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ABSTRACT

Large Language Models have demonstrated remarkable progress in general-purpose
capabilities and can achieve strong performance in specific domains through fine-
tuning on domain-specific data. However, acquiring high-quality data for target
domains remains a significant challenge. Existing data synthesis approaches follow
a deductive paradigm, heavily relying on explicit domain descriptions expressed in
natural language and careful prompt engineering, limiting their applicability in real-
world scenarios where domains are difficult to describe or formally articulate. In
this work, we tackle the underexplored problem of domain-specific data synthesis
through an inductive paradigm, where the target domain is defined only through a
set of reference examples, particularly when domain characteristics are difficult to
articulate in natural language. We propose a novel framework, DOMINO, that learns
a minimal sufficient domain representation from reference samples and leverages
it to guide the generation of domain-aligned synthetic data. DOMINO integrates
prompt tuning with a contrastive disentanglement objective to separate domain-
level patterns from sample-specific noise, mitigating overfitting while preserving
core domain characteristics. Theoretically, we prove that DOMINO expands the
support of the synthetic data distribution, ensuring greater diversity. Empirically, on
challenging coding benchmarks where domain definitions are implicit, fine-tuning
on data synthesized by DOMINO improves Pass@1 accuracy by up to 4.63% over
strong, instruction-tuned backbones, demonstrating its effectiveness and robustness.
This work establishes a new paradigm for domain-specific data synthesis, enabling
practical and scalable domain adaptation without manual prompt design or natural
language domain specifications. Code will be available upon publication.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) (OpenAI, 2022; Gemini Team, 2024; Qwen
et al., 2025; DeepSeek-AI, 2024) have revolutionized natural language processing, allowing for
unprecedented performance in coding (Jain et al., 2024; Zhuo et al., 2025), mathematics (Cobbe et al.,
2021; Ye et al., 2025), and various downstream tasks (Plaat et al., 2024; Zhang et al., 2024a; Nie
et al., 2024). In real-world applications, the prevailing approach to downstream adaptation involves
leveraging high-quality, domain-specific data for supervised instruction tuning (Ding et al., 2023;
Zhang et al., 2024b). This approach rests on a crucial assumption that practitioners are able to obtain
a sufficient number of annotated examples to explicitly characterize the target domain.

However, current data synthesis methods share a fundamental, yet often overlooked, limitation:
they presuppose the existence of an explicit, human-articulable domain definition. These methods,
whether based on Instruction Evolution (Wang et al., 2023a; Xu et al., 2024), Key-point-driven
synthesis (Huang et al., 2024a;b), or System Prompts (Xu et al., 2025), all require translating domain
knowledge into textual instructions. (Details of these related methods are shown in Appendix A.)
This approach is analogous to deductive reasoning—starting from a general rule (the prompt) to
generate specific instances. This paradigm breaks down when we consider how humans often learn.
We excel at inductive reasoning: when confronted with a new concept—be it a genre of music, a
style of art, or a type of logical puzzle—we do not begin with a formal, axiomatic definition. Instead,
we learn by observing a handful of canonical examples and inducing the underlying rules, patterns,
and boundaries of the domain. This raises a critical question for machine learning:
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You are given two integers, n and k. An array of distinct 
positive integers is called a k-avoiding array if there does 
not exist any pair of distinct elements that sum to k. Return 
the minimum possible sum of a k-avoiding array of length n.

Example 1:
Input: n = 5, k = 4
Output: 18
Explanation: Consider the k-avoiding array [1,2,4,5,6], 
which has a sum of 18. It can be proven that there is no k-
avoiding array with a sum less than 18.

Example 2:
Input: n = 2, k = 6
Output: 3
Explanation: We can construct the array [1,2], which has a 
sum of 3. It can be proven that there is no k-avoiding array 
with a sum less than 3.

Constraints:
1 <= n, k <= 50

Domain Representation
𝑑!, 	𝑑" , ···, 𝑑#	

Reference Samples Synthetic Samples

LLMs

You are given an array of integers A (size N). If the sum 
of the subarray A[i] to A[j] (inclusive) is an even number, 
return the number of elements in this subarray. Note that a 
subarray is a contiguous sequence of elements of the array.

Input: The input is given from Standard Input in the 
following format:
N
A1 A2 ... AN

Output: Print the sum of the number of subarrays for each 
i and j.

Example
Input
3
1 2 3
Output
4
Explanation: The following four subarrays will be even-
sum:
* [1,2] * [2,3] * [1,2,3] * [3]

Constraints
* 1 \le N \le 100
* 0 \le A_i \le 100

Figure 1: DOMINO encodes domain characteristics into latent embeddings derived from reference
samples, which are then used to guide LLMs in generating new samples. While the domain character-
istics are not explicitly defined in natural language, a comparison between reference and synthetic
samples at least reveals a shared structural pattern (e.g., description, examples, constraints), even
though the specific content differs, highlighting the DOMINO’s ability to capture the domain’s format.

“How can we synthesize domain-specific data when the target domain is defined
implicitly by a set of reference examples, rather than explicitly in natural language?”

This problem is not a niche concern but is central to practical domain adaptation. It arises in high-
value scenarios such as emerging scientific fields where terminology is still fluid, rapidly evolving
cultural trends like online slang, or with proprietary business logic that is confidential or poorly
documented. In all these cases, the domain is governed by subtle conventions and emergent patterns
that resist simple verbalization. While providing examples is easy, writing a formal definition is nearly
impossible. A tempting but flawed approach is to simply use the available examples for supervised
fine-tuning (SFT). With a limited dataset, however, SFT encourages the model to memorize superficial
features of the training data rather than generalize the underlying domain principles (Chu et al., 2025).
This leads to poor performance on novel, out-of-distribution tasks. This risk is not merely theoretical;
our own experiments (Table 1) confirm that naive SFT on a reference set can fail to improve, or even
degrade, results, highlighting its inadequacy for true domain adaptation.

The challenge, therefore, is not merely one of data quantity—a problem that synthesis can, in
principle, solve by generating as many samples as desired—but of learning quality. To truly learn
a domain from examples, a model must distinguish its core, generalizable principles from the
idiosyncratic details of each sample. Our key insight is that this can be achieved by learning a
minimal sufficient representation—a latent embedding that is sufficient to capture the essential
characteristics of the domain while being minimal enough to discard irrelevant, sample-specific noise
that leads to overfitting. As shown in Figure 1, we propose a framework that derives this minimal
representation from reference samples and then uses it to guide an LLM in generating novel, diverse
samples that adhere to the domain’s induced principles.

We call our framework DOMINO (DOmain-specific data synthesis through MINimal sufficient
representatiOn learning). Drawing on information-theoretic principles, DOMINO operates through
two synergistic components. First, it uses prompt tuning to learn a continuous domain embedding
that maximizes the likelihood of the reference examples, ensuring sufficiency. Second, it introduces a
contrastive disentanglement mechanism that explicitly separates shared domain-level patterns from
unique sample-level features, enforcing minimality. By optimizing a combined objective that enforces
both data reconstruction fidelity and information minimality, DOMINO learns to abstract the domain’s
"first principles" from the examples provided. In summary, the primary contributions are:
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• We formalize and tackle the problem of domain synthesis from implicit examples, mirroring
human inductive reasoning. We develop DOMINO, a framework that learns a minimal sufficient
representation by combining prompt tuning with contrastive disentanglement to capture essential
domain patterns and promote generalization.

• Theoretically, we prove that DOMINO expands the support of the synthetic data distribution
compared to baselines, ensuring greater diversity in generated examples.

• Empirically, we show DOMINO’s effectiveness and robustness across diverse tasks. On coding
tasks with implicit domains, it improves Pass@1 by up to 4.63% over strong instruction tuned
models, and consistently outperforms baselines on both coding and instruction-following tasks.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

We consider the problem of synthesizing data for a specific domain, denoted by D, with a corre-
sponding observation space X . We assume access to a limited set of reference data within X , that
is, X(1:n) = {X(1),X(2), · · · ,X(n)}. Each X(i) consists of both input and output sequences
expressed as plain text (i.e., the data for supervised fine-tuning of LLMs). The size of the reference
set, n, typically ranges from tens to hundreds of examples, a scale limited by high collection and
annotation costs. Even within this range, distinct challenges require a carefully designed represen-
tation. When n is on the lower end (e.g., tens of examples), the primary risk is overfitting to the
idiosyncratic details of the few available samples. As n grows larger (e.g., hundreds), the challenge
evolves. A representation that is merely sufficient for reconstruction but not minimal may still overfit
in a more subtle way. It might encode spurious correlations or incidental stylistic details common
across the dataset by chance, mistaking them for core domain principles. For example, it might
learn that problem descriptions frequently use a specific turn of phrase, rather than capturing the
abstract structural pattern of the domain itself. Therefore, our objective is to learn a minimal sufficient
representation that is robust across this spectrum: it must be general enough to avoid overfitting on
smaller datasets, yet discerning enough to separate the essential, generalizable domain characteristics
from coincidental, sample-specific artifacts in larger ones. The following details DOMINO.

2.2 IMPLICIT DOMAIN REPRESENTATION LEARNING VIA PROMPT TUNING

To accomplish our goal of synthesizing domain-specific data, we need to (i) learn a suitable rep-
resentation of the domain D and (ii) leverage that representation to generate new data within the
domain. A promising approach is to employ a pre-trained LLM as an implicit encoder to represent
the domain, capitalizing on its extensive knowledge base. Mathematically, let D = [d1, · · · ,dk]
denote the domain representation comprising k domain soft tokens, each with dimension d. We aim
to optimize D such that p(D|X ) =

∏n
i=1 p(D|X(i)) is maximized. According to Bayes’ rule,

p(D|X(i)) =
p(D)p(X(i)|D)

p(X(i))
∝ p(X(i)|D), (1)

where p(X(i)|D) signifies the probability of generating the data example X(i) given the domain
representation D, as determined by an LLM. In this context, we assume a uniform prior distribution
for the domain representation, p(D) ∝ 1, reflecting our lack of prior knowledge about the domain.
Consequently, the problem amounts to soft prompt tuning, where our objective is to identify the
domain-level soft token prompt D that maximizes the likelihood of all reference data X(1:n):

L1 = − 1

n

n∑
i=1

log p(X(i)|D). (2)

Unlike explicit encoders that require structured inputs (e.g., labeled features), LLMs leverage their
pre-training on vast corpora to infer domain-specific representations directly from natural language
examples. Moreover, soft prompt tuning avoids full model fine-tuning, preserving the LLM’s general
capabilities while specializing its behavior for D. In addition, the same framework applies to diverse
domains without architectural changes, as the domain representation D adapts to each domain’s
unique characteristics. Subsequently, new data can be synthesized by inputting the estimated D into
the LLM, drawing samples according to p(X|D), which will be discussed in Section 2.4.
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2.3 MINIMAL SUFFICIENT DOMAIN REPRESENTATION LEARNING

While the soft prompt tuning approach described above seems promising, it suffers from a critical
issue: overfitting. Given a small number of reference examples (tens to hundreds), the learned domain
representation D can become overly tailored to the training data. This may result in synthetic data
that closely resembles the reference examples, failing to capture the broader range of possibilities
within the observation space X of the domain D. Indeed, this approach primarily aims to learn a
sufficient representation for the domain D, which we define as follows:
Definition 1. (Sufficiency) A representation D is considered sufficient for domain D if the conditional
distribution p(X(i)|D,D) = p(X(i)|D) for all X(i) ∈ X . In other words, I(D;X(i)|D) = 0,
indicating that D captures all information about D contained in X(i), where I is mutual information.

However, sufficiency alone does not guarantee generalization. A representation that retains unneces-
sary details (e.g., unique attributes of individual examples) risks overfitting. To mitigate this, we seek
a minimal sufficient representation D∗:
Definition 2. (Minimal Sufficiency) A sufficient representation D∗ is minimal if and only if it is a
function of every other sufficient representation D, i.e., D∗ = f(D). According to the deterministic
function property of mutual information, I(D∗,X(i)) = I(f(D),X(i)) ≤ I(D,X(i)), indicating
that D∗ discards all information irrelevant to D.

Minimal sufficiency ensures D∗ focuses on domain-wide patterns (e.g., the general topic, task
type, or style) rather than memorizing sample-specific traits (e.g., specific facts, word choices, or
constraints). This process is the computational analog to the inductive leap humans make: identifying
the essential, shared "rules" of a concept while ignoring the incidental details of any single example.
This enables the generation of diverse synthetic data that spans the observation space X , rather than
replicating training examples. To enforce minimal sufficiency, we explicitly separate domain-level
and sample-level information by introducing sample-specific representations S(i) = [s

(i)
1 , · · · , s(i)ℓ ],

one for each individual example X(i). These sample-level soft tokens encode unique aspects of
each example X(i). We optimize D∗ and S(i) via a contrastive loss:

L2 = − 1

n

n∑
i=1

log
p(X(i)|D∗,S(i))∑
j ̸=i p(X

(j)|D∗,S(i))
. (3)

The numerator guarantees that D∗ and S(i) jointly reconstruct X(i). On the other hand, the
denominator penalizes D∗ for encoding information that could facilitate S(i) to reconstruct unrelated
examples X(j) for j ̸= i. This design embodies the principle that D∗ should capture shared aspects
across all samples in the domain, while S(i) focuses on the unique aspects of the specific sample X(i).
By forcing the LLM to rely on S(i) to distinguish X(i) from other samples X(j), we prevent D∗

from overfitting to the specifics of individual examples. This, in turn, promotes a more generalizable,
minimal sufficient domain representation (i.e., an inductive abstraction). With this loss, we can prove:
Proposition 1. Given X(i) ∈ X(1:n), L2 directly maximizes I(S(i),X(i)|D∗), ensuring that S(i)

captures unique information about X(i).
Proposition 2. L2 directly minimizes I(S(i);D∗), promoting disentanglement between S(i) and D∗

The detailed proofs of Proposition 1 and Proposition 2 are listed in Appendix B.1 and B.2. Finally,
the overall loss function for learning the minimal sufficient representation D∗ for the domain D is a
combination of the domain-level likelihood and the contrastive loss:

L = L1 + λL2, (4)
where λ is a weighting hyperparameter that controls the trade-off between maximizing data likelihood
and promoting domain representation disentanglement. A higher λ encourages the LLM to learn a
more minimal, generalizable domain representation by preventing overfitting to individual samples.
Further, we theoretically prove the connection between optimization objective L and the information-
theoretic principles of minimal sufficiency (Proposition 3, proof in Appendix B.3).
Proposition 3. The optimization objective L serves as a tractable proxy for learning a representation
D∗ that approximates the information-theoretic properties of a minimal sufficient statistic. Specif-
ically, minimizing L jointly encourages: 1. Sufficiency: The maximization of mutual information
I(D∗;X) , ensuring D∗ captures relevant domain information. 2. Minimality: The minimization of
mutual information I(D∗;S) , ensuring D∗ is disentangled from sample-specific information.
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Reference Sample
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LLM

Minimal Sufficient Domain Representation Learning Synthetic Processing
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…

Domain Soft Tokens
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Training Inference

Figure 2: The left side represents the minimal sufficient domain representation learning process,
where t1, · · · , tT denote the raw natural language tokens of a reference sample, em denotes the
corresponding embedding. Domain-level soft tokens D∗ and sample-level soft tokens S(i) are jointly
optimized. The right side represents using only optimized D∗ to synthesize domain-specific samples.

2.4 DATA SYNTHESIS

In practice, the minimal sufficient domain representation D∗ and the sample-level prompt S(i) are
jointly optimized during training using the objective L in equation 4 (on the left side of Figure 2).
Once training is complete, only the learned D∗ is used to guide the LLM during the data synthesis
phase (i.e., sampled from distribution p(X|D∗)), as shown on the right side of Figure 2. Notably,
the LLM is fixed throughout both the training and synthesis stages. The key intuition is that by
disentangling D∗ from sample-specifics, we prevent it from merely memorizing the training examples
and instead encourage the generation of more diverse outputs. Proposition 4 provides the formal
theoretical guarantee for this. It proves that, under quantifiable conditions, the distribution guided
by our minimal sufficient representation, p(X|D∗), has a strictly larger effective support (the set of
high-probability outcomes) than the distribution pD guided by a standard, non-minimal prompt.
Proposition 4. Let pD and pD∗ denote the distributions p(X|D) (from vanilla prompt tuning) and
p(X|D∗) (from minimal sufficient, disentangled prompt tuning via L1 + λL2), respectively. For any
ϵ ∈ (0, 1/e), define the ϵ-support of p, suppϵ(p) = {x : p(x) > ϵ}, with cardinality Sϵ

p = |suppϵ(p)|.
Define the uniformity gap for p as δp = logSϵ

p −H(p), where H(p) is the entropy of p. If

H(pD∗)−H(pD) > δpD
+ ϵ log

1

ϵ
(5)

then Sϵ
pD∗ > Sϵ

pD
; that is, the ϵ-support of p(X|D∗) is strictly larger than that of p(X|D).

Proof. See Appendix B.4.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Domain and Benchmark Selection. To effectively evaluate DOMINO, we require benchmarks
that embody our core problem definition: domains where characteristics are implicit, evolving, and
difficult to articulate textually. The recently proposed dynamic benchmark LiveCodeBench (Jain
et al., 2024) provides a perfect testbed. In competitive programming, the "domain" is not a static
category like "code generation", but the constantly evolving style, complexity, and set of algorithmic
patterns characteristic of platforms during a specific time frame. It is notoriously difficult to write
a single prompt that captures "the essence of a typical LeetCode problem from late 2024", yet it is
easy to collect examples from that period. Following these principles, we select two distinct domains
from the recently proposed dynamic benchmark LiveCodeBench (Jain et al., 2024): Live Code

5
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Table 1: Main Results of DOMINO and the compared methods on the two target domains. DOMINO-
Direct Domain is an ablation of our method using only L1 without L2.

Live Code Generation Live Code Execution

Methods Pass@1 Pass@5 Pass@10 Pass@1

Using OPENCODER-8B-Instruct Huang et al. (2024a) as Backbone

OPENCODER-8B-Base 7.96 14.56 17.36 25.93
OPENCODER-8B-Instruct 10.00 17.23 19.76 37.96

Reference SFT 9.34 14.13 16.88 27.78
MAGPIE-Human 8.77 13.83 15.88 32.41

MAGPIE-Few Shot 9.81 15.32 17.49 34.26
DOMINO-Direct Domain 10.15 16.24 19.39 38.88

DOMINO 12.63 16.81 20.44 42.59

Using QWEN2.5-CODER-7B-Instruct Hui et al. (2024) as Backbone

QWEN2.5-CODER-7B-Base 9.04 15.35 17.96 45.37
QWEN2.5-CODER-7B-Instruct 16.88 21.73 23.35 55.55

Reference SFT 13.47 21.59 23.95 36.11
MAGPIE-Human 12.45 20.85 22.72 42.59

MAGPIE-Few Shot 14.36 20.98 24.23 48.15
DOMINO-Direct Domain 15.74 24.66 28.14 50.92

DOMINO 17.31 26.81 29.94 56.48

Using QWEN2.5-CODER-14B-Instruct Hui et al. (2024) as Backbone

QWEN2.5-CODER-14B-Base 19.46 26.42 27.4 45.37
QWEN2.5-CODER-14B-Instruct 23.35 30.13 31.73 59.26

Reference SFT 19.64 24.86 26.33 38.88
MAGPIE-Human 20.78 27.17 28.74 57.41

MAGPIE-Few Shot 20.12 25.27 27.45 57.41
DOMINO-Direct Domain 21.62 28.97 31.73 60.19

DOMINO 24.75 30.45 33.24 62.04

Generation and Live Code Execution. We define a temporal cutoff point for each domain: domain
samples collected before this point are used as reference data (input-output pairs), while domain
samples collected afterward serve as the test set. This setup directly tests the model’s ability to induce
generalizable principles rather than memorizing past examples. The details are in Appendix C.1.

LLM Backbone Selection. We select OPENCODER-7B (Huang et al., 2025a), QWEN2.5-CODER-
7B (Hui et al., 2024), and QWEN2.5-CODER-14B (Hui et al., 2024) as the LLM backbones, as they
are among the top-performing LLMs in general code tasks. We use these LLMs (Instruction version)
to synthesize domain-specific data that aligns with the distributions of the two target domains.

Baselines. We detail the baseline methods; all corresponding prompts are provided in Appendix C.7.

• Direct Prompt: We directly prompt the LLM backbone (both the Base and Instruction versions)
to assess the LLM backbone’s basic capabilities on the two target domains.

• Reference SFT: We use the reference data from the target domain to perform supervised fine-tuning
on the corresponding LLM Base version, in order to evaluate its domain adaptation capability.

• MAGPIE-Human: We manually inspect the reference data and attempt to summarize the domain
characteristics in natural language, which are then used as the MAGPIE system prompt to guide
the LLM in synthesizing domain-specific samples.

• MAGPIE-Few Shot: We randomly select three reference samples and prompt the LLM to
summarize the underlying domain characteristics in natural language. This self-generated domain
description is then used as the MAGPIE system prompt in synthesizing domain-specific samples.

• DOMINO-Direct Domain: We directly use the L1 objective in Section 2.2 to obtain the implicit
domain representation, which is then used to guide the LLM in synthesizing domain samples.

DOMINO Train Details. For both DOMINO-Direct Domain and DOMINO, we use input sequences
from domain reference samples for representation learning. We set the hyperparameter λ to 1,

6
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Figure 3: t-SNE of latent embeddings for synthetic and
reference samples in Live Code Generation domain.

Figure 4: t-SNE of latent embeddings for synthetic
and reference samples in Live Code Execution domain.

with 256 domain-level soft tokens in both settings, and 256 sample soft tokens additionally used in
DOMINO. Note that the representation training is conducted using Instruction version of the LLM.

Synthesis Process and Post-processing. For MAGPIE-{Human, Few Shot}, DOMINO-Direct
Domain, and DOMINO, we first synthesize domain-specific input sequences using vLLM (Kwon
et al., 2023) with the Instruction version of LLMs, setting temperature T to 0.8. For fair comparison,
we generate 80K input sequences for Live Code Generation domain and 40K for Live Code Execution
domain across all four methods. A unified post-processing pipeline is then applied to filter out
low-quality inputs (using the same LLM; details in Appendix C.8). After filtering, the same LLM is
used to generate output sequences, forming input-output pairs for subsequent supervised fine-tuning.

Domain Adaptation. For all synthesized samples across methods generated using the Instruction
version LLMs, we perform supervised fine-tuning on the corresponding Base versions using LLAMA-
FACTORY (Zheng et al., 2024). Detailed training configurations are provided in Appendix C.9.

3.2 MAIN RESULTS

The main results are presented in Table 1, with each section block corresponding to one LLM
backbone. We can find that: (i) Directly prompting the Instruction version of an LLM consistently
outperforms its Base version across both domains, which is expected since instruction-tuned LLMs are
explicitly aligned to follow system instructions. (ii) When fine-tuned directly on the domain reference
data (Reference SFT), the LLM demonstrates a certain level of domain adaptation in the Live Code
Generation domain. However, in the Live Code Execution domain, we observe a performance
drop, suggesting that direct fine-tuning is prone to overfitting, especially in domains where the
LLM already performs well out of the box. (iii) Both MAGPIE-Human and MAGPIE-Few Shot
yield performance gains. Interestingly, MAGPIE-Few Shot slightly outperforms MAGPIE-Human,
indicating that allowing the LLM to infer domain characteristics from a few reference samples is more
effective than relying on manually written system prompts in unfamiliar domains. This highlights
the LLM’s capacity to capture subtle and latent domain patterns that may be overlooked by humans.
(iv) Finally, DOMINO-Direct Domain and DOMINO achieve the best overall performance. Notably,
DOMINO shows that synthetic domain-specific samples generated by the Instruction version of an
LLM can be used to fine-tune its Base version, resulting in performance that even surpasses the
original Instruction version. This finding suggests that the domain adaptation capabilities of LLMs
can be further enhanced through self-generated, domain-aligned data.

3.3 DEEPER ANALYSIS

Visualizing Synthetic Sample Distribution. To better illustrate the relationship between synthesized
and reference data distributions, we compare samples generated by DOMINO and MAGPIE-Few Shot.
We use CODET5-EMBEDDING (Wang et al., 2023b) to obtain semantic embeddings and visualize
them via t-SNE (van der Maaten & Hinton, 2008). As shown in Figure 3 and 4, DOMINO’s synthesized
samples are more widely dispersed in the embedding space and exhibit greater consistency with the
distribution of reference samples. In contrast, the samples synthesized by MAGPIE-Few Shot are
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Table 2: Qualitative Analysis: From Sample Mimicry to Domain Abstraction.
Source Example Problem

Reference Sample k-avoiding array: Given n and k, find the minimum sum of a
k-avoiding array of length n where no two distinct elements sum to k.

Synthetic from D
(Overfitted)

k-subsequence: Given a string n of length k, find the number
of k-subsequences.

Synthetic from D∗

(Diverse but
In-Domain)

1. Graph Path: Find the distance between two airports in a tree-like
network. 2. Arithmetic Subsequence: Find the longest arithmetic
subsequence with a given difference. 3. Palindrome Operations:
Find the minimum operations to make a string of digits a palindrome.

Table 3: Results of DOMINO and the compared methods on the NLP tasks.

Methods IF Average Instruct Following (IF)

Paraphrase Simplify Story Gen. Summarize

Qwen2.5-7B-Base 44.50 41.23 48.27 53.84 34.65
Qwen2.5-7B-Instruct 51.91 50.62 60.83 54.58 41.61

Reference SFT 45.78 44.07 49.42 52.29 37.36
MAGPIE Few Shot 51.19 47.34 54.78 57.91 44.73

DOMINO-Direct Domain 53.78 52.49 58.37 57.91 46.38
DOMINO 55.39 54.28 61.96 58.23 47.12

cluster tightly and show weaker alignment with reference samples. These results highlight DOMINO’s
ability to generate diverse, domain-consistent data that better captures underlying domain traits.

Interpretability of D∗. To better interpret the specific domain patterns captured by D∗, we present
a case study using samples that exemplify the clear distinction between the standard synthetic set
(D) and the proposed diverse set (D∗). Critically, the synthetic samples from D∗ were specifically
selected from regions of the t-SNE embedding space that are distant from the dense cluster represent-
ing D, visually confirming their diversity. The specific samples are provided in the Appendix C.2.
The qualitative comparison (concluded in Table 2) provides concrete evidence: Even with a relatively
large reference set (713 samples for Live Code Generation), the model trained with only a sufficiency
objective (D, from L1) still overfits to superficial details. The addition of our contrastive disentangle-
ment objective (L2) is crucial for pushing the model beyond mere memorization. It forces the model
to learn a minimal representation (D∗) that successfully performs the inductive step of abstracting
core domain principles, leading to the generation of truly diverse and novel samples.

Generalization of DOMINO to More Task Domains. To demonstrate DOMINO’s effectiveness
across a more diverse set of tasks, we have extended our experiments to the critical and well-defined
Instruction Following domain. The detailed synthesis procedure and experimental results are
provided in Appendix C.3 and Table 3. As shown, DOMINO consistently outperforms all baselines
across the four subtasks, boosting the average score by 3.48 points over the strong instruction-tuned
backbone and by 1.61 points over DOMINO-Direct Domain. These results reinforce the original
findings and demonstrate that DOMINO’s ability to learn and generalize from implicit domain
characteristics is not limited to coding but extends to a diverse range of NLP tasks.

Impact of Temperature T . In LLM-driven data synthesis, the temperature parameter controls the
LLM’s output diversity. To assess its impact on DOMINO, we vary T from 0.2 to 1.0. As shown in
Table 4, DOMINO achieves relatively stable performance across different T settings. This robustness
is attributed to the strong guidance of the domain representation D∗, which effectively constrains
generation to preserve domain characteristics as much as possible.

Impact of Domain-level Soft Token Counts. In DOMINO, the domain-level soft tokens [d∗
1, · · · ,d∗

k]
are shared across all reference samples within the target domain and are designed to capture the
domain’s underlying characteristics. The number of domain soft tokens, k, is a tunable hyperparameter
that determines the capacity of this representation. A larger k enables the encoding of more domain-
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Table 4: Results of varying T on synthetic process
in the Live Code Generation using QWEN2.5-
CODER-7B Instruction as the LLM backbone.

Temperature Live Code Generation
Pass@1 Pass@5 Pass@10

T = 0.2 16.35 22.88 24.55
T = 0.4 16.77 24.67 27.54
T = 0.6 15.45 25.17 29.34
T = 0.8 17.31 26.81 29.94
T = 1.0 16.53 25.95 29.34
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Figure 5: Results of the impact of domain soft
token counts in Live Code Generation using
QWEN2.5-CODER-7B Instruction as backbone.

specific features across a broader embedding space. To assess the impact of k, we vary it over the set
{64, 128, 256, 512}. As shown in Figure 5, performance consistently improves with larger values
of k, suggesting that higher-capacity domain representations better capture fine-grained domain
characteristics and provide stronger guidance for synthetic data generation.
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Figure 6: Impact of reference sample percentage
in Live Code Generation domain using QWEN2.5-
CODER-7B Instruction as the backbone.

Table 5: Results of varying λ in DOMINO in the
Live Code Generation domain using QWEN2.5-
CODER-7B Instruction as LLM backbone.

Hyperparameter λ Live Code Generation
Pass@1 Pass@5 Pass@10

λ = 0.25 15.38 22.44 24.38
λ = 0.5 15.95 22.88 24.77
λ = 1 17.31 26.81 29.94
λ = 2 17.58 25.75 28.58
λ = 4 16.58 26.38 28.89

Impact of Reference Data Percentage. In DOMINO, the domain characteristics are inserted into
domain soft tokens by leveraging reference data. To evaluate the impact of reference data quantity, we
vary the proportion of the original reference set from 100% to 20%. As shown in Figure 6, reducing
the proportion of reference data consistently degrades performance. This aligns with the intuition:
more reference samples provide a more comprehensive view of the domain, enabling more effective
representation learning. Furthermore, we also evaluate the impact of reference data quantity on the
Live Code Execution task; the corresponding results and analysis are presented in Appendix C.4.

Impact of Hyperparameter λ. In the original DOMINO optimization objective, the hyperparameter
λ controls the trade-off between maximizing data likelihood and promoting domain representation
disentanglement. To evaluate its impact on performance, we vary λ across the set {0.25, 0.5, 1, 2, 4}.
As shown in Table 5, setting λ ≥ 1 leads to a noticeable performance improvement compared to
λ < 1. This indicates that assigning greater weight to disentanglement helps the LLM learn a more
minimal and generalizable domain representation by mitigating overfitting to individual samples.

Further Analysis. 1. Case studies provide an intuitive representation of domain-specific synthetic
samples in Appendix C.10; 2. A comparison of synthetic against reference samples, using equal
numbers, shown in Appendix C.5; 3. More samples for MAGPIE-Few Shot in Appendix C.6.

4 CONCLUSION

In this work, we propose DOMINO, a method for domain-specific data synthesis under implicit
supervision. By learning minimal sufficient domain representations from reference data, DOMINO
enables scalable domain-specific data synthesis without manual prompt engineering. Theoretical and
empirical results show that DOMINO can capture essential characteristics of the domain, generate
diverse, domain-aligned samples even without explicit domain definitions or any prior knowledge.

9
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A RELATED WORK

In recent years, with the advancement of LLMs, data synthesis has attracted increasing research
attention due to its unique advantages (Li et al., 2024; Long et al., 2024; Huang et al., 2025b). Broadly,
existing LLM-driven synthetic data approaches can be categorized into three main categories:

Instruction Evolution: This category involves leveraging iterative and carefully crafted prompt
engineering to guide LLMs in expanding instruction sets. Specifically, Self-Instruct (Wang et al.,
2023a) employs a curated seed pool and task-specific prompts to generate additional instruction data.
Meanwhile, Evol-Instruct (Xu et al., 2024) uses strategically designed prompts to guide LLMs in
modifying existing instructions or creating new ones from both depth and breadth perspectives. While
effective, these methods rely heavily on complex natural prompt engineering within the domain.

Key-Point-Driven: These methods guide LLMs to synthesize data by extracting knowledge and key
points from the target domain. Li et al. (2024) employ GPT-4 to construct a taxonomy of concepts;
however, the resulting synthetic data distribution deviates significantly from real data. Huang et al.
(2024b) build an explicit concept pool from extracted domain concepts. In contrast, KPDDS (Huang
et al., 2024a) constructs topic–key point pairs from a large number of seed examples to capture the
frequency of domain-specific topics. It then samples multiple topic–key point combinations to guide
the generation of new samples. Despite their effectiveness, these approaches rely heavily on extensive
prior knowledge and assume that the target domain possesses a hierarchical conceptual structure.
Moreover, they require such structures and key points can be explicitly described in natural language.
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System Prompt Guided: Recently, MAGPIE (Xu et al., 2025) introduced a method that constructs
instruction data by prompting aligned LLMs with a pre-defined query template. By incorporating
a domain-specific system prompt, MAGPIE can synthesize large-scale domain data. However, it
necessitates the deliberate design of the system prompt to guide the LLM toward the target domain.

However, all three categories of methods break down in real-world scenarios when the target domain
cannot be explicitly described in natural language and no prior domain knowledge is available.
In contrast, our proposed method, DOMINO, effectively overcomes this limitation by enabling
the synthesis of a virtually unlimited quantity of target-domain data without requiring any prior
knowledge or manual prompt engineering.

B THEORETICAL GUARANTEE

B.1 THE PROOF OF PROPOSITION 1.

Proposition: Given X(i) ∈ X(1:n), L2 directly maximizes I(S(i),X(i)|D∗), ensuring that S(i)

captures unique information about X(i).

Proof. By definition:

I(S(i);X(i)|D∗) = Ep(D∗,S(i),X(i))

[
log

p(S(i)|D∗,X(i))

p(S(i)|D∗)

]
, (6)

where Ep(D∗,S(i),X(i)) represents the expectation over the distribution p(D∗,S(i),X(i)). Applying
Bayes’ theorem, we can express the numerator as:

p(S(i)|D∗,X(i)) =
p(X(i)|D∗,S(i))p(S(i)|D∗)

p(X(i)|D∗)
. (7)

On the other hand, the denominator can be expanded as:

p(S(i)|D∗) =

n∑
j=1

p(X(j),S(i)|D∗) =

n∑
j=1

p(X(j)|D∗,S(i))p(S(i)|D∗). (8)

I(S(i);X(i)|D∗) = Ep(D∗,S(i),X(i))

[
log

p(X(i)|D∗,S(i))

p(X(i)|D∗)
∑n

j=1 p(X
(j)|D∗,S(i))

]
,

≥ Ep(D∗,S(i),X(i))

[
log

p(X(i)|D∗,S(i))∑n
j=1 p(X

(j)|D∗,S(i))

]
,

= Ep(D∗,S(i),X(i))

[
log

p(X(i)|D∗,S(i))

p(X(i)|D∗,S(i)) +
∑

j ̸=i p(X
(j)|D∗,S(i))

]
,

≥ −L2 (9)

The inequality holds because p(X(i)|D∗) is a categorical distribution (i.e. p(X(i)|D∗) ≤ 1) and
p(X(i)|D∗,S(i)) is always non-negative. So, minimizing L2 directly maximizes I(S(i),X(i)|D∗).

B.2 THE PROOF OF PROPOSITION 2.

Proposition: L2 directly minimizes I(S(i);D∗), promoting the disentanglement between S(i) and
D∗.

Proof. Given the limited capacity (or size) of S(i), the total mutual information I(S(i);X(i)) is
bounded. In practice, the combined length of the domain-level prompt D∗ and the sample-level
prompt S(i) is generally smaller than the length of the observed data X(i), thus, this assumption is
valid. By applying the chain rule of mutual information, we have:

I(S(i);X(i)) = I(S(i);D∗) + I(S(i);X(i)|D∗). (10)

Since L2 maximizes I(S(i);X(i)|D∗) as proven in Proposition 1 and the total I(S(i);X(i)) is
bounded, it necessitates the minimization of I(S(i);D∗) to maintain the equation’s integrity.

13
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B.3 THE PROOF OF PROPOSITION 3.

Proposition: The optimization objective L = L1 + λL2 serves as a tractable proxy for learning a
representation D∗ that approximates the information-theoretic properties of a minimal sufficient
statistic. Specifically, minimizing L jointly encourages:

1. Sufficiency: The maximization of mutual information I(D∗;X) , ensuring D∗ captures relevant
domain information.

2. Minimality: The minimization of mutual information I(D∗;S) , ensuring D∗ is disentangled
from sample-specific information.

Proof. The proof analyzes the two components of the loss function and assume that the empirical
loss, calculated over the reference samples, is a reasonable estimator of the expected loss over the
true data distribution.

Part 1: Minimizing L1 Encourages Sufficiency.

The first loss term, L1, is the negative log-likelihood of the data X given the domain representation
D∗. In expectation, minimizing this empirical loss corresponds to minimizing the conditional entropy
H(X|D∗):

min(L1) =⇒ minH(X|D∗) (11)

The mutual information I(D∗;X) is defined as I(D∗;X) = H(X)−H(X|D∗). Since the data
entropy H(X) is a constant with respect to the model parameters, minimizing the conditional entropy
H(X|D∗) is equivalent to maximizing the mutual information I(D∗;X).

minH(X|D∗) ⇐⇒ max I(D∗;X) (12)

Thus, minimizing L1 drives the representation D∗ to capture as much information as possible about
the data X , fulfilling the sufficiency criterion.

Part 2: Minimizing L2 Encourages Minimality.

The second loss term, L2, is a contrastive loss. As established in Proposition 1, minimizing L2

maximizes the conditional mutual information I(S;X|D∗). To understand how this promotes
minimality, we use the chain rule of mutual information:

I(S;D∗) = I(S;X)− I(S;X|D∗) (13)

The sample-specific representation S has a fixed information capacity, bounded by its entropy H(S),
which is determined by the model’s architecture. This means I(S;X) ≤ H(S). This fixed capacity
creates an "information budget" for what S can learn about X . This budget is partitioned between
information that is also in D∗ (the shared information, I(S;D∗)) and information that is unique to S
given D∗ (the unique information, I(S;X|D∗)). Since the total budget I(S;X) is bounded by the
constant H(S), and the objective of minimizing L2 is to maximize I(S;X|D∗), the optimization is
strongly incentivized to allocate as much of the budget as possible to I(S;X|D∗). This necessarily
encourages the minimization of I(S;D∗). By the symmetry of mutual information, minimizing
I(S;D∗) is equivalent to minimizing I(D∗;S). This drives the domain representation D∗ to be
uninformative about the sample-specific details S, thus satisfying the minimality criterion.

B.4 THE PROOF OF PROPOSITION 4.

Proposition: Let pD and pD∗ denote the distributions p(X|D) (from vanilla prompt tuning) and
p(X|D∗) (from minimal sufficient, disentangled prompt tuning via L1 + λL2), respectively. For any
ϵ ∈ (0, 1/e), define the ϵ-support of p, suppϵ(p) = {x : p(x) > ϵ}, with cardinality Sϵ

p = |suppϵ(p)|.
Define the uniformity gap for p as δp = logSϵ

p −H(p), where H(p) is the entropy of p. If

H(pD∗)−H(pD) > δpD
+ ϵ log

1

ϵ
(14)

then Sϵ
pD∗ > Sϵ

pD
; that is, the ϵ-support of p(X|D∗) is strictly larger than that of p(X|D).

14
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Proof. By definition, logSϵ
p = H(p) + δp and, by a standard entropy-support bound, for any p,

H(p) ≤ logSϵ
p + ϵ log 1

ϵ =⇒ −δp ≤ ϵ log 1
ϵ . Thus,

logSϵ
pD∗ − logSϵ

pD
= [H(pD∗)−H(pD)] + [δpD∗ − δpD

] (15)

> [δpD
+ ϵ log

1

ϵ
] + [δpD∗ − δpD

] (16)

= δpD∗ + ϵ log
1

ϵ
> −ϵ log

1

ϵ
+ ϵ log

1

ϵ
= 0, (17)

since,

−δpD∗ ≤ ϵ log
1

ϵ
=⇒ δpD∗ ≥ −ϵ log

1

ϵ
(18)

(19)

Therefore,
logSϵ

pD∗ > logSϵ
pD

, i.e., Sϵ
pD∗ > Sϵ

pD
(20)

This closes the proof.

C EXPERIMENTAL DETAILS

C.1 TARGET DOMAIN DATA STATISTICS.

We select two distinct domains from the recently proposed dynamic benchmark LiveCodeBench (Jain
et al., 2024): Live Code Generation and Live Code Execution. To ensure a fair and realistic evaluation
that mimics a real-world "live" setting, we apply a consistent temporal cutoff: specifically, we use all
domain samples released before the final update’s timestamp as reference data (input–output pairs),
while every sample that appears in that final update constitutes the test set.

For the Live Code Generation domain, the data collected before September 2024 as reference data
and data collected after that as the test set.

For the Live Code Execution domain, the data collected before October 2023 as reference data (after
deduplication) and data collected after that as the test set.

Table 6: Statistics of the two target domains: Live Code Generation and Live Code Execution.
Reference Samples Test Set Temporal Cutoff Point

Live Code Generation 713 167 September 2024

Live Code Execution 66 108 October 2023

Target Domain Instances. We present detailed examples of the reference data for the two target
domains in Figure 10 and Figure 11.

Evaluation: For evaluation, we use the official evaluation scripts from LiveCodeBench and report
the corresponding Pass@k metrics. The inference prompts used for the two target domains are shown
in Figure 7 and Figure 8.

C.2 CASE STUDY: INTERPRETABILITY OF D∗ .

To better interpret the specific domain patterns captured by D∗, we present a case study using samples
that exemplify the clear distinction between the standard synthetic set (D) and our proposed diverse
set (D∗). Critically, the synthetic samples from D∗ are specifically selected from regions of the
t-SNE embedding space that are distant from the dense cluster representing D, visually confirming
their diversity. The specific samples, provided in Figure 9, reveal two key findings:

• Overfitting in D: The sample from D demonstrates sample-level mimicry. It not only adopts
the high-level structure (problem statement → examples → constraints) but also copies superficial
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You are an expert Python programmer. You will be given a question
(problem specification) and will generate a correct Python
program that matches the specification and passes all tests.
You will NOT return anything except for the program

↪→
↪→
↪→

### Question:\n{question.question_content}

{ if question.starter_code }
### Format: {PromptConstants.FORMATTING_MESSAGE}

```python
{question.starter_code}
```
{ else }
### Format: {PromptConstants.FORMATTING_WITHOUT_STARTER_MESSAGE}

```python
# YOUR CODE HERE
```
{ endif }

### Answer: (use the provided format with backticks)

Figure 7: Inference Prompt for Live Code Generation domain.

details like variable names (n, k) and problem naming conventions (k-xxx), indicating it has
overfitted to specific instances.

• Domain Abstraction in D∗ : In contrast, samples from D∗ capture the abstract domain struc-
ture of a competitive programming problem while introducing genuine topical diversity. They
explore entirely new problem types—spanning graph theory, dynamic programming, and string
algorithms—that are distinct from the reference sample.

C.3 GENERALIZATION OF DOMINO TO MORE TASK DOMAINS.

To demonstrate DOMINO’s effectiveness across a more diverse set of tasks, we extended our experi-
ments to the critical and well-defined Instruction Following domain. We chose this domain for two
key reasons:

• Diverse Subtasks: It comprises a variety of core language tasks (paraphrasing, summarization,
simplification, story generation), allowing us to test DOMINO’s versatility.

• Challenging, Unseen Data: We use LiveBench (White et al., 2025), a dynamic benchmark whose
data is continuously updated. This ensures our test set is free from contamination and that even
SOTA models do not achieve perfect scores, providing a meaningful test of generalization. Proving
that DOMINO’s synthetic data can improve performance on such a challenging, live benchmark is a
strong testament to its value.

Following the protocol from main experiment of Live Code Generation and Live Code Execution, we
use the temporal cutoff (June 30, 2024) to create reference and test sets. The reference set and test set
each contain 200 samples. We then use DOMINO with a Qwen2.5-7B-Instruct (Team, 2024) backbone
to synthesize 40K samples for fine-tuning. The results, evaluated using the official LiveBench suite,
are presented in Table 3. As shown, DOMINO consistently outperforms all baselines across the four
subtasks, boosting the average score by 3.48 points over the strong instruction-tuned backbone and
by 1.61 points over the standard prompt-tuning approach (DOMINO-Direct Domain). These results
reinforce the original findings and demonstrate that DOMINO’s ability to learn and generalize from
implicit domain characteristics is not limited to coding but extends to a diverse range of NLP tasks.
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You are given a Python function and an assertion containing an
input to the function. Complete the assertion with a literal
(no unsimplified expressions, no function calls) containing the
output when executing the provided code on the given input,
even if the function is incorrect or incomplete. Do NOT output
any extra information. Execute the program step by step before
arriving at an answer, and provide the full assertion with the
correct output in [ANSWER] and [/ANSWER] tags, following the
examples.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

[PYTHON]
def performOperation(s):

s = s + s
return "b" + s + "a"

assert performOperation(s = "hi") == ??
[/PYTHON]
[THOUGHT]
Let's execute the code step by step:

1. The function performOperation is defined, which takes a single
argument s.↪→

2. The function is called with the argument "hi", so within the
function, s is initially "hi".↪→

3. Inside the function, s is concatenated with itself, so s becomes
"hihi".↪→

4. The function then returns a new string that starts with "b",
followed by the value of s (which is now "hihi"), and ends with
"a".

↪→
↪→
5. The return value of the function is therefore "bhihia".
[/THOUGHT]
[ANSWER]
assert performOperation(s = "hi") == "bhihia"
[/ANSWER]

[PYTHON]
{code}
assert {input} == ??
[/PYTHON]
[THOUGHT]

Figure 8: Inference Prompt for Live Code Execution domain.

C.4 IMPACT OF REFERENCE DATA PERCENTAGE ON LIVE CODE EXECUTION.

To evaluate the impact of reference data quantity on the Live Code Execution domain, we mirror the
methodology of Figure 6 (Live Code Generation) using the QWEN2.5-CODER-7B Instruct backbone.

We vary the proportion of the reference set from 100% down to 20% and the results are shown in
Figure 12. Figure 12 confirms the conclusion: reducing the amount of in-domain reference data
leads to a corresponding drop in performance. The results also reveal a performance plateau, with
almost no improvement from 80% to 100% of the reference data. This reinforces the central claim by
suggesting that while a sufficient quantity of reference data is crucial for high performance, gains
diminish once a point of saturation is reached. Determining this optimal quantity across different
domains remains a compelling question for future work.

C.5 COMPARISON OF SYNTHETIC SAMPLES VS. REFERENCE SAMPLES (EQUAL SIZE).

To further compare the performance gap when using the same number of DOMINO’s synthetic samples
versus original reference samples, we conducted an SFT experiment comparing the two.
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You are given two integers, n 
and k. An array of distinct 
positive integers is called a k-
avoiding array if there does 
not exist any pair of distinct 
elements that sum to k. Return 
the minimum possible sum of 
a k-avoiding array of length n.

Example 1: 
Input: n = 5, k = 4 
Output: 18 
Explanation: Consider the k-
avoiding array [1,2,4,5,6], 
which has a sum of 18. It can 
be proven that there is no k-
avoiding array with a sum less 
than 18.

Constraints: 
1 <= n, k <= 50

You are given a string n of length k. A 
string is called k-subsequence of n if n 
can be written as t1t2...tk, where every 
ti is a non-empty substring of n. Return 
the number of k-subsequences of n, 
given that k is a divisor of n. Since the 
answer may be very large, return the 
answer modulo 109 + 7. A substring is 
a contiguous sequence of characters 
within a string.

Example 1: 
Input: n = "ababa", k = 3 
Output: 7 
Explanation: 
The 7 3-subsequences of n are: "aba", 
"aba", "baba", "aba", "baba", "aba", 
"aba". Note that some subsequences are 
repeated, but we only need to count 
distinct subsequences. 

Constraints: 
1 <= n.length <= 10^4 
n consists of lowercase English letters. 
1 <= k <= 10

You are given an integer array arr and an 
integer difference. Return the length of the 
longest subsequence in arr which is an 
arithmetic sequence such that the difference 
between adjacent elements in the 
subsequence is difference. A subsequence is a 
sequence that can be derived from another 
sequence by deleting some or no elements 
without changing the order of the remaining 
elements. 

Example 1: 
Input: arr = [1,2,3,4], difference = 1 
Output: 4 
Explanation: The longest arithmetic 
subsequence is [1,2,3,4]. 

Constraints: 
1 <= arr.length <= 10^5 
-10^4 <= arr[i], 
difference <= 10^4

Reference Sample Synthetic Samples From D Synthetic Samples From D*

Figure 9: Synthetic Samples from D and D∗.

You are given two integers, n and k. 
An array of distinct positive 
integers is called a k-avoiding array 
if there does not exist any pair of 
distinct elements that sum to k. 
Return the minimum possible sum 
of a k-avoiding array of length n.

Example 1:
Input: n = 5, k = 4
Output: 18
Explanation: Consider the k-
avoiding array [1,2,4,5,6], which 
has a sum of 18. It can be proven 
that there is no k-avoiding array 
with a sum less than 18.

Example 2:
Input: n = 2, k = 6
Output: 3
Explanation: We can construct the 
array [1,2], which has a sum of 3. It 
can be proven that there is no k-
avoiding array with a sum less than 
3.

Constraints:
1 <= n, k <= 50

Reference Samples in Live Code Generation Domain.

Given a positive integer num 
represented as a string, return the 
integer num without trailing zeros 
as a string.
 
Example 1:

Input: num = "51230100"
Output: "512301"
Explanation: Integer "51230100" 
has 2 trailing zeros, we remove 
them and return integer "512301".

Example 2:

Input: num = "123"
Output: "123"
Explanation: Integer "123" has no 
trailing zeros, we return integer 
"123".

 
Constraints:

1 <= num.length <= 1000
num consists of only digits.
num doesn't have any leading zeros.

You are given a 0-indexed integer array nums. 
You have to find the maximum sum of a pair of 
numbers from nums such that the maximum digit 
in both numbers are equal. Return the maximum 
sum or -1 if no such pair exists.
 
Example 1:

Input: nums = [51,71,17,24,42]
Output: 88
Explanation: 
For i = 1 and j = 2, nums[i] and nums[j] have 
equal maximum digits with a pair sum of 71 + 17 
= 88. 
For i = 3 and j = 4, nums[i] and nums[j] have 
equal maximum digits with a pair sum of 24 + 42 
= 66.
It can be shown that there are no other pairs with 
equal maximum digits, so the answer is 88.
Example 2:

Input: nums = [1,2,3,4]
Output: -1
Explanation: No pair exists in nums with equal 
maximum digits.
 
Constraints:

2 <= nums.length <= 100
1 <= nums[i] <= 10^4

Figure 10: Detailed examples of the reference data in Live Code Generation domain.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

def smallestString(s: str) -> str:
  if s == "a" * len(s):
    return "a"*(len(s) - 1)+"z"
 
  r = ""
  p = 0
 
  for i in s:
    if p == 1:
      if i == "a":
        p = 2
        r += i
      else:
        r += chr(ord(i) - 1)
    elif p == 0:
      if i == "a":
        r += i
      else:
        p = 1
        r += chr(ord(i) - 1)
    else:
      r += i
     
  return r

assert smallestString(s = 'acbbc’) 
== ?

Reference Samples in Live Code Execution Domain.

def minimumBeautifulSubstrings(s: str) -> 
int:
  good = []
  num = 1
  n = len(s)
  while True:
    b = bin(num)[2:]
    if len(b) > n:
      break
    good.append(b)
    num *= 5
  dp = [int(1e9)] * (n + 1)
  dp[0] = 0
  gs = set(good)
  for i in range(n):
    for j in range(i + 1):
      if s[j:i + 1] in gs:
        dp[i + 1] = min(dp[i + 1], 
dp[j] + 1)
  return -1 if dp[n] == int(1e9) else 
dp[n]

assert minimumBeautifulSubstrings(s = '0’) 
== ?

Figure 11: Detailed examples of the reference data in Live Code Execution domain.
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Figure 12: Result of the impact of reference sample percentage in Live Code Execution domain using
QWEN2.5-CODER-7B Instruction as backbone.
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Table 7: Performance Comparison of Reference vs. DOMINO’s Synthetic Samples (Equal Size).
Task Metric Reference Samples DOMINO’s Synthetic Samples

Live Code Generation
Pass@1 13.47 12.69
Pass@5 21.59 20.73
Pass@10 23.95 23.35

Live Code Execution Pass@1 36.11 34.26

### Characteristics of the current coding task:

1. The python function involves array manipulation and logical
operations. The functions typically take arrays or lists as
input and perform operations to derive or validate certain
properties of these arrays.

↪→
↪→
↪→

2. The function input also showcase the use of assertions to
validate the correctness of the functions.↪→

Figure 13: MAGPIE-Few Shot for for Live Code Execution domain.

As shown in Table 7, the DOMINO’s synthetic data achieves performance very close to the original
data. This small gap is expected, as the original reference samples represent the ground-truth "gold"
data for the domain. This result validates the high per-sample quality of DOMINO’s generated sample.

C.6 IMPACT OF MORE REFERENCE SAMPLES FOR MAGPIE.

In our comparative method, MAGPIE-Few shot, we originally randomly selected three reference
samples to include in the prompt for domain representation summarization using the LLM. This
setup considered that each reference sample typically contains several hundred tokens. To further
investigate whether providing more reference samples to MAGPIE method would lead to performance
gains, we conducte the corresponding experiment, with results presented in Table 8.

Table 8: Results of more reference samples for MAGPIE-Few shot.
Live Code Generation Pass@1 Pass@5 Pass@10

MAGPIE Few-Shot = 3 14.36 20.98 24.23
MAGPIE Few-Shot = 5 13.89 21.21 23.35
MAGPIE Few-Shot = 10 11.81 16.82 18.39

As shown in Table 8, the MAGPIE performance remains comparable when using 3 or 5 few-shot
samples. However, increasing the count to 10 severely challenges the LLM’s ability to extract
domain-specific information from the extended context. Our empirical evidence indicates that this
larger few-shot count actually compromises performance. These results confirm that additional
reference samples do not benefit MAGPIE; rather, they have a detrimental effect.

C.7 BASELINE PROMPTS.

We present the system prompts used by MAGPIE-Human and MAGPIE-Few Shot for the two main
target domains in the Figure 13, Figure 14, Figure 15 and Figure 16.

C.8 POST-PROCESSING.

For the input sequences synthesized by DOMINO and other methods, we apply a unified filtering
mechanism to remove low-quality samples. The filtering prompt is shown in Figure 17 and Figure 18.
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### Characteristics of the current coding task:
1. **Problem Description**: a few sentences about the problem.

2. **Input Constraints**: Each test case has specific constraints
on the size of the input, such as the number of elements in an
array, the length of a string, or the range of values in an
array.

↪→
↪→
↪→

3. **Output Format**: The output should match the number of test
cases, with each result corresponding to the input test case.↪→

4. **Constraints on Operations**: There may be constraints on the
number of operations that can be performed, such as performing
an operation at most once or within a specific range.

↪→
↪→

Figure 14: MAGPIE-Few Shot System Prompt for Live Code Generation domain.

### Characteristics of the current coding task:
It begins with a Python function that performs the required

operations, followed by an example input provided after the
function. The input example typically starts with an assert
statement.

↪→
↪→
↪→

Figure 15: MAGPIE-Human System Prompt for Live Code Execution domain.

We retain only synthetic input sequences of "Excellent" quality. It is important to note that the same
LLM backbone used for synthesizing the domain-specific sample inputs is also used for both filtering
and generating the corresponding output sequences.

C.9 DOMAIN ADAPTATION CONFIGURATIONS.

We fine-tuned the OPENCODER-8B Base, QWEN2.5-CODER-7B Base, and QWEN2.5-CODER-14B
Base models on the synthesized domain-specific samples using LLAMA-FACTORY (Zheng et al.,
2024), on a server equipped with 8× NVIDIA A100 80GB GPUs. During fine-tuning, we applied
LoRA (Hu et al., 2022) with lora_rank=8 and lora_target=all. All experiments used the
AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of 5e-5. Detailed training
parameters are shown in Table 9.

C.10 A CASE STUDY OF DOMAIN-SPECIFIC SYNTHETIC SAMPLES.

From Figure 19 and Figure 20, it can be seen that the domain-specific samples synthesized by
DOMINO are very similar to the domain reference samples. Although it is difficult to precisely
describe this domain similarity using natural language, they exhibit consistency in certain features,
such as structural characteristics.
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### Characteristics of the current coding task:
It begins with a task description, followed by a relevant example

(including both input and output) with necessary explanatory
information, and ends with a set of constraints.

↪→
↪→

Figure 16: MAGPIE-Human System Prompt for Live Code Generation domain.

# Instruction

You need to assess the quality of the given coding question based
on its clarity, specificity, completeness, and challenge.↪→

The rating scale is as follows:

- very poor: The question is unclear, vague, or disorganized and
the examples are wrong. It lacks essential information and
context, contains many unreadable characters for humans or has
large scale repetitive parts.

↪→
↪→
↪→
- poor: The question is somewhat unclear or lacks important

details, requiring significant clarification, or contains
irrelevant content and repetition.

↪→
↪→
- average: The question has moderate clarity and specificity. The

question is basically complete but may require some additional
information for full understanding, and the difficulty is
relatively easy.

↪→
↪→
↪→
- good: The question is clear and specific, and it is generally

well-articulated. The question is complete, providing
sufficient context to understand its intent, with little to no
irrelevant content or noise, and has a moderate level of
difficulty.

↪→
↪→
↪→
↪→
- excellent: The question is very clear, specific, and

well-articulated. It contains all the necessary information
and context for providing a comprehensive response and also
has a certain level of challenge, requiring multi-step
reasoning, complex algorithms or data structures.

↪→
↪→
↪→
↪→

## Coding Question
```
{input}
```

## Output Format
Given the coding question, you first need to give an assessment,

highlighting the strengths and/or weaknesses of the coding
question.

↪→
↪→
Then, you need to output a rating from very poor to excellent by

filling in the placeholders in [...]:↪→
```
{{

"explanation": "[...]",
"input_quality": "[very poor/poor/average/good/excellent]"

}}
```

Figure 17: Unified filer prompt for Live Code Generation domain.
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# Instruction

You need to assess the quality of the given python function based
on its clarity, specificity, completeness, and challenge.↪→

The rating scale is as follows:

- very poor: The function is unclear, vague, or disorganized. It
contains many unreadable characters for humans or has large
scale repetitive parts.

↪→
↪→
- poor: The function is somewhat unclear or lacks important

details, contains irrelevant content and repetition.↪→
- average: The function has moderate clarity and specificity. The

difficulty is relatively easy.↪→
- good: The function is clear and specific, and it is generally

well-articulated.↪→
- excellent: The function is very clear, specific and

well-articulated, and poses a certain level of difficulty.↪→

## Function
```
{input}
```

## Output Format
Given the function, you first need to give an assessment,

highlighting the strengths and/or weaknesses of the function.↪→
Then, you need to output a rating from very poor to excellent by

filling in the placeholders in [...]:↪→
```
{{

"explanation": "[...]",
"input_quality": "[very poor/poor/average/good/excellent]"

}}
```

Figure 18: Unified filer prompt for Live Code Execution domain.

Table 9: The hyper-parameters for supervised fine-tuning.
Hyper-parameter Value

Learning Rate 5× 10−5

Number of Epochs 2
Number of Devices 8
Per-device Batch Size 3
Gradient Accumulation Steps 1
Effective Batch Size 24
Optimizer Adamw with βs = (0.9, 0.999) and ϵ = 10−8

Learning Rate Scheduler linear
Warmup Steps 0
Max Sequence Length 4096

D LIMITATIONS.

Our proposed method, DOMINO, encodes domain-specific patterns as minimal sufficient represen-
tations based on reference samples. To be effective, this process relies on the assumption that the
reference samples are representative of the target domain. If the reference data is not representative
of the domain, the resulting domain representation D∗ will fail to capture the true characteristics of
the domain, ultimately limiting the quality and generalizability of the synthesized data.
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You are given an integer array arr and an integer 
difference. Return the length of the longest 
subsequence in arr which is an arithmetic sequence 
such that the difference between adjacent elements in 
the subsequence is difference. A subsequence is a 
sequence that can be derived from another sequence by 
deleting some or no elements without changing the 
order of the remaining elements.

Example 1:
Input: arr = [1,2,3,4], difference = 1
Output: 4
Explanation: The longest arithmetic subsequence is 
[1,2,3,4].

Example 2:
Input: arr = [1,3,5,7], difference = 2
Output: 2
Explanation: The longest arithmetic subsequence is 
[1,3,5,7].

Constraints:
1 <= arr.length <= 10^5
-10^4 <= arr[i], difference <= 10^4

You are given an array A of length N. For each i (1 \leq i \leq N), 
compute the minimum value of the expression A[i] - A[j] + A[k] for 
all possible combinations of i, j, and k such that i \leq j \leq k.
Input
The input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
Print the minimum value of the expression A[i] - A[j] + A[k] for all 
possible combinations of i, j, and k such that i \leq j \leq k.

Constraints
  * 3 \leq N \leq 10^5
  * 1 \leq A_i \leq 10^9
  * All values in the input are integers.

Example
Input
5
2 1 3 1 4
Output
0
For example, choosing i = 2, j = 2, and k = 3 yields the minimum 
value of the expression.

Input
4
4 1 5 2
Output
-4
For example, choosing i = 1, j = 2, and k = 3 yields the minimum 
value of the expression

Figure 19: Samples synthesized by DOMINO in the Live Code Generation domain.

def maximumPopulation(years: 
List[int]) -> int:
    n = len(years)
    cnt = [0] * 2003
    for y in years:
        cnt[y+1] += 1
        cnt[y+2] -= 1
    ans = -1
    m = 0
    for i in range(2003):
        cnt[i] += cnt[i-1]
        if cnt[i] > m:
            ans = i
            m = cnt[i]
    return ans

assert maximumPopulation(years = 
[1950, 1960, 1960, 1970, 1970, 1970]) 
== ?

def minimumTimeToType(word: str) -> int:
    ans = len(word)
    prev = "a"
    for w in word:
        diff = abs(ord(w) - ord(prev))
        ans += min(diff, 26 - diff)
        prev = w
    return ans

assert minimumTimeToType(word = ‘a’)== ?

Figure 20: Samples synthesized by DOMINO in the Live Code Execution domain.
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E FUTURE WORK

In the methodology, while the sample-specific representations S(i) are discarded for synthesis, they
could potentially be used for tasks like retrieving the most similar reference sample to a given query,
which we leave for future work.

Further, we plan to investigate DOMINO’s robustness to mixed-domain reference sets. We hypothesize
that the contrastive disentanglement mechanism might naturally encourage the domain representation
D∗ to focus on the most prevalent shared patterns, implicitly filtering out outlier noise, but this
requires further study.

F THE USE OF LARGE LANGUAGE MODELS.

In the preparation of this manuscript, LLMs are utilized as a general-purpose writing assistant. Its
role was strictly limited to improving the grammar, clarity, and readability of the text. The LLMs
are not used for research ideation, conducting experiments, or the generation of any core scientific
content. The authors take full responsibility for all content presented in this paper, including any text
revised with the assistance of the LLM.
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