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Abstract
Current techniques for privacy auditing of large
language models (LLMs) are weak because they
rely on basic approaches to generate canaries, thus
leading to weak membership inference attacks
that in turn give loose lower bounds on the em-
pirical privacy leakage. We develop canaries that
are far more effective than those used in prior
work under threat models that cover a range of
realistic settings. We demonstrate through exper-
iments on multiple families of fine-tuned LLMs
that our approach sets a new standard for detec-
tion of privacy leakage. For non-privately trained
LLMs, our attack achieves 64.2% TPR at 0.1%
FPR, largely surpassing the previous attack that
achieves 36.8% TPR at 0.1% FPR. Our method
can be used to provide a privacy audit of ε ≈ 1
for a model trained with theoretical ε of 4. To
the best of our knowledge, this is the first time
that a privacy audit of LLM training has achieved
nontrivial auditing success in the setting where
the attacker cannot train shadow models, insert
gradient canaries, or access the model at every
iteration.

1. Introduction
Despite the growing success of massively pretrained Large
Language Models (Brown et al., 2020; OpenAI, 2023;
Gemini-Team et al., 2023), there is also growing concern
around the privacy risks of their deployment (McCallum,
2023; Bloomberg, 2023; Politico, 2023), because they can
memorize some of their training data verbatim (Carlini et al.,
2019; 2021; 2023b; Biderman et al., 2023a).

There is currently a discrepancy between memorization stud-
ies in large frontier models reports that show very limited
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memorization and a line of research showing that data can
be extracted from such models (Carlini et al., 2021; 2023a;
Nasr et al., 2023a). With the goal of understanding con-
cerns around the privacy risks of deploying LLMs, currently,
model developers study the quantifiable memorization of
their models by inserting canary sequences and testing for
memorization, and they conclude that the models do not
memorize much (Anil et al., 2023; Reid et al., 2024).

In this work, we endeavor to develop stronger privacy au-
dits by developing better canaries. The gap between these
two bodies of work is in the data being memorized. When
developers insert canaries, they are not necessarily inserting
the canaries that are most likely to be memorized. However,
when researchers try to extract data, they are extracting the
"most extractable" data, which by definition was the most
likely to be memorized. Without better design of canaries,
model developers will systematically underestimate the pri-
vacy leakage of their models.

We are primarily interested in understanding privacy leakage
from LLMs through the lens of membership information
leakage on a canary dataset on LLMs (as used to measure
the privacy leakage in LLM reports). Specifically, we want
to understand how to best construct canaries for language
models. Qualitatively, if we find that membership infor-
mation attacks (MIA) on canaries for LLMs can be very
effective, this improves our understanding of the privacy
leakage of LLMs. Further, this enables us to achieve excel-
lent black-box audits by leveraging the method of Steinke
et al. (2023).

Our contributions are as follows.

• We introduce a new method for generating input space
canaries such that the canary data is easy to memorize.

• We find that our new membership inference attack is
far more effective than the baselines used in prior work.
Specifically, we can get a TPR > 60% at FPR = 0.1%,
outperforming previous results that achieve TPR≈ 35%
at FPR = 0.1%.

• We provide the first privacy audit for the black-box set-
ting for LLMs.
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Privacy Auditing of Large Language Models

The remaining organization of this paper is as follows. We
give a brief background overview for membership inference
attacks and the privacy auditing of DP-SGD in Section 2.
In Section 3, we introduce our design for a new MIA method.
In Section 4, we evaluate our attack on the non-privately
trained LLMs to measure the corresponding memorization
rate and compare our attack to the previous SOTA attacks.

2. Background
2.1. Membership Inference Attacks

Membership inference attacks (MIAs) (Shokri et al., 2017)
are the simplest privacy threat in machine learning: predict
if any training example was used to train a model, or not.
MIAs in machine learning, especially in supervised mod-
els, are well-studied . We use the following membership
inference security game:

Definition 2.1 (Membership inference security game). (Car-
lini et al., 2022a, Definition 1) The game proceeds between
a challenger C and an adversary A:

1. The challenger samples a training dataset D ← D and
trains a model fθ ← T (D) on the dataset D.

2. The challenger flips a bit b, and if b = 0, samples a
fresh challenge point from the distribution (x, y)← D
(such that (x, y) /∈ D). Otherwise, the challenger
selects a point from the training set (x, y)← D.

3. The challenger sends (x, y) to the adversary.

4. The adversary gets query access to the distribution D,
and to the model fθ, and outputs a bit b̂← AD,f (x, y).

5. Output 1 if b̂ = b, and 0 otherwise.

All our attacks use the model’s loss (continuous confidence
score output) as the signal to predict membership where we
use a threshold to assign member and non-member labels.
With 1 is the indicator function, τ is some tunable decision
threshold, andA′ outputs a real-valued confidence score, the
attacks predict membership as: A(x, y) = 1[A′(x, y) > τ ].

2.2. Auditing Differentially Private Language Models

We provide a concise overview of differential privacy (DP),
private machine learning, and methods to audit the privacy
assurances claimed under DP. Differential privacy is the
gold standard for providing a provable upper bound on the
privacy leakage of an algorithm(Dwork et al., 2006).

Definition 2.2 ((ε, δ)− Differential Privacy (DP)). Let
D ∈ Dn be an input dataset to an algorithm, and D′ be
a neighboring dataset that differs from D by one element.
An algorithm M that operates on D and outputs a result

in S ⊆ Range(M) is considered to be (ε, δ)-DP if: For
all sets of events S and all neighboring datasets D,D′, the
following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)

Differentially Private Machine Learning Differentially
Private Stochastic Gradient Descent (DP-SGD) (Song et al.,
2013; Abadi et al., 2016) is the workhorse method for train-
ing neural networks on private data.

Definition 2.3 (Differentially Private Stochastic Gradient
Descent (DP-SGD)). For a batch size B, learning rate η,
clipping threshold C, and added noise standard deviation σ,
the DP-SGD update rule at iteration t on weights w is given
by:

w(t+1) = w(t)− ηt
|Bt|

(∑
i∈Bt

1

C
clipC(∇ℓ(xi, w

(t))) + σξ

)
(2)

DP-SGD does per-sample gradient clipping on top of SGD
to limit the sensitivity of each sample, and adds noise
sampled i.i.d. from a d-dimensional normal distribution
ξ ∼ N (0, 1) with standard deviation σ.

Auditing DP-SGD DP guarantees are expressed in terms
of a failure probability δ and a privacy budget ε. In machine
learning, we can interpret the DP guarantee as an upper
bound in terms of eε on the adversary’s success rate in
membership inference that holds with probability 1− δ. As
shown by Kairouz et al. (2015), ifM is (ε, δ)-DP, it defines
a privacy region such that an attacker’s TPR and FPR (the
Type I and Type II errors) cannot exceed the bounds of this
region, given by

Definition 2.4 (Privacy Region (Kairouz et al., 2015)).

R(ϵ, δ) = {(α, β) | α+ eϵβ ≥ 1− δ ∧ eϵα+ β ≥ 1− δ ∧
α+ eϵβ ≤ eϵ + δ ∧ eϵα+ β ≤ eϵ + δ}

(3)

Our objective in privacy auditing is to provide an empirical
lower bound on the privacy leakage from an algorithmM.
Privacy audits are useful because they give us information
about how tight the upper bound is that we obtain from
DP (Steinke et al., 2023), and if the privacy audit produces
a lower bound that is greater than the upper bound given
by DP-SGD, we can use this to find errors in the DP-SGD
implementation (Tramer et al., 2022).

Steinke et al. (2023) propose a recent privacy auditing
method that we use in this paper, which can provide an
audit without needing to train multiple models. However,
they are not able to provide a nontrivial result when training
on real data in the black-box setting (where the canaries
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exist in the input space and the attacker observes the loss of
the model), and do not provide audits for language models
(they only provide audits for computer vision).

Summary of DP Background DP-SGD provides a math-
ematical proof that gives an upper bound on the privacy
parameter. A privacy audit is a procedure that provides a
lower bound on the privacy parameter. Privacy audits can
be used to ascertain the correctness of DP-SGD training
and estimate the tightness of analysis. Many privacy audit-
ing methods have been proposed, but no privacy auditing
method has been able to provide a nontrivial lower bound
of an LLM trained with a realistic DP guarantee (ε < 10 on
real data in the black-box setting in a single run.

3. Crafting Canaries That Are Easy To Spot
Previous research has consistently shown that out-of-
distribution (OOD) inputs are more prone to memorization
by machine learning models (Carlini et al., 2022a; Nasr
et al., 2021; 2023b; Carlini et al., 2022b). Leveraging this
insight, existing methods for generating canaries in member-
ship inference attacks often focus on crafting OOD inputs
with a higher likelihood of being memorized. In the con-
text of LLMs, this typically involves creating inputs with
random tokens or factually incorrect statements, under the
assumption that such anomalies will stand out and be more
easily retained by the model. While these basic approaches
have shown some degree of success, as we will show, there
is a great deal of room for improvement.

Our underlying insight is that examples can be easily identi-
fied as members by the presence of tokens that do not appear
anywhere else in the training dataset. Because the embed-
ding table in a language model receives only a sparse update;
that is, a layer with output dimension 256, 000 (Team et al.,
2024) will receive a gradient only on one token, a model
that has not received a gradient for a given row will behave
very differently when predicting that token than a model
that has been trained on that token.

3.1. Canaries via New Tokens

We consider the setting where a model developer wants to
understand the worst case privacy leakage of their model
training, as in (Chowdhery et al., 2022; Anil et al., 2023;
Reid et al., 2024). The worst case will still come from OOD
data, but we take advantage of the model developer’s direct
access to the model to easily craft canaries that are guaran-
teed to be OOD instead of relying on heuristics. Instead of
inserting random or nonsensical inputs, given that we have
access to the model parameters and we can modify them,
we introduce a series of unique tokens to the tokenizer and
embedding tables of the LLM. These unique tokens are only
present in the canary inputs and are absent from the regular

training data. The canaries themselves are then constructed
as procedurally generated strings of normal tokens, followed
by a sequence of these special tokens.

To evaluate membership score of a canary, we compute the
loss over the sequence of special tokens. By isolating the
canary’s identification to these special tokens, we can insert
canary data without significantly impacting the model’s per-
formance on benign inputs. Additionally, once the model is
trained and the audit is complete, the rows of the embedding
matrix corresponding to the special tokens can be easily
removed.

As we will show, introducing new tokens is an incredibly
effective way to generate canaries that can be used during
pretraining without any accuracy degradation.

4. Membership Inference Attacks on LLMs
Experimental Setup. We evaluate GPT2 (Radford et al.,
2019), Pythia (Biderman et al., 2023b)], and OPT mod-
els (Zhang et al., 2022). We do instruction tuning (Ouyang
et al., 2022) on the PersonaChat (Zhang et al., 2018) dataset,
which consists of conversations of people describing them-
selves. We view this as a reasonable dataset where privacy
leakage may be concerning. All experiments were con-
ducted on an academic compute budget on a single A100
GPU.

Random Canary Baseline. The canary construction used
by multiple prior works (Anil et al., 2023; Gemini-Team
et al., 2023) is just a set of random tokens.

Membership Inference Attack. We insert 1000 canaries
into the training dataset, and each canary is seen a single
time over the course of training. We consider a black-box
attack where the attacker prompts the model with the first
P (typically 50) tokens of the canary string and computes
the loss over the last N (typically 1) token. This final token
is either a random token for the baseline, or a newly added
token for our method. Given the list of 1000 losses, the
attacker must determine which canaries are members and
which are non-members. We visualize this with log-scale
Receiver Operating Characteristic (ROC) curve plots, where
we are specifically interested in the True Positive Rate (TPR)
at very low False Positive Rate (FPR).

4.1. Our Method Vastly Improves Over Random
Canaries

Main Result. We first present the main result on Pythia-
1.4b. Figure 1 compares our method that adds canaries
corresponding to new tokens (orange) to the baseline that
uses random tokens for the canaries. Our method is vastly
superior to the random canary baseline. In this setting, each
canary is only seen a single time, but this is already enough
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Figure 1. Ablation of loss difference with and without additional
tokens as canaries.

for our method to obtain very high MIA accuracy. However,
the baseline struggles, with an AUC near that of random
guessing. We also report TPR at very low FPR. Our attack
achieves 64.2% TPR at 0.1% FPR while baseline attack
only achieves 36.8% TPR at 0.1% FPR. That is, we are able
to increase TPR by twice and improve TPR to more than
60% even at this very low FPR=0.1%.

In-Distribution Canary. Thus far, the only distinction
between our method and the random canary baseline has
been in the last N tokens, as the first P tokens are randomly
generated in both instances. However, randomly generated
tokens may not suffice as good canaries, because training
data may have to pass an initial perplexity check before it
is used for training. We now consider the impact of using
in-distribution data for the first P tokens. For this, we use
the “canary-like” sequences from Panda et al. (2024). We
present the results in Table 1. The results show that our
canary achieves higher FPR for both in-distribution canaries
and out-of-distribution canaries. Specifically, even the in-
distribution canary baseline struggles to achieve high TPR
at low FPR (only 7.4% at FPR=0.1%), our canary attack
achieve 65.0% at the save FPR level.

Table 1. TPR (%) results at different FPR. In-Distribution Canary
vs. Out-of-distribution canary.

OOD. w.new OOD. w/o new ID. w.new ID. w/o new

FPR 0.1% 64.2 36.8 65.0 7.4
FPR 1% 64.4 42.8 65.0 23.8
FPR 10% 67.2 59.0 68.4 47.4

Number of Canary Tokens. Membership inference only
requires a single token to be distinguishable. However, for
practical purposes, we may have a threshold of tokens that
we care about being extractable. We now ablate the number
of tokens in the canary sequence that we compute the loss
over as the test statistic for our MIA and present the results
in Table 2. Let us denote that each canary has k fresh

new tokens added. As we have 1000 canaries in total and
we then need to add 1000 ∗ k new tokens in total to the
tokenizer. Table 2 shows that for those of k ≥ 5, all of our
attack achieves similar high TPR at the the corresponding
FPR level. In fact, the single additional tokens k = 1 in
our canary already achieves high TPR and the TPR is only
slightly lower than those of number of k ≥ 5. To reduce
the number of added tokens, we keep k = 1 unless other
specified.

Table 2. Ablation the number of canary tokens.

k = 1 k = 5 k = 10 k = 20 k = 50

FPR0.1% 64.2 66.5 66.0 66.9 66.5
FPR1% 64.4 66.5 66.0 67.3 66.5
FPR10% 67.2 69.0 68.8 69.6 70.8

Models. We vary the models between GPT2, Pythia-1.4b,
and OPT-1.3b and find that we are able to successfully
do MIA on all models. Across all models, our attack sig-
nificantly outperforms the baseline random canaries and
achieves similar TPR across different models. This indicate
that our method is robust across different models. Specif-
ically, for GPT2 model that has relative fewer parameters,
though the baseline attack fails at FPR=0.1%, our attack can
still achieve 66.4%.

Table 3. TPR% results at different FPR. Ablation on different mod-
els. OOD. SFT loss.

GPT2 OPT-1.3b Pythia-1.4b
# Params 124M 1.3B 1.4B

w. new w/o new w. new w/o new w. new w/o new

FPR 0.1% 66.4 0.0 66.2 36.6 64.2 36.8
FPR 1% 66.6 0.6 66.4 42.8 64.4 42.8
FPR 10% 69.4 11.0 69.8 55.8 67.2 59.0

5. Conclusion
Ever since Secret Sharer (Carlini et al., 2019), work that has
evaluated privacy leakage of language models via member-
ship inference of inserted canaries has consistently found
that memorization of canaries is limited. For years, this
line of work showing the limited success of membership
inference attacks on language models (Duan et al., 2024)
has been at odds with another line of work on training data
extraction from language models (Carlini et al., 2021; Nasr
et al., 2023a). In this work, we have presented a simple
change in the design of the canary that enables loss-based
membership inference without shadow models, and there-
fore allows us to obtain the first nontrivial privacy audit of
LLMs with input-space canaries.
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