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Abstract

Foundation models exhibit significant capabilities in decision-making and logical
deductions. Nonetheless, a continuing discourse persists regarding their genuine
understanding of the world as opposed to mere stochastic mimicry. This paper
meticulously examines a simple transformer trained for Othello, extending prior
research to enhance comprehension of the emergent world model of Othello-GPT.
The investigation reveals that Othello-GPT encapsulates a linear representation of
opposing pieces, a factor that causally steers its decision-making process. This
paper further elucidates the interplay between the linear world representation and
causal decision-making, and their dependence on layer depth and model complexity.
We have made the code public.

1 Introduction

Auto-regressive language models, esteemed for their predictive capabilities, have showcased unprece-
dented potential in logical reasoning and complex task resolution (Srivastava et al. (2022) Creswell
et al. (2022)). This leads to a discourse (Bender et al. (2021)) regarding whether their performance is
merely a reflection of memorization of “surface statistics,” namely the correlations between tokens
unrelated to the original sequence’s causal process. Contrarily, recent research endeavors examine the
inherent development of interpretable world models within such language models. World models, as
referred throughout, signify the encoding of semantic information about the true causal process within
the network’s activations. Instances of world representations include the location and type of game
pieces for a language model trained in chess (Toshniwal et al. (2021)) and object part classification in
a visual transformer (Amir et al. (2021)). Exploring the unsupervised development of internal world
representations in these models is paramount for comprehending the emergence of intelligence in
foundation models.

In this research, the emergent world principle is scrutinized in a series of simple transformer models,
trained to play Othello and termed as Othello-GPT (Appendix A). These trained models (Figure 1a)
exhibit proficiency in legal move execution. Utilizing linear probes to decode neuron activations
across transformer layers, coupled with causal interventions, this paper underscores the enhanced
world model of Othello-GPT and its causal utility for decision-making.
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Contributions: In this ongoing work,

1. We show that even very small models down to 1 layer and 1 attention head can play Othello,
and they possess linearly encoded information about the board state. We find that world
representations may be linearly encoded in the model’s activations to an extent that generally
increases with layer depth for deeper models.

2. We design a simple novel causal intervention technique that directly intervenes at each layer
with the linear representation and demonstrate that at certain layers the linear world model
is causal in influencing the model’s next move prediction. In particular, it appears that
semantic understanding in the model is developed and utilized about halfway through the
model.

2 Related Work

Othello-GPT Li et al. (Li et al. (2023)) inaugurated the research on an 8-layer transformer model
for Othello, demonstrating the non-linear encoding of board state information within each layer’s
activations and introducing a sophisticated causal intervention scheme. A subsequent blog post
(Nanda (2023)) highlighted the potential for linear encoding of the board state, albeit without an
interpretable representation.

Probing Classifiers The employment of classifiers for probing neural networks has gained promi-
nence as an instrumental tool for understanding internal representations within neural networks. This
methodology has facilitated the understanding of sentence embeddings in transformers (Clark et al.
(2019)), hierarchical structures in recurrent networks (Hupkes et al. (2018)), and visual concepts
within vision models (Alain and Bengio (2018)). Despite these advancements, debates continue
(Belinkov (2021)) regarding the actual causal utility of the encoded information by the network. This
research contributes a meticulously designed causal intervention study to ascertain the network’s
utilization of the encoded representation.

Mechanistic Interpretability Complementary research (Olah et al. (2017) Olah et al. (2020)
Olsson et al. (2022) Nanda (2023)) endeavors to decipher the internal mechanism of networks by
identifying "circuits", network segments responsible for computing certain interpretable features.
This paper lays a robust foundation for further mechanistic interpretability work on Othello-GPT.

3 Linear Representation of the Board State

3.1 Linear Probe Uncovers a Natural Board State Representation

In this section, we first report our findings that there is an intuitive world representation that is linearly
encoded within the activation vectors of the trained sequential model.

The original work of Li et al. (2023) postulated a world representation corresponding to the placement
of white or black discs on a game board. While this is how most humans would visualize the board
when playing the game of Othello, it is important to note that the sequential model differs slightly
from human play in that the model alternates between acting as the white vs. black player depending
on the length of the input sequence. As the rules dictating a legal move require only an understanding
of which piece is yours and the opponents’, a more natural choice for a world representation in this
case is instead the classification of a tile as containing "my piece" vs. "your piece" (or empty). We
term the "Black, White, Empty" representation as the old representation, and "Yours, Mine, Empty"
as the new representation.

To quantify this, we first train a multi-headed attention model (diagrammed in Figure 1a) with 8
transformer blocks, referred to as layers, and 8 attention heads on the synthetic Othello dataset that
consists of random legal moves. Once trained to predict legal next moves, the model’s weights
are frozen. We then train a separate linear transformation L (referred to throughout as a linear
probe) to map the activation vector of a particular layer to the world representation, i.e., the mapping
f : RC=512 → R64x3 where C is the token embedding dimension and the output corresponds to
the three-state classification logits for each of the 64 tiles. The accuracy for the linear probe at
each layer for the old vs. new world representations is shown in Table. 1. We observe that the new
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Figure 1: Overview of the principles in section 3. (a) The neural architecture utilized in this paper,
where the number of layers refers to the number of transformer blocks. B=Batch Size, T=Length of
Tokens, C=Hidden Layer Dimension, V= Vocabulary Size. (b) The original intervention scheme of
Li et al. (2023) is replaced by an alternate version shown in (c), whereby intervention is applied to a
single layer–see text for details. (Bottom Panel) Example of an extracted world representation where
the game board state is obtained from the activation vectors.

representation is linearly encoded in the activation vectors, particularly within the deeper layers,
and can be recovered from the model’s activations by a simple linear transformation with near unity
accuracy on a withheld set. Surprisingly, the linear probe is successful even for a 1-layer Othello-GPT,
as will be discussed in Appendix B.

Table 1: Classification Accuracy for Linear Probes Mapping z → s

Layer: 1 2 3 4 5 6 7 8
Old (Black,White) 75.7% 75.8% 75.7% 75.7% 75.6% 75.4% 74.9% 74.9%
New (Mine, Yours) 90.8% 94.8% 97.1% 98.3% 99.1% 99.5% 99.5% 99.5%

3.2 "Yours" and "Mine" Attention Heads

In addition to the linearly encoded board states that represent "yours" and "mine" pieces, we also find
regularities in the attention heads that support such representations. For example, Figure 2 shows that
there exist attention heads that only keep track of "your" first-placed pieces and "my" first-placed
pieces, resulting in alternating patterns. In fact, the "yours" and "mine" attention heads occupy a
large percentage of the attention heads in the 8L8H Othello-GPT, and these attention heads emerge
even in a simple 1L transformer (Appendix C).

4 Causal Interventions

To see if the linear world model is used by the Othello-GPT in making next-move predictions, we
intervene at each layer of the model at certain game length, to trick the model into believing that it
has another board state, as shown in Figure 1c. In general, we take the activation z that corresponds
to the board state s per the linear probe, then change it to some other board state s′ and map it back
to an activation z′ that is associated with it, ie.

L(z′) = s′,
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Figure 2: Example attention heads of the 8L8H model. Note that both heads show alternating patterns,
which we interpret as processing information from pieces first placed by the same player. For example,
Head 3 is keeping track of all my historical moves and Head 4 is keeping track of all the opponent’s
historical moves.

Figure 3: Latent saliency map for a particular game, interventions at layer 6. m∗ is highlighted with
a red box which indicates the move that we calculate logits for and the numbers indicate the logit
changes given interventions at that tile. If a possible next move is currently illegal, we observe that
interventions that would make the move legal produce a positive change (bright yellow); alternatively,
interventions that make a currently legal move now illegal have a negative change (dark blue).

where L is the linear transformation induced by the linear probe. In the interventions, we train
another linear map with L−1 cross-entropy loss on the same board state – activation pairs as the
pseudoinverse of L and find z′ by z′ = L−1(s′).

4.1 Latent Saliency Map

First, we demonstrate that the interventions from changing the activation z to z′ is indeed causal in
certain layers by plotting the latent saliency map of interventions. The map is obtained by flipping
each piece at a certain game length and recording the change of logits of a particular move m∗. If the
intervention is indeed causal, we would expect that some particular interventions would encourage or
discourage the move m∗, and this is indeed what we observe in Figure 3. It is worth reporting that
the interventions are successful only at certain layers, which we will discuss more in the next section.

4.2 When and Where Causal Intervention is Successful

The latent saliency map is limited as it is only a qualitative demonstration and is also restricted to
single-flipping-piece interventions. To see when (game length) and where (layer) the linear board
state is used by the model causally, we look at the logit distribution of a model tricked into believing
it has another board state. Specifically, at game length t (termed unplayed board), we introduce two
move options s1, s2 and intervene with the second move option at each layer to change activations z2
to z1 that corresponds to the board state s1. If the intervention is indeed causal, then we would see
that the post-intervention logit distribution of move option 2 is very similar to that of move option 1,
as shown in Figure 4a,b.
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Figure 4: Comparison of logit distributions with causal interventions. (a) Logit distribution for move
option 1 at a particular game length (unplayed board). (b) Logit distribution of move option 2 pre-
and post-interventions. The logit distribution post intervention resembles that of move option 1. (c)
Cosine similarities between the two options pre and post interventions, averaged over 50 sample
games. The difference between the the two cosine similarities shows when and where intervention is
most influential.

We plot the cosine similarity between the logit distribution of move option 1 and that of move option
2 post-intervention in 4c, with cosine similarity of the two move options without interventions as a
reference. We find that the intervention is mostly successful in middle layers and in early games. In
particular, it seems that the intervention at the last two layers is not causally affecting the next-move
decision at all, which is surprising since the linear probe has near peak accuracy at last few layers
according to Table 1. In addition, in appendix B we show that shallow networks are worse at using
the board state representation causally.

Taking account of the attention head distribution (Appendix C), we hypothesize that the linear world
model is fully developed in the middle layers and the residual stream is mostly using the information
in the middle layers to make next-move decisions. In late games, however, Othello-GPT might only
rely on "surface statistics" as the game tree is vastly shrinking.

5 Conclusion

In this paper, we showed that the Othello-GPT neurons do encode information of the board state
linearly, even for a shallow 1-layer network. Furthermore, the board state representation is used to
make predictions with deep networks but not with shallow networks. Lastly, we demonstrated that
the linear board state information is already finalized in the middle layers of the Othello-GPT and is
used casually for decision-making, indicating that the transformer recalls information in the middle
layers to make predictions.

In general, our work provides a firm playground for future explorations on understanding when,
where, and how foundation models utilize the internal world model to make predictions. Future work
involves using mechanistic interpretability tools to understand the circuits within the Othello-GPT
and breaking down its decision-making process.
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A The Rules of Othello and Board Representations

Here, we provide a brief summary of the rules of the game. Othello, also known as Reversi, is a
classic strategy board game for two players, typically played on an 8x8 grid with two-sided pieces
called "discs" that are black on one side and white on the other. The objective is to have more discs
of your color on the board than your opponent at the end of the game. All games start with an initial
setup of four discs placed at the center of the board, with two white discs forming a diagonal and two
black discs forming the opposite diagonal. One player will play black discs while the other will play
white. Players then take turns placing one disc of their color on an empty square on the board, with
the white player always going first.

• Flipping discs: A move is valid only if it "sandwiches" (or "flanks") one or more of your
opponent’s discs between the disc you are placing and another of your discs already on the
board. This must occur in a straight line (horizontal, vertical, or diagonal). After placing the
disc, flip all the sandwiched opponent’s discs to your color. If a player cannot make a valid
move, they must pass their turn.

• Win Condition: The game ends if neither player can make a valid move or if the board is full.
The player with the most discs of their color on the board wins the game. If both players
have the same number of discs, the game is a draw.

B Emergence of Linear Representations in Smaller Othello-GPT Models

In this section, we report our findings on linear world representations for smaller models than the
8-layer-8-head Othello-GPT.

To this end, we trained a series of shallow models of the same architecture (Figure 1a) but with a
number of attention blocks (layers) between 1 and 8 and with either 1 or 8 attention heads*. The
models are trained on a dataset of over 20 million simulated games (where legal moves are played
but without strategy) and the training losses are shown in Figure 5 (top row). During training, we
periodically benchmark the models performance by computing the percent of predicted next moves
that are legal for a validation set (500 game sequences/29,500 move predictions). Notably, we find
that even the smallest model tested, GPT 1-Layer 1-Head, learns to play legal moves approximately
95% of the time, while the larger models predict legal next-moves over 99% of the time.

Next, we trained linear probes that map the activation vector to the new world representation for each
layer and each model (see the discussion in section 3.1), with the training results shown in Figure
5 (bottom rows). The findings are similar to before in that the mapping is most accurate for deep
layers rather than shallow (see for example the layer 1 probe vs the final layer probe). Interestingly, it
appears that all Othello-GPT models tested present a similar ability to encode the world representation
for a given layer; for example, the first layer probe accuracy and losses are similar for the GPT models
with 1, 4, and 8 layers.

As in section 4.2, we conduct causal intervention studies for these models and the results are shown
in Figure 6. We see that though there is a linear representation of the board states in shallow networks
(1-layer), the next-move decision-making is not using the information causally. However, the 4L1H
model shows similar results as the 8L8H model, suggesting that the minimum model for causal linear
world representations can be really small.

C Visualization of Attention Heads

In this section, we provide more visualizations of the attention heads in different models. As discussed
in section 3.2, there exist "yours" and "mine" attention heads. We see how they keep track of the
moves in Figure 7 and 8 respectively, as the game progresses. We see clearly that heads 3 and 4 are
each tracking one-half of the game pieces, which corresponds to my and the opponent’s historical
moves.

*Our naming convention is slightly misleading. We refer to GPT models in the sense that our trained neural
architectures are similar to the GPT-2 architecture. We are not utilizing “pre-trained transformers” since all
models are randomly initialized and trained from scratch.

6



Figure 5: (First Row) Losses for various sequential models trained to play legal moves in Othello.
The average percent of legal next-moves played on a validation set are [94.9%, 98.6%, 99.7%, 99.6%,
99.9%] for the models in the legend. (Bottom rows) Linear probe accuracy for different models at
each layer.

Furthermore, we present in Figure 9 all of the attention heads of the 8L8H Othello-GPT model on a
sample game. They can be roughly categorized as in Figure 10.

The attention heads roughly fit into four categories:

Table 2: Distribution of Attention Head Types across Layers

Layer "Last" Head "First" Head "Mine" Head "Theirs" Head Other
Layer 1 0.00% 0.00% 37.50% 25.00% 37.50%
Layer 2 0.00% 0.00% 24.99% 49.98% 25.03%
Layer 3 0.00% 0.00% 49.98% 49.99% 0.03%
Layer 4 0.00% 0.00% 86.95% 12.50% 0.55%
Layer 5 12.50% 0.00% 62.27% 25.00% 0.23%
Layer 6 0.00% 0.01% 49.90% 37.50% 12.61%
Layer 7 0.00% 28.80% 10.19% 11.54% 49.47%
Layer 8 23.36% 25.79% 0.16% 26.49% 24.20%

• First Token Heads: These attention heads focus only on the first token of the sequence;
examples include Layer 7 Head 1, Layer 6 Head 1, and Layer 8 Head 2 (Figure 9).
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Figure 6: Cosine similarities for different Othello-GPT models with causal interventions. As in
Figure 4 the data displayed is the cosine similarity of two logit vectors (ground truth vs. post-
intervention logits or ground truth vs. pre-intervention logits), averaged over 50 games. Interventions
are conducted for different probe layers and for game sequences of different lengths. The rightmost
column displays the difference between the first and second columns and reveals where/when the
interventions are most impactful to the model’s next-move predictions.

• Last Token Heads: These attention heads focus on the second-to-last (position of last move
you played) or last token (position of last move your opponent played); examples include
Layer 5 Head 6, Layer 8 Head 3, and Layer 8 Head 1 (Figure 9).

• My Token Heads: These attention heads focus on positions corresponding to moves made
by the color to play (for example, if white to play, it will pay attention to moves in the
sequence that were made by white). Examples include Layer 1 Head 1, Layer 2 Head 3, and
Layer 3 Head 2 (Figure 9).

• Their Token Head: These attention heads focus on positions corresponding to moves made
by the color that just played (for example, if white to play, it will pay attention to moves in
the sequence that were made by black). Examples include Layer 1 Head 4, Layer 2 Head 1,
and Layer 2 Head 5 (Figure 9).

Table 2 shows the attention head types across layers. We see that the heads in Layers 1 through Layer
4 only consist of my token heads or their token heads. Additionally, we notice that in Figure 9, the
"context size" of the attention heads for my token heads and their token heads seem to decrease over
time despite still following the behavior we enumerated above; we see that the attention heads in
earlier layers tend to pay attention to moves across the entire context, whereas attention heads in later
layers only pay attention to the moves closest to them.
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Figure 7: Attention distribution of head 3 on Othello board for the first 24 moves. For the same
game as in Figure 2, we show the board state and attention distribution for the last move on the
board, which is labeled by the black square. Dark color corresponds to large weights and light color
corresponds to small attention weights.

Figure 8: Attention distribution on Othello board for head 4. Head 4 is tracking a different set of
pieces than head 3.

Another interesting finding is that the Last token heads only appear in Layers 5 and 8 and First Token
Heads only in Layers 7 and Layers 8. Taking all this into account, we hypothesize that the necessary
representations for the board state (my piece vs. your piece) are largely already finalized by the later
layers (Layer 5 and onwards) and thus the causal interventions fail in deeper layers.

Lastly, we show that "yours" and "mine" attention heads emerge even for the 1-layer transformer,
shown in Figure 11. This is also consistent with our findings that 1L8H network has a linear
representation of the board states.
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Figure 9: Attention heads for the 8L8H Othello-GPT on a sample game.

10



Figure 10: Venn diagram of attention head types. There are four type of circuits we find in our
Othello model, last token heads (which looks at the last played move), first token heads (which look
at the first played move), my token heads (which look at moves I made), and their token heads (which
look at moves my opponent made).

Figure 11: Attention heads for the 1L8H Othello-GPT on a sample game.
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