
Can NeRFs “See” without Cameras?

Chaitanya Amballa1 Sattwik Basu1∗ Yu-Lin Wei1∗
amballa2@illinois.edu sattwik2@illinois.edu yulinlw2@illinois.edu

Zhijian Yang2 Mehmet Ergezer2 Romit Roy Choudhury1,2

yzhijian@amazon.com mergezer@amazon.com croy@illinois.edu

1University of Illinois Urbana–Champaign 2Amazon

Abstract

Neural Radiance Fields (NeRFs) have been remarkably successful at synthesizing
novel views of 3D scenes by optimizing a volumetric scene function. This scene
function models how optical rays bring color information from a 3D object to the
camera pixels. Radio frequency (RF) or audio signals can also be viewed as a
vehicle for delivering information about the environment to a sensor. However,
unlike camera pixels, an RF/audio sensor receives a mixture of signals that contain
many environmental reflections (also called “multipath”). Is it still possible to infer
the environment using such multipath signals? We show that with redesign, NeRFs
can be taught to learn from multipath signals, and thereby “see” the environment.
As a grounding application, we aim to infer the indoor floorplan of a home from
sparse WiFi measurements made at multiple locations inside the home. Although
a difficult inverse problem, our implicitly learnt floorplans look promising, and
enables forward applications, such as indoor signal prediction and basic ray tracing.

1 Introduction

NeRFs [25, 43, 2, 45] have delivered impressive results in solving inverse problems, resulting in 3D
scene rendering. While NeRFs have mostly used pictures (from cameras or LIDARs) to infer a 3D
scene, we ask if the core ideas can generalize to the case of wireless signals (such as RF or audio).
Unlike camera pixels that receive line-of-sight (LoS) rays, a wireless receiver (e.g., a WiFi antenna
on a smartphone) would receive a mixture of LoS and many reflections, called multipath. If the
receiver moves, it receives a sequence of N measurements. Using these N wireless measurements, is
it possible to learn a representation of the scene, such as the floorplan of the user’s home? A vanilla
NeRF understandably fails since it is not equipped to handle multipath. This paper is focused on
redesigning NeRFs so they can learn to image the environment, thereby solving the inverse problem
from ambient wireless signals.

A growing body of work [3, 26, 47, 22, 23, 19] is investigating connections between NeRFs and
wireless. While none have concentrated on imaging, NeRF2 [47] and NeWRF [22] have augmented
NeRFs to correctly synthesize WiFi signals at different locations inside an indoor space. However,
correct synthesis is possible without necessarily learning the correct signal propagation models. We
find that NeRFs with adequate model complexity can overfit a function to correctly predict signals at
test locations, but this function does not embed the true behavior of multipath signal propagation. We
re-design the NeRF’s objective function so that it learns the environment through line-of-sight (LoS)
paths and reflections. This teaches the NeRF an implicit representation of the scene, which can then
be utilized for various forward tasks, including WiFi signal prediction and ray tracing.

In our model, EchoNeRF, each voxel is parameterized by its opacity δ ∈ [0, 1] and orientation
ω ∈ [−π, π]. When trained perfectly, free-space air voxels should be transparent (δ = 0), wall voxels
should be opaque (δ = 1), and each opaque voxel’s orientation should match its wall’s orientation.

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

As measurements, we use the received signal power. Thus, the input to our EchoNeRF model is
the transmitter (Tx) location, a sequence of known receiver (Rx) locations, and the signal power
measured at each Rx location. The output of EchoNeRF is an (implicitly learnt) floorplan of the
indoor space. We expect to visualize the floorplan by plotting the learnt voxel opacities.

Figure 1: LoS
and correct multi-
path reflections.

Figure 2: (a) Fitting signal power using virtual Txs. (b) Ideally, virtual Txs
should be located on wall surfaces. (c) Sparse virtual Txs learnt by NeWRF
shown in black/gray dots. (d) Dense virtual Txs learnt by NeRF2. Neither
correspond to the true (red) floorplan.

Learning floorplans requires modeling the correct reflections (see Fig. 1) since these reflections help
reveal where the walls are. However, without knowledge of the walls, the reflections are difficult
to model, leading to a type of chicken and egg problem. Additionally, the number of wireless
measurements is relatively sparse compared to the number of pixels measured in image-trained
NeRFs. Finally, measured signals will have “blind spots”, meaning that rays that bounced off certain
regions of the walls may not have arrived at any of the Rx locations. This leaves gaps or holes in the
floorplan and NeRF’s interpolation through these gaps will produce error or blur.

EchoNeRF approaches this problem by modeling the received signal power as a combination of the
LoS power and the power from first order reflections. The LoS model is inherited from classical
NeRFs. The main departure from past work is in modeling the reflections. Since opaque voxels are
unknown during training, the reflection surfaces are not known; hence, the reflection power at the
Rx is modeled as an aggregate over all plausible reflections. Given the planar structure of walls, the
plausible set of reflections can be heavily pruned to reduce the optimization complexity. Reflections
aggregated over this plausible set models the total (LoS + reflection) power at a receiver Rx.

EchoNeRF trains to minimize the loss between the modeled and measured power across all Rx
locations, and in the process, learns the voxel’s opacities that best explain the measured dataset. Some
regularization is necessary to cope with sparse measurements and to ensure smoothness of walls.
Lastly, to handle some gradient imbalance issues, EchoNeRF freezes the LoS model once it converges,
and uses this intermediate state to partly supervise the reflection model.

To evaluate EchoNeRF, we train on 2.4 GHz WiFi signals from NVIDIA’s Sionna simulator [14],
with floorplans from the Zillow’s Indoor Dataset (ZIND) [9]. Results show consistent improvement
over baselines in terms of the estimated floorplan’s IoU and F1 score. Qualitative results show
visually legible floorplans without any post-processing. Applying forward functions on the floorplan,
EchoNeRF can predict the received signal power for new ⟨Tx,Rx⟩ locations (outperforming existing
baselines). Lastly, basic ray tracing explains the predictions, offering interpretability to its results.

2 Related Work and Research Scope
Wireless (WiFi) channel prediction using NeRFs. NeWRF[22] and NeRF2[47] are recent papers that
have used NeRFs to predict the wireless channel impulse response (CIR) [40] at unknown locations
inside a room. Drawing a parallel to optical NeRFs, a voxel’s color in optics becomes a voxel’s
transmit power in wireless. The voxel’s density in optics remains the same in wireless, modeling
how that voxel attenuates signals passing through it. NeRF2 and NeWRF assign transmit power and
attenuation to each voxel such that they best explain the measured CIR. The authors explain that
voxels assigned non-zero transmit power will be called virtual transmitters; these voxels represent
the reflection points on the walls. However, many assignments are possible that fit the CIR training
data, especially when the data is sparse. Fig. 2(a,b) illustrates 2 possible assignments. While the
predicted CIRs could achieve low error for all such assignments, only one of the assignments will
model the true reflections, forcing the virtual transmitters to be located on the wall surfaces (Fig.
2(b)). We have plotted NeRF2 and NeWRF’s assignment of voxel densities (see Fig. 2(c,d)) to confirm

2

that the high accuracy in CIR prediction is not an outcome of correctly learning the wall layout. Our
goal is to repair this important issue, i.e., assign voxel densities that obey the basic physics of wall
reflections. Correct voxel assignment leads to the correct layouts, which then makes the (forward)
CIR prediction easy.

Neural radiance fields for audio. Another active line of research focuses on predicting room impulse
response (RIR) for audio [23, 37, 19, 6]. Neural Acoustic Field (NAF) [23] extended the classical
NeRF to train on RIR measurements in a room and predict the RIR (magnitude and phase) at new
⟨Tx,Rx⟩ locations. NAF identified the possibility of overfitting to the RIR and proposed to learn,
jointly, the local geometric features of the environment (as spatial latents) and the NAF parameters.
The spatial latents embed floorplan information but a decoder needs to be trained using the partial
floorplan data. EchoNeRF requires no floorplan supervision, and secondly, relies entirely on signal
power (less informative than RIR) to estimate the floorplan.

Follow up work are embracing more information about the surroundings (pictures [20, 37, 19, 24],
LIDAR scans [27], meshes and optical NeRFs [6]), to boost RIR accuracy. Results are steadily
improving, however, this sequence of ideas is unaligned with solving the core inverse problem. Our
goal is to first invert the signal power to a floorplan, which can then enable CIR/RIR predictions.

Modeling reflections in optical NeRFs Optical NeRFs have tackled reflections [10, 44, 33] for
synthesizing glossy surfaces and mirrors, and for re-lighting [32, 39]. NeRFRen [12] proposes to
decompose a viewed image into a transmitted and a reflected component. Ref-NeRF [41] also focuses
on reflections through a similar decomposition of the transmitted and reflected color, however, the
reflected color is modeled as a function of the viewing angle and the surface-normal, resulting in
accurate models of specular reflection. Recent proposals such as NeRF-Casting [42] and oRCA [38]
have further improved the models of multipath for glossy and mirrored surfaces, and others [5, 46]
have developed similar ideas, with the core insights centering around solving a two-component
decomposition problem. EchoNeRF faces the challenge of not knowing the number of rays adding up
from all possible directions in the environment. Hence, EchoNeRF must solve a many-component
decomposition problem by leveraging the physics of multipath signal propagation.
In the context of LIDARs, PlatoNeRF [18] and NeTF [34] cope with unknown reflections, however,
LIDARs have very high time resolution (due to high clock frequency), and is therefore able to assign
the incoming rays to different time buckets. This temporal separation allows the NeRF to make
separate measurements for different surfaces in the scene. Since EchoNeRF uses only signal power—a
single scalar measurement that contains a mixture of the LoS and all the reflections—the inverse
problem of recovering the voxel attributes from only the power is far more complex.

3 EchoNeRF Model

Setup and Overview. At a Rx location, we model the received signal power ψ as

ψ = ψLoS + ψref1 + · · ·+ ψrefn

where ψLoS is the power from the direct line-of-sight (LoS) path, and ψrefk is the aggregate power
from all kth order reflections (i.e., all signal paths that underwent exactly k reflections before arriving
at the Rx) 2 We assume M fixed transmitters and move the Rx to N known locations and measure ψ
at each of them. EchoNeRF accepts M ×N measurements as input and outputs the 2D floor-plan F ,
a binary matrix of size L× L, where L denotes the maximum floorplan length.

We train EchoNeRF on the measured data using our proposed objective function. This function
only models the LoS and the first order reflections. We disregard the higher orders since they
are very complex to model and contribute, on average, < 6% of the total power (see statistics in
Appendix C). The NeRF model we use is a remarkably simple MLP designed to predict the density
δ ∈ [0, 1] and orientation ω ∈ [−π, π] of a specified voxel in the indoor scene. The orientation aids
in modeling reflections. The proposed objective function – parameterized by voxel attributes ⟨δ, ω⟩
and the ⟨Tx,Rx⟩ locations – models an approximation of the received power ψ at that Rx location.
Minimizing L2 loss of this power across all Rx locations trains the MLP. Plotting out all the voxel
densities in 2D gives us the estimated floorplan F .

2This model is a simplification since it ignores the signal phase in estimating the received power. Appendix
B shows that with a moving wide-band receiver, like WiFi, the approximation may be tolerable for a sensing
application like EchoNeRF.

3

3.1 The LoS Model

Friss’ equation [1] from electromagnetics models the free-space received power as Pr = K
d2 where

d is the distance of signal propagation, and K is a product of transmit-power, wavelength, and
antenna-related constants [1]. We model this free-space (LoS) behavior in the NeRF framework
through the following equation.

ψLoS = K

∏
{i|vi∈LoS}

(1− δi)

d2
(1)

where K can be empirically measured, and d is the known distance between the ⟨Tx,Rx⟩. The
numerator includes the product of voxel densities over all voxels along the LoS ray from Tx to
Rx (with an abuse of notion, we write this as vi ∈ LoS). This models occlusions. When the LoS
path is completely free of any occlusions (i.e., δi = 0,∀i where {i|vi ∈ LoS}), we expect the
received power to only be attenuated by the pathloss factor d2 (in the denominator). Eq. 1 has a slight
difference to classical NeRF’s volumetric scene function. In our case, voxels along the ray do not
contribute to the received power (whereas in NeRF, each voxel’s color is aggregated to model the
final pixel color at the image). In other words, we have modeled a single transmitter in Eq. 1.

3.2 The Reflection Model

To model reflections, consider a voxel vj . Whether vj reflects a ray from the Tx towards Rx depends
on (1) vj’s density δj and orientation ωj , (2) the ⟨Tx,Rx⟩ locations, and (4) whether the path from
Tx to vj , and from vj to Rx are both occlusion-free. Parameterized by these, Eq. 2 models ψref (vj),
which is the received power at Rx due to the signal that reflected off voxel vj .

ψref (vj) = δjf(θ, β)

∏
k∈{Rx:vj}

(1− δk)
∏

l∈{vj :Tx}

(1− δl)

(
dTx:vj + dvj :Rx

)2 (2)

Let us explain this equation briefly. The leading δj ensures that voxel vj is not a reflector when
δj = 0. The f(θ, β) term models the wave-surface interactions, i.e., how signals get attenuated as a
function of the incident angle θ and how signals scatter as a function of the offset angle β (which is
the angle between the reflected ray and the direction of the Rx from vj). The next two product terms
ensure that for the Rx to receive this reflection, the voxels along the 2 segments (Tx to vj and vj to
Rx) must be non-opaque; if any δk or δl equals 1, that reflection path is blocked, producing no power
contribution via this voxel vj to the receiver Rx. Finally, the denominator is the squared distance
from Tx to vj , and from vj to Rx, modeling signal attenuation.

To compute the full reflection power, the natural question is: which voxels are contributing to the
received power? Geometrically, any opaque voxel can be a plausible reflection point between any
⟨Tx,Rx⟩ pair. This is because, for triangle formed by Tx, vj , and Rx, the voxel orientation ωj can
be assigned a direction that bisects the angle at vj . For this ωj , the reflected ray will perfectly arrive at
the Rx. Thus, without the knowledge of orientation and density, the total first order reflection power
at the Rx should be modeled as the sum of reflections on all voxels. This makes the optimization
problem excessively under-determined.

We address this by modeling ωj as a discrete value—multiples of π
Kω

. Larger Kω is needed when the
environment has complex surface orientations; however, most floorplans exhibit perpendicular walls
[48, 8, 11] and Kω = 4 is adequate. Once ωj becomes discrete, the voxels that can produce plausible
reflections become far fewer – we call this the “plausible set” V . Fig. 3 visualizes V and shows 3
out of many plausible reflections from voxels with ωj = 135◦. Eq. 3 sums up the power from all
reflections that occur on the plausible set:

ψref1 =
∑

{j|vj∈V}

ψref (vj) (3)

Thus, the final modeled power at a specific Rx location becomes ψ̃ = ψLoS + ψref1 .

4

Figure 3: Colored stripes define the man-
ifold from which reflections are plausible
between ⟨Tx,Rx⟩. Voxels located on the
manifold form the plausible set V . Dashed
lines show plausible reflections.

Figure 4: EchoNeRF’s two-stage training approach: In
Stage 1, the LoS model is trained using known Rx lo-
cations and signal power. This provides a warm-start to
the reflection model in Stage 2 which refines the learned
voxel densities and orientation.

3.3 Gradient Issues during Training

Training against a L2 loss, L = ∥ψ̃ − ψ∗∥22 3, did not generate legible floorplans. We found that the
ψLoS dominated the loss term, drowning the reflection model’s influence on learning. At a high level,
the gradient of the LoS model (Eq. 1) w.r.t. δi has fewer terms in the numerator’s product, and a
smaller d2 in the denominator. The reflection model’s gradient w.r.t. δi has many more terms since
the reflection path is much longer; the denominator is also larger. Since (1− δj) ≤ 1, their products
force the gradient to decrease geometrically with more terms, causing the reflection gradient to be
much smaller compared to LoS. We formalize this explanation below by considering the LoS and
reflection losses individually4.

LLoS =
∥∥∥ψ̃LoS − ψ∗

LoS

∥∥∥2
2
, Lref =

∥∥∥ψ̃ref − ψ∗
ref

∥∥∥2
2

Consider the gradient of LLoS w.r.t the density of vi.

∇δiLLoS = 2(ψ̃LoS − ψ∗
LoS)

∑
{n|i∈LoS(n)}

∇δiψ
(n)
LoS

where ∇δiψ
(n)
LoS = − K

d(n)
2

∏
j∈LoS(n)

j ̸=i

(1− δj) (4)

where LoS(n) is the n-th LoS path passing through voxel vi.

The gradient of Lref has a nearly identical expression with the only difference being many more
product terms and that ∇δiψ

(n)
ref depends on where vi is present in the n-th set of reflection path

voxels (denoted by Ref (n)). For example,

∇δiψ
(n),Tx
ref = −C

∏
j∈Ref

(n)
Tx:v

j ̸=i

(1− δj)
∏

k∈Ref
(n)
v:Rx

(1− δk) (5)

C =
δ(n)f (n)(θ, β)

(d
(n)
Tx:v + d

(n)
v:Rx)

2

3Here, ψ∗ denotes the ground truth signal power
4For the ease of explanation, we use ψ∗

LoS and ψ∗
ref to denote the ground truth LoS and reflection powers,

respectively. We do not need to know these terms in practice.

5

here ∇δiψ
(n),Tx
ref denotes the gradient when vi is between Tx to the reflection point v.

Finally, since the modeled power approximates the measured power, the residual error will remain
non-zero even if the floorplan is accurately learnt. As a result, the optimization is biased towards
voxels of higher gradients, i.e., voxels on the LoS path, suppressing the importance of reflections. To
address this, we train EchoNeRF in 2 stages.

3.4 Multi-stage Training

Stage 1: We first use the LoS model against the measured ground truth power ψ∗ (see Fig. 4). This
converges quickly because the network easily learns the transparent voxels (δ=0) located along LoS
paths. For LoS paths that are occluded, the network incorrectly learns excessive opaque voxels
between the ⟨Tx,Rx⟩, but this does not affect the LoS error since the path is anyway occluded.
Hence, the outcome is a crude floorplan but a near-perfect LoS power estimate ψ̃LoS . We utilize this
ψ̃LoS in stage 2 (discussed soon).

As Stage 1 training progresses, some opaque voxels emerge, offering crude contours of some walls.
We estimate a voxel’s spatial gradient, ∇δi, and use it to supervise the orientation ωi of that voxel.
The intuition is that a voxel’s orientation – needed to model reflections in Stage 2 – is essentially
determined by the local surface around that voxel. The gradient ∇δi offers an opportunity for weak
supervision. Thus, the loss for Stage 1 is:

Lstage1 = ∥ψ∗ − ψLoS∥22 + L+ (6)

where L+ = λ1
∑
∀j

∥∇δj − ωj∥22 + λ2Lreg (7)

with λ1, λ2 > 0 being tunable hyperparameters. The regularization term Lreg will be discussed soon.
Finally, the near-perfect estimate of LoS power, denoted ψ̃LoS , is also carried over to Stage 2 to
ensure the reflection model is penalized when it veers away from this LoS estimate.

Stage 2 focuses on training the reflection model using the following loss function.

Lstage2 =
∥∥∥ψ̃LoS − ψLoS

∥∥∥2
2
+
∥∥∥ψ∗ − ψ̃LoS − ψref1

∥∥∥2
2
+ L+

The first term in the RHS ensures that the Stage 1’s LoS estimate is honored in Stage 2. The second
term subtracts Stage 1’s LoS power from the measured power, (ψ∗ − ψ̃LoS); this models the total
power only due to reflections. Our (first order) reflection model ψref1 is trained to match this
aggregate power (L2 loss). The supervision on orientation and the regularization terms are the same
as in Stage 1.

■ Regularization: Floorplans demonstrate significant local similarity in orientation, hence we
penalize differences in orientation among neighbors, using a regularization (Eq. 8) similar to Total
Variation [31]. This can be achieved without additional computational cost to the neural network by
directly utilizing voxel orientations obtained from each ray.

Lreg =
1

nv(nr − 1)

nv∑
n=1

nr−1∑
i=1

∥ωn,i+1 − ωn,i∥22 (8)

Here nv is the number of voxels queried from the plausible set V and nr is the number of voxels
along the each ray.

4 Experiments

Floorplan and Wireless Simulation Dataset. Floorplans are drawn from the Zillow Indoor Dataset
[9]. In each floorplan, we use the A∗ algorithm [13] to generate a walking trajectory that traverses
all rooms. We use the NVIDIA Sionna RT [15, 14] – a ray tracer for radio propagation modeling – to
compute the ground truth signal power (also known as received signal strength index (RSSI)). We
randomly place M Txs, one in each room, denoted as Tm. To simulate omnidirectional transmissions

6

at 2.4GHz from each Tx location, we shoot 107 rays into the given floorplan. For receiver locations,
we sample the user trajectory at a fixed time interval to obtain N Rx locations, denoted as Rn. Sionna
accounts for specular reflections and refraction when these rays interact with walls in the specified
floor plan; we use the default materials for the walls. As with most WiFi simulators, Sionna does not
model signal penetration through walls – this means that a Tx and Rx located on opposite sides of a
wall will not receive any RSSI. Overall, we gather M ×N RSSI measurements (Tm, Rn, ψm,n) that
serve as input to EchoNeRF.

Baselines used for comparison are:

1. NeRF2 [47]: Models WiFi reflections via virtual transmitters to predict channel impulse
response (CIR).

2. Heatmap Segmentation [21]: Interpolates CIR across the whole floorplan and applies an
image segmentation algorithm (on the interpolated RSSI heatmap) to isolate each room.
Essentially, the algorithm identifies the contours of sharp RSSI change since such contours
are likely to correspond to walls. Implementation details are included in the Appendix E.4.

3. MLP: Trains an MLP network to directly estimate the RSSI based on Tx and Rx locations.
4. EchoNeRF_LoS: Reports EchoNeRF’s result considering only LoS path (ablation study).

Metrics. We evaluate using 3 metrics:

(A) Wall Intersection over Union (Wall_IoU): This metric measures the degree to which the
predicted walls and the true walls superimpose over each other in the 2D floorplan. The following
equation defines the metric:

Wall_IoU =
WP ∩WP ∗

WP ∪WP ∗

where WP denotes the set of predicted wall pixels and WP ∗ denotes the true wall pixels. This is a
harsh metric given wall pixels are a small fraction of the total floorplan; if a predicted wall is even
offset by one pixel from the true wall, the Wall_IoU drops significantly. IoU [30] has often been
defined in terms of room pixels (instead of wall pixels); this is an overestimate in our opinion, since
predicting even an empty floorplan results in an impressively high IoU.

(B) F1 score [35]: Defined as F1 = 2×P×R
P+R , where P is the precision and R is the recall of the

bitmap. P and R are defined based on wall pixels, similar as above.

(C) RSSI Prediction Error (RPE): We split all Rx locations into a training and test set. RPE reports
the average median RSSI error over all the test locations across floorplans.

4.1 Overall Summarized Results

2000 receiver locations 1000 receiver locations
Method Wall_IoU ↑ F1 Score ↑ RPE ↓ Wall_IoU ↑ F1 Score ↑ RPE ↓
MLP - - 1.03 - - 0.65
Heatmap Seg. 0.12 ± 0.03 0.21 ± 0.05 1.32 0.09 ± 0.02 0.16 ± 0.04 1.46
NeRF2 0.14 ± 0.02 0.24 ± 0.03 4.36 0.12 ± 0.02 0.21 ± 0.04 4.2
EchoNeRF_LoS 0.27 ± 0.07 0.42 ± 0.10 9.12 0.25 ± 0.04 0.39 ± 0.06 10.86
EchoNeRF 0.38 ± 0.06 0.55 ± 0.06 3.56 0.32 ± 0.06 0.48 ± 0.05 4.32

Table 1: Performance Results for Wall_IoU, F1 Score, and RPE
Table 1 reports comparative results between EchoNeRF and baselines, averaged over 20 different
experiments, using all 3 metrics. The number of measurements are sparse (N = 2000 and N =
1000), given that apartment sizes in our dataset are more than 250, 000 pixels. Mean and standard
deviation are reported in the table. EchoNeRF outperforms all models in terms of Wall_IoU and F1
Score. Compared to EchoNeRF_LoS, EchoNeRF demonstrates visible improvements, highlighting
the advantage of modeling reflections. The absolute Wall_IoU values are understandably low because
the metric penalizes small errors.

NeRF2 is unable to predict the floor plan (opaque voxels) well and is only able to achieve better RPE
than EchoNeRF_LoS. EchoNeRF outperforms both EchoNeRF_LoS and NeRF2. Interestingly, MLP
incurs a lower RPE than NeRF2 suggesting that RSSI is amenable to interpolation, and NeRF2’s
implicit representation may not be an advantage for this interpolation task.

7

Ground
Truth

Heatmap
Seg.

NeRF2

EchoNeRF
LoS

EchoNeRF

Figure 5: Qualitative comparison of ground truth floorplans against baselines. In the first row, red
stars denote Tx locations and light gray dots denote Rx measurement locations. The bottom two rows
show floorplans learnt by EchoNeRF_LoS (i.e., Stage 1) and EchoNeRF (i.e., Stage 2) with sharper
walls and boundaries. More visualizations available at https://echonerf.github.io/

4.2 Qualitative Results: Visual floorplans, RSSI heatmap, and basic ray tracing

■ Visual floorplans. Figure 5 presents visualization from all baselines and a comparison with our
LoS-only model (as ablation). All the floorplans use N = 2000 receiver locations. We make the
following observations. (1) Heatmap Segmentation leverages the difference of RSSI on opposite
sides of a wall, however, reflections pollute this pattern, especially at larger distances between Tx
and Rx. Further, signals leak through open doors, injecting errors in the room boundaries. (2) NeRF2
performs poorly since its MLP learns one among many possible assignments of virtual transmitters
to fit the RSSI training data. The virtual transmitters hardly correlate to the walls of the environment.
(3) EchoNeRF_LoS can infer the position of inner walls. However, these walls are thick and slanted
because while EchoNeRF_LoS can identify occlusions between a ⟨Tx,Rx⟩ pair, it cannot tell the
shape and pattern of these occlusions. Crucially, EchoNeRF_LoS also cannot infer the boundary walls
since no receivers are located outside the house. (4) EchoNeRF outperforms the baselines, sharpens
the inner walls compared to EchoNeRF_LoS, and constructs the boundary walls well.

Shortcomings: Recall that some parts of the floorplan are in the “blind spots” of our dataset since
no reflection arrives from those parts to any of our sparse Rx locations (e.g., see bottom left corner
of the 1st floorplan; no signals reflect off this region to arrive at any of the Rx locations). Hence,
EchoNeRF is unable to construct the bottom of the left wall in this floorplan. Finally, note that areas
outside the floorplan (e.g., the regions on the right of 6th floorplan) cannot be estimated correctly
since no measurements are available from those regions (hence, those voxels do not influence the
gradients).

■ RSSI prediction. Figure 6 visualizes and compares predicted RSSI. The top row shows predictions
at new Rx locations with the Tx held at the trained location; the bottom row shows predictions when

8

https://echonerf.github.io/

Figure 6: Heatmaps highlighting EchoNeRF’s ability to learn signal
propagation. (Top row) Inferred RSSI heatmaps with Tx (red star) as
used in training. (Bottom row) A new Tx (green star) degrades NeRF2
and MLP while EchoNeRF shows accurate predictions.

Figure 7: (a) Tracing re-
flections on the learnt
floorplan. (b) True re-
flections from Sionna.

both Tx and Rx are moved to new locations. Two key observations emerge: (1) EchoNeRF is limited
by Sionna’s inability to simulate through-wall signal penetration; NeRF2 has access to an expensive
license for a through-wall simulation and shows better predictions inside the rooms. However, in
areas that EchoNeRF can "see" (e.g., corridors in the top row), the awareness of reflecting surfaces
leads to significantly better predictions. (2) When the Tx location differs from that used in training,
EchoNeRF’s improvement over NeRF2 is significant. This is the core advantage of first solving the
inverse problem and then leveraging it for the (forward) RSSI prediction.

■ Learning reflected rays. For a given ⟨Tx,Rx⟩ pair, we examine the points in the plausible set V
that contribute to the reflections. Fig. 7 compares the ray-tracing results from the NVIDIA Sionna
simulator (we pick only first order reflections). EchoNeRF captures many of the correct reflections.
Of course, some are incorrect – a false positive occurs in the bottom right room since some wall
segment is missing in our estimate; false negatives also occur in the top right room where again some
parts of the wall are missing.

4.3 Relaxing Assumptions & Sensitivity Study

■ Transmitter’s location. We assumed knowledge of Tx locations, however, we relax this by
applying maximum likelihood estimation on observed RSSI power, ψ∗ (see Appendix D). On average,
the estimated Tx location error is 2.08 pixels in floorplans of sizes ≈ 512× 512 pixels.

Error σ(m) 0 0.5 1 2
Wall_IoU 0.38 0.35 0.33 0.29

Table 2: Estimated Wall_IoU at various levels
of injected noise σ

Figure 8: EchoNeRF’s floorplan inference
with furniture in conference (left) and apart-
ment (right) layouts.

■ Receiver location error. Table 2 shows
EchoNeRF’s sensitivity to Rx location errors. We
inject Gaussian noise N (0, σ2I) to the Rx locations;
σ = 1 implies a physical error of 1m. Wall_IoU
accuracy obviously drops with error but 0.5 meter
of error is tolerable without destroying the floorplan
structure. Advancements in WiFi positioning systems
have demonstrated robust sub-meter error.

■ Effect of Furniture. Fig. 8 visualizes inferred
floorplans when toy objects are scattered in open
spaces (Rx locations remain N=2000). EchoNeRF is
able to identify some of the object blobs but sharp-
ening the small objects is challenging due to more
higher order reflections from furniture. Follow up
work is needed, either in modeling 2nd order reflections or by imposing stronger regularizations.

9

Material EchoNeRF_LoS↑ EchoNeRF↑
Concrete 0.251 0.371
Glass 0.236 0.364
Brick 0.232 0.357
Marble 0.226 0.328
Wood 0.227 0.311

Table 3: Sensitivity across materials.

SNR (dB) EchoNeRF_LoS↑ EchoNeRF↑ Qualitative
∞ (no noise) 0.251 0.371 Legible
60 0.246 0.336 Legible
50 0.231 0.292 Legible
40 0.226 0.298 Legible
30 0.207 0.241 Missing walls
10 0.090 0.140 Illegible

Table 4: Noise robustness across SNR levels.

■ Material Sensitivity. Table 3 shows the mean Wall_IoU of EchoNeRF on five different materials
averaged across six scenes (shown in Fig. 5) Materials with higher reflectivity, such as concrete and
glass, yield better performance than absorptive materials like wood. This is because more reflections
allow better performance for EchoNeRFś reflection model.

■ Robustness to RSSI error. We added Gaussian noise to the RSSI measurements with a mean
equal to the noise floor (in dB) and a variance of 4 dB. We vary the noise floor levels ranging from
−80 dB to −130 dB across the 6 floorplans shown in Fig. 5. The SNR at a receiver is computed
as the difference between the received signal power and the noise floor (e.g., a received power of
−70 dB with a noise floor of −80 dB results in an SNR of 10 dB). We report the mean Wall_IoU
for EchoNeRF_LoS and EchoNeRF in Table 4. The performance drops with decreasing SNR; both
EchoNeRF_LoS and EchoNeRF’s floorplans are still legible till 30 dB, but below that (when noise
power becomes comparable to the signal power) they break down, leading to missing and illegible
walls. Our results are conservative; when we report a specific SNR level (e.g., 40dB), it represents
the highest SNR (best-case) among all receivers in that scenario, meaning other receivers experience
even lower SNRs. In practice, WiFi SNR ranges from 30-60dB depending on the distance from the
router, with close-proximity measurements often exceeding 50-60dB. For average real-world SNR
conditions around 45dB, the corresponding best-case SNR would be 60+dB, which aligns with the
top rows where EchoNeRF demonstrates strong performance.

5 Follow ups and Conclusion

Follow-ups. (1) The ability to model 2nd order reflections will boost EchoNeRF’s accuracy, allowing
it to sharpen the scene and decode smaller objects. For short range applications, such as non-intrusive
medical imaging, 2nd and 3rd order reflections would be crucial. This remains an important direction
for follow-on research. (2) Extending EchoNeRF to 3D floorplans is also of interest, and since it is
undesirable to increase the number of measurements, effective 3D priors, or 2D-to-3D post-processing,
may be necessary. Such post-processing tools exist [7] but we have not applied them since our goal is
to improve NeRF’s inherent inverse solver. (3) Expanding evaluations beyond ZInD, which contains
largely unfurnished, rectangular rooms, to richer datasets such as HM3D [29] and MVL [36] would
also be valuable: furniture and clutter can introduce significant multipath effects that complicate RF
signal modeling, and additional research is needed to understand these effects. We defer this to future
work, as our focus in this paper is not so much to understand the limits of RF-based NeRFs, but to
establish the feasibility of such frameworks. (4) Finally, EchoNeRF floorplans can offer valuable
spatial context to Neural RIR synthesizers like [47, 22, 6, 19, 20]. Synthesized RIR could in-turn aid
EchoNeRF’s floorplan inference, forming the basis for an alternating optimization strategy. We leave
these ideas to follow-up research.
Conclusion. In summary, we re-design the NeRF framework so it can learn to "see" its environment
by leveraging both line-of-sight (LoS) paths and multipath reflections. While such reflections bring to
the sensor more information about the surroundings, their mixtures with the LoS path also complicates
the core inverse problems. EchoNeRF takes a step towards solving this inverse problem, but also
leaves room for further research in neural wireless imaging and varies downstream applications.

Acknowledgments

We would like to thank Prof. Shenlong Wang for his guidance in the initial phase of this work. We
also thank the anonymous reviewers for their valuable feedback. This work was partially supported
by NSF #2008338, #1909568, #2148583, and #MRI-2018966. This work used DELTA at NCSA
through allocation CIS230230 from the Advanced Cyberinfrastructure Coordination Ecosystem:
Services & Support (ACCESS) program, which is supported by U.S. National Science Foundation
grants #2138259, #2138286, #2138307, #2137603, and #2138296

10

References
[1] Constantine A. Balanis. Antenna Theory: Analysis and Design. John Wiley & Sons, 3rd edition,

2016.

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,
and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In Proceedings of the IEEE/CVF international conference on computer vision, pages
5855–5864, 2021.

[3] Amartya Basu and Ayon Chakraborty. Specnerf: Neural radiance field driven wireless coverage
mapping for 5g networks. In Proceedings of the Twenty-Fifth International Symposium on
Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Com-
puting, MobiHoc ’24, page 440–445, New York, NY, USA, 2024. Association for Computing
Machinery.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[5] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and Hendrik Lensch.
Nerd: Neural reflectance decomposition from image collections. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 12684–12694, 2021.

[6] Amandine Brunetto, Sascha Hornauer, and Fabien Moutarde. Neraf: 3d scene infused neural
radiance and acoustic fields. arXiv preprint arXiv:2405.18213, 2024.

[7] Cedreo. Convert 2d floor plan to 3d, 2025. Accessed: 2025-03-01.

[8] James M Coughlan and Alan L Yuille. Manhattan world: Compass direction from a single
image by bayesian inference. In Proceedings of the seventh IEEE international conference on
computer vision, volume 2, pages 941–947. IEEE, 1999.

[9] Steve Cruz, Will Hutchcroft, Yuguang Li, Naji Khosravan, Ivaylo Boyadzhiev, and Sing Bing
Kang. Zillow indoor dataset: Annotated floor plans with 360deg panoramas and 3d room layouts.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
2133–2143, 2021.

[10] Wenhang Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong Chen. Ref-neus: Ambiguity-
reduced neural implicit surface learning for multi-view reconstruction with reflection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4251–4260,
2023.

[11] Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang, Guofeng Zhang, Hujun Bao, and Xiaowei
Zhou. Neural 3d scene reconstruction with the manhattan-world assumption. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5511–5520, June 2022.

[12] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-Hai Zhang. Nerfren: Neural radiance
fields with reflections. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 18409–18418, June 2022.

[13] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[14] Jakob Hoydis, Fayçal Aït Aoudia, Sebastian Cammerer, Merlin Nimier-David, Nikolaus Binder,
Guillermo Marcus, and Alexander Keller. Sionna rt: Differentiable ray tracing for radio
propagation modeling. In 2023 IEEE Globecom Workshops (GC Wkshps), pages 317–321.
IEEE, 2023.

[15] Jakob Hoydis, Sebastian Cammerer, Fayçal Ait Aoudia, Avinash Vem, Nikolaus Binder,
Guillermo Marcus, and Alexander Keller. Sionna: An open-source library for next-generation
physical layer research. arXiv preprint arXiv:2203.11854, 2022.

11

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2017.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[18] Tzofi Klinghoffer, Xiaoyu Xiang, Siddharth Somasundaram, Yuchen Fan, Christian Richardt,
Ramesh Raskar, and Rakesh Ranjan. Platonerf: 3d reconstruction in plato’s cave via single-view
two-bounce lidar. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14565–14574, 2024.

[19] Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Av-nerf: Learning
neural fields for real-world audio-visual scene synthesis. Advances in Neural Information
Processing Systems, 36:37472–37490, 2023.

[20] Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Neural acoustic
context field: Rendering realistic room impulse response with neural fields. arXiv preprint
arXiv:2309.15977, 2023.

[21] Dingding Liu, Bilge Soran, Gregg Petrie, and Linda Shapiro. A review of computer vision
segmentation algorithms. Lecture notes, 53, 2012.

[22] Haofan Lu, Christopher Vattheuer, Baharan Mirzasoleiman, and Omid Abari. Newrf: A deep
learning framework for wireless radiation field reconstruction and channel prediction. In
Forty-first International Conference on Machine Learning, 2024.

[23] Andrew Luo, Yilun Du, Michael Tarr, Josh Tenenbaum, Antonio Torralba, and Chuang Gan.
Learning neural acoustic fields. Advances in Neural Information Processing Systems, 35:3165–
3177, 2022.

[24] Sagnik Majumder, Changan Chen, Ziad Al-Halah, and Kristen Grauman. Few-shot audio-
visual learning of environment acoustics. Advances in Neural Information Processing Systems,
35:2522–2536, 2022.

[25] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[26] Tribhuvanesh Orekondy, Pratik Kumar, Shreya Kadambi, Hao Ye, Joseph Soriaga, and Arash
Behboodi. WineRT: Towards neural ray tracing for wireless channel modelling and differentiable
simulations. In The Eleventh International Conference on Learning Representations, 2023.

[27] Zainab Oufqir, Abdellatif El Abderrahmani, and Khalid Satori. Arkit and arcore in serve to
augmented reality. In 2020 International Conference on Intelligent Systems and Computer
Vision (ISCV), pages 1–7. IEEE, 2020.

[28] Paolo Prandoni and Martin Vetterli. Signal Processing for Communications. CRC Press, Boca
Raton, FL, 2008.

[29] Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238, 2021.

[30] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regression,
2019.

[31] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[32] Viktor Rudnev, Mohamed Elgharib, William Smith, Lingjie Liu, Vladislav Golyanik, and
Christian Theobalt. Nerf for outdoor scene relighting. In European Conference on Computer
Vision, pages 615–631. Springer, 2022.

12

[33] Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. Flipnerf: Flipped reflection rays for
few-shot novel view synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 22883–22893, 2023.

[34] Siyuan Shen, Zi Wang, Ping Liu, Zhengqing Pan, Ruiqian Li, Tian Gao, Shiying Li, and Jingyi
Yu. Non-line-of-sight imaging via neural transient fields. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(7):2257–2268, 2021.

[35] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427–437, 2009.

[36] Bolivar Solarte, Chin-Hsuan Wu, Jin-Cheng Jhang, Jonathan Lee, Yi-Hsuan Tsai, and Min Sun.
Self-training room layout estimation via geometry-aware ray-casting. In European Conference
on Computer Vision, pages 253–269. Springer, 2024.

[37] Kun Su, Mingfei Chen, and Eli Shlizerman. Inras: Implicit neural representation for audio
scenes. Advances in Neural Information Processing Systems, 35:8144–8158, 2022.

[38] Kushagra Tiwary, Akshat Dave, Nikhil Behari, Tzofi Klinghoffer, Ashok Veeraraghavan, and
Ramesh Raskar. Orca: Glossy objects as radiance-field cameras. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 20773–20782, 2023.

[39] Marco Toschi, Riccardo De Matteo, Riccardo Spezialetti, Daniele De Gregorio, Luigi Di Stefano,
and Samuele Salti. Relight my nerf: A dataset for novel view synthesis and relighting of real
world objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20762–20772, 2023.

[40] David Tse and Pramod Viswanath. Fundamentals of Wireless Communication. Cambridge
University Press, 2005.

[41] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and Pratul P.
Srinivasan. Ref-NeRF: Structured view-dependent appearance for neural radiance fields. CVPR,
2022.

[42] Dor Verbin, Pratul P Srinivasan, Peter Hedman, Ben Mildenhall, Benjamin Attal, Richard
Szeliski, and Jonathan T Barron. Nerf-casting: Improved view-dependent appearance with
consistent reflections. In SIGGRAPH Asia 2024 Conference Papers, pages 1–10, 2024.

[43] Zian Wang, Tianchang Shen, Jun Gao, Shengyu Huang, Jacob Munkberg, Jon Hasselgren, Zan
Gojcic, Wenzheng Chen, and Sanja Fidler. Neural fields meet explicit geometric representation
for inverse rendering of urban scenes, 2023.

[44] Zhiwen Yan, Chen Li, and Gim Hee Lee. Nerf-ds: Neural radiance fields for dynamic spec-
ular objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8285–8295, 2023.

[45] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields
from one or few images. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4578–4587, 2021.

[46] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and
Jonathan T Barron. Nerfactor: Neural factorization of shape and reflectance under an unknown
illumination. ACM Transactions on Graphics (ToG), 40(6):1–18, 2021.

[47] Xiaopeng Zhao, Zhenlin An, Qingrui Pan, and Lei Yang. Nerf2: Neural radio-frequency radiance
fields. In Proceedings of the 29th Annual International Conference on Mobile Computing and
Networking, pages 1–15, 2023.

[48] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. LayoutNet: Reconstructing the 3D
Room Layout from a Single RGB Image . In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2051–2059, Los Alamitos, CA, USA, June 2018. IEEE
Computer Society.

13

Appendix for
Can NeRFs “See” without Cameras?

A Background on Channel Impulse Response

When a wireless signal propagates, it is typically influenced by multipath effects such as reflections
and scattering, as well as attenuation caused by the surrounding environment—collectively referred
to as the channel. The overall impact of these phenomena on the signal is characterized by a linear
model known as the Channel Impulse Response (CIR) [28].

Mathematically, the CIR is expressed as a sum of scaled and delayed impulses as shown in Eqn 9.

h(t) =

N∑
i=1

aie
jϕiδ(t− τi), (9)

where N is the number of multipath components, ai denotes the amplitude (attenuation factor) of the
i-th path, ϕi represents the phase shift of the i-th path, and τi is the delay of the i-th path.

For an input signal x(t) transmitted through the channel h(t), the output signal measured at a Rx,
y(t) is obtained by the convolution:

y(t) = x(t) ∗ h(t) + w(t), (10)

where w(t) represents zero-mean additive noise. For a simple two-path channel with a line of sight
(LoS) path and one reflected path, the CIR h(t) is given as

h(t) = a1δ(t) + a2e
jϕ2δ(t− τ2), (11)

The received signal y(t) would then be:

y(t) = x(t) ∗
[
a1δ(t) + a2e

jϕ2δ(t− τ2)
]
+ w(t) (12)

B Modelling Wideband Multipath Signal Power

This section shows how received power in multipath scenarios can be approximated as a sum of
powers of LoS and all other multipaths. In frequency domain, the received signal y(t) at a particular
receiver can be expressed as

Y (fk) = H(fk)X(fk) +W (fk) (13)

Here, X(fk) and W (fk) represent the discrete Fourier transforms of the signal x(t) and the additive
noise w(t) at subcarrier frequency fk with k ∈ {0, 1, ...,K}. The channel can be written as
H(fk) =

∑L
l=0 alk exp(−j2πfkτl) where l ∈ {1, 2, ..., L} is an index over separate multipaths.

Here, alk and τl represents the attenuation and phase of the l-th multipath component at subcarrier k.
We assume that the channel H(fk) and the signal X(fk) are independent.

The received power at each frequency k is given by ψYk
= E[|Y (fk)|2].

E[|Y (fk)|2] = E[|H(fk)X(fk) +W (fk)|2] (14)

= E[|H(fk)|2 |X(fk)|2] + E[|W (fk)|2] + 2Re{E[H(fk)X(fk)W (fk)]}
= E[|H(fk)|2]E[|X(fk)|2] + E[|W (fk)|2] + 2Re{E[H(fk)X(fk)]E[W (fk)]}
= E[|H(fk)|2]E[|X(fk)|2] + E[|W (fk)|2],∵ E[W (fk)] = 0

= ψXk
E[|H(fk)|2] + ψWk

where ψXk
= E[|X(fk)|2] and ψWk

= E[|W (fk)|2]. Next,

14

E[|H(fk)|2] = E[H(fk)H
∗(fk)]

5

= E

[(
L∑

l=0

alk exp (−j2πfkτl)

)(
L∑

m=0

a∗mk exp (j2πfkτm)

)]

= E

[(
L∑

l=0

L∑
m=0

alka
∗
mk exp (−j2πfk (τl − τm))

)]

= E

 L∑
l=0

|alk|2 +
L∑

l=0

L∑
m=0
m̸=l

alka
∗
mk exp (−j2πfk (τl − τm))


= E

[
L∑

l=0

|alk|2
]
+

L∑
l=0

L∑
m=0
m ̸=l

E [alka
∗
mk] exp (−j2πfk (τl − τm))

= E

[
L∑

l=0

|alk|2
]

We assume that channel gains between different multipaths l,m with l ̸= m have vanishingly
small correlation. Therefore, the total received power ψ can be computed by summing all individual
subcarrier powers.

ψ =

K∑
k=1

ψYk

=

K∑
k=1

ψXk
E

[
L∑

l=0

|alk|2
]
+ ψWk

=

L∑
l=0

K∑
k=1

E
[
ψXk

|alk|2
]
+ ψWk

Here, we separate out
∑K

k=1 E
[
ψXk

|a0k|2
]
= ψLoS , to represent the LoS power over all subcarriers

and
∑K

k=1 E
[
ψXk

|alk|2
]
= ψrefl , 1 ≤ l ≤ L, to denote the power of l-th order reflections.

C Approximating Channel with First-Order Reflections

EchoNeRF models the total received power at the Rx as the combination of the LoS power
EchoNeRF_LoS, and the contributions from all the first-order reflections. To validate the contri-
bution of the achievable power from EchoNeRF when compared to the total received power ψ, we
evaluate the relative contributions of these signals to the total power using the NVIDIA Sionna
simulator [15]. To this end, we compute the ratios of the LoS signal ψLoS , LoS with the first order
reflections ψLoS + ψref1 , and LoS with the first two orders of reflections ψLoS + ψref1 + ψref2 .
These are compared to the total received power ψ, which is approximated as the sum of the LoS
power and the power from the first ten reflections.

Fig 9 shows path power contribution ratio from different paths in histogram. While the ψLoS power
alone only accounts for approximately 70% of the total received power and is more spread out,
ψLoS + ψref1 accounts to 95% of the total power, with a reduced spread. Moreover, secondary
reflections ψref2 only contribute to less than 3% of the total power. Hence, EchoNeRF models the
first-order reflections along with the line-of-sight.

5We use * to denote complex conjugate

15

Figure 9: Histograms illustrating the contribution ratios from line-of-sight (LoS), LoS combined
with first-order reflections, and LoS combined with first- and second-order reflections. The orange
graph highlights the significant contribution of first-order reflections to the total power, supporting
EchoNeRF’s approach of modeling only the first reflection alongside the LoS power.

D Relaxing Tx Assumptions

We relax the assumption that Tx locations are known. Given the set of receiver locations {Rxi} and
the signal powers {ψi}, the goal is to estimate the transmitter location Tx = (Txx,Txy). To achieve
this, we apply a maximum likelihood estimate (MLE). Briefly, among all the measured signal powers
{ψi} from a given Tx we identify the P strongest signal powers and their corresponding received
locations. The rationale behind selecting the strongest powers is that they are significantly influenced
by the LoS component, allowing us to model them effectively only using the Friss’ equation [1]. We
assume independence among the measurements since the received LoS power across locations, for a
given a Tx location, are independent. So, the likelihood equation for all these P measurements can be
written as:

p(ψ1, ψ2, . . . , ψP |Tx) =

P∏
i=1

p(ψi|Tx)

We approximate that the ψi is normally distributed with a mean modeled by the line-of-sight power
K
d2
i

and variance σ2 where di = ||Tx−Rxi|| is the distance between Tx and Rxi. The likelihood
function for each observation ψi is thus given by:

p(ψi|Tx) =
1√
2πσ2

exp

(
−
(ψi − K

d2
i
)2

2σ2

)
Maximizing log-likelihood L of {ψi} ∀ i ∈ {1, . . . , P}

logL(Tx) =

P∑
i=1

log

(
1√
2πσ2

exp

(
−
(ψi − K

d2
i
)2

2σ2

))

logL(Tx) = −P
2
log(2πσ2)− 1

2σ2

P∑
i=1

(
ψi −

K

d2i

)2

Minimizing the second term gives the optimal Tx∗ as:

Tx∗ = argmin
Tx

P∑
i=1

(
ψi −

K

∥Tx−Rxi∥22

)2

16

We use Scipy’s ‘minimize’ with the BFGS method to numerically solve for Tx∗. Fig 13. visualizes
the ground truth and the estimated Tx locations across 6 floorplans. The estimated Tx positions closely
match the ground truth, and we report the Tx location error to be 2.08 pixels. Fig 10. demonstrates the
performance of EchoNeRF_LoS and EchoNeRF using the estimated Tx locations for the 6 floorplans
in Fig 13. Performance is comparable to that achieved with ground truth Tx locations, highlighting
robustness.

Ground
Truth

EchoNeRF
LoS

EchoNeRF

Figure 10: Qualitative comaprison of EchoNeRF_LoS and EchoNeRF when Tx locations are unknown,
and are estimated. The top row shows the ground truth floorplan, Rx locations along with the estimated
Txs in blue. The second and third row displays the performance of EchoNeRF_LoS and EchoNeRF
respectively. Despite the Tx locations being unknown, our methods accurately estimate them, leading
to performance comparable to the case where Tx locations are known.

E Details on Model Training

The signal power measured at the receiver is typically represented in a logarithmic scale. RSSI values
generally range from -50 dB to -120 dB, where a higher value (e.g., -50 dB) corresponds to a stronger
signal. Fig 11 illustrates a typical input to EchoNeRF where measurements have been collected from
approximately 2000 Rxs positioned in the floorplan, with data gathered from five Txs.

E.1 Linear-Scale RSSI Loss:

For the training of EchoNeRF, we optimize on the linear-scale RSSI values. Linear loss ensures that
the receivers that capture stronger signals are given more importance during training. We partition
our dataset into an 80-20 split, using 80% of the data for model training, including baselines.

For EchoNeRF’s network, we employ a simple 8-layer MLP with a hidden dimension of 256 units.
For each voxel vj , the outputs from the final layer are passed through a sigmoid activation to obtain
the opacity δ, and through a Gumbel softmax [16] layer to sample the output normal ω from one
of the possible Kω orientations. This sampled orientation is then used in the subsequent stages of
training, such as for calculating the direction of the reflected signal M . For the learnable baselines,
such as MLP and NeRF2, we adopt the same architecture as used in EchoNeRF.

E.2 Supervising Voxel Orientations

EchoNeRF leverages the spatial gradient of a voxel’s opacity, ∇δ, to supervise its orientation during
the multi-stage training process. To compute this gradient, we evaluate the opacities of neighboring

17

Figure 11: Observed signal power at the Rxs . The top left figure shows the positions of the Rxs and
Txs, followed by the power at the receivers from each of the five transmitters. The colormap ranges
from red showing stronger signals to blue for weaker signals.

Figure 12: An incoming ray from a transmitter Tx reflecting around voxel vj and arriving at receiver
Rx. The incoming ray makes an incident angle θ with the normal ωj to the reflecting surface. The ray
after reflection passes a receiver Rx at a certain distance making an angle β.

voxels along each of the Kω directions and apply finite difference methods. We found that this
approach yielded superior results compared to using the gradient available via autograd.

In general, the power from reflections depends not only on the total distance traveled but also on the
angle at which the reflection occurs at the voxel vj , and whether the reflected ray reaches the receiver
(Rx). We model this behavior through θ and β respectively which parameterize a nonlinear function
f . The incidence angle θ measures the angle between the Tx and the orientation ωj , and β denotes
the angle Rx makes with the reflected ray M (see fig 12). Note that if vj ∈ V , and if ωj is correct,
β = 0. The reflected ray M can be computed as shown in Eqn 15.

M = (vj − Tx)− 2 [(vj − Tx).ωj]ωj (15)

Here ωj is a unit vector.

E.3 Detailed network parameters

We assume the floorplan is an unknown shape inside a 512× 512 grid. For any ray or ray segment,
we uniformly sample nr = 64 voxels on it. We choose λ1 = λ2 = 0.01 for LoS training followed by
λ1 = λ2 = 0.1 for training the EchoNeRF model. We find that discretized opacity values to {0, 1}
improve our LoS model. We use the straight-through estimator [4] to avoid the unavailability of the
gradient at the discretization step. To help optimization and to encourage sparsity of the number of
reflections, we use only the top-k contributions (k=10) while training the reflection model. We use
the ADAM optimizer [17] with 1.0−4 learning rate. We train our models on NVIDIA A100 GPUs.

18

Figure 13: Comparison of Ground truth Tx locations indicated in red in the first column with the
estimated Tx locations shown in blue from starting from column two. The Rx positions used for the
estimation are marked in green.

E.4 Heatmap Segmentation Implementation Details

The raw trajectory signal power values are first interpolated to obtain a heatmap that provides a
smoother representation of the input measurements. Of course, interpolating for regions without
any data can lead to incorrect results, especially in larger unseen areas. A rule-based classifier is
then applied for segmentation, using two criteria: (1) RSSI values above a threshold to identify
potential room areas, and (2) smoothness of the RSSI signal, assessed through the second-order
derivative, to ensure continuity within rooms. The initial segmentation is refined using morphological
operations (via dilation and erosion) with a 3x3 kernel to smooth rough edges and eliminate small
components. Overlapping regions are resolved by comparing gradient magnitudes, followed by
additional morphological processing and connected component analysis to obtain the final, refined
segmentation.

Code: We plan to release our code, data, and baselines soon. In the meantime, Section E provides
sufficient details to allow readers to reproduce our results, especially since our network components
are simple MLPs.

19

F Evaluation on Additional Floorplans

Ground
Truth

Heatmap
Seg.

NeRF2

EchoNeRF
LoS

EchoNeRF

EchoNeRF
Signal
Predic-

tion

Figure 14: Qualitative comparison of Ground Truth floorplans against those inferred by baselines
Heatmap Segmentation and NeRF2. We note that while NeRF2 is unable to predcit any reasonable
floorplan, Heatmap Segmentationś shape is limited by the (convex hull of the) trajectory data (see
bottom left of the second row, first column). Additionally, it fails to capture critical details, such as
door openings. The 4th and 5th rows show floorplans by our proposed models EchoNeRF_LoS and
EchoNeRF. EchoNeRF_LoS captures the rough shape of the floorplan, especially the interior walls,
while EchoNeRF further improves these walls by adjusting their thickness and accurately correcting
their shape. EchoNeRF also correctly identifies the floorplan boundary, as evidenced in the last
column, where the exact boundary is captured just from the reflections. To understand the signal
propagation captured by EchoNeRF, we place one Tx in each floor plan randomly (that is not present
in the training data) and evaluate the signal power at discrete receivers. These Rxs are placed on a 2D
grid at equal intervals and the predicted signal power is converted into a heatmap. The bottom row
shows these inferred signal power heatmaps with the brightest point indicating the Tx location (as
the Rx closest to the Tx receives the highest power). EchoNeRF is not only able to predict the signals
well across the floorplan, but also capture the propagation paths i.e., LoS signal and the first-order
reflections. For instance, in the first column, the left portion of the center hall receives power only
due to the wall reflection from the left wall.

20

Ground
Truth

Heatmap
Seg.

NeRF2

EchoNeRF
LoS

EchoNeRF

EchoNeRF
Signal
Predic-

tion

Figure 15: Additional qualitative comparisons of Ground Truth floorplans against those inferred
by baselines Heatmap Segmentation and NeRF2. The 4th and 5th rows show floorplans by our
proposed models EchoNeRF_LoS and EchoNeRF with clearly identified walls and boundaries. The
bottom row shows inferred signal power heatmaps demonstrating EchoNeRF’s capability to learn
accurate signal propagation.

G Societal Impact Statement

We acknowledge that NeRFs hold significant potential for positive societal impact. Applications span
AR/VR, medical imaging, airport security, and education, where accurate 3D reconstructions can
greatly enhance functionality and understanding. However, our work on EchoNeRF also introduces
potential risks. In particular, the ability to infer detailed spatial layouts from limited sensory input
could be misused to access private or sensitive floorplan information. We emphasize the importance
of responsible use.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the proposed framework
EchoNeRF in teaching NeRFs to learn wireless reflections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

22

Justification: The paper does not contain any formal proofs and theorems. The necessary
derivations required for our two-stage training are shown in Section 3.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The necessary information required to reproduce the results is provided in the
Appendix Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to release our code soon. We will also release the datasets, simulator
setup, along with the baselines we have implemented. In the meantime, Section E provides
sufficient detail to allow readers to reproduce our results, especially since our network
components are simple MLPs.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The required information is presented in the Appendix Section E.3, Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Mean and variance are shown in Table 1 and robustness to noise in receiver
locations is checked in Table 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Necessary details are mentioned in the Appendix Section E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Included in Appendix G
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

25

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets used for our are cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

26

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs are not used for this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work and Research Scope
	EchoNeRF Model
	The LoS Model
	The Reflection Model
	Gradient Issues during Training
	Multi-stage Training

	Experiments
	Overall Summarized Results
	Qualitative Results: Visual floorplans, RSSI heatmap, and basic ray tracing
	Relaxing Assumptions & Sensitivity Study

	Follow ups and Conclusion
	Background on Channel Impulse Response
	Modelling Wideband Multipath Signal Power
	Approximating Channel with First-Order Reflections
	Relaxing Tx Assumptions
	Details on Model Training
	Linear-Scale RSSI Loss:
	Supervising Voxel Orientations
	Detailed network parameters
	Heatmap Segmentation Implementation Details

	Evaluation on Additional Floorplans
	Societal Impact Statement

