc-
tion. ACM Trans. Graphics, 36(4):1–13, 2017.

Lee, J. C., Rho, D., Sun, X., Ko, J. H., and Park, E. Com-
pact 3d gaussian representation for radiance field. In Proc.
IEEE/CVF Conf. Computer Vision and Pattern Recogni-
tion, pp. 21719–21728, 2024.

Liao, Y., Bang, G., and Tian, D. Candidate text for mpeg ai
tr. ISO/IEC JTC 1/SC 29/WG 2 m69362, 2024a.

Liao, Y., Bang, G., and Yu, L. Considerations of invr stan-
dardization project. ISO/IEC JTC 1/SC 29/WG 4 m68937,
2024b.

Liao, Y., Bang, G., and Zaghetto, A. Bog report on implicit
neural visual representation (invr). ISO/IEC JTC 1/SC
29/WG 4 m70552, 2024c.

Lindholm, A., Wahlström, N., Lindsten, F., and Schön, T. B.
Machine learning: a first course for engineers and scien-
tists. Cambridge University Press, 2022.

Liu, X., Wu, X., Zhang, P., Wang, S., Li, Z., and Kwong,
S. Compgs: Efficient 3d scene representation via com-
pressed gaussian splatting. In Proc. ACM Int. Conf. Mul-
timedia, pp. 2936–2944, 2024.

10

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Lu, T., Yu, M., Xu, L., Xiangli, Y., Wang, L., Lin, D., and
Dai, B. Scaffold-gs: Structured 3d gaussians for view-
adaptive rendering. In Proc. IEEE/CVF Conf. Computer
Vision and Pattern Recognition, pp. 20654–20664, 2024.

Meynet, G., Nehmé, Y., Digne, J., and Lavoué, G. Pcqm: A
full-reference quality metric for colored 3d point clouds.
In Int. Conf. Quality of Multimedia Experience, pp. 1–6,
2020. doi: 10.1109/QoMEX48832.2020.9123147.

Navaneet, K., Pourahmadi Meibodi, K., Abbasi Kooh-
payegani, S., and Pirsiavash, H. Compgs: Smaller and
faster gaussian splatting with vector quantization. In Eu-
ropean Conference on Computer Vision, pp. 330–349.
Springer, 2025.

Niedermayr, S., Stumpfegger, J., and Westermann, R. Com-
pressed 3d gaussian splatting for accelerated novel view
synthesis. In Proc. IEEE/CVF Conf. Computer Vision
and Pattern Recognition, pp. 10349–10358, 2024.

Nielsen, J. Usability engineering. Morgan Kaufmann, 1994.

Pang, J., Lodhi, M. A., Ahn, J., Huang, Y., Bhullar, G., and
Tian, D. [ai-gc][cfp-response] unifhid part 3: Interdigi-
tal’s answer to mpeg ai-pcc for track 2 geometry+attribute.
ISO/IEC JTC 1/SC 29/WG 7 m70285, 2024.

Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar,
P., Chou, P. A., Cohen, R. A., Krivokuća, M., Lasserre, S.,
Li, Z., Llach, J., Mammou, K., Mekuria, R., Nakagami,
O., Siahaan, E., Tabatabai, A., Tourapis, A. M., and Za-
kharchenko, V. Emerging mpeg standards for point cloud
compression. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 9(1):133–148, 2019. doi:
10.1109/JETCAS.2018.2885981.

Sullivan, G. J., Ohm, J.-R., Han, W.-J., and Wiegand, T.
Overview of the high efficiency video coding (hevc) stan-
dard. IEEE Trans. Circuits and Systems for Video Tech-
nology, 22(12):1649–1668, 2012.

Wang, J., Ding, D., Li, Z., and Ma, Z. Multiscale point cloud
geometry compression. In Data Compression Conference,
pp. 73–82, 2021. doi: 10.1109/DCC50243.2021.00015.

Wang, J., Ding, D., Li, Z., Feng, X., Cao, C., and Ma, Z.
Sparse tensor-based multiscale representation for point
cloud geometry compression. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 45(7):9055–9071, 2022.

Wang, Y., Li, Z., Guo, L., Yang, W., Kot, A., and Wen, B.
Contextgs: Compact 3d gaussian splatting with anchor
level context model. Advances in neural information
processing systems, 37:51532–51551, 2024.

WG2 and Requirements, M. T. Updated call for propos-
als for ai-based point cloud coding. ISO/IEC JTC 1/SC
29/WG 2 N396, 2024.

WG7. G-pcc test model v23. ISO/IEC JTC1/SC29/WG7
N00645, 2023.

Yang, Q., Ma, Z., Xu, Y., Li, Z., and Sun, J. Inferring
point cloud quality via graph similarity. IEEE Trans.
Pattern Analysis and Machine Intelligence, 44(6):3015–
3029, 2022. doi: 10.1109/TPAMI.2020.3047083.

Yang, Q., Zhang, Y., Chen, S., Xu, Y., Sun, J., and Ma,
Z. Mped: Quantifying point cloud distortion based on
multiscale potential energy discrepancy. IEEE Trans.
Pattern Analysis and Machine Intelligence, 45(5):6037–
6054, 2023. doi: 10.1109/TPAMI.2022.3213831.

Yang, Q., Yang, K., Xing, Y., Xu, Y., and Li, Z. A bench-
mark for gaussian splatting compression and quality as-
sessment study. In Proc. ACM Int. Conf. Multimedia in
Asia. Association for Computing Machinery, 2024. doi:
10.1145/3696409.3700172.

Ye, C., Chu, G., Liu, Y., Zhang, Y., Lew, L., and Howard, A.
Robust training of neural networks at arbitrary precision
and sparsity. arXiv preprint arXiv:2409.09245, 2024.

Yu, Z., Chen, A., Huang, B., Sattler, T., and Geiger, A.
Mip-splatting: Alias-free 3d gaussian splatting. In Proc.
IEEE/CVF Conf. Computer Vision and Pattern Recogni-
tion, pp. 19447–19456, 2024.

Zaghetto, A., Graziosi, D., and Tabatabai, A. 3dgs geometry
quantization. ISO/IEC JTC 1/SC 29/WG 7 m69034, 2024.

Zheng, X., Liao, L., Li, X., Jiao, J., Wang, R., Gao, F., Wang,
S., and Wang, R. Pku-dymvhumans: A multi-view video
benchmark for high-fidelity dynamic human modeling.
In Proc. IEEE/CVF Conf. Computer Vision and Pattern
Recognition, pp. 22530–22540, 2024.

Zhou, Q.-Y., Park, J., and Koltun, V. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

Zhu, L., Cheng, J., Wang, X., Su, H., Yang, H., Yuan, H.,
and Korhonen, J. 3dta: No-reference 3d point cloud qual-
ity assessment with twin attention. IEEE Trans. Multime-
dia, pp. 1–14, 2024. doi: 10.1109/TMM.2024.3407698.

11

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

A. Appendix
A.1. Model Parameters

For LQM, before generating the naı̈ve 3DGS, we first conduct outlier removal to clean the output of COLMAP, facilitating
the following 3DGS translation and scaling (see Appendix A.3). We use the function “remove statistical outlier” from
Open3D (Zhou et al., 2018) to realize outlier removal. Two parameters used in this function are set as “nb neighbors =
50” and “std ratio = 2.0” as suggested by the official documents. The first t1 = 7, 500 epochs are used for 3DGS warm
up, followed by 3DGS translation and scaling. After 3DGS primitive position decomposition, Adam optimizer is used
for coding vector training with initial learning rate of 1× 10−5. The initial learning rate of the scaling attribute is set to
0.2 × log(k) × scaling lr(t1) after 3DGS scaling, where scaling lr(t1) is the original scaling learning rate in t1 epochs.
The uniqueness, densification and pruning intervals are 500, 100, and 2500. For uniqueness, it is activated from 7,500 to
66,000 epochs. After 66,000 epochs, we fix the primitive position and update only other attributes. For the position that has
more than one primitives, we keep the primitive that has the largest size based on scaling attributes, other primitives are
removed directly (given a primitive with scale [Sx, Sy, Sz], the size are defined as V = Sx × Sy × Sz). For pruning, each
time we remove 0.1% primitives. For color and rotation latent feature decoders, we use a single-layer MLP with 50 hidden
units and ReLu as the activation function. The learning rate of latent features and decoders for color are 0.001 and 0.001,
while 0.005 and 0.015 for rotation. Other parameters are the same as in vanilla 3DGS. All the experiments are tested on
Intel Core i9-14900HX, NVIDIA RTX 4090 Laptop.

A.2. PCA Analysis and Learnable Low-Rank Approximation

We randomly select 10, 000 primitives from the “bicycle” and “dance” datasets. The PCA results for color, scaling and
rotation attributes are shown in Figure 6. We can see that: 1) for color, a significant portion of the feature energy is
concentrated within the first 20 principal components under both “bicycle” and “dance”; 2) for scaling, the energy is more
evenly distributed under “bicycle”, while under “dance”, most energy is in the first principal component. These results
indicate that the scene characteristics affect the scaling attribute distribution greatly. Considering that the scaling features
are not always compressible and they have three channels only, we do not attempt to extract their latent representation; 3)
for rotation, most energy is concentrated within the first two principal components. Therefore, we use fr = 2 in Section 4.

Figure 6. PCA results of “bicycle” and “dance”.

We use data from “dance” to illustrate the difference between using PCA and the proposed learnable low-dimensional latent
features with lightweight trainable decoder. After obtaining vanilla 3DGS samples, we perform dimensionality reduction

12

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

via PCA for color and rotation attributes with the first 6 and 2 principal components retained, which is then followed by
reconstruction. Meanwhile, considering that PCA works as a linear auto-encoder (AE), we use an one-hidden-layer MLP
without nonlinear activation functions such as ReLu and re-train HybridGS with kc = 6 and kr = 2.

Table 6. PSNR comparison under different compressive latent feature extraction methods.
Method PSNR

vanilla 3DGS 39.83
PCA 21.50

HybridGS (Linear Decoder)
kc = 6, kr = 2

39.27

HybridGS (with ReLu)
kc = 6, kr = 2

39.31

We see that the PSNR of the proposed HybridGS with trainable latent feature and decoder is obviously higher than directly
applying PCA. The reason is that making both the latent feature and decoder learnable under the supervision of the
reconstruction loss enables a better low-rank 3DGS feature representation, as explained below.

Using PCA to realize dimensionality reduction and reconstruction is equivalent to a linear AE in the sense that the objective
is to learn a low-dimensional representation z ∈ Rq×1 of the 3DGS feature x ∈ Rp×1, where q < p. The associated encoder
and decoder can be formulated as

z = fθ(x) = Wex+ be, x = hθ(z) = Wdz + bd. (10)

By the minimization of the squared reconstruction error, we have, with θ = {We,Wd},

θ̂ = arg min
θ

n∑
i

||xi − (WdWexi +Wdbe + bd)||2, (11)

Since be is a free parameter and the encoder mapping simplifies to z = Wex, the optimal value for bd is

bd =
1

n

n∑
i=1

(xi −WdWexi) = (I −WdWe)x, (12)

where x = 1
n

∑n
i=1 xi. The objective Equation (11) thus simplifies to

Ŵe, Ŵd =arg min
We,Wd

n∑
i=1

||x0,i −WdWex0,i||2,

=arg min
We,Wd

||X0 − X̂0||2F ,
(13)

where x0,1 = xi−x, X0 = [x0,1, x0,2, ..., x0,n] and X̂0 = [x̂0,1, x̂0,2, ..., x̂0,n] with x̂0,i = WdWex0,i is the reconstruction
of the centred ith data point. PCA can be considered as finding the optimal rank-q approximation X̂0 of the centered data
matrix X0 in the sense of Frobenius norm minimization. Applying the singular value decomposition (SVD) to X0 results in
X0 = UΣV T . Using a partitioned matrix notation, we have

U = [U1 U2], Σ =

[
Σ1 0
0 Σ2

]
, V = [V1 V2] (14)

where U1 ∈ Rp×q, Σ1 ∈ Rq×q, and V1 ∈ Rn×q. Therefore, the best rank-q approximation of X0 is then obtained by
replacing Σ2 by a zero matrix, and consequently,

X̂0 = U1Σ1V
T
1 = WdWeX0. (15)

Choosing We = UT
1 and Wd = U1 attains the desired result:

WdWeX0 = U1U
T
1 [U1 U2]

[
Σ1 0
0 Σ2

] [
V T
1

V T
2

]
= U1Σ1V

T
1 . (16)

13

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

The encoder thus represents the input data X in a low-dimensional space using Z = WeX = UT
1 X .

More generally, the low-dimensional representation Z
′

may be found via solving

min
θ′

∥Z
′
− UT

1 X∥

s.t. Z
′
= f

′

θ′ (X).
(17)

where f
′

θ′ (·) is an encoder having both linear and nonlinear transformations. Introducing nonlinear transformations into the
encoder may be able to improve the reconstruction performance, while the use of 2-norm loss function should tend to push
the majority of the energy into a low-dimensional feature space. However, the above dimensionality reduction typically
induces loss of information, particularly in the high frequency region.

Considering that 3DGS data X are surjective, we may drop the PCA-based compression projection UT
1 and directly

search for, through training, a decoder fθ′′(Z ′′) that maps an unknown but learnable low-dimensional feature matrix Z ′′ to
reconstruct X . Mathematically, we are going to solve

min
θ′′ ,Z′′

∥fθ′′(Z ′′)−X∥. (18)

Ideally, if X truly has rank q (i.e., the SVD of X has only q non-zero singular values), we should be able to losslessly
recover X from Z ′′ using even a linear decoder, as can be done with PCA. When the decoder fθ′′(Z ′′) is further equipped
with nonlinear activation functions, improved performance can be obtained, as shown empirically in Table 6, as Z ′′ may
contain significantly more information than the linear operation-based PCA.

A.3. 3DGS Translation and Scaling

The naı̈ve 3DGS sample G′
might be located in any position in the 3D space due to the random position of initial point

cloud P . Limiting the primitive positions between −2N−1 + 1 and 2N−1 − 1 requires first shifting and then rescaling the
Bbox of G′

, as shown in Figure 7.

x

Y

Z

Original 3DGS

x

Y

Z

Translated 3DGS

translate

x

Y

Z

Scaled 3DGS

scale

x

Y

Z

translate and scale

0 ~ 2^(N-1) - 1

2^(N-1) + 1~0

N: bit depth

Translated & Scaled 3DGS

Figure 7. 3DGS translation and scaling.

• 3DGS translation: for a 3DGS G′
with m primitives and the ith primitive position being pci = [xi, yi, zi]. The Bbox

center of G′
is C = 1

2 [(xi)
i
max + (xi)

i
min, (yi)

i
max + (yi)

i
min, (zi)

i
max + (zi)

i
min] = [δX, δY, δZ]. Shifting G′

to the
origin can be realized by pci = pci − C, i ∈ [1,m].

• 3DGS scaling: for a 3D Gaussian primitive G′
(x) = e−

1
2 (x−µ)T

∑−1(x−µ), where µ is the point mean and
∑

is the 3D
covariance matrix, scaling G′

(x) with k requires scaling the point position and covariance matrix at the same time: y = kx,∑′
= k2

∑
. y = kx is easy to understand, we provide a proof of

∑′
= k2

∑
here.

14

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Proof. Assuming G′′
(y) is the scaled G′

(x) with y = kx,

G
′′
(y) = G

′′
(kx) = G

′
(
1

k
y) = e−

1
2 (

y
k−µ)T

∑−1(y
k−µ)

= e−
1

2k2 (y−kµ)T
∑−1(y−kµ)

= e−
1
2 (y−µ

′
)T

∑′−1
(y−µ

′
)

(19)

where µ
′
= kµ, ∵ k−2

∑−1
=

∑′−1
, ∴

∑′
= k2

∑
.

For the scaling ratio k, we set k = 2N−1−1
pcmax

, pcmax = max(|xi|max, |yi|max, |zi|max), |xi|max represents the maximum
absolute value of the x coordinates, and the same for y and z coordinates. 3DGS translation and scaling will not change the
rendering quality because it does not change the relative position and overlapping of the primitives. The camera positions
also need to be adjusted accordingly after the 3DGS translation and scaling.

x

Y

Z

Original 3DGS

x

Y

Z

translate and scale

x

Y

Z

Filtered 3DGS

remove outlier

x

Y

Z

Translated & Scaled 3DGS

translate and scale

smaller Bbox

unused position

Translated & Scaled 3DGS

outlier

densification

Y

Z
unused position

Densified 3DGS

x

x

Y

Z

Densified 3DGS

densification

: new primitive

Figure 8. Influence of outlier removal.

To take full advantage of finite space, an outlier removal is applied before initializing the point cloud to a 3DGS G, i.e.,
G = I{O(P)}, O(·) is the outlier removal algorithm and I{·} is the initialization function mapping point cloud to a 3DGS.
Outlier removal will influence the results of GS translation and scaling. Toy examples are used for illustration in Figure 8.

Figure 8 shows the influence of outlier removal on 3DGS translation and scaling. The sparse point cloud generated by
COLMAP might have a lot of noisy scatter points that are far away from the target reconstruction content. The noisy points,
which will incur an oversized Bbox for the initialized 3DGS, can cause spatial waste and primitive densified in a relatively
small Bbox after GS scaling. It consequently reduces the resolution of 3DGS in the following quantization learning process,
and results in suboptimal visual quality.

Both outlier removal (s1) and 3DGS translation (s2) are designed to improve space utilization in LQM. To highlight the
effectiveness of these two modules, we evaluate the performance of LQM on “truck ” by disabling either or both of these
two modules. The results are shown in Figure 9. To highlight the influence of s1 and s2, we only consider uniqueness in
this section and other compression operation, such as dimensionality reduction, feature quantization, and primitive pruning
are disabled. We train 30000 epochs as vanilla 3DGS. We see that: 1) these two modules show more obvious performance
improvement in low BD, considering that low BD offers less available space; 2) the impact of 3DGS translation is less
prominent than that of outlier removal. We think the results are not always stable: the effectiveness of 3DGS translation has
a strong correlation with the spatial position of initialized 3DGS, which may be highly random.

A.4. Primitive Position Decomposition

Given a primitive position pci = [xi, yi, zi] after 3DGS translation and scaling, whose coordinates are floating numbers
and −2N−1 + 1 <= xi, yi, zi <= 2N−1 − 1, a rounding function is first applied to calculate the nearest integer, i.e.,
R(pci). Then, the integer is represented by a N -bit encoding, which is actually the inner product between a basis vector
e = [2N−2, 2N−3, ..., 4, 2, 1]T ∈ R(N−1)×1 and a coding vector t = [t1, t2, ..., tN−1]

T ∈ R(N−1)×1 with tj ∈ {−1, 0, 1},

15

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Figure 9. Ablation study on outlier removal and 3DGS translation.

i.e., R(pci) = [< eix, t
i
x >,< eiy, t

i
y >,< eiz, t

i
z >]. Considering that the primitive positions share the same BD and the

same basis vector, using x coordinate as an example, the primitive position matrix can be expressed in the following matrix
form

R(pc)x = Le, (20)

where L = [t1x, t
2
x, ..., t

m
x]T and tix

T
= [t1, t2, ..., tN−1]

i
x.

In the vanilla 3DGS generation, pc is the learnable parameters that are updated by gradient descent derived from the
rendering loss. After primitive position decomposition, L replaces pc and is updated during training. To ensure L is a
coding vector of finite integers, we limit the value range and a rounding operation is used during training with the STE to
realize gradient propagation.

A.5. Influence of Pruning

To generate 3DGS samples with different rates, we introduce primitive pruning at iteration Tp = 36, 000. The influence of
pruning is shown in Figure 10. We can see that: 1) the decrease in the number of primitives results in a general deterioration
of reconstruction quality; 2) for the low rate of “bicycle”, the testing PSNR reports a stable value, while training PSNR
exhibits increased variability. It indicates that there is an inconsistency in the trends of reconstruction quality between
training views and testing views. Considering that the final quality of experience is influenced by both training and testing
views, we recommend future 3DGS compression studies pay more attention to training views rather than only reporting
quality results on testing views.

Figure 10. Iteration vs. PSNR curves of HybridGS with pruning.

16

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Table 7. Ablation study on primitive position uniqueness.
Dataset drjohnson room

BD Method PSNR Size (MB) PN(K) PSNR Size (MB) PN(K)

10

LQM 28.51 156.94 663 28.98 47.03 198
w/o 28.72 552.14 2334 30.16 284.35 1202
UQ 28.80 151.39 640 30.21 78.70 332
w/o 28.61 578.35 2445 30.23 270.26 1143

12

LQM 28.87 311.89 1318 31.00 136.45 576
w/o 28.85 548.04 2317 30.63 281.54 1190
UQ 29.09 331.53 1401 31.06 143.76 608
w/o 29.04 579.36 2449 31.16 277.46 1173

14

LQM 28.90 361.29 1527 31.20 200.18 846
w/o 28.84 550.52 2327 31.34 281.96 1192
UQ 29.04 438.00 1851 31.38 200.36 847
w/o 29.05 566.75 2396 31.22 283.40 1198

16

LQM 28.95 368.00 1555 31.25 216.36 914
w/o 28.90 557.94 2359 31.36 285.49 1207
UQ 29.17 461.07 1949 31.29 219.15 927
w/o 29.14 564.32 2386 31.37 285.27 1206

18

LQM 28.86 369.58 1562 31.04 219.98 930
w/o 28.86 567.71 2400 31.11 290.02 1226
UQ 29.23 462.36 1954 31.36 224.39 949
w/o 29.10 563.87 2384 31.28 281.87 1191

A.6. Influence of Uniqueness

Our proposed primitive position uniqueness method is for compatible with the SOTA learning-based methods based on
SparseConv. Discard this module and the results are shown in Table 7. “drjoshson” and “room” are used as test examples.
To highlight the influence of uniqueness, the other compression operation, such as feature dimension reduction, feature
quantization, primitive pruning, and downstream point cloud encoder are disabled. We train 30000 epochs as vanilla 3DGS.
We see that for most test conditions, disabling this module will incur significant primitive number and data size growth, while
close PSNR with enable this module. For example, by disabling this module, LQM and UQ generate 1202K and 1143K
primitives for “room” given 10 BD, which is almost 3 to 4 × data sizes compared to enable this module. Consequently, it
reveals that for 3DGS, more primitives do not necessarily lead to better reconstruction quality. The primitive densification
method proposed in vanilla 3DGS generation can be further improved if the data size is one of reference.

A.7. Different Point Cloud Encoders on Position

To analyze the results of using 3DGS primitive position as the input of SOTA point cloud encoder, we select GPCC v23
(WG7, 2023) and SparsePCGC (Wang et al., 2022) as representations. Nine BDs: BD = 10 to 18, are tested to collect bitrate
with lossless module. We focus on primitive position in this section, therefore, pruning and the compression operation
related to other features are disabled. We train 30000 epochs as vanilla 3DGS. The curves of PSNR vs. bitrate of “bicycle”
and “truck” are shown in Figure 11. “3DGS+UQ” means training a vanilla 3DGS then using UQ to quantize position as
postprocessing, “LQM” means using the method proposed in Section 3.1.2 to generate primitive position, and “UQ” means
using the feature quantization strategy proposed in Section 3.1.1 via UQ for primitive position.

We see that: 1) for the same bitrate, LQM and UQ report higher PSNR than 3DGS+UQ, indicating that introducing
quantization into the generation of 3DGS is an effective strategy for reducing information loss; 2) for 3DGS+UQ, GPCC
shows higher reconstruction quality than SparsePCGC. The reason is that SparsePCGC is based on SparseConv, which
cannot deal with the case where multiple points are located at the same coordinate. A default duplicated point removal
operator is performed before data compression, leading to loss of 3DGS quality. GPCC has two different settings considering
duplicated points, i.e., keeping or removing, therefore, it can realize “real lossless” for 3DGS; 3) LQM and UQ can generate
3DGS without duplicated primitive position, facilitating SparsePCGC realizes “real lossless” 3DGS compression; 4) for
the same bitrate, LQM reports slightly better performance than UQ. Besides, LQM can generate positions that do not
need de-quantization before rendering, which means LQM can further save a position de-quantization time for real-time
applications.

A.8. Overall and Per Frame Results

Here we report overall and per frame results of HybridGS on Deep blending, tanks&temples, and Mip-NeRF360. We can see
that: 1) for overall quality, HybridGS has 0.5-1.5 dB PSNR loss compared with the SOTA generative compression methods; 2)
and a better quality can be reached by increasing the dimension of latent features. Some demo videos are available at https:

17

https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing
https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing
https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Figure 11. PSNR vs. bitrate curves of GPCC and PCGC.

//drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing.

Table 8. Overall results
Dataset Tank&Temple Deep Blending MipNeRF360
Method PSNR SIZE FPS PSNR SIZE FPS PSNR SIZE FPS

3DGS-30K 23.14 411.00 154 29.41 676.00 137 27.21 734.00 134
HybridGS
kc=3, kr=2

HR 22.90 8.85 207 28.51 11.52 201 25.64 15.82 199
LR 22.66 4.27 247 28.32 5.59 223 25.40 7.63 220

HybridGS
kc=6, kr=2

HR 23.12 11.10 195 29.05 16.35 191 25.97 21.73 189
LR 22.83 5.27 214 28.82 7.92 212 25.75 10.47 210

18

https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing
https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing
https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing
https://drive.google.com/drive/folders/14KIzFDIPSPdrKpXjtFh1HYUtG-E0Zs5W?usp=sharing

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Figure 12. Overall RD curve.

Table 9. Tanks&Temples per scene results.
Scene Method Training PSNR Testing PSNR Size (MB)

truck

GS 27.50 25.39 611.58
HybridGS

kc = 3, kr = 2
HR 26.96 24.53 13.50
LR 26.66 24.35 6.50

HybridGS
kc = 6, kr = 2

HR 27.19 24.75 16.56
LR 26.90 24.62 7.92

train

GS 25.37 21.89 256.73
HybridGS

kc = 3, kr = 2
HR 24.42 21.26 4.19
LR 23.58 20.96 2.03

HybridGS
kc = 6, kr = 2

HR 24.86 21.49 5.63
LR 24.01 21.04 2.62

Figure 13. Snapshots of HybridGS (kc = 3, kr = 2) on Tanks&Temples.

Table 10. Deep Blending per scene results.
Scene Method Training PSNR Testing PSNR Size (MB)

playroom

GS 37.63 30.03 550.67
HybridGS

kc = 3, kr = 2
HR 33.52 29.89 12.15
LR 32.40 29.49 5.88

HybridGS
kc = 6, kr = 2

HR 33.81 29.89 16.08
LR 33.11 29.68 7.79

drjohnson

GS 36.21 29.06 779.93
HybridGS

kc = 3, kr = 2
HR 32.01 27.12 10.88
LR 31.22 27.15 5.29

HybridGS
kc = 6, kr = 2

HR 33.50 28.21 16.62
LR 31.86 27.95 8.04

19

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Figure 14. Snapshots of HybridGS (kc = 3, kr = 2) on Deep Blending.

Figure 15. Snapshots of HybridGS (kc = 3, kr = 2) on MipNeRF360.

20

HybridGS: High-Efficiency 3DGS Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder

Table 11. MipNeRF360 per frame results.
Scene Method Training PSNR Testing PSNR Size (MB)

bicycle

GS 24.82 24.45 1443.84
HybridGS

kc = 3, kr = 2
HR 21.03 24.08 22.88
LR 20.51 23.53 11.01

HybridGS
kc = 6, kr = 2

HR 21.36 24.10 30.21
LR 21.34 23.76 14.52

bonsai

GS 33.44 32.28 296.75
HybridGS

kc = 3, kr = 2
HR 29.35 29.61 7.48
LR 28.44 29.25 3.62

HybridGS
kc = 6, kr = 2

HR 30.65 30.86 11.62
LR 29.66 30.35 5.62

counter

GS 30.46 29.07 284.30
HybridGS

kc = 3, kr = 2
HR 28.98 26.88 7.07
LR 28.11 26.76 3.43

HybridGS
kc = 6, kr = 2

HR 29.50 27.16 7.67
LR 28.26 27.02 3.72

flowers

GS 23.22 21.27 856.45
HybridGS

kc = 3, kr = 2
HR 21.32 20.25 17.21
LR 20.90 20.13 8.27

HybridGS
kc = 6, kr = 2

HR 21.89 20.50 22.51
LR 21.41 20.33 10.78

garden

GS 28.29 26.33 1392.64
HybridGS

kc = 3, kr = 2
HR 26.80 26.37 36.13
LR 25.31 26.09 17.40

HybridGS
kc = 6, kr = 2

HR 26.85 26.44 42.49
LR 25.23 26.10 20.42

kitchen

GS 33.13 31.38 26.33
HybridGS

kc = 3, kr = 2
HR 27.20 27.07 9.76
LR 26.75 27.04 4.70

HybridGS
kc = 6, kr = 2

HR 27.78 27.56 12.29
LR 27.16 27.55 5.95

room

GS 34.40 31.55 370.14
HybridGS

kc = 3, kr = 2
HR 31.95 29.52 6.43
LR 31.04 29.23 3.14

HybridGS
kc = 6, kr = 2

HR 32.38 29.75 8.28
LR 31.40 29.61 4.00

stump

GS 29.76 26.24 1157.12
HybridGS

kc = 3, kr = 2
HR 25.59 24.92 18.24
LR 24.76 24.67 8.83

HybridGS
kc = 6, kr = 2

HR 26.19 25.09 35.00
LR 25.82 25.02 16.78

treehill

GS 23.44 22.23 890.63
HybridGS

kc = 3, kr = 2
HR 20.80 22.05 17.22
LR 20.63 21.91 8.29

HybridGS
kc = 6, kr = 2

HR 21.67 22.24 25.51
LR 20.78 22.04 12.41

21

