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ABSTRACT

Self-supervised representation learning requires semantically meaningful data aug-
mentations to learn effective features. However, current augmentation strategies
either disrupt semantic structures or risk semantic drift. We present Semantic Data
Inflation (SDI), a novel framework inspired by the human visual system that lever-
ages explicit semantic guidance from pre-trained models to enhance representation
quality. SDI extracts multi-level semantic cues to create consistent augmented
views while maintaining critical object identities. Our multi-scale adaptive mecha-
nism dynamically selects optimal semantic extraction strategies based on image
characteristics, ensuring robust performance across diverse conditions. Extensive
experiments demonstrate that SDI consistently outperforms baseline and generative
methods across multiple contrastive learning frameworks. Crucially, we validate
the scalability of our approach on ImageNet-1k, demonstrating significant gains
over standard baselines. On ImageNette, our approach reaches 95.75% linear
evaluation accuracy, surpassing standard (+3.88%) and generative (+3.65%) meth-
ods. Further analysis confirms SDI produces more discriminative features with
improved semantic consistency. Our code is available at https://anonymous.
4open.science/r/Semantic-Data-Inflation-8D7D/.

1 INTRODUCTION

Contrastive learning has become a cornerstone in self-supervised visual representation learning (Gui
et al., 2024; Jaiswal et al., 2020), where the quality of learned features is critically dependent
on the nuanced design of data augmentation. Augmentation is the core generative engine that
creates informative positive pairs, pushing the model to learn invariant representations essential
for generalization (Chen et al., 2020) and robustness (Grill et al., 2020). While applying diverse
transformations is key to this process (Caron et al., 2020; Bardes et al., 2022), practitioners are
consistently confronted with a fundamental, seemingly inherent trilemma: a persistent trade-off
between semantic consistency, computational efficiency, and augmentation diversity.

Existing strategies navigate this trade-off with significant compromises. On one side, handcrafted
augmentations—such as random cropping, color jittering, and rotations—are celebrated for their
high efficiency and ease of implementation (Katageri et al., 2024; Li et al., 2024). They effectively
increase sample diversity, but their semantic blindness is a critical flaw. For instance, a random crop
might entirely exclude the primary object from an image, leading to a loss of semantic consistency.
In the context of contrastive learning, this creates a "false positive" pair where a view of a background
landscape is incorrectly treated as an instance of the original foreground object. This semantic
mismatch introduces noise into the training signal, hindering the model’s ability to learn discriminative
features (Çukur et al., 2013). On the other end of the spectrum, generative models, particularly
diffusion models (Ho et al., 2020), promise a solution by synthesizing highly diverse, photorealistic
images that can expand the data distribution in semantically meaningful ways (Scotti et al., 2023;
Dalva & Yanardag, 2024). However, this comes at the cost of prohibitive computational overhead due
to their iterative generation process. More subtly, they risk "semantic drift"—unintended alterations
to the object’s core identity (e.g., transforming a specific breed of dog into another, or a cat into a dog
entirely), which can compromise training stability and data integrity (Eysenbach et al., 2024). As
illustrated in Table 1, the current landscape forces a difficult choice between fast but semantically
fragile methods and semantically rich but costly and potentially unstable alternatives.
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Figure 1: Overview of the Semantic Data Inflation (SDI) approach. (a) SDI leverages external,
pre-trained models ("semantic oracles") to extract hierarchical semantic cues (e.g., position, bound-
ary). These cues guide augmentations to ensure core object identity is preserved. (b) An adaptive
mechanism dynamically selects the appropriate semantic granularity (coarse-grained detection vs.
fine-grained segmentation) based on image quality, ensuring robust, efficient performance.

This enduring trade-off begs a critical question: must semantic guidance be painstakingly learned
from scratch within each new SSL task or expensively generated on-the-fly? We challenge this
dichotomy and propose a third, more pragmatic path. Instead of creating semantic awareness, we
advocate for leveraging the vast, pre-existing semantic knowledge already encoded in large-scale
foundation models (Bommasani et al., 2021). Inspired by the concept of knowledge transfer (Pan &
Yang, 2009), we posit that these publicly available, expertly trained models can function as highly
efficient "semantic oracles." They can provide near-instantaneous, explicit guidance on "what" in
an image is semantically important, allowing us to craft augmentations that are both richly diverse
and structurally sound. This approach effectively decouples the complex, general-purpose task of
semantic scene understanding from the specific, instance-level objective of representation learning,
offering a novel paradigm to achieve all three desired properties simultaneously.

To instantiate this paradigm, we introduce Semantic Data Inflation (SDI), a novel augmentation
strategy designed to resolve these tensions. SDI employs off-the-shelf models—YOLO (Jocher et al.,
2023) for robust object-level detection and SAM (Kirillov et al., 2023) for fine-grained pixel-level
segmentation—to extract multi-scale semantic cues in a single, efficient forward pass. These cues
define semantically salient regions, within which standard, diverse transformations are then applied.
This ensures that augmentations preserve the core object identity while maximizing meaningful
visual variation. As depicted in Figure 1(a), this guided process allows SDI to successfully balance
the competing goals of the trilemma. Furthermore, recognizing that a one-size-fits-all approach
to semantic guidance is suboptimal, SDI incorporates a multi-scale adaptive mechanism. This
component dynamically assesses image quality (e.g., resolution, clarity) and selects the optimal
granularity of semantic guidance for each individual image, from coarse bounding boxes for low-
quality inputs to precise masks for high-resolution scenes, ensuring robust and tailored performance
across all conditions (Figure 1(b)).

Our main contributions are summarized as follows:

1. We propose a new data augmentation paradigm for SSL that utilizes powerful, off-the-shelf
foundation models as "semantic oracles." This provides explicit, efficient semantic guidance
for positive pair creation, effectively resolving the long-standing trade-off between semantic
consistency, efficiency, and diversity.

2. We present Semantic Data Inflation (SDI), a practical and scalable method that realizes this
paradigm by integrating multi-scale semantic cues. At its core is a novel adaptive mechanism
that dynamically selects guidance granularity based on image quality, thus generating robust,
context-aware augmented views.

3. We demonstrate through extensive experiments that SDI consistently outperforms standard
and generative augmentation methods across multiple datasets and contrastive learning algo-
rithms. The representations learned via SDI exhibit superior generalizability on downstream
tasks beyond classification, validating the effectiveness of our approach.
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Table 1: Data augmentation strategies evaluated against the core design trilemma. SDI is unique in
its ability to balance all three aspects by efficiently leveraging external semantic knowledge.

Method Semantic Consistency Efficiency Diversity Aug. Time
Handcrafted Aug
(SimCLR (Chen et al., 2020)) ✗ ✓ ✓ ∼1 min
Generative Aug
(AdaInf (Wang et al., 2024)) ✗ ✗ ✓ ∼10–15 min

SDI (Ours) ✓ ✓ ✓ ∼2–3 min

2 RELATED WORK

The Central Role and Challenges of Data Augmentation in SSL. Contrastive learning frame-
works like SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) are fundamentally reliant on
data augmentation to create the positive pairs essential for representation learning. The standard
paradigm employs a fixed set of handcrafted transformations (e.g., random cropping, color jitter), a
practice initially adopted for its computational simplicity (Shorten & Khoshgoftaar, 2019). However,
the limitations of this semantically-agnostic approach are now a central topic of research. Beyond
the established issue of random cropping inadvertently removing salient objects and creating false
negatives (Tian et al., 2020), recent studies have revealed more subtle pathologies. For instance,
forcing invariance to strong augmentations can unintentionally make models reliant on spurious
features (Hamidieh et al., 2022) or discard fine-grained information crucial for certain downstream
tasks (Zhang & Ma, 2022). This has led to a consensus that the naive "one-size-fits-all" augmentation
strategy is suboptimal and that more intelligent, context-aware approaches are necessary.

Evolving Augmentation Strategies and Unresolved Gaps. In response, the research community
has explored several advanced augmentation strategies. One line of work focuses on making the
augmentation process itself learnable or adaptive. For example, some methods propose adaptively
adjusting the augmentation policy during training to match the evolving state of the network (Zhang
et al., 2023), while others suggest learning hierarchical invariances where different augmentations are
emphasized at different model depths (Zhang & Ma, 2022). Another innovative direction challenges
the goal of complete invariance altogether, proposing instead to make the model "augmentation-
aware" by conditioning its projector on the transformations applied, thereby preserving vital informa-
tion (Przewięźlikowski et al., 2023). Separately, to enhance view diversity, generative models have
been employed for "data inflation" (Lee et al., 2023; Scotti et al., 2023). However, this approach is
not a panacea; it is computationally expensive, and recent work demonstrates that naively adding gen-
erated data can even harm representation quality, revealing a complex interplay between data inflation
and augmentation strength (Wang et al., 2024). While these methods represent significant progress,
they either increase training complexity (adaptive/generative approaches) or focus on mitigating the
side-effects of existing augmentations. The question of how to proactively and efficiently construct
semantically coherent positive pairs from the outset, by leveraging powerful, external semantic priors,
remains a largely open and compelling research direction.

3 MOTIVATING SDI: AN EMPIRICAL STUDY

We empirically compare standard, generative, and our proposed semantic augmentation strategies.
This pre-analysis on low-resolution (CIFAR-10) and high-resolution (ImageNette) datasets using
MoCo-v2+ highlights the distinct impact of each augmentation philosophy on representation quality.

As shown in Figure 2, our Semantic Inflation (SDI) yields the strongest results. On the complex
ImageNette dataset, SDI achieves 95.7% accuracy, significantly outperforming all alternatives.
Notably, Standard Augmentation (91.9%) offers no meaningful benefit over simply duplicating
the data (Raw Duplication, 92.0%), demonstrating that semantically-agnostic transformations can
be ineffective. While Generative Inflation (93.2%) provides a moderate boost, SDI’s superior
performance underscores that explicitly preserving object identity during view creation is a more
robust and effective strategy.
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Figure 2: Empirical Comparison of Augmentation Strategies. Semantic Inflation (SDI) outper-
forms traditional (Standard Aug) and generative methods. The performance gap widens on the
higher-resolution ImageNette dataset, highlighting the value of semantic guidance in scenes.

These findings validate our core hypothesis: an optimal augmentation must balance diversity with
strong semantic invariance. By leveraging external semantic priors, SDI achieves this balance,
avoiding the pitfalls of both semantically-agnostic and generative methods. This motivates the design
of our framework, which we formalize next.

4 METHODOLOGY

This section details the Semantic Data Inflation (SDI) framework. We begin by outlining the core
principle of semantic-guided view generation. We then provide a formal analysis of its benefits from
an information-theoretic perspective. Finally, we introduce the adaptive mechanism that tailors the
semantic guidance to individual images.

4.1 THE SDI AUGMENTATION PRINCIPLE

Traditional contrastive learning relies on a predefined set of transformations, Trand, to generate a
positive view x̃ = Trand(x). This process, however, is semantically agnostic and can inadvertently
destroy the very object information the model is meant to learn. SDI introduces a more principled
approach by making the augmentation process conditional on the image’s semantic content.

The core of SDI is to reformulate the view generation process by decoupling it into two distinct
steps: semantic extraction and guided transformation. This is illustrated in Figure 3. First, for an
input image x, a semantic extraction module M identifies salient regions, producing spatial metadata
m = M(x) (e.g., bounding box coordinates or segmentation masks) without altering the raw pixels.
Second, standard transformations Tθ are applied, but their stochastic parameters are guided by these
cues. The final augmented view x̃ is generated as:

x̃ = Tθ(x,m) where m = M(x). (1)

Crucially, m consists strictly of spatial metadata (e.g., coordinates) used to bias the sampling
distribution. We emphasize that SDI operates in a fully class-agnostic manner and does not utilize
any category labels or confidence scores from the oracle, thereby precluding any label leakage. This
semantically-aware pair is then used with a standard contrastive objective, such as InfoNCE:

LSDI = E(x,x̃)

[
− log

exp(sim(f(x), f(x̃))/τ)∑
x′∈B exp(sim(f(x), f(x′))/τ)

]
, (2)

where f is the encoder, sim(·, ·) is a similarity function (e.g., cosine similarity), τ is a temperature
parameter, and B is the set of positive and negative samples in a mini-batch.

4.2 AN INTUITIVE FRAMEWORK FOR SEMANTIC GUIDANCE

The effectiveness of SDI can be intuitively understood through mutual information (MI) maximiza-
tion (Van den Oord et al., 2018; Balestriero et al., 2023). While a rigorous theoretical derivation is
provided in Appendix A, we here present the core intuition: the goal of SSL is to maximize the MI,
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Figure 3: Conceptual overview of our adaptive, semantic-aware augmentation framework (SDI).
For any input image, it first employs a Semantic Extraction Module to obtain spatial cues (e.g.,
object-level or pixel-level regions). A subsequent adaptive mechanism selects the optimal cue based
on image quality. Finally, these cues guide a Transformation Function to generate a semantically
consistent augmented view for contrastive learning.

I(f(x); f(x̃)), between views of an image, which is equivalent to reducing the conditional entropy
H(f(x)|f(x̃)).
We posit that SDI achieves this by creating "better" positive pairs. By operationally defining semantic
preservation as ensuring the core object remains present in an augmented view, SDI generates
a view x̃s that is more informative about the original x than a traditional random view x̃t. This
implies a lower conditional entropy, H(f(x)|f(x̃s)) < H(f(x)|f(x̃t)), leading to a gain in mutual
information and, consequently, a more effective representation. This conceptual framing is supported
by our empirical results, which show that SDI-trained features form tighter, more discriminative
clusters (Fig. 7). A detailed derivation is provided in Appendix A.

I(f(x); f(x̃s)) ≥ I(f(x); f(x̃t)) + ∆Isem, (3)
where ∆Isem ≥ 0 represents the semantic information gain. This gain arises because semantic
guidance reduces the conditional entropy of the original representation given the augmented one. By
preserving key structures, x̃s makes the content of x more "predictable," thus:

H(f(x)|f(x̃s)) < H(f(x)|f(x̃t)), (4)
which, by the definition I(X;Y ) = H(X)−H(X|Y ), directly leads to a positive information gain,
∆Isem > 0. As visualized in Figure 4, this allows SDI to expand feature diversity along meaningful
semantic axes while maintaining tight, well-separated class clusters, unlike traditional or generative
methods that can cause features to drift or lose discriminability.

4.3 ADAPTIVE MECHANISM FOR SEMANTIC SCALE SELECTION

The optimal granularity of semantic guidance is not universal; it depends on the characteristics of each
image. For instance, a high-resolution image with clear objects benefits from fine-grained, pixel-level
guidance, whereas a blurry, low-resolution image may be better served by robust, coarse-grained
object proposals. To address this, SDI incorporates an adaptive mechanism to dynamically select the
most appropriate semantic scale for each image.

Let the set of available semantic scales be S = {S1, S2, . . . , SK}, where each scale Sk corresponds to
a different granularity of guidance (e.g., S1=object-level, S2=pixel-level). We first define a per-image
quality score function, Q(x), to quantify its suitability for different guidance levels. This function is
a weighted combination of intrinsic image properties:

Q(x) = α ·R(x) + β · C(x) + γ ·D(x), (5)
where R(x), C(x), and D(x) are normalized metrics representing the image’s resolution, clarity
(e.g., measured by Laplacian variance), and information density (e.g., entropy), respectively. The
hyperparameters α, β, γ control the relative importance of each property.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2 1 0 1 2
Feature Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fe
at

ur
e 

D
im

en
si

on
 2

Random transformations
ignoring semantic structure

Traditional Augmentation

2 1 0 1 2
Feature Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Generated Mode

Style-transferred Region

Generative Data Inflation

2 1 0 1 2
Feature Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Object Detection
Guided Region

Segmentation
Guided Region

Semantic consistency
maintains feature diversity

Semantic-Guided Data Inflation (SDI)

Original Samples Traditional Augmented Samples Generated Samples Semantic-Guided Samples

Figure 4: Feature space visualization. Left: Traditional augmentations create dispersed clusters
due to semantic inconsistencies. Middle: Generative augmentations can create new modes but risk
semantic drift, blurring cluster boundaries. Right: SDI’s semantic guidance expands diversity while
preserving tight, discriminative clusters, indicating higher feature quality.

Based on this quality score, a policy function determines the probability of selecting each semantic
scale Sk. For simplicity, this can be implemented as a set of thresholds on Q(x). The final view x̃(k∗)

is then generated using the guidance from the optimally selected scale, k∗. This adaptive mechanism
ensures that the semantic guidance is tailored to the specific properties of each sample, maximizing
the effectiveness of the augmentation and leading to a more robust and generalizable representation.

In our implementation, this policy is realized as a simple yet robust heuristic controller. Specifically,
we define three semantic guidance strategies: S1 (Object-level: YOLO-guided sampling), S2 (Pixel-
level: SAM-based segmentation), and S3 (Hybrid: YOLO-guided SAM). Based on the image’s
resolution and its quality score Q(x), we apply a set of thresholds to select the most suitable strategy.
For instance, low-resolution images (< 64× 64) or those with low Q(x) scores default to the robust
object-level guidance (S1), while high-resolution, high-quality images benefit from the fine-grained
hybrid approach (S3). This tiered approach ensures that the semantic guidance is tailored to the
image’s characteristics, avoiding the application of overly complex segmentation on low-quality
inputs where it might fail. A detailed pseudocode is provided in Appendix B.3.

5 EXPERIMENTS

This section presents a comprehensive evaluation of our Semantic Data Inflation (SDI) framework.
We first establish its superior performance on standard image classification benchmarks (Section 5.2).
We then conduct in-depth analyses to dissect the sources of these gains (Section 5.5). Critically,
we demonstrate the broad generalizability of SDI-learned representations across different domains,
model architectures, and downstream tasks (Section 5.3). Finally, we verify the computational
efficiency of our approach (Section 5.4).

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on four standard classification datasets: CIFAR-10/100 (32×32, 10/100
classes) (Krizhevsky et al., 2009), Tiny ImageNet (64×64, 200 classes) (Le & Yang, 2015), and
ImageNette (a 10-class, high-resolution subset of ImageNet) (Howard, 2019). For transfer learning
experiments, we use additional specialized datasets as detailed in Section 5.3.

Implementation. We use the solo-learn library (da Costa et al., 2022) with a ResNet-18 as the default,
training for 500K steps (SGD, momentum 0.9, weight decay 1e-4, lr 0.03, cosine decay, batch 256).
We evaluate our method across four representative SSL frameworks: SimCLR (Chen et al., 2020),
MoCo-v2+ (He et al., 2020), BYOL (Grill et al., 2020), and Barlow Twins (Zbontar et al., 2021).

Semantic Models and Baselines. For semantic extraction, we use pre-trained YOLOv8 (Jocher
et al., 2023) and SAM (Kirillov et al., 2023). We compare SDI against three baselines: Standard
Augmentation (Std Aug), a representative Generative Inflation (Gen Inf) method (Wang et al.,
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2024), and Raw Duplication (Raw Dup). Raw Dup serves as a controlled baseline to isolate data
quantity from quality; it duplicates the training set while keeping the standard augmentation policy,
thus matching SDI’s data volume but not its semantic guidance. All evaluations use linear probing on
frozen features and report the mean top-1 accuracy over three runs, unless otherwise specified.

5.2 PERFORMANCE ON CLASSIFICATION BENCHMARKS

Table 2 presents the main results across the four classification datasets. SDI consistently and
significantly outperforms all baseline approaches across every dataset and SSL framework. The
performance gains are particularly pronounced on the more complex, higher-resolution ImageNette
dataset, where SDI achieves an average improvement of +4.02% over the standard augmentation
baseline. This demonstrates the substantial advantage of explicit semantic guidance, especially in
realistic scenarios where images contain complex scenes and distractor backgrounds.

Table 2: Linear evaluation accuracy (%) on standard classification benchmarks. SDI consistently
outperforms all other methods. The values in gray highlight the improvement of SDI over the
standard augmentation baseline.

Dataset Method Standard Duplication Gen. Inflation SDI (Ours)

CIFAR-10
(32×32)

BYOL 92.20±0.24 92.18±0.14 92.87±0.26 94.29±0.22 (+2.09%)
SimCLR 92.99±0.20 92.80±0.10 93.42±0.20 94.25±0.09 (+1.26%)
Barlow 93.02±0.05 92.88±0.24 93.64±0.38 94.17±0.13 (+1.15%)
MoCo 93.97±0.20 93.73±0.29 94.19±0.19 95.20±0.27 (+1.23%)

CIFAR-100
(32×32)

BYOL 69.41±0.26 69.48±0.28 70.20±0.18 71.89±0.24 (+2.48%)
SimCLR 69.90±0.08 69.62±0.15 70.60±0.21 71.82±0.07 (+1.92%)
Barlow 71.38±0.12 71.41±0.11 72.80±0.18 73.47±0.23 (+2.09%)
MoCo 70.95±0.27 71.43±0.12 72.90±0.16 74.38±0.17 (+3.43%)

Tiny-IN
(64×64)

BYOL 47.73±0.09 48.07±0.08 48.85±0.07 49.06±0.08 (+1.33%)
SimCLR 48.12±0.23 48.31±0.17 48.36±0.46 49.30±0.19 (+1.18%)
Barlow 48.97±0.08 49.21±0.15 49.70±0.12 49.82±0.16 (+0.85%)
MoCoV2 48.21±0.28 48.28±0.24 49.00±0.20 49.97±0.12 (+1.76%)

ImageNette
(224×224)

BYOL 90.42±0.03 91.06±0.08 92.85±0.08 94.51±0.05 (+4.09%)
SimCLR 91.87±0.13 91.97±0.15 92.10±0.10 95.75±0.06 (+3.88%)
Barlow 90.45±0.18 91.01±0.04 91.87±0.25 94.45±0.14 (+4.00%)
MoCo 91.20±0.15 91.56±0.19 92.55±0.22 95.32±0.10 (+4.12%)

Scalability to ImageNet-1k. To val-
idate scalability, we conducted pre-
training on the full ImageNet-1k dataset.
As shown in Figure 5, SDI achieves
72.3% linear probe accuracy, signif-
icantly outperforming the controlled
"Raw Duplication" baseline (70.1%).
The marginal gain of Raw Duplication
(+0.3%) over Standard Augmentation
(69.8%) confirms that simply increasing
data volume is insufficient. The substan-
tial +2.2% gap achieved by SDI verifies
that performance gains stem from the
superior semantic quality of the guided
views, not merely data inflation.

68 69 70 71 72 73
Top-1 Linear Probe Accuracy (%)

Std Aug

Raw Dup

SDI (Ours)

69.8%

70.1%

72.3%

+2.2% vs Raw Dup.

Figure 5: Performance on ImageNet-1k. Linear probe
accuracy after 100 epochs of MoCo-v2+ pre-training
with a ResNet-18 backbone. SDI outperforms baselines
by explicitly enhancing semantic consistency.
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5.3 GENERALIZATION ACROSS DOMAINS, ARCHITECTURES, AND TASKS

A key desideratum for SSL is learning representations that generalize broadly. We test SDI on this
axis by evaluating its performance in out-of-domain settings, on different model architectures, and on
diverse downstream tasks.

Table 3: Zero-shot transfer.

Dataset Baseline SDI

PathMNIST 88.25% 90.44%
APTOS2019 70.9% 76.9%

Table 4: Generalization to ViT-S.

Arch. Augmentation Accuracy

ViT-S Baseline 93.5%
SDI (Ours) 95.1%

Cross-Domain Generalization. To test out-of-domain (OOD) generalization, we evaluate an
ImageNette-pretrained model on two medical datasets. As shown in Table 3, SDI yields significant
gains on both PathMNIST (+2.19%) and APTOS2019 (+6.0%). Crucially, since the semantic oracles
(trained on natural scenes like COCO) have never observed these medical modalities, these gains
confirm that SDI transfers generalized structural priors (e.g., object-background separation) rather
than class-specific supervised knowledge.

Architectural Generalization. To verify that SDI is not limited to CNNs, we apply it to a Vision
Transformer (ViT-Small) (Dosovitskiy et al., 2021) using the MoCo-v3 framework (Chen et al., 2021)
on ImageNette. As reported in Table 4, SDI improves the linear-probe accuracy from 93.5% to 95.1%
(+1.6%). This confirms that SDI’s semantic-guidance principle is architecture-agnostic and provides
consistent benefits to modern transformer-based models.

Downstream Task Generalization. Beyond classification, we evaluate SDI’s effectiveness on more
complex downstream tasks, including object detection and instance segmentation. We pre-train a
ResNet-50 backbone on ImageNet-100 and then finetune it on PASCAL VOC 2007+12 (Everingham
et al., 2010) for detection and COCO (Lin et al., 2014) for segmentation. Table 5 shows that SDI-
pretrained models consistently outperform the baseline. The notable improvements in detection (mAP)
and segmentation (AP) underscore that SDI helps learn more spatially precise and object-centric
features, which are critical for these dense prediction tasks.

Table 5: Downstream task performance on object detection and instance segmentation.

Pre-train Method PASCAL VOC (Detection) COCO (Segmentation)
AP50 AP75 AP AP50 AP75

Baseline (Std Aug) 81.3 58.7 38.5 59.8 41.5
SDI (Ours) 82.5 (+1.2) 60.1 (+1.4) 39.4 (+0.9) 60.9 (+1.1) 42.5 (+1.0)

5.4 EFFICIENCY ANALYSIS

High Computational Efficiency. A key advantage
of SDI is its high computational efficiency compared
to expensive generative approaches. As quantified
in Figure 6, SDI processes 1,000 images in just 2–3
minutes, a 4–5× speedup over the 10–15 minutes re-
quired by generative methods. Its object-level variant
(SDI-Y) is also exceptionally lightweight, consum-
ing 4.8× less GPU memory than the generative base-
line. This efficiency stems from using fast, single-
pass models for semantic extraction, which avoids it-
erative optimization or sampling. Consequently, SDI
is a practical solution for large-scale pre-training and
is deployable in resource-constrained environments
where generative models are infeasible.

0 100 200 300 400 500 600 700 800
GPU Time (seconds)

Gen. Inf.

SDI-Y

SDI-S

SDI-YS

750s

120s

160s

140s

 6.2× faster
 4.8× less memory

 4.7× faster
 3.0× less memory

 5.4× faster
 3.6× less memory GPU Time (s)

Memory (GB)

0 1 2 3 4 5 6 7
Memory (GB)

6.2GB

1.3GB

2.1GB

1.7GB

Figure 6: Inference time and GPU memory
usage comparison per 1,000 images.
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5.5 ANALYSIS AND ABLATION STUDIES

Effect of Oracle Quality (Sensitivity Analysis). To rigorously decouple the contribution of
different semantic sources and evaluate sensitivity to upstream errors, we evaluated seven variants
(V0–V6) on a balanced subset of ImageNet-1k (50k images, 10k steps). The results reveal a clear
performance hierarchy:

Standard (V0) < YOLO (V1) < GT-BBox (V5) < SDI (V3) < GT-SAM (V6)
As shown in Table 6, while the "Ideal Oracle" (V6) sets the upper bound (62.10%), our practical
SDI implementation (V3) achieves 59.85%. Notably, SDI recovers approximately 70% of the
performance gap between the baseline and the ideal oracle. This demonstrates that SDI is robust to
oracle imperfections and captures the majority of semantic benefits without human annotations.

Qualitative analysis indicates that SDI is effective in complex scenes (e.g., multi-object or cluttered
backgrounds), where it mitigates the "false positive" issue by preventing crops from missing the
object entirely. Definitions of all variants are provided in Appendix Table 12.

Table 6: Systematic analysis of oracle sensitivity. "Gap Recovery" indicates the percentage of the
potential gain (from Baseline to Ideal Upper Bound) captured by our practical implementation,
demonstrating robustness to upstream noise.

Var. Strategy Oracle Source Acc. (%) Gap Recovery

V0 Standard Aug. None 54.70 0%
V1 YOLO-Guided Real (YOLOv8) 57.15 33%
V5 GT-Guided Ideal (GT BBox) 58.30 49%
V3 SDI (Ours) Real (YOLO+SAM) 59.85 70%
V6 Ideal SDI Ideal (GT+SAM) 62.10 100% (Upper Bound)

Feature Space Quality and Semantic Consistency. We
evaluate representation quality both visually and quantita-
tively. The t-SNE visualizations in Figure 7 show that SDI
learns more compact, well-separated class clusters.
This is quantitatively confirmed by KNN classification (Ta-
ble 7 on the right). SDI’s backbone features achieve 85.7%
accuracy, a striking +14.4% gain over the standard baseline,
demonstrating a more discriminative feature space.

Table 7: KNN Acc. (%) on ImageNette.

Method Backbone Projector

Std Aug 71.3 73.8
Gen Inf 71.4 75.4
SDI 85.7 85.1

Figure 7: t-SNE visualizations of CIFAR-10 test features. SDI’s semantically-guided augmentations
lead to more compact and well-separated clusters, indicating higher quality and semantic consistency.

Multi-Scale Semantic Guidance. Prior work suggests that a fixed augmentation strategy is subop-
timal across different data characteristics and learning stages (Zhang et al., 2023; Zhang & Ma, 2022).
Our ablation study in Table 8 empirically validates this and highlights the importance of our adaptive
multi-scale guidance. We observe a clear resolution-dependent pattern: for low-resolution images
(CIFAR-100), coarse object-level guidance proves most effective, likely because it robustly captures
the main object without being distracted by noisy pixel details. Conversely, for high-resolution
images (ImageNette), finer-grained guidance becomes more powerful, with the hybrid approach
that combines detection and segmentation yielding the best results. This confirms that tailoring the
semantic granularity to the image’s properties is crucial for maximizing performance.

9
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Table 8: Ablation study on semantic granularity across datasets with different resolutions. Bold
indicates the best performing method.

Dataset (Resolution) Baseline Object-level Pixel-level Hybrid
CIFAR-10 (32×32) 92.99±0.20 94.11±0.11 93.03±0.12 94.05±0.10
CIFAR-100 (32×32) 69.90±0.08 71.82±0.07 69.69±0.24 70.51±0.30
Tiny ImageNet (64×64) 48.12±0.23 49.08±0.17 49.30±0.19 48.80±0.06
ImageNette (224×224) 91.87±0.13 94.90±0.12 95.49±0.15 95.75±0.06

Robustness of the Adaptive Policy. To validate the robustness of our heuristic adaptive mechanism,
we performed a comprehensive sensitivity analysis across six different hyperparameter configurations
(detailed in Appendix Table 11) for the quality scoring weights (α, β, γ) and selection thresholds.
As shown in Table 9, SDI’s performance is stable across a range of settings. On ImageNette, the
accuracy fluctuates by less than 1.2%, and on CIFAR-10 by less than 0.6%. This confirms that our
method’s gains are not due to meticulous tuning and the heuristic policy is robust.

Table 9: Hyperparameter sensitivity analysis. Performance is stable across configurations. "Default"
refers to (α, β, γ) = (0.4, 0.3, 0.3) and thresholds (0.35, 0.65).

Configuration Parameter Focus ImageNette Acc. (%) CIFAR-10 Acc. (%)
Baseline (No SDI) – 91.87 92.99

Default (Ours) Default 95.75 94.25
Emphasis Resolution Weights (α ↑) 95.5 94.1
Emphasis Clarity Weights (β, γ ↑) 95.3 94.0
Loose Threshold Thresholds (Loose) 94.9 93.9
Strict Threshold Thresholds (Strict) 96.0 94.5

Limitations and Future Work. While our experiments demonstrate SDI’s robustness to oracle
imperfections (Sec. 5.5), its performance is fundamentally bounded by the quality of the upstream
models, with a small gap remaining to an "ideal" oracle. Moreover, SDI cannot generate novel
semantic content. Future work could thus focus on integrating lightweight generative modules,
developing post-hoc refinement for mask artifacts, and transitioning to a fully learnable adaptive
policy, as conceptualized in Appendix A.

6 CONCLUSION

We introduced Semantic Data Inflation (SDI), a novel augmentation framework that resolves the
trilemma of semantic consistency, efficiency, and diversity in SSL. By leveraging off-the-shelf models
as "semantic oracles," SDI generates coherent views with high efficiency. Extensive experiments,
validated up to the full ImageNet-1k scale, demonstrate that SDI consistently boosts SSL performance.
Furthermore, our sensitivity analyses confirm that SDI is robust to hyperparameter choices and
oracle imperfections, learning generalizable representations that transfer effectively to new tasks,
architectures, and out-of-domain data. As a practical and scalable alternative to generative models,
SDI offers a compelling solution for large-scale pre-training where semantic integrity is paramount.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we will release our complete PyTorch implementation of SDI on
GitHub upon publication. The public repository will include all source code, configuration files to
replicate all experiments including our new ImageNet-1k and oracle analyses, pre-trained model
weights, and detailed setup instructions. Our experiments were run on NVIDIA A100 GPUs and a
requirements.txt file will be provided. The anonymous repository link is in the supplementary
materials.
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A THEORETICAL ANALYSIS OF SEMANTIC CONSISTENCY IN SDI

In this appendix, we provide formal mathematical derivations to support the theoretical analysis in
the main paper. We define "semantic content," show how SDI tightens the InfoNCE lower bound,
and analyze the impact of false negatives as implicit label noise.

A.1 PROOF OF SEMANTIC INFORMATION GAIN IN MUTUAL INFORMATION

First, addressing the definition of "semantic content," let x be an image and y be its latent semantic
class label. We define the semantic content S(x) as the subset of pixels or features in x that are
causally linked to y (e.g., the object pixels), while the remaining content N(x) represents nuisance
factors (background, noise).

Standard augmentation Tstd is agnostic to S(x) and may generate a view x̃(t) such that S(x̃(t)) ∩
S(x) = ∅ (e.g., a background crop). In contrast, SDI enforces a spatial constraint 1[S(x̃(s)) ⊆ S(x)],
ensuring the object is preserved.

The mutual information between the representation f(x) and its view is:

I
(
f(x); f(x̃)

)
= H(f(x))−H(f(x) | f(x̃)) , (6)

where H(·) and H(· | ·) are entropy and conditional entropy, respectively.

Define the difference in mutual information between SDI and standard augmentation as:

∆Isem = I
(
f(x); f(x̃(s))

)
− I

(
f(x); f(x̃(t))

)
, (7)

= H
(
f(x) | f(x̃(t))

)
−H

(
f(x) | f(x̃(s))

)
. (8)

Since x̃(s) is constrained to contain S(x), the uncertainty of recovering x’s semantic features given
x̃(s) is strictly lower than given a potentially empty x̃(t):

H
(
f(x) | f(x̃(s))

)
< H

(
f(x) | f(x̃(t))

)
. (9)

Therefore, the semantic information gain is strictly positive:

∆Isem > 0 . (10)

A.2 PROOF OF CONTRASTIVE LOWER BOUND TIGHTENING

We denote the InfoNCE objective as a lower bound on mutual information. For a batch size N , the
InfoNCE estimator satisfies:

I
(
f(x); f(x̃)

)
≥ logN − LNT-Xent , (11)

where the loss is:

LNT-Xent = −Ex

[
log

exp(s+/τ)

exp(s+/τ) +
∑

x−∈B− exp(s−/τ)

]
, (12)

with s+ = sim(f(x), f(x̃)) and s− = sim(f(x), f(x−)).

Standard augmentation creates "false negatives"—views where the object is missing. This yields a
low similarity score s+(t) for the positive pair, making it indistinguishable from negative pairs s−.

By enforcing semantic consistency, SDI ensures that the positive view x̃(s) remains semantically
aligned with x. This implies:

E
[
s+(s)

]
> E

[
s+(t)

]
. (13)

Let Z =
∑

x− exp(s−/τ) be the denominator term dominated by negatives. The probability assigned
to the positive pair is:

p+ =
exp(s+/τ)

exp(s+/τ) + Z
. (14)
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Since s+(s) > s+(t) (due to the elimination of empty crops), p+(s) > p+(t). Consequently:

L(s)
NT-Xent = − log p+(s) < − log p+(t) = L(t)

NT-Xent . (15)

This proves that SDI strictly reduces the contrastive loss, thereby tightening the lower bound on the
mutual information I(f(x); f(x̃)).

A.3 FORMALIZATION OF ADAPTIVE SEMANTIC SELECTION

Instead of a computationally expensive learned policy, we formulate the adaptive mechanism as an
efficient, threshold-based heuristic that approximates the optimal selection.

Let S = {Sdet, Sseg, Smix} be the set of semantic guidance strategies (Detection, Segmentation,
Hybrid). We define a utility function U(Sk, x) representing the trade-off between semantic precision
and extraction reliability.

We postulate that reliability is a function of image quality Q(x):
Q(x) = α ·R(x) + β · C(x) + γ ·D(x) , (16)

where R,C,D correspond to normalized Resolution, Clarity, and Density.

The optimal strategy S∗ maximizes the expected utility:
S∗ = arg max

Sk∈S
U(Sk, x). (17)

We approximate this optimization via a deterministic policy π(x) using thresholds τlow and τhigh:

π(x) =


Sdet(YOLO) if Q(x) < τlow (Favor Robustness)
Smix(Hybrid) if Q(x) > τhigh (Favor Precision)
Sseg(SAM) otherwise

(18)

This formalism justifies our heuristic implementation: for low-quality images (low Q(x)), the "cost"
of segmentation failure (noise) outweighs its precision benefits, making robust detection (Sdet)
the optimal choice. Conversely, for high-quality inputs, the hybrid approach (Smix) maximizes
information gain.

A.4 MITIGATION OF IMPLICIT LABEL NOISE

We further analyze the impact of standard augmentation through the lens of noisy label learning. Let
ρ ∈ [0, 1] be the probability that a random augmentation retains the core semantic object S(x).

For standard augmentation Tstd, the generated view x̃ can be modeled as a mixture:

x̃ ∼
{
Dobj(valid view) with prob. ρstd
Dbg(noise/background) with prob. 1− ρstd

(19)

where Dbg represents the distribution of background patches that are semantically disjoint from x.

The expected contrastive gradient for a positive pair becomes a weighted sum:
E[∇L] = ρstd Eobj [∇Lvalid]︸ ︷︷ ︸

Aligns object features

+(1− ρstd) Ebg[∇Lnoise]︸ ︷︷ ︸
Aligns object with background

(20)

The term ∇Lnoise forces maximizing similarity between the object representation f(x) and a
background representation f(x̃bg). This introduces "implicit label noise," causing the model to learn
spurious correlations (e.g., associating a dog class with grass texture).

SDI fundamentally alters this mixture probability. By utilizing semantic oracles, SDI rejects Dbg

candidates, boosting the validity probability to ρSDI ≈ 1.
ρSDI ≫ ρstd =⇒ (1− ρSDI)→ 0 (21)

Consequently, the noise term vanishes:
E[∇LSDI ] ≈ Eobj [∇Lvalid] (22)

This derivation theoretically explains why SDI achieves tighter cluster separation (as seen in t-SNE
visualizations) and better generalization: it effectively removes the gradient noise caused by false
positive pairings during training.
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B DETAILS OF SEMANTIC DATA INFLATION (SDI) ALGORITHM

This section provides implementation details and pseudocode for the Semantic Data Inflation (SDI)
algorithm used in our experiments.

B.1 OVERVIEW

Semantic Data Inflation (SDI) is a semantic-preserving data augmentation pipeline that adaptively
applies object detection and/or segmentation, depending on image quality and resolution. The
method introduces a multi-scale mechanism, leveraging YOLO for object-level proposals, SAM for
fine-grained segment masks, and a combined strategy for high-quality images.

B.2 ALGORITHM STEPS

Given an input image x, SDI operates as follows:

1. Compute Image Quality: For each image, compute a quality score

Q(x) = αR(x) + β C(x) + γ D(x)

where R(x) is a normalized resolution factor, C(x) measures clarity (via Laplacian variance),
and D(x) indicates information density (entropy). Hyperparameters α, β, γ are set by the
user.

2. Semantic Scale Selection: According to Q(x) and image resolution, select a semantic scale
s ∈ {YOLO, SAM,YOLO+SAM} describing required augmentation granularity. Low-
quality or small images default to YOLO, medium to SAM, and high-quality/large images
to YOLO+SAM.

3. Semantic Augmentation:

• YOLO: Run object detector to generate bounding boxes.
• SAM: Apply segmentation on the entire image or within a bounding box.
• YOLO+SAM: Detect objects first, then segment within the selected object region.

4. Visualization and Output: Save processed images annotated with masks and bounding
boxes, organized by class.

B.3 PSEUDOCODE

Input: Image dataset D; Parameters α, β, γ
Output: Augmented dataset D′

1. For each image x in D:
(a) Compute image quality: Q(x) = αR(x) + βC(x) + γD(x)

(b) Select semantic scale s := SelectSemanticScale(Q(x), Res(x))

(c) if s = YOLO:
• bbox← Y OLO(x)
• Augment x using bbox

(d) else if s = SAM:
• mask ← SAM(x)
• Augment x using mask

(e) else if s = YOLO+SAM:
• bbox← Y OLO(x)
• mask ← SAM(x, bbox)
• Augment x using mask within bbox

(f) Save augmented x to D′
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B.4 IMPLEMENTATION NOTES

In our implementation:

• α, β, γ are set empirically (α = 0.4, β = 0.3, γ = 0.3 unless otherwise noted).
• For small images (max(height,width) ≤ 64), YOLO is always used.
• For mid- to high-resolution images, a soft assignment (softmax over scale selection weights)

determines the final scale.
• Masks and bounding boxes are visualized and saved after processing, while dataset organi-

zation is preserved.
• Model initialization (YOLO, SAM) is performed on demand to save resources.

The SDI pipeline requires no manual annotation and can be applied to arbitrary image datasets,
provided detection and segmentation models are available. All results are organized by class for
downstream self-supervised training or evaluation.

B.5 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analysis for the weighting coefficients in the image quality score. Table 10
summarizes empirical settings.

Table 10: Hyperparameter settings for α, β, γ in quality score computation.

α β γ Performance Notes

0.4 0.3 0.3 Default, good balance
0.5 0.2 0.3 Emphasizes resolution
0.3 0.5 0.2 Emphasizes clarity

A sensitivity plot can be visualized as in Fig. 8, illustrating relative performance as a function of the
hyperparameter settings.
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Figure 8: Hyperparameter sensitivity analysis for quality score weighting coefficients (α, β, γ). The
optimal configuration achieves the highest performance (highlighted red circle).
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C DETAILED EXPERIMENTAL CONFIGURATIONS

In this section, we provide the exact configurations used for data generation, ablation studies, and the
semantic augmentation variants discussed in the main text to ensure reproducibility.

C.1 SDI GENERATION HYPER-PARAMETERS

Table 11 provides the numerical values for the strategies analyzed in the robustness study (Section 5.5,
Table 9). We explicitly map each named strategy (e.g., "Emphasis Resolution") to its corresponding
parameter set (α, β, γ, tlow, thigh).

Table 11: Semantic Data Inflation (SDI) hyper-parameter configurations. The "Strategy Name"
column corresponds to the entries in the sensitivity analysis (Table 9).

Config ID Strategy Name (in Table 9) α (Res) β (Cla) γ (Den) tlow thigh

config_default Default (Ours) 0.40 0.30 0.30 0.35 0.65
config_res Emphasis Resolution 0.60 0.20 0.20 0.35 0.65
config_cla Emphasis Clarity 0.20 0.40 0.40 0.35 0.65
config_loose Loose Threshold 0.40 0.30 0.30 0.30 0.60
config_strict Strict Threshold 0.40 0.30 0.30 0.40 0.70
config_var (Additional Variant) 0.50 0.25 0.25 0.35 0.65

C.2 IMAGENET-1K SEMANTIC VARIANTS AND DETAILED PERFORMANCE

Table 12 provides both the definitions and the full quantitative results for the seven semantic variants.
These experiments were conducted on the balanced ImageNet-1k subset (50k images) using SimCLR
with a ResNet-50 backbone for 10,000 steps. The results confirm the consistent benefit of stronger
semantic oracles.

Table 12: Definitions and detailed performance (Top-1 and Top-5 Accuracy) of the seven ImageNet-1k
semantic augmentation variants. "Gap Recovery" is calculated based on Top-1 Accuracy relative to
the Baseline (V0) and the Ideal Upper Bound (V6).

Variant ID Method Description Acc@1 (%) Acc@5 (%) Gap Rec.
original V0 None Standard random augmentations (baseline). 54.70 78.50 0%
v1_yolo V1 YOLO Augmentations constrained within YOLO bounding boxes. 57.15 80.12 33%
v2_sam V2 SAM SAM-based foreground masks guide augmentation. 57.50 80.45 38%
v3_sdi V3 YOLO+SAM Full SDI: YOLO localization + SAM refinement. 59.85 82.30 70%
v4_yolo_sam V4 YOLO→SAM SAM applied only within YOLO proposals (Hybrid). 58.90 81.50 57%
v5_gt_bbox V5 GT-BBox Ground-truth boxes serve as an oracle localization. 58.30 81.10 49%
v6_gt_sam V6 GT→SAM GT boxes initialize SAM (Strongest Oracle). 62.10 84.50 100%

C.3 FULL IMAGENET-1K TRAINING SETUP

Table 13 details the training setup for the large-scale ImageNet-1k experiments. We utilized a fixed
budget of steps to verify efficiency and performance.

Table 13: Experimental configuration for ImageNet-1k comparisons. Both settings use the same
optimizer and scheduler; only the augmentation data source differs.

Config Name Augmentation Source Batch Size Training Steps
standard_aug Standard (On-the-fly) 256 10,000
sdi_aug SDI (Pre-processed) 256 10,000

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D SUPPLEMENTARY DATA ANALYSIS

This section presents additional experimental results with brief, objective observations, supplementing
the main paper.

D.1 K-NEAREST NEIGHBORS (KNN) EVALUATION

Table 14 reports the KNN classification accuracy for different methods and temperatures T . Across
the temperature range, SDI consistently achieves higher accuracy compared to baseline approaches.
At very low temperatures (T ≤ 0.02), SDI models maintain accuracy above 97% (Backbone) and
85% (Projector), while other methods typically exhibit a more pronounced decrease. For higher T ,
performance of all methods converges, but SDI still exhibits a marginal edge.
Table 14: KNN classification accuracy (%) as temperature varies. Bold highlights best results for
T = 0.07.

Method Feature Temperature T

0.01 0.02 0.05 0.07 0.10 0.20 0.50

SDI Models Backbone 99.97 97.81 89.46 85.70 70.92 70.70 70.70
Projector 94.22 85.55 81.23 85.10 70.70 70.70 70.70

Traditional Aug. Backbone 91.66 86.96 82.28 71.30 70.73 70.70 70.70
Projector 93.14 80.00 75.83 73.80 70.71 70.70 70.70

Raw Duplication Backbone 94.35 92.08 87.92 70.90 70.92 70.90 70.88
Projector 94.82 84.40 80.52 75.20 73.18 67.04 66.51

Gen. Inflation Backbone 99.21 92.47 83.65 71.40 70.88 70.79 70.73
Projector 98.41 89.60 81.04 75.40 71.43 71.25 70.83

Table 15 provides a finer-grained comparison among SDI variants. At T = 0.07, the SDI-
YOLO+SAM variant exhibits the highest KNN accuracy (Backbone: 85.70%).

Table 15: KNN accuracy (%) for SDI variants. Bold indicates highest for T = 0.07.

Model Feature T = 0.01 T = 0.02 T = 0.05 T = 0.07 T = 0.1

SDI-YOLO Backbone 99.90 93.65 85.05 78.20 70.70
SDI-YOLO Projector 96.66 84.25 77.59 79.70 70.70

SDI-SAM Backbone 99.95 99.10 89.40 81.50 70.70
SDI-SAM Projector 94.37 85.20 80.82 82.20 70.70

SDI-YOLO+SAM Backbone 99.99 99.48 97.50 85.70 70.70
SDI-YOLO+SAM Projector 99.83 98.14 95.23 85.10 70.70

For reference, the corresponding results for backbone and projector features are provided for each
method. All SDI variants show high stability at low temperatures, and the combination variant
(YOLO+SAM) produces the best results across almost all settings.

Table 16: Difference in accuracy (backbone minus projector, percentage points) at T = 0.07.

Method Backbone − Projector

SDI Models +0.60
Traditional Aug. −2.50
Raw Duplication −4.30
Gen. Inflation −4.00

Table 16 indicates that for SDI, backbone features are slightly more discriminative than projector
features at this temperature. In contrast, other strategies tend to perform better on projector output.
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Figure 9: Effect of temperature on KNN accuracy (log scale T ). SDI variants show higher accuracy
at low temperature settings, with baseline methods declining more rapidly as T decreases.

Figure 9 further illustrates the impact of temperature T on KNN accuracy. The trend shows that SDI
maintains consistently high performance at low temperatures compared to alternative augmentation
methods.

D.2 REPRESENTATION QUALITY ANALYSIS

Table 17 summarizes several structural and metric properties for learned representations. SDI achieves
the highest intrinsic dimensionality and more favorable feature geometry according to uniformity
and alignment metrics. Geometric and mixed invariance scores are also improved under SDI. Color
invariance is slightly higher for standard augmentation, but differences are minor.

Table 17: Analysis of learned representations. Bold denotes best per metric.

Metric Standard Aug SDI Gen. Inflation

Dimensionality (SimCLR)
Intrinsic Dim (TwoNN) 35.2 48.7 39.3
Intrinsic Dim (MLE) 33.8 45.2 38.1

Feature Quality
Uniformity (↓) −2.13 −2.35 −2.22
Alignment (↓) 0.37 0.28 0.33

Invariance Scores (↑)
Geometric Transforms 0.82 0.87 0.84
Color Transforms 0.89 0.86 0.88
Mixed Transforms 0.71 0.80 0.75

Topological Structure
Betti Curve AUC 0.56 0.67 0.61

In addition, improvements in Betti curve AUC suggest that SDI-learned representations exhibit richer
topological features.
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Table 18 presents transfer performance for different scenarios. SDI shows higher accuracy in both
cross-architecture and few-shot settings.

Table 18: Cross-architecture / few-shot transfer accuracy (%). Bold indicates best.

Test Scenario Standard Aug SDI Gen. Inflation

Cross-architecture Transfer
ResNet-50→ ResNet-18 83.2 88.5 85.4
ResNet-50→MobileNetV2 82.3 87.1 84.6

Few-shot Classification
1-shot 45.3 53.8 49.2
5-shot 68.7 74.5 71.4
20-shot 82.6 87.3 84.5

Overall, SDI achieves the strongest results across different tasks and evaluations. The supplementary
data above provide detailed quantitative evidence on feature robustness, representation geometry, and
downstream transfer effectiveness, corroborating the primary conclusions in the main text.

E VISUALIZATION ANALYSIS

In this section, we present essential visualizations for three different datasets: CIFAR, TinyImageNet,
and ImageNette. For each dataset, we showcase representative data augmentation samples. These
visualizations help to understand the impact of augmentation methods on diverse image distributions.

E.1 DATA AUGMENTATION SAMPLES

Figure 10: Examples of CIFAR images before and after different augmentation methods.

Figure 10 shows representative CIFAR images before and after applying various data augmentation
techniques such as random cropping, flipping, and color jittering.

Figure 11: Examples of TinyImageNet images before and after different augmentation methods.

Figure 11 displays TinyImageNet samples processed with common augmentation operations. The
visual comparison highlights how these methods alter the image properties and enhance data diversity.
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Figure 12: Examples of ImageNette images before and after different augmentation methods.

Figure 12 presents ImageNette images with and without augmentation. This visualization illustrates
the visual changes introduced by the adopted data augmentation pipeline.

E.2 ATTENTION HEATMAP VISUALIZATION

Figure 13: Grad-CAM attention heatmaps for selected samples.

Figure 13 displays Grad-CAM attention heatmaps generated for selected examples.
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E.3 FAILURE CASE ANALYSIS AND ROBUSTNESS

To address concerns regarding the reliance on external semantic oracles, we analyze the behavior of
SDI in scenarios where the oracle provides incorrect or missing guidance. Our analysis demonstrates
that the system exhibits graceful degradation and robust performance. As visualized in Figure 14, we
identify two primary modes:

1. Oracle Miss (Fallback Mechanism): For highly abstract or low-quality images where
the detector fails to find an object, SDI is designed with a protective fallback mechanism.
As illustrated in the top row of Figure 14, the system reverts to applying standard random
augmentation. This ensures the training pipeline remains stable, with performance gracefully
degrading to the baseline level in such instances.

2. Oracle Error (Structured Noise): In rare cases, the oracle may "hallucinate" and place a
bounding box on a background region. SDI directly uses this erroneous box as the augmented
view. While this view lacks the primary object, it is not devoid of useful information. As can
be observed (Figure 14, bottom row), such boxes often encapsulate coherent local textures
or structured patterns (e.g., a patch of grass, a section of a wall). This provides a more
structured, albeit semantically incorrect, learning signal compared to a completely random
crop that might contain unstructured noise or disjointed object parts. The model is thus
encouraged to learn representations of these coherent background features. Our strong
overall empirical results confirm that the significant gains from correct guidance on the
majority of the data far outweigh any potential misdirection from these infrequent, yet still
structured, erroneous views.

This analysis confirms that SDI is a robust enhancement. It provides substantial benefits when the
oracle is correct and degrades safely when it is not, validating its practical utility.

Oracle Miss 

Oracle Error

low resolution high resolution

Figure 14: Visualization of SDI behavior in failure scenarios. Top: When the oracle fails to detect an
object, SDI’s fallback mechanism applies standard augmentation. Bottom: If the oracle hallucinates
a box on the background, SDI uses this region directly. This view, while lacking the primary object,
often contains structured information (e.g., textures), providing a different, useful, learning signal.
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