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Abstract
Extensive efforts have been made to understand and improve the fairness of ma-
chine learning models based on different fairness measurement metrics, especially
in high-stakes domains such as medical insurance, education, and hiring decisions.
However, there is a lack of certified fairness on the end-to-end performance of an
ML model. In this paper, we first formulate the certified fairness of an ML model
trained on a given data distribution as an optimization problem based on the model
performance loss bound on a fairness constrained distribution, which is within
bounded distributional distance with the training distribution. We then propose a
general fairness certification framework and instantiate it for both sensitive shifting
and general shifting scenarios. In particular, we propose to solve the optimization
problem by decomposing the original data distribution into analytical subpopula-
tions and proving the convexity of the sub-problems to solve them. We evaluate
our certified fairness on six real-world datasets and show that our certification is
tight in the sensitive shifting scenario and provides non-trivial certification under
general shifting. Our framework is flexible to integrate additional non-skewness
constraints and we show that it provides even tighter certification under different
real-world scenarios. We also compare our certified fairness bound with adapted
existing distributional robustness bounds on Gaussian data and demonstrate that
our method is significantly tighter.

1 Introduction
As machine learning (ML) has become ubiquitous [24, 18, 5, 11, 8, 13], fairness of ML have attracted
a lot of attention from different perspectives. For instance, some automated hiring systems are biased
towards males due to gender imbalanced training data [3]. Different approaches have been proposed
to improve ML fairness, such as regularized training [16, 22, 26, 30], disentanglement [12, 28, 40],
duality [44], low-rank matrix factorization [34], and distribution alignment [4, 29, 53].

In addition to existing approaches that evaluate fairness, it is important and challenging to provide
certification for ML fairness. Recent studies have explored the certified fair representation of
ML [39, 4, 36]. However, there lacks certified fairness on the predictions of an end-to-end ML model
trained on an arbitrary data distribution. In addition, current fairness literature mainly focuses on
training an ML model on a potentially (im)balanced distribution and evaluate its performance in a
target domain measured by existing statistical fairness definitions [17, 20]. Since in practice these
selected target domains can encode certain forms of unfairness of their own (e.g., sampling bias),
the evaluation would be more informative if we can evaluate and certify fairness of an ML model
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on an objective distribution. Taking these factors into account, in this work, we aim to provide the
first definition of certified fairness given an ML model and a training distribution by bounding its
end-to-end performance on an objective, fairness constrained distribution. In particular, we define
certified fairness as the worst-case upper bound of the ML prediction loss on a fairness constrained
test distribution Q, which is within a bounded distance to the training distribution P . For example,
for an ML model of crime rate prediction, we can define the model performance as the expected
loss within a specific age group. Suppose the model is deployed in a fair environment that does not
deviate too much from the training, our fairness certificate can guarantee that the loss of crime rate
prediction for a particular age group is upper bounded, which is an indicator of model’s fairness.

We mainly focus on the base rate condition as the fairness constraint for Q. We prove that our
certified fairness based on a base rate constrained distribution will imply other fairness metrics, such
as demographic parity (DP) and equalized odds (EO). Moreover, our framework is flexible to integrate
other fairness constraints into Q. We consider two scenarios: (1) sensitive shifting where only the
joint distribution of sensitive attribute and label can be changed when optimizing Q; and (2) general

shifting where everything including the conditioned distribution of non-sensitive attributes can be
changed. We then propose an effective fairness certification framework to compute the certificate.

In our fairness certification framework, we first formulate the problem as constrained optimization,
where the fairness constrained distribution is encoded by base rate constraints. Our key technique is
to decompose both training and the fairness constrained test distributions to several subpopulations
based on sensitive attributes and target labels, which can be used to encode the base rate constraints.
With such a decomposition, in sensitive shifting, we can decompose the distance constraint to
subpopulation ratio constraints and prove the transformed low-dimensional optimization problem is
convex and thus efficiently solvable. In general shifting case, we propose to solve it based on divide
and conquer: we first partition the feasible space into different subpopulations, then optimize the
density (ratio) of each subpopulation, apply relaxation on each subpopulation as a sub-problem, and
finally prove the convexity of the sub-problems with respect to other low-dimensional variables. Our
framework is applicable for any black-box ML models and any distributional shifts bounded by the
Hellinger distance, which is a type of f -divergence studied in the literature [47, 14, 7, 25, 15].

To demonstrate the effectiveness and tightness of our framework, we evaluate our fairness bounds
on six real-world fairness related datasets [3, 2, 19, 48]. We show that our certificate is tight under
different scenarios. In addition, we verify that our framework is flexible to integrate additional
constraints on Q and evaluate the certified fairness with additional non-skewness constraints, with
which our fairness certificate is tighter. Finally, as the first work on certifying fairness of an end-to-end
ML model, we adapt existing distributional robustness bound [43] for comparison to provide more
intuition. Note that directly integrating the fairness constraint to the existing distributional robustness
bound is challenging, which is one of the main contributions for our framework. We show that with
the fairness constraints and our effective solution, our bound is strictly tighter.

Technical Contributions. In this work, we take the first attempt towards formulating and computing
the certified fairness on an end-to-end ML model, which is trained on a given distribution. We make
contributions on both theoretical and empirical fronts.
1. We formulate the certified fairness of an end-to-end ML model trained on a given distribution

P as the worst-case upper bound of its prediction loss on a fairness constrained distribution Q,
which is within bounded distributional distance with P .

2. We propose an effective fairness certification framework that simulates the problem as constrained
optimization and solve it by decomposing the training and fairness constrained test distributions
into subpopulations and proving the convexity of each sub-problem to solve it.

3. We evaluate our certified fairness on six real-world datasets to show its tightness and scalability.
We also show that with additional distribution constraints on Q, our certification would be tighter.

4. We show that our bound is strictly tighter than adapted distributional robustness bound on Gaussian
dataset due to the added fairness constraints and our effective optimization approach.

Related Work Fairness in ML can be generally categorized into individual fairness and group
fairness. Individual fairness guarantees that similar inputs should lead to similar outputs for a model
and it is analyzed with optimization approaches [49, 33] and different types of relaxations [21].
Group fairness indicates to measure the independence between the sensitive features and model
prediction, the separation which means that the sensitive features are statistically independent of
model prediction given the target label, and the sufficiency which means that the sensitive features are
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statistically independent of the target label given the model prediction [27]. Different approaches
are proposed to analyze group fairness via static analysis [46], interactive computation [41], and
probabilistic approaches [1, 10, 6]. In addition, there is a line of work trying to certify the fair

representation [39, 4, 36]. In [9], the authors have provided bounds for how group fairness transfers
subject to bounded distribution shift. Our certified fairness differs from existing work from three
perspectives: 1) we provide fairness certification considering the end-to-end model performance
instead of the representation level, 2) we define and certify fairness based on a fairness constrained
distribution which implies other fairness notions, and 3) our certified fairness can be computed for
any black-box models trained on an arbitrary given data distribution.

2 Certified Fairness Based on Fairness Constrained Distribution
In this section, we first introduce preliminaries, and then propose the definition of certified fairness

based on a bounded fairness constrained distribution, which to the best of our knowledge is the first
formal fairness certification on end-to-end model prediction. We also show that our proposed certified
fairness relates to established fairness definitions in the literature.

Notations. We consider the general classification setting: we denote by X and Y = [C] the feature
space and labels, [C] := {1, 2, · · · , C}. h✓ : X ! �|Y| represents a mapping function parameterized
with ✓ 2 ⇥, and ` : �|Y| ⇥ Y ! R+ is a non-negative loss function such as cross-entropy loss.
Within feature space X , we identify a sensitive or protected attribute Xs that takes a finite number of
values: Xs := [S], i.e., for any X 2 X , Xs 2 [S].
Definition 1 (Base Rate). Given a distribution P supported over X ⇥ Y , the base rate for sensitive
attribute value s 2 [S] with respect to label y 2 [C] is bP

s,y
= Pr(X,Y )⇠P [Y = y |Xs = s].

Given the definition of base rate, we define a fair base rate distribution (in short as fair distribution).
Definition 2 (Fair Base Rate Distribution). A distribution P supported over X ⇥ Y is a fair base rate
distribution if and only if for any label y 2 [C], the base rate b

P
s,y

is equal across all s 2 [S], i.e.,
8i 2 [S], 8j 2 [S], bP

i,y
= b

P
j,y

.
Remark. In the literature, the concepts of fairness are usually directly defined at the model predic-
tion level, where the criterion is whether the model prediction is fair against individual attribute
changes [39, 36, 50] or fair at population level [54]. In this work, to certify the fairness of model
prediction, we define a fairness constrained distribution on which we will certify the model predic-
tion (e.g., bound the prediction error), rather than relying on the empirical fairness evaluation. In
particular, we first define the fairness constrained distribution through the lens of base rate parity,
i.e., the probability of being any class should be independent of sensitive attribute values, and then
define the certified fairness of a given model based on its performance on the fairness constrained
distribution as we will show next.

The choice of focusing on fair base rate may look restrictive but its definition aligns very well
with the celebrated fairness definition Demographic Parity [51], which promotes that Pr[h✓(X) =
1|Xs = i] = Pr[h✓(X) = 1|Xs = j]. In this case, the prediction performance of h✓ on Q with
fair base rate will relate directly to Pr[h✓(X) = 1|Xs = i]. Secondly, under certain popular data
generation process, the base rate sufficiently encodes the differences in distributions and a fair base
rate will imply a homogeneous (therefore equal or “fair") distribution over X,Y : consider when
Pr(X|Y = y,Xs = i) is the same across different group Xs. Then Pr(X,Y |Xs = i) is simply a
linear combination of basis distributions Pr(X|Y = y,Xs = i), and the difference between different
groups’ joint distribution of X,Y is fully characterized by the difference in base rate Pr(Y = y|Xs).
This assumption will greatly enable trackable analysis and is not an uncommon modeling choice in
the recent discussion of fairness when distribution shifts [52, 37].

2.1 Certified Fairness
Now we are ready to define the fairness certification based on the optimized fairness constrained
distribution. We define the certification under two data generation scenarios: general shift-

ing and sensitive shifting. In particular, consider the data generative model Pr(Xo, Xs, Y ) =
Pr(Y ) Pr(Xs|Y ) Pr(Xo|Y,Xs), where Xo and Xs represent the non-sensitive and sensitive features,
respectively. If all three random variables on the RHS are allowed to change, we call it general

shifting; if both Pr(Y ) and Pr(Xs|Y ) are allowed to change to ensure the fair base rate (Def. 2)
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while Pr(Xo|Y,Xs) is the same across different groups, we call it sensitive shifting. In Section 3 we
will introduce our certification framework for both scenarios.
Problem 1 (Certified Fairness with General Shifting). Given a training distribution P supported on

X ⇥ Y , a model h✓(·) trained on P , and distribution distance bound ⇢ > 0, we call ¯̀2 R a fairness
certificate with general shifting, if ¯̀upper bounds

max
Q

E(X,Y )⇠Q[`(h✓(X), Y )] s.t. dist(P,Q)  ⇢, Q is a fair distribution,

where dist(·, ·) is a predetermined distribution distance metric.

In the above definition, we define the fairness certificate as the upper bound of the model’s loss among
all fair base rate distributions Q within a bounded distance from P . Besides the bounded distance
constraint dist(P,Q)  ⇢, there is no other constraint between P and Q so this satisfies “general

shifting”. This bounded distance constraint, parameterized by a tunable parameter ⇢, ensures that the
test distribution should not be too far away from the training. In practice, the model h✓ may represent
a DNN whose complex analytical forms would pose challenges for solving Problem 1. As a result,
as we will show in Equation (2) we can query some statistics of h✓ trained on P as constraints to
characterize h✓, and thus compute the upper bound certificate.

The feasible region of optimization problem 1 might be empty if the distance bound ⇢ is too small,
and thus we cannot provide fairness certification in this scenario, indicating that there is no nearby
fair distribution and thus the fairness of the model trained on the highly “unfaired" distribution is
generally low. In other words, if the training distribution P is unfair (typical case) and there is no
feasible fairness constrained distribution Q within a small distance to P , fairness cannot be certified.

This definition follows the intuition of typical real-world scenarios: The real-world training dataset is
usually biased due to the limitation in data curation and collection processes, which causes the model
to be unfair. Thus, when the trained models are evaluated on the real-world fairness constrained test
distribution or ideal fair distribution, we hope that the model does not encode the training bias which
would lead to low test performance. That is to say, the model performance on fairness constrained
distribution is indeed a witness of the model’s intrinsic fairness.

We can further constrain that the subpopulation of P and Q parameterized by Xs and Y does not
change, which results in the following “sensitive shifting” fairness certification.
Problem 2 (Certified Fairness with Sensitive Shifting). Under the same setting as Problem 1, we

call ¯̀a fairness certificate against sensitive shifting, if ¯̀upper bounds

max
Q

E(X,Y )⇠Q[`(h✓(X), Y )]

s.t. dist(P,Q)  ⇢, Ps,y = Qs,y 8s 2 [S], y 2 [C], Q is a fair distribution,

where Ps,y and Qs,y are the subpopulations of P and Q on the support {(X,Y ) : X 2 X , Xs =
s, Y = y} respectively, and dist(·, ·) is a predetermined distribution distance metric.

The definition adds an additional constraint between P and Q that each subpopulation, partitioned by
the sensitive attribute Xs and label Y , does not change. This constraint corresponds to the scenario
where the distribution shifting between training and test distributions only happens on the proportions
of different sensitive attributes and labels, and within each subpopulation the shifting is negligible.

In addition, to model the real-world test distribution, we may further request that the test distribution
Q is not too skewed regarding the sensitive attribute Xs by adding constraint (1). We will show that
this constraint can also be integrated into our fairness certification framework flexibly in Section 4.3.

8i 2 [S], 8j 2 [S],

���� Pr
(X,Y )⇠Q

[Xs = i]� Pr
(X,Y )⇠Q

[Xs = j]

����  �S . (1)

Connections to Other Fairness Measurements. Though not explicitly stated, our goal of certifying
the performance on a fair distribution Q relates to certifying established fairness definitions in the
literature. Consider the following example: Suppose Problem 2 is feasible and returns a classifier
h✓ that achieves certified fairness per group and per label class l̄ := Pr(X,Y )⇠Q[h✓(X) 6= Y |Y =
y,Xs = i]  ✏ on Q. We will then have the following proposition:
Proposition 1. h✓ achieves ✏-Demographic Parity (DP) [51] and ✏-Equalized Odds (EO) [18]:

• ✏-DP: |PrQ[h✓(X) = 1|Xs = i]� PrQ[h✓(X) = 1|Xs = j]|  ✏, 8i, j.
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• ✏-EO: |PrQ[h✓(X) = 1|Y = y,Xs = i]� PrQ[h✓(X) = 1|Y = y,Xs = j]|  ✏, 8y, i, j.
Remark. The detailed proof is omitted to appendix C.1. (1) When ✏ = 0, Proposition 1 can guarantee
perfect DP and EO simultaneously. We achieve so because we evaluate with a fair distribution Q,
where “fair distribution” stands for “equalized base rate” and according to [23, Theorem 1.1, page
5] both DP and EO are achievable for this fair distribution. This observation in fact motivated us
to identify the fair distribution Q for the evaluation since it is this fair distribution that allows the
fairness measures to hold at the same time. Therefore, another way to interpret our framework is:
given a model, we provide a framework that certifies worst-case “unfairness” bound in the context
where perfect fairness is achievable. Such a worse-case bound serves as the gap to a perfectly fair
model and could be a good indicator of the model’s fairness level. (2) In practice, ✏ is not necessarily
zero. Therefore, Proposition 1 only provides an upper lower bound of DP and EO, namely ✏-DP and
✏-EO, instead of absolute DP and EO. The approximate fairness guarantee renders our results more
general. Meanwhile, there is a higher flexiblity in simultaneously satisfying approximate fairness
metrics (for example when DP = 0, but EO = ✏, which is plausible for a proper range of epsilon,
regardless of the distribution Q being fair or not). But again, similar to (1), ✏-DP and ✏-EO can be
achieved at the same time easily since the test distribution satisfies base rate parity.

The bounds in Proposition 1 are tight. Consider the distribution Q with binary classes and binary
sensitive attributes (i.e., Y,Xs 2 {0, 1}). When the distribution Q and classifier h✓ satisfy the
conditions that PrQ[h✓(X) 6= Y |Y = 0, Xs = 0] = ✏,PrQ[h✓(X) 6= Y |Y = 0, Xs = 1] = 0 and
PrQ[Y = 0] = 1,PrQ[Y = 1] = 0, the bounds in Proposition 1 are tight. From PrQ[Y = 0] =
1,PrQ[Y = 1] = 0, we can observe that ✏-DP is equivalent to ✏-EO. From PrQ[h✓(X) 6= Y |Y =
0, Xs = 0] = ✏,PrQ[h✓(X) 6= Y |Y = 0, Xs = 1] = 0 and PrQ[h✓(X) 6= Y |Y = 0, Xs = i] =
PrQ[h✓(X) = 1|Y = 0, Xs = i] for i 2 {0, 1}, we know that ✏-EO holds with tightness since
|PrQ[h✓(X) = 1|Y = 0, Xs = 0]� PrQ[h✓(X) = 1|Y = 0, Xs = 1]| = ✏. To this point, we show
that both bounds in Proposition 1 are tight.

3 Fairness Certification Framework
We will introduce our fairness certification framework which efficiently computes the fairness
certificate defined in Section 2.1. We first introduce our framework for sensitive shifting (Problem 2)
which is less complex and shows our core methodology, then general shifting case (Problem 1).

Our framework focuses on using the Hellinger distance to bound the distributional distance in
Problems 1 and 2. The Hellinger distance H(P,Q) is defined in Def. 3 (in Appendix B.1). The
Hellinger distance has some nice properties, e.g., H(P,Q) 2 [0, 1], and H(P,Q) = 0 if and
only if P = Q and the maximum value of 1 is attained when P and Q have disjoint support. The
Hellinger distance is a type of f -divergences which are widely studied in ML distributional robustness
literature [47, 14] and in the context of distributionally robust optimization [7, 25, 15]. Also, using
Hellinger distance enables our certification framework to generalize to total variation distance (or

statistic distance) �(P,Q)2 directly with the connection, H2(P,Q)  �(P,Q) 
p
2H(P,Q) ([45],

Equation 1). We leave the extension of our framework to other distance metrics as future work.

3.1 Core Idea: Subpopulation Decomposition
The core idea in our framework is (finite) subpopulation decomposition. Consider a generic optimiza-
tion problem for computing the loss upper bound on a constrained test distribution Q, given training
distribution P and trained model h✓(·), we first characterize model h✓(·) based on some statistics,
e.g., mean and variance for loss of the model: h✓(·) satisfies ej(P, h✓)  vj , 1  j  L. Then we
characterize the properties (e.g., fair base rate) of the test distribution Q: gj(Q)  uj , 1  j  M .
As a result, we can upper bound the loss of h✓(·) on Q as the following optimization:
max
Q,✓

E(X,Y )⇠Q[`(h✓(X), Y )] s.t. H(P,Q)  ⇢, ej(P, h✓)  vj 8j 2 [L], gj(Q)  uj 8j 2 [M ].

(2)
Now we decompose the space Z := X ⇥ Y to N partitions: Z :=

U
Zi, where Z is the support of

both P and Q. Then, we denote P conditioned on Zi by Pi and similarly Q conditioned on Zi by
Qi. As a result, we can write P =

P
i2[N ] piPi and Q =

P
i2[N ] qiQi. Since P is known, pi’s are

known. In contrast, both Qi and qi’s are optimizable. Our key observation is that

H(P,Q)  ⇢ () 1� ⇢
2 �

NX

i=1

p
piqi(1�H(Pi,Qi)

2)  0 (3)

2
�(P,Q) = supA2F |P(A)�Q(A)| where F is a �-algebra of subsets of the sample space ⌦.
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which leads to the following theorem.
Theorem 1. The following constrained optimization upper bounds Equation (2):

max
Qi,qi,⇢i,✓

NX

i=1

qiE(X,Y )⇠Qi
[`(h✓(X), Y )] (4a)

s.t. 1� ⇢
2 �

NX

i=1

p
piqi(1� ⇢

2
i )  0, (4b)

H(Pi,Qi)  ⇢i 8i 2 [N ],
NX

i=1

qi = 1, qi � 0 8i 2 [N ], ⇢i � 0 8i 2 [N ], (4c)

e
0
j({Pi}i2[N ], {pi}i2[N ], h✓)  v

0
j 8j 2 [L], g

0
j({Qi}i2[N ], {qi}i2[N ])  u

0
j 8j 2 [M ], (4d)

if ej(P, h✓)  vj implies e
0
j
({Pi}i2[N ], {pi}i2[N ], h✓)  v

0
j

for any j 2 [L], and gj(Q)  uj

implies g
0
j
({Qi}i2[N ], {qi}i2[N ])  u

0
j

for any j 2 [M ].

In Problem 2, the challenge is to deal with the fair base rate constraint. Our core technique in Thm. 1
is subpopulation decomposition. At a high level, thanks to the disjoint support among different
subpopulations, we get Equation (3). This equation gives us an equivalence relationship between
distribution-level (namely, P and Q) distance constraint and subpopulation-level (namely, Pi’s and
Qi’s) distance constraint. As a result, we can rewrite the original problem (2) using sub-population
as decision variables as in Equation (4b) and then imposing the unity constraint (Equation (4c))
to get Thm. 1. We provide a detailed proof in Appendix C.2. Although the optimization problem
(Equation (4)) may look more complicated then the original Equation (2), this optimization sim-
plifies the challenging fair base rate constraint, allows us to upper bound each subpopulation loss
E(X,Y )⇠Qi

[`(h✓(X), Y )] individually, and hence makes the whole optimization tractable.

3.2 Certified Fairness with Sensitive Shifting
For the sensitive shifting case, we instantiate Thm. 1 and obtain the following fairness certificate.
Theorem 2. Given a distance bound ⇢ > 0, the following constrained optimization, which is convex,

when feasible, provides a tight fairness certificate for Problem 2:

max
ks,ry

SX

s=1

CX

y=1

ksryEs,y, s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C],

1� ⇢
2 �

SX

s=1

CX

y=1

p
ps,yksry  0,

where Es,y := E(X,Y )⇠Ps,y
[`(h✓(X), Y )] and ps,y := Pr(X,Y )2P [Xs = s, Y = y] are constants.

Proof sketch. We decompose distribution P and Q to Ps,y’s and Qs,y’s according to their sensitive
attribute and label values. In sensitive shifting, Pr(Xo|Y,Xs) is fixed, i.e., Ps,y = Qs,y, which
means E(X,Y )⇠Qs,y

[`(h✓(X), Y )] = Es,y and ⇢s,y = H(Ps,y,Qs,y) = 0. We plug these properties
into Thm. 1. Then, denoting qs,y to Pr(X,Y )⇠Q[Xs = s, Y = y], we can represent the fairness

constraint in Def. 2 as qs0,y0 =
⇣P

S

s=1 qs,y0

⌘⇣P
C

y=1 qs0,y

⌘
for any s0 2 [S] and y0 2 [C]. Next,

we parameterize qs,y with ksry . Such parameterization simplifies the fairness constraint and allow us
to prove the convexity of the resulting optimization. Since all the constraints are encoded equivalently,
the problem formulation provides a tight certification. Detailed proof in Appendix C.3.

As Thm. 2 suggests, we can exploit the expectation information Es,y = E(X,Y )⇠Ps,y
[`(h✓(X), Y )]

and density information ps,y = Pr(X,Y )⇠P [Xs = s, Y = y] of each P’s subpopulation to provide a
tight fairness certificate in sensitive shifting. The convex optimization problem with (S+C) variables
can be efficiently solved by off-the-shelf packages.

3.3 Certified Fairness with General Shifting
For the general shifting case, we leverage Thm. 1 and the parameterization trick qs,y := ksry used in
Thm. 2 to reduce Problem 1 to the following constrained optimization.
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Lemma 3.1. Given a distance bound ⇢ > 0, the following constrained optimization, when feasible,

provides a tight fairness certificate for Problem 1:

max
ks,ry,Q,⇢s,y

SX

s=1

CX

y=1

ksryE(X,Y )⇠Qs,y [`(h✓(X), Y )] (6a)

s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C], (6b)

SX

s=1

CX

y=1

p
ps,yksry(1� ⇢

2
s,y) � 1� ⇢

2 (6c)

H(Ps,y,Qs,y)  ⇢s,y 8s 2 [S], y 2 [C], (6d)

where ps,y := Pr(X,Y )2P [Xs = s, Y = y] is a fixed constant. The Ps,y and Qs,y are the

subpopulations of P and Q on the support {(X,Y ) : X 2 X , Xs = s, Y = y} respectively.

Proof sketch. We show that Equation (6b) ensures a parameterization of qs,y = Pr(X,Y )2Q[Xs =
s, Y = y] that satisfies fairness constraints on Q. Then, leveraging Thm. 1 we prove that the
constrained optimization provides a fairness certificate. Since all the constraints are either kept or
equivalently encoded, this resulting certification is tight. Detailed proof in Appendix C.4.
Now the main obstacle is to solve the non-convex optimization in Problem 6. Here, as the first
step, we upper bound the loss of h✓(·) within each shifted subpopulation Qs,y, i.e., upper bound
E(X,Y )⇠Qs,y

[`(h✓(X), Y )] in Equation (6a), by Thm. 4 in Appendix B.2 [47]. Then, we apply
variable transformations to make some decision variables convex. For the remaining decision
variables, we observe that they are non-convex but bounded. Hence, we propose the technique of
grid-based sub-problem construction. Concretely, we divide the feasible region regarding non-convex
variables into small grids and consider the optimization problem in each region individually. For each
sub-problem, we relax the objective by pushing the values of non-convex variables to the boundary
of the current grid and then solve the convex optimization sub-problems. Concretely, the following
theorem states our computable certificate for Problem 1, with detailed proof in Appendix C.5.
Theorem 3. If for any s 2 [S] and y 2 [Y ], H(Ps,y,Qs,y)  �̄s,y and 0 
sup(X,Y )2X⇥Y `(h✓(X), Y )  M , given a distance bound ⇢ > 0, for any region granularity

T 2 N+, the following expression provides a fairness certificate for Problem 1:

¯̀= max
{is2[T ]:s2[S]},{jy2[T ]:y2[C]}

C

 ⇢
is � 1
T

,
is

T

��S

s=1

,

⇢
jy � 1
T

,
jy

T

��C

y=1

!
, where (7)

C
⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
= max

xs,y

SX

s=1

CX

y=1

⇣
ksry (Es,y + Cs,y)+ + ksry (Es,y + Cs,y)�

+2ksry
p

xs,y(1� xs,y)
p

Vs,y � ksryxs,y(Cs,y)+ � ksryxs,y(Cs,y)�
⌘

(8a)

s.t.
SX

s=1

ks  1,
SX

s=1

ks � 1,
CX

y=1

ry  1,
CX

y=1

ry � 1, (8b)

SX

s=1

CX

y=1

q
ps,yksryxs,y � 1� ⇢

2
, (1� �̄

2
s,y)

2  xs,y  1 8s 2 [S], y 2 [C], (8c)

where (·)+ = max{·, 0}, (·)� = min{·, 0}; Es,y = E(X,Y )⇠Ps,y
[`(h✓(X), Y )], Vs,y =

V(X,Y )⇠Ps,y
[`(h✓(X), Y )], ps,y = Pr(X,Y )⇠P [Xs = s, Y = y], Cs,y = M � Es,y � Vs,y

M�Es,y
,

and �̄
2
s,y

= 1� (1 + (M � Es,y)2/Vs,y)�
1
2 . Equation (7) only takes C’s value when it is feasible,

and each C queried by Equation (7) is a convex optimization.

Implications. Thm. 3 provides a fairness certificate for Problem 1 under two assumptions: (1) The
loss function is bounded (by M ). This assumption holds for several typical losses such as 0-1 loss and
JSD loss. (2) The distribution shift between training and test distribution within each subpopulation is
bounded by �̄s,y , where �̄s,y is determined by the model’s statistics on P . In practice, this additional
distance bound assumption generally holds, since �̄s,y � ⇢ for common choices of ⇢.
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In Thm. 3, we exploit three types of statistics of h✓(·) on P to compute the fairness certificates:
the expectation Es,y = E(X,Y )⇠Ps,y

[`(h✓(X), Y )], the variance Vs,y = V(X,Y )⇠Ps,y
[`(h✓(X), Y )],

and the density ps,y = Pr(X,Y )⇠P [Xs = s, Y = y], all of which are at the subpopulation level and a
high-confidence estimation of them based on finite samples are tractable (Section 3.4).

Using Thm. 3, after determining the region granularity T , we can provide a fairness certificate for
Problem 1 by solving T

SC convex optimization problems, each of which has SC decision variables.
Note that the computation cost is independent of h✓, and therefore we can numerically compute
the certificate for large DNN models used in practice. Specifically, when S = 2 (binary sensitive
attribute) or C = 2 (binary classification) which is common in the fairness evaluation setting, we can
construct the region for only one dimension k1 or r1, and use 1�k1 or 1� r1 for the other dimension.
Thus, for the typical setting S = 2, C = 2, we only need to solve T

2 convex optimization problems.

Note that for Problem 2, our certificate in Thm. 2 is tight, whereas for Problem 1, our certificate in
Thm. 3 is not. This is because in Problem 1, extra distribution shift exists within each subpopulation,
i.e., Pr(Xo|Y,Xs) changes from P to Q, and to bound such shift, we need to leverage Thm. 2.2
in [47] which has no tightness guarantee. Future work providing tighter bounds than [47] can be
seamlessly incorporated into our framework to tighten our fairness certificate for Problem 1.

3.4 Dealing with Finite Sampling Error
In Section 3.2 and Section 3.3, we present Thm. 2 and Thm. 3 that provide computable fairness
certificates for sensitive shifting and general shifting scenarios respectively. In these theorems, we
need to know the quantities related to the training distribution and trained P and model h✓(·):
Es,y = E

(X,Y )⇠Ps,y

[`(h✓(X), Y )], Vs,y = V
(X,Y )⇠Ps,y

[`(h✓(X), Y )], ps,y = Pr
(X,Y )⇠P

[Xs = s, Y = y]. (9)

Section 3.3 further requires Cs,y and �̄s,y which are functions of Es,y and Vs,y . However, a practical
challenge is that common training distributions do not have an analytical expression that allows us to
precisely compute these quantities. Indeed, we only have access to a finite number of individually
drawn samples, i.e., the training dataset, from P . Thus, we will provide high-confidence bounds for
Es,y , Vs,y , and ps,y in Lemma D.1 (stated in Appendix D.1).

For Thm. 2, we can replace Es,y in the objective by the upper bounds of Es,y and replace the concrete
quantities of ps,y by interval constraints and the unit constraint

P
s

P
y
ps,y = 1, which again yields

a convex optimization that can be effectively solved. For Thm. 3, we compute the confidence intervals
of Cs,y and ⇢s,y , then plug in either the lower bounds or the upper bounds to the objective (8a) based
on the coefficient, and finally replace the concrete quantities of ps,y by interval constraints and the
unit constraint

P
s

P
y
ps,y = 1. The resulting optimization is proved to be convex and provides an

upper bound for any possible values of Es,y , Vs,y , and ps,y within the confidence intervals. We defer
the statement of Thm. 2 and Thm. 3 considering finite sampling error to Appendix D.2. To this point,
we have presented our framework for computing high-confidence fairness certificates given access to
model h✓(·) and a finite number of samples drawn from P .

4 Experiments
In this section, we evaluate the certified fairness under both sensitive shifting and general shifting

scenarios on six real-world datasets. We observe that under the sensitive shifting, our certified fairness
bound is tight (Section 4.1); while the bound is less tight under general shifting (Section 4.2) which
depends on the tightness of generalization bounds within each subpopulation (details in Section 3.3).
In addition, we show that our certification framework can flexibly integrate more constraints on Q,
leading to a tighter fairness certification (Section 4.3). Finally, we compare our certified fairness
bound with existing distributional robustness bound [43] (section 4.4), since both consider a shifted
distribution while our bound is optimized with an additional fairness constraint which is challenging
to be directly integrated to the existing distributional robustness optimization. We show that with the
fairness constraint and our optimization approach, our bound is much tighter.

Dataset & Model. We validate our certified fairness on six real-world datasets: Adult [3], Com-
pas [2], Health [19], Lawschool [48], Crime [3], and German [3]. Details on the datasets and data
processing steps are provided in Appendix E.1. Following the standard setup of fairness evaluation in
the literature [39, 38, 31, 42], we consider the scenario that the sensitive attributes and labels take
binary values. The ReLU network composed of 2 hidden layers of size 20 is used for all datasets.
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Figure 1: Certified fairness with sensitive shifting. Grey points are results on generated distributions (Q) and
the black line is our fairness certificate based on Thm. 2. We observe that our fairness certificate is usually tight.

Fairness Certification. We perform vanilla model training and then leverage our fairness cer-
tification framework to calculate the fairness certificate. Concretely, we input the trained model
information on P and the framework would output the fairness certification for both sensitive shifting
and general shifting scenarios following Thm. 2 and Thm. 3, respectively.

Code, model, and all experimental data are publicly available at https://github.com/
AI-secure/Certified-Fairness.

4.1 Certified Fairness with Sensitive Shifting
Generating Fair Distributions. To evaluate how well our certificates capture the fairness risk in
practice, we compare our certification bound with the empirical loss evaluated on randomly generated
30, 000 fairness constrained distributions Q shifted from P . The detailed steps for generating fairness
constrained distributions Q are provided in Appendix E.2. Under sensitive shifting, since each
subpopulation divided by the sensitive attribute and label does not change (Section 2.1), we tune
only the portion of each subpopulation qs,y satisfying the base rate fairness constraint, and then
sample from each subpopulation of P individually according to the proportion qs,y . In this way, our
protocols can generate distributions with different combinations of subpopulation portions. If the
classifier is biased toward one subpopulation (i.e., it achieves high accuracy in the group but low
accuracy in others), the worst-case accuracy on generated distribution is low since the portion of
the biased subpopulation in the generated distribution can be low; in contrast, a fair classifier which
performs uniformly well for each group can achieve high worst-case accuracy (high certified fairness).
Therefore, we believe that our protocols can demonstrate real-world training distribution bias as well
as reflect the model’s unfairness and certification tightness in real-world scenarios.

Results. We report the classification error (Error) and BCE loss as the evaluation metric. Figure 1
illustrates the certified fairness on Adult, Compas, Health, and Lawschool under sensitive shifting.
More results on two relatively small datasets (Crime, German) are shown in Appendix E.5. From the
results, we see that our certified fairness is tight in practice.

4.2 Certified Fairness with General Shifting
In the general shifting scenario, we similarly randomly generate 30, 000 fair distributions Q shifted
from P . Different from sensitive shifting, the distribution conditioned on sensitive attribute Xs and
label Y can also change in this scenario. Therefore, we construct another distribution Q0 disjoint with
P on non-sensitive attributes and mix P and Q0 in each subpopulation individually guided by mixing
parameters satisfying fair base rate constraint. Detailed generation steps are given in Appendix E.2.
Since the fairness certification for general shifting requires bounded loss, we select classification
error (Error) and Jensen-Shannon loss (JSD Loss) as the evaluation metric. Figure 2 illustrates the
certified fairness with classification error metric under general shifting. Results of JSD loss and more
results on two relatively small datasets (Crime, German) are in Appendix E.5.

4.3 Certified Fairness with Additional Non-Skewness Constraints
In Section 2.1, we discussed that to represent different real-world scenarios we can add more
constraints such as Equation (1) to prevent the skewness of Q, which can be flexibly incorporated
into our certificate framework. Concretely, for sensitive shifting, we only need to add one more
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Figure 2: Certified fairness with general shifting. Grey points are results on generated distributions (Q) and the
black line is our fairness certificate based on Thm. 3. We observe that our fairness certificate is non-trivial.

(a) Sentitive Shifting (b) General Shifting (c) Comparison with WRM
Figure 3: Certified fairness with additional non-skewness constraints on Adult dataset is shown in (a) (b).
�s controls the skewness of Q (|Pr(X,Y )⇠Q[Xs = 0] � Pr(X,Y )⇠Q[Xs = 1]|  �s). More analysis in
Section 4.3. In (c), we compare our certified fairness bound with the distributional robustness bound [43]. More
analysis in Section 4.4.

box constraint3 0.5��s/2  ks  0.5 +�s/2 where �s is a parameter controlling the skewness
of Q, which still guarantees convexity. For general shifting, we only need to modify the region
partition step3, where we split [0.5��s/2, 0.5 +�s/2] instead of [0, 1]. The certification results
with additional constraints are in Figures 3(a) and 3(b), which suggests that if the added constraints
are strict (i.e., smaller �s), the bound is tighter. More constraints w.r.t. labels can also be handled by
our framework and the corresponding results as well as results on more datasets are in Appendix E.6.

4.4 Comparison with Distributional Robustness Bound
To the best of our knowledge, there is no existing work providing certified fairness on the end-to-end
model performance. Thus, we try to compare our bound with the distributional robustness bound since
both consider certain distribution shifts. However, it is challenging to directly integrate the fairness
constraints into existing bounds. Therefore, we compare with the state-of-the-art distributional
robustness certification WRM [43], which solves the similar optimization problem as ours except for
the fairness constraint. For fair comparison, we construct a synthetic dataset following [43], on which
there is a one-to-one correspondence between the Hellinger and Wasserstein distance used by WRM.
We randomly select one dimension as the sensitive attribute. Since WRM has additional assumptions
on smoothness of models and losses, we use JSD loss and a small ELU network with 2 hidden layers
of size 4 and 2 following their setting. More implementation details are in Appendix E.4. Results in
Figure 3(c) suggest that 1) our certified fairness bound is much tighter than WRM given the additional
fairness distribution constraint and our optimization framework; 2) with additional fairness constraint,
our certificate problem could be infeasible under very small distribution distances since the fairness
constrained distribution Q does not exist near the skewed original distribution P ; 3) with the fairness
constraint, we provide non-trivial fairness certification bound even when the distribution shift is large.

5 Conclusion
In this paper, we provide the first fairness certification on end-to-end model performance, based
on a fairness constrained distribution which has bounded distribution distance from the training
distribution. We show that our fairness certification has strong connections with existing fairness
notions such as group parity, and we provide an effective framework to calculate the certification under
different scenarios. We provide both theoretical and empirical analysis of our fairness certification.

Acknowledgements. MK, LL, and BL are partially supported by the NSF grant No.1910100, NSF
CNS No.2046726, C3 AI, and the Alfred P. Sloan Foundation. YL is partially supported by the NSF
grants IIS-2143895 and IIS-2040800.

3Note that such modification is only viable when sentive attributes take binary values, which is the typical
scenario in the literature of fairness evaluation [39, 38, 31, 42].

10



References
[1] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. Fairsquare: proba-

bilistic verification of program fairness. Proceedings of the ACM on Programming Languages,
1(OOPSLA):1–30, 2017.

[2] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of Data

and Analytics, pages 254–264. Auerbach Publications, 2016.

[3] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.
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