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Abstract

Knowledge graph embeddings (KGEs) learn
low-dimensional representations of entities
and relations to predict missing facts based on
existing ones. Quantum-based KGEs utilise
variational quantum circuits for link predic-
tion and score triples via the probability dis-
tribution of measuring the qubit states. How-
ever, there exists another best measurement
for training variational quantum circuits. Be-
sides, current quantum-based methods ignore
theoretical analysis which are essential for un-
derstanding the model performance and ap-
plying for downstream tasks such as reason-
ing, path query answering, complex query an-
swering, etc. To address measurement issue
and bridge theory gap, we propose QubitE
whose score of a triple is defined as the
similarity between qubit states. Here, our
measurements are viewed as kernel meth-
ods to separate the qubit states, while pre-
serving quantum adavantages. Furthermore,
we show that (1) QubitE is full-expressive;
(2) QubitE can infer various relation patterns
including symmetry/antisymmetry, inversion,
and commutative/non-commutative composi-
tion; (3) QubitE subsumes serveral existing
approaches, e.g. DistMult, pRotatE, RotatE,
TransE and ComplEx; (4) QubitE owns linear
space complexity and linear time complexity.
Experiments results on multiple benchmark
knowledge graphs demonstrate that QubitE
can achieve comparable results to the state-of-
the-art classical models.

1 Introduction

Knowledge graphs (KGs) consist of nodes (entities)
and edges (relationships between entities), which
have been widely applied for knowledge-driven
tasks such as question answering, recommendation
system, and search engine. However, KGs are in-
complete and this problem affects the performance
of any algorithm related to KGs. Knowledge graph
embeddings (KGEs) are prominent approaches to
predict missing links for KG completion.
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Figure 1: Visualization of the QubitE architecture.

Quantum-based KGE is the application of quan-
tum mechanics on knowledge graph completion
(KGC) field, but current research is still in its ini-
tial stage. The most classical quantum-based KGE
is proposed by Ma et al. (2019) using parametric
quantum circuits. Specially, Ma et al. (2019) pro-
poses two types of variational quantum circuits
KGEs. The first type, i.e. QCE, considers la-
tent features for entities as coefficients of quantum
states, while predicates are characterized by para-
metric gates acting on the quantum states. The
score of a triple depends on measurements on quan-
tum states. The quantum adavantages, e.g. normal-
ization constraint of quantum states and quantum
gates, disappear when optimizing the model. The
second type, i.e. F-QCE, generates embeddings of
entities from parameterized quantum gates acting
on the pure quantum states. The quantum embed-
dings can be trained efficiently meanwhile preserv-
ing the quantum adavantages.

These two types perform a hybrid quantum-
classical optimization procedure to optimize the
the parameters of quantum gates. However, recent
studies (Schuld, 2021; Heredge et al., 2021) show
that this strategy can be fundamentally formulated
as a quantization of classical kernel methods,
e.g. support vector machines (SVM) (Scholkopf
et al., 2002), which implicitly separates the data
according to their classes in a high-dimensional
Hilbert space. The quantum feature map is taken



to be a fixed circuit, and the training adapts the
measurement basis. By contrast, we note that if
the entities are well-separated in Hilbert sapce, the
best measurements, that distinguish whether the
entities are the tails of the tuple (h,r, ?) or not, are
known as follows: The best measurement for the
entities separated by the trace distance is the Hel-
strom minimum error measurement, and the best
measurement for the Hilbert-Schimidt distance is
the fidelity or overlaps measurement between the
semantics of embedded entities. Therefore, we
argue that, the adaptive training of the quantum
circuit should focus on the metric that carries out a
maximally separating embedding.

In this paper, we propose a new quantum-based
KGE for knowledge graph completion to explore
the performance of different measurements. We
numeriacally investigate different measurements
for training quantum embeddings on four standard
datasets. Extensive experiments demonstrate the
efficacy of our model.

In addition, we analysis our model theoretically,
including subsumption, full expressiveness, pat-
terns inference and space &time complexity. We
prove that QubitE is fully expressive and deriving
a bound on the embedding dimensionality for full
expressiveness, which is the crucial property that
indicates well-separation of the data. We show
that QubitE subsumes TransE, RotatE, pRotatE,
ComplEx and DisMult. We also prove that QubitE
allows to learn composition, inverse and symmet-
ric relation patterns. Besides, QubitE owns linear
space complexity and linear time complexity.

We summarise our contributions as follows:

o KGE: We propose QubitE, a new linear
quantum-based KGE model for link predic-
tion on knowledge graphs, that is simple and
expressive to explore the performance of dif-
ferent measurements.

e Theoretical Analysis: We fully analy-
sis QubitE theoretically in subsumption,
full expressiveness, patterns inference and
space&time complexity.

e Experiments: We conduct extensive exper-
iments on four standard public datasets to
demonstrate the efficacy of our model. The
source code is available online .

"https://github.com/LinXueyuanStdio/
QubitE

2 Related Work

The KG embedding is divided into the follow-
ing categories, Euclidean geometric model, non-
Euclidean geometric model, tensor decomposition
model, neural network model, etc.

Euclidean KG Embedding.

TransE (Bordes et al., 2013) models the rela-
tionship as a distance transformation from the head
entity to the tail entity; TransR (Lin et al., 2015)
proposes to design a projection matrix for each
relationship, in order that entities have different
embedding vectors under different relationships;
RotatE (Sun et al., 2019) defines the relationship
as rotation transformation from head entities to
tail entities in the two-dimensional complex space;
QuatE (Zhang et al., 2019) uses the quaternion
method to extend the rotation to three-dimensional
complex space; S*E (Nayyeri et al., 2021) pro-
poses a model based on projective geometry that
provides a unified method for simultaneously rep-
resenting translation, rotation, homomorphism, in-
version, and reflection.

Non-Euclidean KG Embedding.

MuRP (Balazevic et al., 2019b) models both in
hyperbolic space and Euclidean space, and com-
bines relationship vectors, which can handle the
multiple types of relationships that exist in the
graph; ATTH (Chami et al., 2020) uses the expres-
siveness of hyperbolic space and attention-based
geometric transformation to learn improved KG
representation in low-dimensional space.

Tensor Decomposition KG Embedding.

DistMult (Yang et al., 2015) relaxes the con-
straint on the relationship matrix and uses a diag-
onal matrix to represent the relationship matrix;
ComplEx (Trouillon et al., 2016) extends to the
complex space, which can solve both symmetric
and asymmetric relationships at the same time;
SimplE (Kazemi and Poole, 2018) proposed a sim-
ple Canonical Polyadic (CP) enhancement to allow
the two embeddings of each entity to be learned de-
pendently; HypER (Balazevic et al., 2019a) uses a
hypergraph network to generate a one-dimensional
convolution filter for each relationship, in order to
extract the specific characteristics of the relation-
ship; TuckER (Balazevic et al., 2019c) proposes a
model that uses Tucker decomposition to perform
link prediction on the binary tensor representation
of KG.

Neural Network KG Embedding.
ConvE (Dettmers et al., 2018) uses a convolu-
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tional neural network to define the scoring function;
CoPER (Stoica et al., 2020) generates contextual
parameters into neural network to predict links.
Quantum Embedding.

Ma et al. (2019) proposes two types of vari-
ational quantum circuits (QCE and F-QCE) for
knowledge graph embedding. Lloyd et al. (2020)
proposes a quantum embedding model that repre-
sents classical data points as quantum states in a
Hilbert space via quantum feature map. A clas-
sical datapoint z is translated into a set of gate
parameters in a quantum circuit 1, creating a quan-
tum state |z) such that ¢ :  — |z). However,
our method is quite different. Firstly, we compare
the quantum states via trace distance rather than
the probability distribution of measuring the qubit
states. Secondly, entities in KG are assigned tun-
able parameters directly to create quantum states
instead of using parametric quantum circuits.

3 Preliminaries

Knowledge Graph Embeddings. A KG is a
multi-relational directed graph KG = (£,R,T)
where £ is the set of nodes (entities) and R is
the set of edges (relations between entities). The
set 7 = {(h,r,t)} C & x R x & contains all
triples as (head, relation, tail), e.g. (smartPhone,
hypernym, iPhone). To apply learning methods
on KGs, a KGE learns vector representations of
entities (£) and relations (R). A vector represen-
tation denoted by (h, r, t) is learned by the model
per triple (h,r,t), where h, t € Ve, r € Vo (V¢
is a d-dimensional vector space). TransE (Bordes
et al., 2013) considers V = R while ComplEx
(Trouillon et al., 2016) and RotatE use V = C
(complex space) and QuatE (Zhang et al., 2019)
considers V = H (quaternion space). In this pa-
per, we choose two-dimensional Hilbert space to
embed the graph i.e. V = C2. Most KGE models
are defined via a relation-specific transformation
function g, : V% — V9 which maps head en-
tities to tail entities, i.e. g,(h) = t. On top of
such a transformation function, the score function
f 1 Ve x Vo x Vée — R is defined to measure the
plausibility for triples: f(h,r,t) = p(g.(h),t).
Generally, the formulation of any score function
can be either p(g,(h),t) = —|g-(h) — t|| or
p(gr(h),t) = (g,(h),t).

Qubit. A classical bit can exist in one of two states
denoted as 0 and 1. A quantum bit or qubit can
exist not only in these two discrete states but in all

possible linear superpositions of them. Mathemati-
cally, the quantum state of a qubit is represented as
a state vector in a two-dimensional Hilbert space
C?2, whose basis vectors are denoted in the Dirac

notation as
1 0
o= (g).m-=(3) n

Let the vector |0) correspond to the classical value
0, while |1) to 1. The state vector of a qubit is
written as

[¥) = al0) +bl1) 2

where a,b € C, |a|?> + |b|? = 1. The complex
numbers a and b are called quantum amplitudes.
According to quantum mechanics, if we make mea-
surement on |¢)) to see whether itis in |0) or |1), the
outcome will be 0(1) with the probability |a|?(|b|?)
and state |0)(|1)) immediately. The density matrix
p of state |¢)) is given by:

p =) (¥ 3)

Quantum Gates. Quantum gates essentially trans-
form the system from one state to another state.
When measurements are not made, the time evolu-
tion of a state is described by the Schrédinger equa-
tion. Because of the probabilistic interpretation of
quantum mechanics, state vectors are normalized
to 1. Thus the time development is unitary. Quan-
tum gate U holds UUT = UTU = I, where UT is
the conjugate transpose of matrix U. The general
expression of a 2 X 2 unitary matrix is

a —e¥b*
() e

where a,b € C, |a|? + |b|?> = 1 and 1 is the angle.
a* is the complex conjugate of a.

4 Method

4.1 Model Formulation

Given a triple (h,r,t), the head and tail entities
h,t € £ are embedded into a d dimensional Hilbert
space i.e. h,t € C?? where each element is a
2-dimensional complex value vector. A relation
r € R is embedded into a d dimensional vector
r where each element is a 2 X 2 complex value
unitary matrix. r contains two complex vectors
r, and rp, € C?. With Tai» Tbis Nai, Dpiy tai, tois
we refer to the ith element of ry, rp, hy, hy, t,, ty
respectively.



4.1.1 Entity-specific Qubit Embedding

We use standard representation of the state of qubit
to represent an entity in C??. The ith element of
entity embedding vector h is given by

h.
h; = h,; |0) + hy; |1) = @ s
bl = (1)
1=1,2,---,d

where d is entity embedding dimension, hg;, hy; €
C and |hy|? + |hy2 = 1 such that h =

[h17 h27 e 7hd]'
Respectively, the density matrix of entity A is
pn; = [hi) (hyl
_ < I 2 haih;;i) (©6)
hyhy,  [hy[?

4.1.2 Relation-specific Quantum Gate

We use reletion-specific transformation to map the
head entity h from a source to a target Hilbert
space. Since quantum gates are unitary, we write
the parameterized unitary matrix of ith element of
relation embedding vector r as

(. — [Yai —ery;
r; =4, = ) eiwr* s

Iy, al

i=1,2,,d

(7

where d is relation embedding dimension,
rei, Ty € Cand |rg]? + |rp|? = 1sothatr =
[r1,ro,- -+ ,rg]. This implies det(i.;) = €™ # 0
i.e. i,.; is invertible.

To apply quantum gate to the qubit, i.e. to apply
relation-specific transformation r to the head entity
h, we perform element-wise transformation via
matrix multiplication to compute the transformed
entity representation h,:

h,; = gri(h;) = U;h; = <

i=1,2,---.d

reihg; — e'wl‘};}hbz’
ry;hg; + e¥r hy )

®)
which implies h, = [h,1, b9, -+, h4].

4.1.3 Score Function

In our method, we do not need to exactly measure
the states. Instead, we seperate the states by kernel
methods.

The score of a triple in KG is the similarity
(h,,t) between the relation-specific transformed
head h, and tail t. The model aims to minimize

the distance between h, and tail t, i.e. their sim-
ilarity ((h,,t)) is maximized for positive triples.
Otherwise, it is conversely minimized for sampled
negative triples.

There are various ways to define the similarity
(h,,t). In this paper, we choose the following
definitions for experiments.

Trace Distance.

The trace distance measures the distinguishabil-
ity between two states. Two states are more similar
if their trace distance is smaller. We define the
similarity as the negative of the trace distance as

£, ) =~ (3 on, — 20 (o1, — )
©)
where pj,., p; are the density matrices of states |h,)
and [t) respectively, tr(p) is the trace of density
matrix p, p' is the conjugate transpose of p.
Hilbert-Schmidt Distance.

Hilbert-Schmidt distance between two states is
known as [ distance, while the [; distance is trace
distance. Similarly, we define the similarity as the
negative of the Hilbert-Schmidt distance as

f(h’ T’t) = —t’l“((phr - pt)T(phr - pt)) (10)

We also explore more definitions that may con-
tribute to the training procedure. Element-wise {1
distance and element-wise inner product are two
measurements that follows previous classic KGE:s.
Element-wise /; Distance.

f(h’a ’I",t) = _HhT - t||1

d
=— Z [hy; — ti][1
i—1

)

where ||x||1 is the /1 norm of the two-dimensional
complex vector x € C2¢,
Element-wise Inner Product.
f(h,7,t) = Re((h,,t)) (12)
where Re(x) is the real part of the two-dimensional

complex vector x € C??, (h,,t) is element-wise
inner product.

4.1.4 Loss Function

In order to optimize the model, we formulate the
link prediction task as a classification problem. Fol-
lowing (Sun et al., 2019), the model minimizes the



following loss:

- log(v — f(h,r,1))

- Zp hi,ri,t;

Loss =

Ylog o (f(hi,riti) — )
(13)

where v is a fixed margin, K is the number
of negative examples, (h;,7;,t;) is the ith neg-
ative triple, o is the sigmoid function. Besides,
p(hi, i, t;) is the distribution of sampling negative
samples and it depends on negative sampling strate-
gies such as uniform sampling, bernoulli sampling
and adversarial sampling (Sun et al., 2019).

4.1.5 Initialization
For parameter initialization, we adopt a particular
initialization algorithm to preserve quantum ada-
vantages and speed up model efficiency and conver-
gence (Glorot and Bengio, 2010). The initialization
of entities follows the rule:

Areal = cos(0)

Aimg = sin(#) cos(¢)

breal = sin(6) sin(¢) cos(p)
(0

bimg = sin(#) sin(¢) sin(p)

(14)

where ayeal, Aimg, breal, bimg denote the scalar and
imaginary coefficients of a and b, respectively.
0, ¢, are randomly generated from the interval
[—7, w]. The initialization of relations follows an
extended rule. The coefficients of a and b are ini-
tialized by the same rule as above, while the angle
1 is randomly generated from the interval [—m, 7].
This initialization method is optional.

4.2 Theoretical Analysis

The Proposition 1 below illustrates the connection
with classic KGE methods.

Proposition 1. qubit representation is equal to
unit quaternion representation. In this way, spe-
cial quantum gates are rotations in the quaternion
space.

For each qubit representation, there are four free
variables normalized to 1. There exists a natural
one-to-one mapping ¢:

¢:Cx 5 H?
(a+bi)]0) 4+ (c+di) 1) = a+ bi+ ¢j + dk
A+ +rdi=1
(15)

that map each qubit to unit quaternion. Similarly,
the relation representation is also mapped to unit
quaternion if we limit the angle 1) = 0 in unitary
matrix.

a + bi
c+di

A+ +E+d?=1

Q- C2><2><d — Hd

_C+C.ll> Sa+tbitcjt+dk (16)
a — bi

Therefore, that special quantum gates acting on
qubit states is equal to the Hamilton product of two
unit quaternions. With ¢ = 0 we generate a variant
of QubitE, namely QubitE,.

However, QuatE (Zhang et al., 2019) which rep-
resents entities as quaternion and relations as rota-
tions in the quaternion space, subsumes QubitE,
but does not subsume QubitE, because the deter-
mine of unitary matrix representation of quantum
gates of QubitE is ¥ rather than 1. In other words,
the general quantum gates of QubitE are not equal
to unit quaternions.

4.2.1 Subsumption

We show that QubitE subsumes other models and
inherits their favorable characteristics in learning
various graph patterns.

Definition 1. A model M, subsumes Mo when any
scoring over triples of a KG measured by model Mo
can also be obtained by M, (Wang et al., 2018).

Proposition 2. QubitE subsumes DistMult, pRo-
tatE, RotatE, TransE and ComplEx.

4.2.2 Full Expressiveness

Definition 2 (from (Kazemi and Poole, 2018)). A
model M is fully expressive if there exist assign-
ments to the embeddings of the entities and rela-
tions, that accurately separate correct triples for
any given ground truth.

Proposition 3. QubitE is fully expressive.

4.2.3 Inference of Patterns

Definition 3. Relation ro (e.g. StudentOf) is the
inversion of relation r1 (e.g. SupervisorOf) if

vmayega(x’rlay) GT: (ya’rQ?w) GT

Proposition 4. Let ro € R be the inversion of r1 €
R. QubitE infers this pattern with U, ; = ut

1,0
fori=1,2 --- dwhere d is relation embedding
dimension.



Definition 4. A relation r is symmetric (antisym-
metric) if

Ve,y € €, (x,my) €T = (y,r,x) €T
(z,r,y) €T = (y,r,2) ¢ T)

Proposition 5. Let r € R be symmetric (antisym-
metric). QubitE infers the symmetry (antisymme-
try) pattern if L, ; = S~} holds (does not hold)
fori=1,2,---,d where d is relation embedding
dimension.

Definition 5. Relation r1 and relation ro are com-
mutative (non-commutative) if

Vae,y € €, (x,r10m0,y) €T
= (z,ro0r1,y) €T
(Fz,y € &, (x,r10r9,y) €T
= (v,m2071,y) ¢ T)

where o is the composition operator.

Definition 6. Relation rs (e.g. UncleOf) is the com-

position of relation r1 (e.g. FatherOf) and relation
ro (e.g. BrotherOf) if

vx,y)'z € 5’ (fﬁ,Tl,y) € T/\(y,rg,z) € T
= (z,7r3,2) €T

Proposition 6. Let r1, 712,73 € R be relations and
rg be a composition of r1 and ro. QubitE infers
composition with U, ;4. ; = ., ;. If r1 and ro
are commutative, then U, ;3. ; = . 3., ;. If
r1 and T are non-commutative, then Y., L., ; #
Wy 8y i for i = 1,2,---  d where d is relation
embedding dimension.

With above propositions, we have the following
theorem:

Theorem 1. QubitE can model the symmetry /
antisymmetry, inversion, and commutative / non-
commutative composition patterns.

4.2.4 Complexity Analysis

Table 1 compares the space and time complexity of
QubitE with several popular models. It can be seen
that QubitE is efficient and shares similar complex-
ity with classical KGEs such as TransE, RotatE and
QuatE, etc.

Space Time
Methods Complexity Complexity
TransE O(|€ln+ |Rn) O(n)
TransH O(|€|n+ |R|n) O(n)
TransR O(|€|n + |R|n?) O(n?)
RESCAL O(|€|n + |R|n?) O(n?)
DistMult ~ O(|€|n + |R|n) O(n)
ComplEx  O(|€|n + |R|n) O(n)
RotatE O(|€|n+ |R|n) O(n)
QuatE O(|€ln+ |R|n) O(n)
5*E O(|€|n+ |R|n) O(n)
QubitE O(|€]n + |R|n) O(n)

Table 1: Comparison in space and time complexity.

S Experiments

5.1 Experimental Settings

Datasets We evaluated our model on four widely
used benchmark datasets namely FB15k (Bol-
lacker et al., 2008), FB15k-237 (Toutanova and
Chen, 2015), WN18 (Bordes et al., 2013) and
WNI18RR (Dettmers et al.,, 2018). Table 2
summarises the statistics of these four datasets.
FB15k is a standard benchmark created from the
original FreeBase KG (Bollacker et al., 2008).
WN18 (Bordes et al., 2013) is a lexical database
with hierarchical collection for the English lan-
guage that was derived from the original WordNet
dataset (Miller, 1992). According to (Dettmers
et al., 2018), FB15k and WN18 suffer from the
test leakage problem. The training set contains
a large number of inverse test triples. To solve
the problem, FB15k-237 and WN18RR are pro-
posed as sub-version of FB15k and WNI18, re-
spectively, with inverse relations removed. The
FB15k-237 and WN18RR datasets both include
several relational patterns such as composition
(e.g. awardnominee/ ... /nominatedfor), sym-
metry (e.g. derivationally_related_form in
WN18RR), and anti-symmetry (e.g. has_part in
WN18RR).

Evaluation Protocol In order to speed up evalu-
ation, we score each triple with all entities at a time.
In detail, firstly, for each test triples, we replace
tail entity with all entities in the KG to obtain can-
didate triples. Then, we compute the scores of all
candidate triples and sort them by scores ascending
order. Finally, we store the rank of the correct triple.
Following the best practices of evaluations for em-



Dataset #train  #valid  #test
FB15k 483,142 50,000 59,071
WNI18 141,442 5,000 5,000
FB15k-237 272,115 17,535 20,466
WNI18RR 86,835 3,034 3,134

Table 2: Dataset Statistics. Split of datasets in terms
of number of triples.

bedding models, we consider the most-used metrics
(Mean) Reciprocal Rank (MRR) and Hits@n (n =
1, 3, 10). For all metrics, the higher, the better.

Implementation Details We implement our
model with PyTorch (Paszke et al., 2017). The
model is tained and tested on one GTX1080
graphic card. We use Adam as a gradient opti-
mizer. We do not use Dropout because it may lead
normalization to 0 and destroy our normalization.
See Appendix A.2 for more details.

Baselines We compare QubitE with a number
of strong baselines. For Euclidean KG Embed-
ding, we reported TransE (Bordes et al., 2013),
TransR (Lin et al., 2015), RotatE (Sun et al., 2019),
QuatE (Zhang et al., 2019), 5*E (Nayyeri et al.,
2021) and HopfE (Bastos et al., 2021). For Non-
Euclidean KG Embedding, we reported MuRP (Bal-
azevic et al., 2019b) and ATTH (Chami et al.,
2020). For Tensor Decomposition KG Embedding,
we reported DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), SimplE (Kazemi and
Poole, 2018), HypER (Balazevic et al., 2019a).
For Neural Network KG Embedding, we reported
ConvE (Dettmers et al., 2018), CoPER (Stoica
et al., 2020). For Quantum KG Embedding, we
reported QCE (Ma et al., 2019) and its variant F-
QCE (Ma et al., 2019).

5.2 Experimental Results and Analysis

We study the performance of our method on link
prediction task. Table 3 shows the results on
WN18RR and FB15k-237, and Table 4 summarizes
the results on WN18 and FB15k. Overall, QubitE
achieves extremely competitive results compared to
the state-of-the-art classical models on all metrics
across all datasets.

FB15k-237 and WN18RR mainly contain infer-
ence patterns of symmetry/antisymmetry and com-
position. For Euclidean KGEs, TransE and TransR
perform the worst because they cannot infer an-
tisymmetry or inversion patterns. RotatE and it

variant pRotatE perform better for their inference
ability. But QubitE subsumes RotatE and not sur-
prisingly has better performance than RotatE. From
RotatE, QuatE to HopfE, the MRR and Hits@ 10
steadily improve with the promotion on the com-
plex space, quantization space, etc. For Tensor
Decomposition KGEs, ComplEx and DistMult per-
form poorly since they cannot infer the composition
pattern. For Neural Network KGEs, ConvE and
CoPER utilise convolution neural network and con-
textual parameter generate neural network to socre
triples. But these two methods require too many
parameters when compared to the linear model
QubitE. On the whole, the improvement of our
method demonstrate the high expressiveness of
QubitE.

FB15k and WN18 mainly contain inference pat-
terns of symmetry/antisymmetry and inversion.
For Euclidean KGEs, TransE and TransR perform
poorly on these two datasets because TransE can-
not handle symmetry patterns and TransR cannot
infer inversion patterns. RotatE converts the re-
lation into the rotation in complex space, while
QuatE in quaternion space. But as QuatE observes,
the normalization of the relation to unit quaternion
is a critical step for the embedding performance.
And QubitE satisfies the normalization constraint
naturally for quantum adavantages, thus perform-
ing much better. All in all, QubitE preserves the
quantum adavantages and efficiently separates the
qubit states.

As a quantum-based method, QubitE outper-
forms the two representative quantum-based mod-
els QCE and F-QCE significantly. Compared with
QCE and F-QCE, QubitE gains 50% improve-
ments in average across all metrics on FB15k and
WNI18. We believe the improvement of QubitE
originate from its pattern inference ability, full-
expressiveness, subsumption and the correct appli-
cation of quantum mechanism on link prediction
task.

6 Conclusion

In this paper, we propose a novel KG embedding
model named QubitE to apply quantum mechanics
for knowledge graph completion. QubitE mod-
els entities as qubit states and represents relations
as quantum gates. With fine-grained initializa-
tion algorithm and scoring function, QubitE can
preserve quantum adavantages and separate the
triples properly. With detailed theoretical analysis,



WNISRR FB15k-237

MRR Hits@10 Hits@3 Hits@l MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) .226 .501 — — .294 465 - —

TransR (Lin et al., 2015) — .503 — — — .486 — —

RotatE (Sun et al., 2019) 476 571 .492 428 .338 533 375 241
QuatE (Zhang et al., 2019) .481 .b64 .500 436 311 495 342 221
NagE (Yang et al., 2020) ATT 574 493 432 .340 .530 378 .244
5*E (Nayyeri et al., 2021) 470 .580 .500 410 .350 .530 .380 .260
HopfE (Bastos et al., 2021) 472 .586 .500 413 .343 .534 .379 .247
MuRP (Balazevic et al., 2019b) 480 570 .500 .440 .340 .20 370 .240
ATTH (Chami et al., 2020) .456 .526 471 419 311 488 .339 223
DistMult$ (Yang et al., 2015) .430 .490 .440 .390 241 419 .263 .155
ComplEx< (Trouillon et al., 2016)  .440 .510 .460 410 .247 428 275 158
HypER (Balazevic et al., 2019a) .465 522 A77 436 341 .520 376 .252
ConvE< (Dettmers et al., 2018) .430 .520 .440 .400 325 .001 .356 .237
CoPER (Stoica et al., 2020) .465 .510 — 427 .365 .504 — .295
QCE (Maet al., 2019) — .323 .195 — — .350 .225 —

F-QCE (Ma et al., 2019) - 378 274 - - .337 198 —

QubitE (ours) .486 579 .503 .439 341 .536 .379 .244

Table 3: Link prediction results on WN18RR and FB15k-237. Results are grouped from top to bottom by Euclidean
KGE, Non-Euclidean KGE, Tensor Decomposition KGE, Neural Network KGE and Quantum KGE. Best results
are in bold, second best results are underlined, third best results are italic. [<]: Results are taken from (Dettmers
et al., 2018). Other results are taken from their original papers.

WNI18 FB15k
MRR Hits@10 Hits@3 Hits@l MRR Hits@10 Hits@3 Hits@]1

TransE (Bordes et al., 2013) 495 .943 .888 113 463 .749 .b78 297
TransR (Lin et al., 2015) 427 .940 .876 .335 198 .582 404 218
RotatE (Sun et al., 2019) .949 .959 .952 .944 797 .884 .830 .746
QuatE (Zhang et al., 2019) .949 .960 .954 .941 770 .821 778 .700
NagE (Yang et al., 2020) .950 .960 .953 .944 — — — -

5*E (Nayyeri et al., 2021) .950 .960 .950 .950 .730 .860 .780 .660
HopfE (Bastos et al., 2021) .949 .960 .954 .938 — — — —

DistMult$ (Yang et al., 2015) 797 .893 — — 798 .893 — —

ComplEx (Trouillon et al., 2016) 941 .947 .936 .936 .692 .840 .759 .599
SimplE (Kazemi and Poole, 2018) .942 .947 .944 .939 127 .838 773 .660
HypER (Balazevic et al., 2019a) 951 958 .955 947 .790 .885 .829 734
ConvE (Dettmers et al., 2018) .943 .956 .946 .935 .657 .831 723 .558
QubitE (ours) .949 .960 .953 .944 773 .885 .826 .703

Table 4: Link prediction results on WN18 and FB15k. Results are grouped from top to bottom by Euclidean KGE,
Tensor Decomposition KGE, Neural Network KGE. Best results are in bold, second best results are underlined,
third best results are italic. [¢]: Results are taken from (Dettmers et al., 2018); Other results are taken from their

original papers.

QubitE owns the adavantages of full expressive-  baselines.
ness, subsumption, pattern inference ability and lin-

ear space&time complexity. Empirical experimen-
tal evaluations on four well-established datasets
show that QubitE achieves an overall comparable
performance, outperforming multiple recent strong

In the future, we would like to explore the fol-
lowing research directions: (1) we plan to model
logical rules from the KG by using the learned
embedding; (2) we plan to model complex logical
query with more types of quantum gates.
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A Appendix

A.1 Theoretical Proofs

A.1.1 Subsumption

Here we will prove Proposition 2. We will show
that QubitE subsumes DistMult, pRotatE, RotatE,
TransE and ComplEx and inherits their favorable
characteristics in learning various graph patterns.

Before our proof for Proposition 2, we gives the
proposition below:

Proposition 7. Y unit quaternion q, there exists a
surjection ¢ : H — C such that ¢(q) is complex
number. Moreover, ¢(q) can be written in quater-
nion format ¢(q) = a+0i+bj+0k,a,b € R, and
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the Hamilton product in quaternion space will also
degrade to complex number multiplication.

Proof. For any given unit quaternion ¢ = a + bi +
cj + dk, we can write:

A7

where 0, ¢, p € [—m,m]. Our goal is to generate
#(q) = a’ + 0i + V'j + Ok where o/, b’ € R.
First, we can generate a’ from a with

, a
= . 1
R (18)
which implies a’ € R.
Second, we note that
c
= tan(9) cos().
d .
© = tan(g) sin(i)
2 d?
L) (19)
2 2 2 2
7Ty ety

= sin(f) cos(¢) tan?(¢) € R

Therefore, we can generate b" with b, ¢, d with

2 2
c d
W= 20
5 T (20)
which implies b’ € R. The surjection is
¢:H—C
a+bi+cj+dk—a +0i+bj+ 0k
o = 2 @1
1—a?
I
y=242
b + b

and the Hamilton product in quaternion space will

also degrade to complex number multiplication.
O

Then we can begin our proof for Proposition 2.

Proof. For any given entity h and relation r, we
have proved that they can be mapped to unit quater-
nions naturally (See Proposition 1). For any unit
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quaternions, we also prove that there exists a sur-
jection that maps to complex numbers (See Propo-
sition 7). Let z. = al, + 0i + bLj + Ok where e rep-
resents qubit states, z. is the projected quaternion
format of e. Therefore, we obtain the following
equation:

f(hv Ty t) = R€(<hr, E>)
= Re((zn,,2))

d
— Z Re((zh,,, 1))
i=1

d

=" Re((zn, . 2r,. %))

=1
= fComplEx(h> T, t)

(22)

which shows that QubitE subsumes Com-
plEx. By removing the imaginary parts of
Ze, the scoring function becomes f(h,r,t)
Zle(Re(zhi),Re(z”),Re(zti)), degrading to
DistMult in this case. On the other hand, we also
have the following equation:

f(h7 T’ t)

—|h, —t|
—|zn, — 2]
—||zp, 0 Zp — 24|

= fRotatE(h7 r, t)

which shows that QubitE subsumes RotatE. From
(Sun et al., 2019) we know RotatE subsumes pRo-
tatE and TransE. So QubitE also subsumes pRotatE
and TransE. O

(23)

A.1.2 Full Expressiveness

Here we prove Proposition 3, that QubitE is fully
expressive.

Proof. The proof contains two steps. First, we
show that QubitE is expressive. Second, we show
that the expressiveness is full.

In formulation, first, we show that QubitE can ex-
press any ranking tensor A € R™e*™e X" where n,
is the number of entities and n, is number of rela-
tions in KG. The ikj-th element of A, denoted vy,
corresponds to the triple (h;,7y,t;). The rank-
ing tensor gives lower rank to the triple (h;, 7%, t;)
than to (hj,r},t;) if the model scores the triple
(hi, Tk, t;) higher than (), 77, t;) Second, for any
boolean tensor B € {0, 1}"<*™*"  QubitE ob-
tains a ranking tensor which is consistent with B.
That is, for 3;,; = 1 where the triple (h;, 74, t;) is
positive and 3,4/ = 0 where the triple (), 7, t;)
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is negative, we have aikj > oy to correctly
seperate the triples.

For the first step, Wang et al. (2018) proved
that the ComplEx model can obtain score tensor
MMexneXnr that fullfills the ranking rules. The
model gives score ju;,; = f(hi, 7k, t;) for triple
(hi, 7k, tj), such that f;,; < fiy755 holds for the
definition of ranking tensor .A. In the subsump-
tion 2 we proved that QubitE subsumes ComplEx.
Therefore, there is a vector assignment to embed-
dings of entities and relations such that QubitE
obtains a ranking tensor.

For the second step, Wang et al. (2018) show that
for a given boolean matrix 3, there exists a ranking
matrix consistent with B. Therefore, it is also true
for QubitE to obtain a ranking matrix consistent
with B.

With the first and the second step, we conclude
that there exists an assignment to entity and rela-
tion embeddings such that for any ground truth,
QubitE can separate the triples correctly. This
means QubitE is fully expressive. O

A.1.3 Inference of Patterns
Symmetry/Antisymmetry

Definition 7. A relation r is symmetric (antisym-
metric) if

Ve,y € €, (x,r,y) €T = (y,r,x) €T
(z,my) €T = (y,r,2) € T)

Proposition 8. Let r € R be symmetric (antisym-
metric). QubitE infers the symmetry (antisymme-
try) pattern if U, ; = L[;Zl holds (does not hold)
fori=1,2---.d where d is relation embedding
dimension.

Proof. Firstly, we consider the situation that rela-
tion r is symmetric.

According to Definition 7, a model infers the
symmetry pattern when for all given entities z, v,
if (x, r,y) is represented as positive, then (y, r, x)
is also represented as positive. That is

9ri(Xi) =i (24)

then ¢, ;(y;) = x;. From Equation 24, we have
Vi = gri(xi) = L. ;x;. Since g,; is the quantum
gate whose matrix representation £l ; is unitary and
invertible, we can make the assumption ;. ; = [~ Zl
following Proposition 8. Then we have 7

i =g, (xi) (25)



which equals to x; = g¢;;(y;). This means that
the triple (y, r, =) must be positive, i.e. inferred as
positive.

Secondly, if relation r is antisymmetric, we just
make the assumption ,.; # - Zl to get x; #
gr,i(yi), which means that the triple (y,r,x) is
inferred as negative. O

Inversion

Definition 8. Relation ry (e.g. StudentOf) is the
inversion of relation r1 (e.g. SupervisorOf) if

vxayegv(l‘arlay) €T = (y,rg,x) eT

Proposition 9. Let ro € R be the inversion of 11 €
R. QubitE infers this pattern with U, ; = [ 11
fori=1,2 ---  dwhere d is relation embedding

dimension.

Proof. According to Definition 8, a model infers
the inversion pattern when for all given entities
x,y, if (z,71,y) is represented as positive, then
(y,r9, x) is also represented as positive. That is

Gr1i(Xi) = ¥i (26)

then g¢,, i(yi) = x;. From Equation 26, we have
Vi = gr,i(Xi) =, ix;. Since 71 is the quantum
gate whose matrix representation i, ; is unitary
and invertible, we can make the assumption ., ; =
U 1Z following Proposition 9. Then we have

Yi = gy,(xi) 27)

which equals to x; = g, ;(y;). This means that
the triple (y, 2, ) must be positive, i.e. inferred as
positive. O
Commutative/Non-commutative Composition

Definition 9. Relation r1 and relation ro are com-
mutative (non-commutative) if

Ve,y € &, (x,r10ore,y) €T
= (z,r30r1,y) €T
(Fz,y € &, (x,r10r9,y) €T
= (v,m2071,y) ¢ T)

where o is the composition operator.

Definition 10. Relation rs (e.g. UncleOf) is the
composition of relation 11 (e.g. FatherOf) and rela-
tion ro (e.g. BrotherOf) if

V‘T)yyz € 57 (J")Tlvy) € T/\(y,TQ,Z) eT
= (z,7r3,2) €T
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Proposition 10. Let r1,72,73 € R be relations
and r3 be a composition of r1 and ro. QubitE infers
composition with ., ;4. ; = .. ;. If r1 and ro
are commutative, then ., ;. ; = . ., ;. If
r1 and ry are non-commutative, then ., ;3. ; #
Uy My i fori = 1,2,---  d where d is relation
embedding dimension.

Proof. According to Definition 6, a model infers
a composition pattern when for all given entities
x, Y, 2, if the score of the model represents triples
(z,m,y) and (y, 72, 2) as positive, it also repre-
sents (x,rs, z) as positive. In other words, when
given

Gry,i (Xz‘) =Y

(28)
Irai(Yi) = 2
then it holds g,,;(x;) = z; fori = 1,2,--- ,d
where
gr;i(hi) = 4, i, 29)

j: 1a2a37 1= ]-323"' ad
From Equation 28, we insert y; = g,, i(x;) into
Grs,i(yi) = z;, which gives g, i(gr, i(Xi)) = 2.
Therefore, we have
(30)

Considering the Proposition 6 and assuming
LLrg,iurl,i = u’l”;g,i’ we have 9ra,i © gm,i(xi) =
grs,i(Xi) = z;. This means that the triple (z, 73, 2)
must be positive, i.e. inferred to be positive. If
r1 and 7o are commutative, then ., 4. ; =
) 38y i If 71 and r9 are non-commutative, then

oy 8y i 7 iy 4 O

A.2 Implementation Details

Gra,i © ng,i(Xi) = U’rz,iu’rl,ixi = Z;.

We implement our model with PyTorch (Paszke
et al., 2017). The model is tained and tested on one
GTX1080 graphic card. We use Adam as a gradient
optimizer. We do not use Dropout because it may
lead normalization to O and destroy our normal-
ization. We use grid search to botain the best hy-
perparameters according to MRR on the validation
set. The hyperparameters are selected as follows:
embedding dimension n € {100, 200, 500, 1000},
fixed margin v € {3,6,9, 12, 24}, self-adversarial
sampling temperature o € {0.5,1.0}, batch size
B € {256,512,1024}.

Table 5 shows the hyper-parameter values re-
ported for QubitE across all datasets, where Ir
denotes (learning rate), dr (decay rate), 1s (label
smoothing), p (7 in loss function), neg (negative
sample size), strategy (negative sampling strategy).



Dataset Ir dr de dr p neg strategy
FB15k 0.00005 0.99 500 500 24 256 adversarial
FB15k-237  0.0005 0.995 500 500 12 256 adversarial
WNI18 0.0001 0.995 500 500 12 256  uniform
WNISRR  0.00005 1.0 500 500 6 256  uniform

Table 5: Hyper-parameter values for QubitE across all

datasets.

A.3 Limitation

On the one hand, one entity is only represented by
one qubit. There exists multi qubits system, that
represents entities as multi qubits and brings more
favorable features, though the theoretical analysis
becomes difficult. On the other hand, the conver-
gence is really slow because of thie slow sampling

procedure.
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