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Abstract

In-context learning (ICL) adapts Large Lan-001
guage Models (LLMs) to new tasks, without002
requiring any parameter updates, but few an-003
notated examples as input. In this work, we004
investigate selective annotation for ICL, where005
there is a limited budget for annotating exam-006
ples, similar to low-budget active learning (AL).007
Although uncertainty-based selection is unreli-008
able with few annotated data, we present COV-009
ERICL, an adaptive graph-based selection algo-010
rithm, that effectively incorporates uncertainty011
sampling into selective annotation for ICL.012
First, COVERICL builds a nearest-neighbor013
graph based on the semantic similarity between014
candidate ICL examples. Then, COVERICL015
employs uncertainty estimation by the LLM to016
identify hard examples for the task. Selective017
annotation is performed over the active graph018
of the hard examples, adapting the process to019
the particular LLM used and the task tackled.020
COVERICL selects the most representative ex-021
amples by solving a Maximum Coverage prob-022
lem, approximating diversity-based sampling.023
Extensive experiments on nine datasets and024
six LLMs show that, by incorporating uncer-025
tainty via coverage on the active graph, COVER-026
ICL (1) outperforms existing AL methods for027
ICL by 2–4.6% accuracy points, (2) is up to028
2× more budget-efficient than SOTA methods029
for low-budget AL, and (3) generalizes better030
across tasks compared to non-graph alterna-031
tives.032

1 Introduction033

Large Language Models (LLMs) have shown re-034

markable performance in various natural language035

tasks. One of the LLMs’ advantages is their ability036

to perform few-shot learning (Brown et al., 2020),037

where they can adapt to new tasks, e.g., topic clas-038

sification or sentiment prediction, via in-context039

learning (ICL). ICL uses few-shot labeled exam-040

ples in the form (input, label), e.g., (“Amazing041

movie!”, positive), to construct a prompt P .042
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Figure 1: COVERICL effectively combines diversity
and uncertainty sampling for low-budgeted ICL, outper-
forming their counterparts. Results are averaged over
seven tasks for GPT-J (6B) and GPT-Neo (1.3B) models
with budget B = 20 and 5-shot ICL inference.

Prompt P is used as a new input to the LLM, e.g., 043

“Amazing movie!: positive \n Awful acting: 044

negative \n Terrible movie:”, before mak- 045

ing predictions for the query (“Terrible movie”, 046

?). The new input enables the LLM to infer the 047

missing label by conditioning the generation on the 048

few-shot examples. 049

ICL is efficient as it does not require any param- 050

eter updates or fine-tuning, wherein users can lever- 051

age ICL to generate task-adaptive responses from 052

black-box LLMs. However, ICL is sensitive to the 053

input prompt (Lu et al., 2022) as careful prompt en- 054

gineering and ground-truth labeling are crucial for 055

good ICL performance (Yoo et al., 2022). Ground- 056

truth labeling requires expert annotators and can 057

be costly, especially for tasks in which the annota- 058

tors need to provide elaborate responses (Wei et al., 059

2022). Apart from lowering the labeling cost, care- 060

fully reducing the number of the ICL examples can 061

benefit inference costs and the LLM’s input context 062

length requirements. Consequently, we study the 063

following active learning (AL) problem: Given a 064

budget B, which examples do we select to annotate 065

and include in the prompt of ICL? 066

Selecting examples via semantic diver- 067

sity (Zhang et al., 2023) offers better generalization 068

while uncertainty sampling (Lewis and Gale, 069

1994) captures how well the LLM understands the 070

task. However, in ICL, the LLM is not fine-tuned 071

and the annotated data are used as few-shot 072
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input examples. Having few labeled examples073

at inference (as in few-shot ICL) results in a074

low-budget AL setting. It has been shown (Zhu075

et al., 2019; Hacohen et al., 2022; Yehuda et al.,076

2022; Rittler and Chaudhuri, 2023) that semantic077

diversity is is crucial in the low-budget AL as078

uncertainty estimation with few annotated data is079

unreliable. As a result, current selective annotation080

methods for ICL rely on semantic diversity (Zhang081

et al., 2023; Su et al., 2023; Zhang et al., 2024).082

To effectively utilize uncertainty sampling for083

ICL, we propose an adaptive graph-based algo-084

rithm, termed COVERICL (Section 4). Motivated085

by recent theoretical works (Han et al., 2023; Bai086

et al., 2023) that relate ICL with nearest-neighbor087

classifiers, COVERICL builds a nearest-neighbor088

graph that captures the semantic similarities be-089

tween candidate examples. Then, COVERICL iden-090

tifies the examples that the LLM is uncertain about091

(hard examples) and creates the active subgraph,092

which consists of the hard examples of interest.093

The active graph is task and model-aware, as un-094

certainty estimation depends on the LLM used and095

how well it understands the task. Having the ac-096

tive graph, COVERICL performs diversity-based097

sampling by formulating the well-studied Maxi-098

mum Coverage problem (MAXCOVER) over the099

graph. MAXCOVER selects the examples that best100

represent the task’s difficulty, captures interactions101

between hard examples, and can be approximately102

solved via greedy algorithms. Furthermore, (i) we103

extend COVERICL to an iterative approach that104

gradually selects harder examples, (ii) we prove105

that COVERICL approximates diversity sampling,106

and (iii) we propose a heuristic rule to initialize107

COVERICL’s hyperparameters.108

We conduct experiments on nine datasets across109

five NLP tasks (topic classification, sentiment anal-110

ysis, natural language inference, summarization,111

and math reasoning) with six LLMs of varying112

sizes (1.3B to 65B parameters). As shown in Fig-113

ure 1, COVERICL boosts ICL performance, im-114

proving performance by up to 4.4% accuracy points115

over diversity and uncertainty sampling. Our key116

contributions are the following:117

• COVERICL incorporates the LLM’s uncer-118

tainty by constructing the active graph of hard119

examples. The most representative and di-120

verse examples are selected via MAXCOVER121

to be annotated for ICL.122

• COVERICL is extended to an iterative ap-123

proach that gradually selects harder examples 124

(COVERICL+). Moreover, COVERICL has 125

theoretical guarantees that it approximates di- 126

versity sampling, while COVERICL’s hyper- 127

parameters can be determined via a heuristic 128

rule. 129

• COVERICL outperforms competing ICL 130

methods for selective annotation by up to 4.4% 131

points. By incorporating uncertainty via the 132

active graph, COVERICL is up to 2× more 133

budget-efficient than SOTA methods for low- 134

budget AL. 135

2 Related Work 136

Active Learning for NLP. Active learning (Set- 137

tles, 2009) for NLP has been well-studied (Zhang 138

et al., 2022b) with applications to text classifica- 139

tion (Schröder and Niekler, 2020), machine transla- 140

tion (Haffari et al., 2009), and name entity recogni- 141

tion Erdmann et al. (2019), among others. Ein-Dor 142

et al. (2020) studied the application of traditional 143

active learning techniques (Lewis and Gale, 1994; 144

Sener and Savarese, 2018) for BERT pretrained 145

models (Devlin et al., 2019), with many works 146

following up (Margatina et al., 2021; Schröder 147

et al., 2022) and (Yu et al., 2022, 2023). These 148

approaches fine-tune the model during different 149

active learning rounds, which allows the model to 150

incorporate information from the newly labeled ex- 151

amples into its parameters to gradually improve 152

its predictions. However, LLMs with billions of 153

parameters are used for ICL. In this case, comput- 154

ing gradient updates is costly and requires addi- 155

tional fine-tuning for every new task. Furthermore, 156

ICL acts as a nonparametric kernel regression (Han 157

et al., 2023; Bai et al., 2023). Designing active 158

learning for non-parametric classifiers has been re- 159

cently highlighted to be challenging (Rittler and 160

Chaudhuri, 2023), as the assumption that new infor- 161

mation is incorporated into the model’s parameters 162

does not hold. 163

Selective Annotation for ICL. In this work, we 164

focus on the low-budget setting, similar to (Su et al., 165

2023; Zhang et al., 2024), where we are given an 166

unlabeled set to select examples from. As there 167

are no to few annotated examples, it is challeng- 168

ing for the LLM to understand the ICL task. Most 169

of the current approaches of annotating new ex- 170

amples for ICL (Zhang et al., 2022a; Li and Qiu, 171

2023; Nguyen and Wong, 2023; Shum et al., 2023; 172

Ma et al., 2023) assume a high-resource setting, 173
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Figure 2: Our studied problem setting: How to select L
for ICL inference? Given an unlabeled set U and a fixed
budget B, the goal is to select the B most informative
examples for annotation (set L) by an oracle. Examples
in L are used to for k-shot ICL inference with an LLM
M .

where a large set of ICL examples is already anno-174

tated (validation set). The validation set is lever-175

aged for measuring the informativeness of each176

individual example as well as for hyperparameter177

tuning. For example, Zhang et al. (2022a) employ178

reinforcement learning, which requires one set of179

labeled examples for policy training and another180

set of labeled examples for reward estimation. This181

limits the applicability in practical low-resource182

scenarios (Perez et al., 2021), where annotations183

are costly to obtain.184

3 Problem Statement & Background185

We illustrate the overall problem setting in Fig-186

ure 2. Given an unlabeled set U = {xi}Ni=1 and187

a fixed budget B ∈ Z+, the goal is to select a188

subset that contains B selected examples. The189

B selected examples {xi}Bi=1 are queried to an190

oracle (i.e., human annotators) for their ground-191

truth annotations {yi}Bi=1, forming the annotated192

set L = {(xi, yi)}Bi=1. During inference with a193

target LLM M , set L provides ICL examples to194

construct a new prompt P for the LLM. Due to195

context-length limits or inference cost considera-196

tions, we consider a k-shot ICL inference, where197

k < B. The k-shot examples are used to construct198

a new prompt P as input to the LLM by199

P = π(x1, y1)⊕· · ·⊕π(xk, yk)⊕π(xtest, ∗). (1)200

Template π denotes a natural language verbaliza-201

tion for each demonstration (x, y) and it also ex-202

presses how the labels y map to the target tokens.203

We elaborate on selective annotation in practice:204

1. Selective annotation methods identify the B 205

examples to be annotated. 206

2. Human experts (oracle) are employed to 207

annotate the examples; this can be a time- 208

consuming process depending on the task 209

(e.g., math tasks require writing elaborate 210

arithmetic steps). 211

3. LLMs performs ICL inference using the an- 212

notated examples. Inference is the same re- 213

gardless of the selective annotation method 214

used. 215

Selective Annotation. Selection algorithms dif- 216

fer at the way to choose the examples to be anno- 217

tated in L. For instance, random selection selects 218

B random examples to be annotated in L, while 219

diversity-based sampling, such as kmeans (Mac- 220

Queen et al., 1967), select the B most representa- 221

tive examples in the embedding space. Uncertainty- 222

based sampling (Lewis and Gale, 1994) selects B 223

examples the LLM is the most uncertain about to be 224

annotated by the oracle. While uncertainty-based 225

methods require more resources for Step (1) above, 226

it is a one-time cost before human annotation and 227

inference. 228

Inference. After the B selected ICL examples 229

are annotated by the oracle, inference is the same 230

for all selection algorithms (random, diversity- 231

based, etc.), using the target LLM. To determine 232

which k-shot ICL examples to use for a test in- 233

stance xtest, most approaches (Liu et al., 2021; Ru- 234

bin et al., 2022; Margatina et al., 2023) employ a 235

k-NN retriever that selects the top-k examples from 236

L, e.g., (xk, yk), for xtest based on their semantic 237

similarity using models such as SBERT (Reimers 238

and Gurevych, 2019). 239

3.1 ICL as Low-Budget AL 240

To understand the impact of the ICL examples on 241

model predictions, we express ICL inference as 242

a non-parametric kernel regression, following the 243

theoretical works from Han et al. (2023); Bai et al. 244

(2023). The prediction for the test instance xtest is 245

related to 246

ỹtest =

∑k
i=1 yiKD(xtest, xi)∑k
i=1KD(xtest, xi)

, (2) 247

where KD(xtest, xi) is a kernel that measures the 248

similarity between xtest with each of the k-shot 249

retrieved instance xi, which depends on the pre- 250

training data distribution D. 251
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Figure 3: COVERICL algorithm for selective ICL annotation. CoverICL leverages the LLM’s uncertainty to
construct the active nearest-neighbor graph, which is model and task-aware. Then, COVERICL performs diversity-
based sampling over the active graph by solving a MAXCOVER problem. COVERICL+ performs the selection
process iteratively, where the LLM’s uncertainty is re-estimated.

ICL acts similar to non-parametric kNN classi-252

fiers (Equation 2) and designing active learning253

strategies for such classifiers has been recently254

highlighted to be challenging (Rittler and Chaud-255

huri, 2023). New information cannot be directly256

incorporated into the model’s parameters, but can257

only be provided as few-shot input examples, re-258

sulting in a low-budget AL setting. It has been259

shown (Zhu et al., 2019; Hacohen et al., 2022;260

Yehuda et al., 2022; Rittler and Chaudhuri, 2023)261

that diversity-based sampling is crucial in the low-262

budget AL as uncertainty estimation with few an-263

notated data is unreliable.264

4 COVERICL: Improving Selective265

Annotation for ICL266

Using the LLM’s feedback, e.g., via uncertainty267

sampling, adapts the selective annotation process268

to the underlying model and task. However, uncer-269

tainty estimation with few annotated examples, as270

in the low-budget AL setting, is unreliable.271

To effectively utilize uncertainty sampling for272

ICL, we propose an adaptive graph-based algo-273

rithm, termed COVERICL. The overall framework274

is presented in Figure 3. Motivated by recent275

works that relate ICL with nearest-neighbor clas-276

sifiers (Section 3.1), COVERICL builds a nearest-277

neighbor graph that captures the semantic similar-278

ities between candidate examples. Then, COVER-279

ICL identifies the examples that the LLM is uncer-280

tain about (hard examples) and creates the active281

subgraph, which consists of the hard examples of282

"Amazing movie!" : positive
"Awful acting": negative
"Terrible plot": negative -5.73

positive 1.15

"Amazing movie!" : positive
"Awful acting": negative
"Special acting": negative  3.35

positive 2.45

Easier 
Example

Harder 
Example

LLM 
(frozen)

0-shot / k-shot ICL

NLL

NLL

higher values -> higher uncertainty

NLL: Negative Log-Likelihood

Figure 4: Uncertainty estimation by LLM M with ICL.

interest. The active graph is task and model-aware, 283

as uncertainty estimation depends on the LLM used 284

and how well it understands the task. Having the 285

active graph, COVERICL performs diversity-based 286

sampling by formulating the well-studied Maxi- 287

mum Coverage problem (MAXCOVER). Addition- 288

ally, our COVERICL+ variant (Section 4.4) seeks 289

to further improve the LLM’s uncertainty estima- 290

tions and predictions via an iterative framework, 291

similar to having multiple AL iterations. 292

4.1 Graph Construction 293

We build the m-nearest neighbors graph Gm, where 294

the nearest neighbors are determined based on a 295

semantic similarity, e.g., via SBERT embeddings. 296

We compute the embedding of each example xi and 297

determine its m closest neighbors based on cosine 298

similarity of the embeddings. Graph Gm does not 299

depend on the LLM used for ICL. 300

4.2 Active Graph via Uncertainty 301

Hard Examples. First, we describe how we use 302

uncertainty estimation from the LLM to identify 303

the hard examples, providing an example in Fig- 304

ure 4. We assume we are given an initially small 305
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annotated pool L0 to construct k-shot ICL prompts306

(if L0 = ∅, it is zero-shot ICL) for each xi ∈ U .307

The k-shot input is given to the LLM along with a308

query xi and the LLM makes predictions or gener-309

ates outputs. Based on the negative loglikehood of310

the predicted label (for classification tasks) or the311

average logprobabilites of the generated tokens (for312

generation tasks), we compute an uncertainty score313

ui for each unlabeled example xi ∈ U . We sort314

the examples xi ∈ U based on their uncertainty315

scores ui, and mark the top-Nθ out of N total ex-316

amples as hard examples, which are collected in Uh.317

Here, Nθ = ⌊θN⌋ and θ ∈ [0, 1] is a hyperparame-318

ter with default value θ = 0.5, which denotes the319

portion of the examples that we consider as hard320

ones.321

Active Graph. We are interested in hard examples322

for the LLM, which are collected in set Uh, as ex-323

plained above. For each xi ∈ U , we construct its324

egonet Si (1-hop or 2-hop neighbors), where we325

consider edges of Gm that direct towards xi from326

other hard examples xj ∈ Uh. This captures the327

dependence of other hard examples on xi. As a328

result, the active graph is the subgraph that consists329

of hard examples and their semantic dependencies.330

Because the active graph is constructed via uncer-331

tainty, it captures how well the LLM understands332

the task (model-aware) as well as the task’s diffi-333

culty (task-aware).334

4.3 Selection via Active Graph MAXCOVER335

Having employed uncertainty for the construction336

of the active graph, COVERICL performs diversity-337

based sampling over the active graph. COVER-338

ICL solves the Maximum Coverage (MAXCOVER)339

problem (Khuller et al., 1999) over the constructed340

graph, which selects the most representative and341

diverse examples.342

Formally, MAXCOVER takes N sets343

{S1, . . . , SN} and a number B as input.344

Each set includes some examples, e.g.,345

Si = {x1, x2, . . . , xn} and the intersection346

of two sets is not necessarily empty, while347

the goal is to select the B most representative348

sets that include (cover) as many examples as349

possible. We assume that if an example is marked350

as covered by another selected set, it conveys351

little new information to the LLM. Given the352

hard examples of Uh and the egonet Si of each353

example (Section 4.2), the MAXCOVER problem354

Algorithm 1 Greedy approximation for MAX-
COVER.

1: Input: Examples Uh, Sets {S1, . . . , SN}, Bud-
get B, L = ∅.

2: while B not exhausted do
3: Pick the set Si that covers the most uncov-

ered examples in Uh. Example xi is selected
for annotation, L = L ∪ {xi}.

4: Mark examples in Uh of the chosen set Si

as covered.
5: end while
6: Output: Return L.

is expressed as 355

maximize
∑

xj∈Uh

cj , (3) 356

357

where cj ∈ {0, 1}, si ∈ {0, 1}, (4) 358

N∑
i=1

si ≤ B,
∑
xj∈Si

si ≥ cj . (5) 359

Equation 3 performs diversity-based selection by 360

maximizing the coverage of the examples in Uh. 361

The indicator variable cj ∈ {0, 1} denotes if exam- 362

ple xj is covered or not. Variable si denotes if set 363

Si is selected. Selecting set Si, i.e., MAXCOVER 364

marks si = 1, means that we select example xi 365

to be annotated in L. Then, all examples in the 366

egonet of xi are marked as covered, assuming they 367

convey little new information to the model for the 368

task. Equation 5 ensures that we select at most B 369

sets (first part) and covered examples belong to at 370

least one selected set (second part). 371

Greedy Solution. The MAXCOVER problem 372

is known to be NP-hard (Vazirani, 2001). A nat- 373

ural greedy solution for the MAXCOVER chooses 374

sets according to one rule: at each stage, choose 375

a set that contains the largest number of uncov- 376

ered elements. This approximation algorithm is 377

summarized in Algorithm 1, and is well-known 378

to approximately solve MAXCOVER and can be 379

further improved due to its submodularity (Krause 380

and Guestrin, 2005). 381

4.4 Further Discussions 382

COVERICL+. COVERICL performs uncertainty- 383

guided diversity sampling over the active graph. 384

Our variant COVERICL+ considers uncertainty es- 385

timation more important for the task and encour- 386
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Table 1: Performance comparison (accuracy in %) of different selective annotation methods for ICL. The budget is
B = 20 and we perform 5-shot ICL inference with GPT-J (6B) and GPT-Neo (1.3B), averaging the results.

Type Method Topic Classification Sentiment Analysis Natural Language Inference Avg.
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random Random 64.17 52.01 75.06 80.92 50.58 66.75 40.29 61.40

Uncertainty ∗Hardest (Lewis and Gale, 1994) 68.62 42.64 77.08 81.18 54.10 64.30 38.15 60.87

Diversity
Fast-Votek (Su et al., 2023) 67.96 48.05 74.39 79.48 51.82 66.21 39.19 61.01
IDEAL (Zhang et al., 2024) 71.78 42.12 75.78 78.01 54.62 64.77 38.47 60.79

∗Votek (Su et al., 2023) 67.52 49.48 77.07 80.47 52.08 67.77 39.45 61.98

Diversity+Uncertainty

∗Patron (Yu et al., 2023) 72.65 46.74 76.69 83.33 54.03 64.12 38.01 62.22
∗Active-Kmeans 72.26 49.44 80.99 83.39 53.25 65.62 39.19 63.45
∗COVERICL (Ours) 73.92 53.64 81.23 84.11 55.01 68.61 41.66 65.45

*Denotes model-aware methods that consider the target LLM.
Full results are provided in Appendix D.1 and show that COVERICL is significantly better (Wilcoxon signed-rank test) than Patron at p-value
< 0.05.

ages the LLM to give new predictions when a cer-387

tain number of hard examples are covered. We388

introduce a new hyperparameter T , which denotes389

the desired number of iterations until we exhaust390

the budget. At each iteration, we select ⌊B/T ⌋ new391

examples that are annotated by the oracle and that392

are used by the LLM to gradually identify harder393

examples. We present COVERICL+ in detail in394

Appendix A.1.395

Theoretical Analysis. We provide a theoretical396

analysis that COVERICL approximates diversity-397

based sampling over a subsampled graph (the active398

graph). Our theorem and its proof are provided in399

Appendix A.2. The theorem suggests that COV-400

ERICL can approximate diversity-based selection401

when the most representative examples are well-402

separated, even when uncertainty sampling is not403

helpful.404

Heuristic Rule. As there is no validation set405

for hyperparameter tuning, we propose a heuristic406

rule to automatically adjust the hyperparameter m,407

that is used to create the m-nn graph Gm. The408

heuristic rule (see Appendix A.3) takes advantage409

of the active graph and the minimum number of410

hard examples that need to be covered. The number411

of neighbors m is adjusted so that MAXCOVER412

covers at least N̂θ hard examples, N̂θ < Nθ, before413

we exhaust the budget B. This ensures that the414

selected examples are representative enough of the415

hard examples.416

5 Experimental Setting417

With our experimental analysis, we address the418

following research questions (RQs):419

RQ1. How does COVERICL compare with other420

ICL selective annotation methods across diverse421

tasks?422

RQ2. How effective is COVERICL’s active423

graph coverage for low-budget AL? 424

RQ3. How sensitive is COVERICL to the graph 425

construction? 426

Datasets. We perform empirical evaluation with 427

nine NLP datasets that cover well-studied tasks, 428

such as topic classification (Zhang et al., 2015; 429

Hovy et al., 2001), sentiment analysis (Socher et al., 430

2013; McAuley and Leskovec, 2013), natural lan- 431

guage inference (Bentivogli et al., 2009; Dolan 432

et al., 2004; Williams et al., 2018), text summariza- 433

tion (Narayan et al.) and math reasoning (Cobbe 434

et al., 2021). We provide additional details of these 435

datasets in Appendix C. 436

Competing Methods. All compared methods 437

differ only on the “Selective Annotation” phase 438

(Figure 2), while inference is the same for all 439

(see also Appendix B). We use the following ap- 440

proaches as baselines for comparison: (i) Random 441

performs random example selection for annotation. 442

(ii) Pseudo-labeling uses the LLM to generate 443

pseudo-labels for the unlabeled instances as ad- 444

ditional annotated data. (iii) IDEAL (Zhang et al., 445

2024) is a diversity-based sampling strategy that 446

selects representative examples in the similarity 447

space. (iv) Votek (Su et al., 2023) accounts for the 448

model’s feedback. It sorts the examples based on 449

the model’s confidence scores and stratifies them 450

into B equally-sized buckets. It selects the most 451

representative example from each bucket. (v) Fast- 452

Votek (Su et al., 2023) is Votek but without ac- 453

counting for the target LLM. (vi) Hardest (Lewis 454

and Gale, 1994) resembles the uncertainty sam- 455

pling strategy, where the examples that the model 456

is the most uncertain about are selected. (vii) Pa- 457

tron (Yu et al., 2023) is the SOTA method that 458

combines uncertainty and diversity sampling, but 459

is designed for finetuned-based NLP. Additionally, 460

we include (viii) Active-Kmeans method (Ap- 461

pendix A.4) as further ablations, which employs 462
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Falcon-40B LLaMa-65B

Summarization (RougeL)
Zero-shot 18.50±0.61 15.26±0.69

Votek 20.83±0.05 23.38±0.84

COVERICL 21.42±0.68 24.67±0.45

Math Reasoning (Accuracy)
Zero-shot 36.58±3.14 32.54±1.86

Votek 37.23±1.75 45.04±1.47

COVERICL 39.58±3.01 49.08±2.89

(b) Generation tasks (XSUM,
GSM8K).

Figure 5: Performance comparison across different LLMs and tasks.

Kmeans instead of COVERICL’s graph.463

Implementation. We experiment with six LLMs464

of varying sizes (1.3B to 65B parameters), includ-465

ing GPT-J (Wang and Komatsuzaki, 2021), Mo-466

saic (MosaicML, 2023), Falcon (Penedo et al.,467

2023), and LLaMa (Touvron et al., 2023) models,468

all of which are open-source and allow the repro-469

ducibility of our research. Unless otherwise stated,470

we set k = 5, B = 20 and we obtain embeddings471

for semantic similarity via SBERT (Reimers and472

Gurevych, 2019). Please refer to Appendix C.2 for473

more specifics.474

Regarding COVERICL’s implementation, we con-475

struct m = 5 nearest-neighbor graphs for COVER-476

ICL, and m = 15 for COVERICL+. The egonet477

Si of each candidate example xi, which is used as478

input to the MAXCOVER problem, includes 1-hop479

neighbors for COVERICL+ and 2-hop COVERICL.480

The default number of iterations T for COVER-481

ICL+ is T = 2. As the threshold hyper-parameter482

θ, we have θ = 0.5, i.e., 50% of the examples are483

considered as hard.484

6 Results & Studies485

6.1 RQ1: COVERICL’s Performance across486

Tasks487

Table 1 presents performance results of different se-488

lective annotation methods for classification tasks.489

We include tasks ranging from topic classification,490

sentiment analysis, and natural language inference.491

We average the results over two LLMs of 1.3B and492

6B sizes. As Table 1 shows, COVERICL is the493

method that achieves the best performance, with494

an improvement of 2.00–4.66% accuracy points495

over competing methods. Methods that give more496

importance to uncertainty sampling (Patron, Active-497

Kmeans, COVERICL) perform better on topic clas-498

sification and sentiment analysis tasks, showing the499

importance of combining diversity and uncertainty-500

based selection for ICL. For natural language in-501

ference tasks, diversity-based selection is more502
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Figure 6: ICL inference results (GPT-Neo) with dif-
ferent uncertainty-based selective annotation methods.
COVERICL+ performs the best over all tasks.

important, where methods such as Votek outper- 503

form other uncertainty-based baselines. Overall, 504

COVERICL and Active-Kmeans are the best per- 505

forming methods, but selection via graph coverage 506

(COVERICL) instead of kmeans (COVERICL) im- 507

proves accuracy by 0.24–4.20% in all tasks. 508

Figure 5 compares selective annotation methods 509

across different LLMs and tasks. Figure 5a shows 510

that COVERICL+ generalizes well across different 511

target LLMs. The best performance is achieved 512

for the Mosaic and GPT-J models, where COV- 513

ERICL+ outperforms Votek by 4.09% accuracy 514

points, when B = 20. In addition, COVERICL+ 515

can considerably reduce the annotation and infer- 516

ence costs. In all cases, COVERICL+ needs only 517

B = 10 annotated examples to outperform Patron 518

and Random, which use B = 20 annotated exam- 519

ples. 520

Figure 5b provides results for generation tasks 521

with larger LMs (40B and 65B parameters). On 522

the challenging reasoning tasks, COVERICL out- 523

performs Votek and zero-shot ICL by 4.04% and 524

16.54% in accuracy, respectively. Votek selects ex- 525

amples that are both easy and hard for the model, 526

which do not always provide new information to 527

the model. On the other hand, COVERICL selects 528

representative examples of difficult cases, which 529

help the LLM to better understand the task. 530

Results with additional LLMs and tasks are pro- 531

vided in Appendix D.2. 532
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Table 2: Performance comparison across different semantic similarity embedding models. Semantic similarity
facilitates diversity sampling as well as retrieval-based ICL inference.

Semantic Similarity −→ SBERT-all-mpnet-base RoBERTa-nli-large-mean-tokens BERT-nli-large-cls-pool Avg.
TREC SST2 Amazon TREC SST2 Amazon TREC SST2 Amazon

Pseudo-labeling 48.56±6.33 69.13±3.87 70.96±3.35 33.98±3.68 74.08±4.40 81.11±4.14 41.27±4.24 77.47±1.60 81.63±2.49 64.24
Random 54.68±1.68 68.48±1.87 73.95±2.03 37.23±2.30 74.21±3.50 84.46±3.21 34.75±2.41 72.65±5.82 80.20±3.34 64.51
Votek 54.81±0.49 73.69±9.05 75.13±0.98 37.77±4.65 76.16±2.23 84.11±1.28 42.43±3.34 80.85±2.09 83.59±1.77 67.61
Active-Kmeans 48.24±0.98 77.86±1.02 75.77±3.63 38.12±5.74 78.12±5.30 85.93±2.30 38.15±3.10 78.64±2.78 85.80±1.75 67.40
COVERICL 55.33±2.57 79.68±2.47 77.73±2.23 39.06±3.37 81.11±1.50 85.15±0.55 44.06±2.49 80.85±2.83 84.65±3.52 69.74

Table 3: Graph ablation study on hyper-parameter m,
which controls the number of graph neighbors, consid-
ering 1-hop or 2-hop sets. The values of m are adjusted
via our heuristic rule (Appendix A.3).

AGNews SST2 Amazon

Votek 62.77±4.82 73.69±9.05 75.13±0.98

COVERICL
m = 15 (1-hop) 68.61±1.02 79.42±1.28 77.34±2.73

*m = 5 (2-hop) 70.95±1.87 79.68±1.77 77.73±2.23

COVERICL+ (T = 2)
*m = 15 (1-hop) 69.39±1.35 79.03±2.47 77.08±1.50

m = 5 (2-hop) 70.43±1.60 77.73±1.15 76.43±2.55

*Denotes the default value.

6.2 RQ2: Active Graph’s Impact on533

Low-Budget AL534

In this section, we experiment with different535

uncertainty-based methods on the low-budget AL.536

We employ a small GPT-Neo (1.3B) model, which537

is sensitive to the number of ICL examples an-538

notated. We range the budget size from 5 to 45,539

incrementing the budget with 10 more annotations540

for 4 steps. During inference, we use as many541

ICL annotated examples as the context-length limit542

of GPT-Neo allows. Figure 6 presents the results.543

COVERICL+ performs the best in all cases, where544

the average accuracy improvement over the best545

baseline is 7.09% for topic classification, 1.86% for546

sentiment analysis, and 2.36% for natural language547

inference. It is noteworthy that Active-Kmeans548

is the best-performing baseline when B = 45,549

showing the benefits of combining diversity and550

uncertainty-based selection. When the budget is551

limited, e.g., B = 15, COVERICL+ outperforms552

Active-Kmeans significantly, which shows the ben-553

efit of COVERICL’s active graph over non-graph554

baselines, such as kmeans.555

6.3 RQ3: Ablation Studies on Graph556

Sensitivity557

In the previous experiments, we use SBERT embed-558

ding to calculate semantic similarity between exam-559

ples during the graph construction. In the following560

experiment, we use different models for calculating561

semantic embeddings. Table 2 shows results when562

we experiment with SBERT, BERT (Devlin et al.,563

2019) and RoBERTa (Liu et al., 2019) encoders. 564

The target LLM is the GPT-Neo (1.3B) model. Us- 565

ing different encoder models affects the prompt for 566

each test query and thus, ICL performance varies. 567

For instance, SBERT achieves a maximum aver- 568

age performance of 55.33% and 77.73% for TREC 569

and Amazon, respectively, while BERT achieves 570

44.06% and 85.80%. Despite the encoder choice, 571

COVERICL performs overall the best, outperform- 572

ing Votek, the second-best method, by 2.13% accu- 573

racy points. 574

Table 3 shows an ablation study on the hy- 575

perparameters that control the nearest-neighbor 576

graph construction. We experiment with the val- 577

ues obtained by our proposed heuristic rule (Ap- 578

pendix A.3). As Table 3 shows, different hyperpa- 579

rameter values achieve overall good performance 580

for both COVERICL and COVERICL+. In some 581

cases, there is no performance drop, while COVER- 582

ICL+ works better with 1-hop egonets. 583

Further graph ablations are provided in Appen- 584

dices D.3, D.4. 585

7 Conclusions 586

In this work, we investigate selective annotation for 587

ICL and we introduce COVERICL that combines 588

diversity and uncertainty-based selection. Our 589

key contributions are highlighted as follows: (1) 590

COVERICL incorporates the LLM’s uncertainty 591

by constructing the active graph of hard exam- 592

ples. The most representative and diverse examples 593

are selected via MAXCOVER to be annotated for 594

ICL. (2) COVERICL is extended to an iterative 595

approach that gradually selects harder examples 596

(COVERICL+). Moreover, COVERICL has theoret- 597

ical guarantees that it approximates diversity sam- 598

pling, while COVERICL’s hyperparameters can be 599

determined via a heuristic rule. (3) COVERICL 600

outperforms competing ICL methods for selective 601

annotation by up to 4.4% points. Incorporating un- 602

certainty via COVERICL’s active graph is shown 603

to is up to 2× more budget-efficient than SOTA 604

methods for low-budget AL. 605
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8 COVERICL Limitations606

We list some of our assumptions that may limit607

COVERICL if they are not satisfied. COVERICL608

relies on embedding methods to determine seman-609

tic diversity, similar to many competing methods610

(except for Random and Hardest). While COVER-611

ICL is shown to be robust to different embedding612

models (Section 6.3), it can still suffer if the se-613

mantic space of the test is wildly different from614

the annotation pool space. Moreover, the graph/set615

construction is a heuristic approach and does not616

account for cases where adversarial examples are617

injected into the pool in order to degrade perfor-618

mance.619
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A COVERICL881

Algorithm 2 summarizes the overall COVERICL al-882

gorithm. The greedy solution for MAXCOVER may883

be terminated when every hard example is covered,884

regardless of whether the budget B is exhausted.885

In this case, diversity selection captures the diffi-886

culty of the task, and not all hard examples are887

equally useful. Thus, we add the selected examples888

to the current annotation set L′, and re-evaluate the889

model’s feedback to define the new hard set U ′
h.890

Algorithm 2 is terminated when the total budget B891

is exhausted.892

A.1 COVERICL+: Iterative Selection893

COVERICL performs uncertainty-guided diversity894

sampling over the active graph. Our variant COV-895

ERICL+ considers uncertainty estimation more im-896

portant for the task and encourages the LLM to897

give new predictions when a certain number of898

hard examples are covered. We introduce a new899

hyperparameter T , which denotes the desired num-900

ber of iterations until we exhaust the budget. At901

each iteration, we select ⌊B/T ⌋ new examples that902

are annotated by the oracle and that are used by the903

LLM to gradually identify harder examples. Fur-904

thermore, COVERICL+ avoids selecting examples905

from sets that contain few hard examples, e.g., out-906

liers, or sets that belong to isolated sparse regions907

by a re-weighting schema for its MAXCOVER prob-908

lem. Whenever a hard example is covered, instead909

of being marked as covered, COVERICL+ reduces910

its weight.911

Dynamically updating the weights of each exam-912

ple does not satisfy the submodularity property of913

MAXCOVER, which is satisfied for fixed weights.914

Nevertheless, such that we can use the greedy al-915

gorithm to approximate the optimal solution, we916

propose a re-weighting trick by reusing Uh multi-917

ple times. Specifically, we copy the set Uh multiple918

times, i.e., to U0
h ,U1

h , . . . ,U t
h, etc., where different919

sets have different weights for their elements. If920

hard example xtj is covered in U t
h, then we use its921

weights from the other sets. Formally, we optimize922

maximize
∑
t

∑
xt
j∈Ut

h

wtctj , (6)923

where we set the weights wt = 10−t, so that wt ≈924

wt + wt+1 + · · · . In the beginning, every hard925

example of Uh has weight w0 = 1 . If one example926

is covered in Uh, i.e., cj = 1, then its new weight is927

set to w1 = 0.1. The constraint at each iteration for928

solving Equation 6 is
∑Nθ

j=1 sj ≤ ⌊B/T ⌋. Then, 929

we perform uncertainty estimation with the model 930

M based on the newly annotated examples, before 931

we solve MAXCOVER with the remaining budget. 932

Algorithm 2 COVERICL Algorithm.

1: Input: Model M , Unlabeled Set U , Budget B,
Similarity Space S for k-NN Retriever.

2: Optional: Initial set L0, else L0 = ∅.
3: Hyperparameters: threshold θ, number of

neighbors m.
4: Output: Annotated Set L.

5: Bcur = 0,L = L0.
6: Create global graph Gm.
7: while Bcur < B do
8: for xi ∈ U do
9: Retrieve (at most) k examples from L

based on similarity S .
10: Use model M to obtain an uncertainty

score ui for xi with k-shot ICL.
11: end for
12: Determine hard set Uh given scores {ui}Ni=1

and threshold θ.
13: Create sets Si given Uh and Gm.
14: {x∗i }B

∗
i=1 = Greedy-MAXCOVER(

U , {Si}, B −Bcur

)
.

15: Add the selected {x∗i }B
∗

i=1 to L = L ∪
{x∗i }B

∗
i=1 (querying the oracle) and remove

them from U = U \ {x∗i }B
∗

i=1.
16: Bcur = Bcur +B∗.
17: end while

A.2 Theoretical Analysis 933

COVERICL constructs a m-nearest neighbor graph 934

Gm. Let Ri denote the set of neighbors of each 935

node i ∈ N . COVERICL creates sets Si by 936

excluding the neighbors nodes v /∈ Uh that do 937

not correspond to hard examples. The coverage 938

of sets {S1, . . . , SN} is optimized by the MAX- 939

COVER problem in Algorithm 1. Let a vanilla 940

MAXCOVER solve the coverage of the original sets 941

{R1, . . . ,RN} with Uh = U . 942

Theorem 1. If the B selected sets by solving a 943

vanilla MAXCOVER on sets {Ri}Ni=1 are non- 944

overlapping i.e., Ri ∩ Rj = ∅ with i ̸= j, then 945

there ∃ Uh such that COVERICL’s MAXCOVER 946

problem has the same solution. 947

Proof. If the vanilla MAXCOVER problem and 948

COVERICL’s MAXCOVER have the same solu- 949
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tion, it means that they select the same examples950

{x(b)}Bb=1 for annotation. We prove the theorem by951

induction.952

Base Case: At the first iteration of the MAX-
COVER, we have budget B = 1. As there are no
covered elements, the vanilla MAXCOVER selects
the set Ri with the most elements, i.e.,

x(1) := xi = argmax
i∈N

|Ri|.

Now, solving MAXCOVER over the sets Si requires

xi = argmax
i∈N

|Ri| = argmax
i∈N

|Si|

in order to have the same selected example x(1).
This holds, for instance, if Uh removes a portion of
node neighbors from Ri (randomly or selectively)
such that the ordering of sets by their number of
elements remains the same. In that case since the
relative order by number of elements is preserved,
we have

argmax
i∈N

|Ri| = argmax
i∈N

|Si|.

Thus, ∃ Uh that satisfies the condition of Theorem 1953

when B = 1.954

Induction Hypothesis: When the budget is B −955

1, we assume that solving MAXCOVER over sets956

{Ri}Ni=1 and sets {Si}Ni=1 have the same solution957

{x(b)}B−1
b=1 .958

Induction Step: After selecting B − 1 sets
{R(b)}B−1

b=1 , the vanilla MAXCOVER optimization
chooses the B-the set R(B). As the B selected
sets are non-overlapping (condition in Theorem 1),
it means that the B-th selected set R(B) does not
contain any elements that are covered by the pre-
viously selected sets {R(b)}B−1

b=1 . Similarly, due
to the induction hypothesis, COVERICL selects
the same examples and because Si ⊂ Ri ∀i, the
selected sets {S(b)}Bb=1 by COVERICL are also
non-overlapping. As the B-th selected example is
the solution to the B-th MAXCOVER iteration, it
must have the largest number of elements, i.e.,

x(B) := xi = argmax |Ri|

and
x̂(B) := x̂k = argmax |Sk|,

where x̂(B) is the example selected by COVERICL.959

If x̂(B) ̸= x(B), that means that there is a set Sk that960

has more elements |Sk| than |Si| that corresponds961

Table 4: Ablation study using (i) the estimated uncer-
tainty scores by the LLM and (ii) random uncertainty
scores for uncertainty-based methods at AGNews and
SST2 datasets.

AGNews SST2
uncertainty → LLM random LLM random
estimation scores scores scores scores

Patron 69.39±1.76 64.18±1.47 78.64±4.16 74.86±4.58

COVERICL 70.95±1.87 67.70±1.80 79.03±2.47 78.77±5.11

to vanilla MAXCOVER selection xi, i.e., |Sk| > 962

|Si|. 963

However, since Uh preserves the order by num- 964

ber of elements (Base Case) and the selected sets 965

by COVERICL do not overlap (Induction Hypothe- 966

sis), |Sk| ≯ |Si| and leads to a contradiction. Thus, 967

x̂(B) = x(B), and we have the same solution for 968

the vanilla MAXCOVER and COVERICL’s MAX- 969

COVER problems. 970

Theorem 1 suggests that COVERICL can ap- 971

proximate diversity-based selection when the most 972

representative examples are well-separated. This 973

benefits cases where the LLM’s uncertainty scores 974

are not indicative for the task (similarly to consid- 975

ering all examples in U as hard ones) and cases 976

where diversity sampling is crucial for good ICL 977

performance. 978

To empirically verify Theorem 1, we experiment 979

with a target GPT-Neo (1.3B) LLM where uncer- 980

tainty scores are generated (i) by the LLM itself 981

and (ii) randomly. As a baseline, we use Patron (Yu 982

et al., 2023), which is designed for fine-tuned based 983

NLP and assumes the uncertainty scores are indica- 984

tive for the task. As Table 4 shows, COVERICL is 985

robust due to its core diversity-based selection and 986

shows minor performance degradation when using 987

random uncertainty scores. On the other hand, Pa- 988

tron underperforms COVERICL by up to 3.91% 989

accuracy points as it does not adapt its selection 990

process when diversity sampling is more important. 991

A.3 Heuristic Rule 992

As there is no validation set for hyperparameter 993

tuning, we propose a heuristic rule to automati- 994

cally adjust the hyperparameter m, that is used to 995

create the m-nn graph Gm. Given the number of 996

hard examples Nθ = ⌊θN⌋ (Section 4.2), where 997

θ ∈ [0, 1], the number of neighbors m is adjusted 998

so that MAXCOVER covers at least N̂θ hard ex- 999

amples, N̂θ < Nθ, before we exhaust the budget 1000

B. This ensures that the selected examples are 1001

representative enough of the hard examples. 1002
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Assuming the graph has reciprocal edges, each1003

node has approximately ⌈θm⌉ and ⌈θ2m2⌉ hard1004

examples as neighbors for 1-hop and 2-hop sets,1005

respectively. Thus, we can cover approximately1006

⌈Bθm⌉ and ⌈Bθ2m2⌉ hard examples if MAX-1007

COVER has budget B. If MAXCOVER needs to1008

cover at least N̂θ hard examples before terminated,1009

we need to satisfy N̂θ ≈ ⌈Bθm⌉ (for 1-hop sets)1010

and N̂θ ≈ ⌈Bθ2m2⌉ (for 2-hop sets). Thus, the1011

heuristic-based rule is given by1012 m =
⌈
N̂θ
θB

⌉
for 1-hop sets (COVERICL+),

m2 =
⌈

N̂θ
θ2B

⌉
for 2-hop sets (COVERICL).

(7)1013

For COVERICL, we consider 2-hop neighbor sets,1014

which are dense, and can improve its density-based1015

selection. For COVERICL+, we consider 1-hop1016

sets as the model re-evaluates its predictions to1017

gradually identify harder examples. The heuristic1018

rule is adjusted to the number of the examples Nθ1019

that we account as hard ones, and we find that1020

N̂θ = Nθ/2 works well across datasets. When1021

we have iterations T > 1 for COVERICL+, the1022

budget for the MAXCOVER becomes B := B/T1023

in Equation 7.1024

A.4 Active-Kmeans: A kmeans Approach1025

COVERICL performs diversity sampling over the1026

active graph. Another solution to combine uncer-1027

tainty and diversity sampling is to perform kmeans1028

clustering (MacQueen et al., 1967) over the set of1029

hard examples Uh. Then, we can select represen-1030

tative examples for each cluster by sampling the1031

example closest to its centroid. Here, the number1032

of clusters for kmeans is B, so that we sample as1033

many examples as the budget B allows. We refer1034

to that approach as Active-Kmeans.1035

Yet, Active-Kmeans suffers from certain lim-1036

itations: It is sensitive to outlier examples, such1037

as out-of-distribution examples or examples with1038

mispredicted uncertainty scores. In addition, it1039

assumes that the B formed clusters are equally im-1040

portant, which may not always be the case.1041

COVERICL constructs the active graph and1042

is a more dynamic approach than the Active-1043

Kmeans baseline due to the MAXCOVER problem1044

it solves. MAXCOVER computes an “influence re-1045

gion” around each example. Outliers have small1046

influence regions, while examples that have the1047

same influence regions are not evenly helpful. That1048

way, MAXCOVER selects examples that interact1049

with the most of the hard examples, but also cap- 1050

ture distinct influence patterns, utilizing the limited 1051

budget better. 1052

B Pipeline of Selective Annotation 1053

Methods 1054

Table 5: Pipeline and time cost of compared methods.

Method Selective Annotation Inference
Method Time Cost (same for all)

Random Random Zero-cost k-shot (k ≪ B)
Kmeans Clustering Independent of the LLM k-shot (k ≪ B)
Hardest Uncertainty Depends on LLM k-shot (k ≪ B)
Votek Votek Depends on LLM k-shot (k ≪ B)

COVERICL COVERICL Depends on LLM k-shot (k ≪ B)

We elaborate on selective annotation in practice: 1055

1. Selective annotation methods, such as COV- 1056

ERICL, identify the examples to be annotated. 1057

2. Human experts are employed to annotate the 1058

examples; this can be a time-consuming pro- 1059

cess depending on the task (e.g., GSM8K re- 1060

quires writing elaborate arithmetic steps). 1061

3. LLMs performs ICL inference with the an- 1062

notated examples. Inference is the same re- 1063

gardless of the selective annotation method 1064

used. 1065

While LLM-based methods, such as COVERICL, 1066

Votek, and Patron, require more resources for Step 1067

1, it is a one-time cost before human annotation 1068

and inference. Thus, we believe that COVERICL 1069

is suitable for practical settings. We will add this 1070

discussion in the final version. 1071

We provide the comparison Table 5, where com- 1072

pared methods differ during the “Selection Phase”. 1073

As it is shown, all methods have the same com- 1074

putation cost during inference. During selection, 1075

model-based methods (Votek, COVERICL) have 1076

a higher cost, but this cost is only needed before 1077

inference/deployment. 1078

B.1 Selection Time Cost 1079

In Table 6, we compare competing approaches 1080

based on their computation time during their selec- 1081

tion process (during downstream inference, their 1082

time cost is the same). Random selection has zero 1083

cost. Votek and COVERICL (T = 1) have the 1084

same cost, while the cost doubles for COVERICL 1085

(T = 2). Nevertheless, hyper-parameter T for 1086

COVERICL can be tuned depending on the desired 1087

runtime of the selection process. 1088
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Table 6: Time complexity analysis with 5-shot ICL for
different selection processes over 300 examples on a
GeForce RTX 3090 (24GB GPU).

Embedding (SBERT) Uncertainty (GPT-Neo)

Amazon
Random 0 secs 0 secs
Votek ≈1 secs 1 min & 51 secs
COVERICL (T = 1) ≈1 secs 1 min & 51 secs
COVERICL (T = 2) ≈1 secs ≈ 3 mins & 42 secs
AGNews
Random 0 secs 0 secs
Votek ≈0.5 secs 3 mins & 48 secs
COVERICL (T = 1) ≈0.5 secs 3 mins & 48 secs
COVERICL (T = 2) ≈0.5 secs ≈ 7 mins & 36 secs

C Experimental Setting Details1089

C.1 Datasets1090

We performed empirical evaluation with nine NLP1091

datasets that cover well-studied tasks, such as1092

topic classification (AGNews (Zhang et al., 2015),1093

TREC (Hovy et al., 2001)), sentiment analysis1094

(SST2 (Socher et al., 2013), Amazon (McAuley1095

and Leskovec, 2013)), natural language inference1096

(RTE (Bentivogli et al., 2009), MRPC (Dolan et al.,1097

2004), MNLI (Williams et al., 2018)), text sum-1098

marization (XSUM (Narayan et al.)) and math1099

reasoning (GSM8K (Cobbe et al., 2021)).1100

Each dataset contains official train/dev/test splits.1101

We follow Votek and sample 256 examples ran-1102

domly from the test set (if it is publicly available,1103

otherwise from the dev set) as test data. For the1104

train data, we remove the annotations before our1105

setup. As it is infeasible to evaluate the LLM’s1106

feedback on all instances due to computational1107

constraints, e.g., Amazon dataset has more than1108

1 million instances, we randomly subsample 3,0001109

instances, which we cluster into 310 groups, and1110

we select the 310 examples closest to the centroids1111

as candidate examples for annotation. We repeat1112

the above processes for both the train and test sets1113

three times with different seeds and report mean1114

and standard deviation results. In transductive set-1115

tings, we evaluate performance on the unlabeled1116

examples, but we also exclude retrieving examples1117

that lead to self-label leakage issues.1118

C.2 Configurations1119

As summarized in Figure 2, the design space in-1120

cludes the unlabeled set U , the number of ICL ex-1121

amples k, the similarity space, the budget B, and1122

the LLM M . We experiment with six LLMs of1123

varying sizes (1.3B to 65B parameters), includ-1124

ing GPT-J (Wang and Komatsuzaki, 2021), Mo-1125

saic (MosaicML, 2023), Falcon (Penedo et al., 1126

2023), and LLaMa (Touvron et al., 2023) mod- 1127

els, all of which are open-source and allow the 1128

reproducibility of our research. We use the default 1129

hyper-parameters of the Transformers library (Wolf 1130

et al., 2020) for each LLM. We experiment with in- 1131

ductive settings, where test instances come from an 1132

unseen set Utest, but also for transductive settings, 1133

where test instances come from U . We obtain the 1134

initial pool of annotated examples L0 via kmeans 1135

so that we reduce randomness. We summarize the 1136

experimental configurations in Table 7. 1137

D Further Experiments 1138

D.1 Full Results & Significance Test 1139

We present the full results of Table 1 in Table 8 1140

(GPT-J-6B) and in Table 9 (GPT-Neo-1.3B). 1141

We also run a significance test based on the 1142

Wilcoxon Signed-Rank (Demšar, 2006), which 1143

is a ranking-based metric that accounts for perfor- 1144

mance differences. We provide the results compar- 1145

ing COVERICL with Patron, the SOTA method 1146

for low-budget AL, using GPT-J. According to 1147

the results in Figure 7, CoverICL’s performance 1148

is significantly better than Patron’s performance 1149

at p < .05 (see the last line of the appended results, 1150

highlighted in blue color). 1151

D.2 Other LLMs 1152

COVERICL takes advantage of how well the LLM 1153

understands the underlying task. If the LLM does 1154

not understand the task, then CoverICL approxi- 1155

mates diversity sampling, which is less affected by 1156

the LLM (Theorem 1). 1157

Following, we use Falcon-40B and phi-2 1158

(2.7B) (Gunasekar et al., 2023) on college exam 1159

questions (MMLU Bio/Math) (Hendrycks et al., 1160

2020). Falcon-40B has a capacity of 40B parame- 1161

ters and thus broader knowledge to understand the 1162

task. Phi-2 has been pretrained on textbooks and 1163

science texts, having task-specific knowledge. Ta- 1164

ble 10 shows that CoverICL improves both of the 1165

LLMs compared to IDEAL, although these models 1166

have different sizes. 1167

D.3 Uncertainty Threshold 1168

By default, we consider 50% (θ = 0.5) of the exam- 1169

ples with the lowest confidence as hard examples. 1170

Table 11 shows results when we focus on harder 1171

examples by setting θ = 0.33 for COVERICL+. 1172

Interestingly, COVERICL+’s performance can be 1173
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Table 7: Experimental setting configurations.

Setting Models M Train/Test U Budget B k-shot Retriever, S Init.

Table 8 GPTJ Inductive 20 5 SBERT |L0| = 10
Tables 3, 11 GPT-Neo Inductive 20 5 SBERT |L0| = 10
XSUM Falcon-40B, LLaMa-65B Transductive 10 Context-limit SBERT Zero-shot
GSM8K Falcon-40B, LLaMa-65B Transductive 20 5 BERT,SBERT Zero-shot
Table 2 GPT-Neo Inductive 20 5 SBERT, RoBERTa, BERT |L0| = 10
Figure 6 GPT-Neo Transductive 0-45 Context-limit SBERT Zero-shot
Figure 5a GPT-J, MPT, Falcon, LLaMa (6-7B) Transductive 0-20 Context-limit SBERT Zero-shot

Appendix D GPT-J, GPT-Neo Inductive 20 5 SBERT |L0| = 10

Context-limit means that we retrieve as many few-shot examples as the input token-length limit allows. For example, XSUM has long
sequences, where we usually have 3-shot examples, while for TREC we can use as many as 80-shot examples.

Table 8: Performance comparison for GPT-J (6B).

Topic Classification Sentiment Analysis Natural Language Inference
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random 68.87±5.39 49.34±3.19 81.63±0.30 87.89±1.77 52.86±2.41 69.01±4.61 39.58±3.98

Hardest 72.13±2.12 35.93±5.53 82.67±1.64 87.36±0.66 55.33±2.25 66.80±5.25 38.80±1.11

Fast-votek 73.69±2.39 49.61±4.43 78.99±4.53 89.58±0.80 53.00±0.49 68.23±2.89 39.97±3.98

IDEAL 74.73±2.43 39.57±6.33 78.38±8.14 88.41±0.80 56.77±0.48 66.27±3.73 40.23±1.59

Votek 72.26±1.27 45.83±1.75 80.45±1.47 85.80±3.80 54.16±2.30 68.10±2.75 39.72±2.07

Patron 75.90±1.81 44.13±6.92 81.89±6.39 90.88±2.57 55.20±1.27 66.40±5.25 38.53±2.57

Active-Kmeans 73.56±2.96 50.64±9.11 84.11±3.25 91.01±1.77 52.73±2.21 66.53±4.78 38.66±4.50

Best (Avg.) Active-Kmeans (62.10) Active-Kmeans (87.56) IDEAL (54.42)

COVERICL 76.89±3.01 51.95±8.43 82.81±1.39 90.49±1.57 56.90±1.75 70.17±1.72 40.36±1.75

COVERICL+ 77.08±1.11 53.38±5.10 84.24±1.32 92.45±1.50 55.07±0.85 68.49±0.97 36.58±1.12

Best (Avg.) COVERICL+ (65.23) COVERICL+ (88.35) COVERICL (55.81)

∆-Gain (Absolute) +3.13 +0.79 +1.39

further boosted with careful tuning of the uncer-1174

tainty threshold. Thus, automatically determining1175

which examples are considered as hard examples1176

for the models seems a promising research direc-1177

tion.1178

D.4 Graph Ablation1179

We experiment on the importance of graph-based1180

algorithms, such as COVERICL. We implement1181

different selection algorithms, such as clustering1182

methods, that rely on (i) distances between points1183

(Kmeans, Hierarchical Clustering), (ii) distances1184

between graph-nearest points (Max Degree, Graph1185

Clustering, Graph Propagation, Graph MaxCover),1186

or (iii) none of the previous (Max Uncertainty).1187

Methods in ‘(ii)’ are graph-based.1188

As Table 12 shows, our proposed Graph-based1189

MAXCOVER (COVERICL) algorithm outperforms1190

competing alternatives. Overall, graph-based al-1191

gorithms outperform non-graph methods, showing1192

the importance graph-based solutions for ICL.1193

Furthermore, we experiment using a threshold-1194

based graph (δ-graph) instead of the m-nn graph.1195

To determine threshold δ, we compute the cosine1196

similarity between all nodes and set δ such as each1197

node has m neighbors on average (at the m-nn1198

graph each nodes has exactly m neighbors). As Ta-1199

ble 13 shows, using the δ-graph performs slightly1200

worse than the m-nn graph. We hypothesize that 1201

using the δ-graph gives more importance on the 1202

semantics of the train distribution (as δ value is 1203

computed based on the similarity scores between 1204

all train examples), which may not always general- 1205

ize well to the test distribution. 1206

E Task Prompts 1207

As a design choice of the input prompts, we slightly 1208

modify the templates proposed by Gao et al. (2021) 1209

to transform them as a continuation task. We find 1210

that these are more challenging prompts for the 1211

large LMs, which we present in Table 14 (top). 1212

Next, we experiment with alternative prompt tem- 1213

plates similar to Su et al. (2023), as shown in Ta- 1214

ble 14 (bottom). 1215

Table 15 reports results when we use alterna- 1216

tive ICL prompt templates (Table 14) for the input 1217

examples. COVERICL is robust to the design of 1218

the prompt templates, where it outperforms other 1219

baselines in most datasets. 1220

F Dataset Examples 1221

We provide examples of these datasets in Table 16, 1222

which we access via Hugging Face package (Lhoest 1223

et al., 2021). 1224
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Table 9: Performance comparison for GPT-Neo (1.3B).

Topic Classification Sentiment Analysis Natural Language Inference
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random 59.47±8.54 54.68±1.68 68.48±1.87 73.95±2.03 48.30±1.30 64.48±7.67 40.99±0.97

Fast-votek 62.23±3.89 46.48±3.04 69.78±8.34 69.39±0.98 50.64±1.02 64.19±0.97 38.40±0.92

IDEAL 69.00±2.17 44.66±9.22 73.17±5.10 67.70±0.97 52.47±2.94 63.27±4.18 36.97±1.47

Votek 62.77±4.82 53.12±4.07 73.69±9.05 75.13±0.98 49.99±0.32 67.44±2.96 39.18±1.60

Hardest 65.10±2.43 49.34±2.17 71.48±5.32 75.00±2.49 52.86±0.80 61.84±4.79 37.49±1.77

Patron 69.39±1.87 49.34±2.17 71.48±5.32 75.00±2.49 52.86±0.80 61.84±4.79 37.49±1.77

Active-Kmeans 70.17±1.84 48.24±0.98 77.86±1.02 75.77±3.62 53.77±0.73 64.71±7.39 39.71±1.03

Best (Avg.) Active-Kmeans (59.21) Active-Kmeans (76.82) Votek (52.20)

COVERICL 70.95±1.87 55.33±2.57 79.68±1.77 77.73±2.23 53.12±1.59 67.05±8.10 42.96±2.92

COVERICL+ 69.39±1.35 59.89±2.07 79.03±2.47 77.08±1.50 51.16±1.39 65.69±8.92 40.49±2.04

Best (Avg.) COVERICL+ (64.64) COVERICL (78.71) COVERICL (54.38)

∆-Gain (Absolute) +5.53 +1.99 +2.28

Figure 7: Significance test based on Wilcoxon Signed-
Rank at p-value < 0.05.

Table 10: Performance comparison with LLMs of dif-
ferent sizes.

MMLU-Bio MMLU-Math
phi-2 (2.7B) Falcon-40B phi-2 (2.7B) Falcon-40B

IDEAL 64.58 63.88 42.00 43.00
COVERICL 65.28 68.05 47.00 44.00

Table 11: Ablation study on hyper-parameter θ, which
controls the number of the examples that are considered
as hard ones.

TREC SST2 Amazon

Votek 53.12±4.07 73.69±9.05 75.13±0.98

*COVERICL+ (θ = 0.5) 59.89±2.07 79.03±2.47 77.08±1.50

COVERICL+ (θ = 0.33) 60.28±3.13 78.77±2.59 78.90±1.14

*Denotes the default value.

G Visualization 1225

We illustrate the selection process of COVERICL+ 1226

in Figure 8. Initially, the LLMs perform 0-shot 1227

ICL but do not make confident predictions (as the 1228

hue color indicates, that represents the model’s un- 1229

certainty for each example). Note that different 1230

LLMs may consider different examples as hard or 1231

easy ones. Then, COVERICL+ selects 5 represen- 1232

tative examples for 5-shot ICL, which improves the 1233

LLMs’ understanding of the task and reduces its 1234

uncertainty (we observe fewer red nodes and more 1235

nodes with greener color). 1236
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Figure 8: Visualization of COVERICL+’s selection process for AGNews. The plots visualize the SBERT embeddings
(after PCA), where the hue color (green to red) represents the model’s uncertainty (confident to uncertain) for each
example. The selected examples by COVERICL+ are marked with the ‘⋆’ symbol.

Table 12: Performance comparison of graph-based and
non-graph methods.

AGNews SST2

(i) Kmeans (Active-Kmeans) 73.56 84.11
(i) Hierarchical clustering 72.93 80.79
(ii) Max Degree (threshold-based) 76.17 81.90
(ii) Graph Clustering (Fast-votek) 73.69 78.99
(ii) Graph Uncertainty Propagation (Patron) 75.90 81.89
(ii) Graph-based MAXCOVER (COVERICL) 77.08 84.24
(iii) Max Uncertainty (Hardest) 72.13 82.67
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Table 13: Graph ablation study for COVERICL using GPT-J with different graph construction approaches.

AGNews TREC SST2 Amazon RTE MRPC MNLI

m-nn graph 77.08±1.11 53.38±5.10 84.24±1.32 92.45±1.50 56.90±1.75 70.17±1.72 40.36±1.75

δ-graph 76.17±3.45 50.51±4.65 81.90±2.48 88.80±1.57 56.63±3.23 68.75±1.93 40.62±2.08

Table 14: Prompt templates for the ICL demonstrations.

Task Template Continuation (label word)

Default
AGNews Content: < S1 > \n World, Sport, Business, Sci-Tech
TREC Content: < S1 > \n Abbreviation, Entity, Description, Human, Location, Numeric
SST2 < S1 >. It was great, terrible
Amazon < S1a >< S1b >. It was great, terrible
RTE < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: No
MRPC < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: No
MNLI < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: Maybe, [MASK]: No

Alternative
AGNews Content: < S1 > Topic: World, Sport, Business, Sci-Tech
TREC Content: < S1 > Answer Type: Abbreviation, Entity, Description, Human, Location, Numeric
SST2 Content: < S1 > Sentiment: Positive, Negative
Amazon Title: < S1a > Review: < S1b > Sentiment: Positive, Negative
RTE < S1 >. Question: < S2 >. True or False? Answer: True, False
MRPC Are the following sentences equivalent or not equivalent? < S1 > \n < S2 > equivalent, not equivalent
MNLI < S1 >. Based on that information, is the claim < S2 > True, False, or Inconclusive? Answer: True, Inconclusive, False

Table 15: Prompt template ablation study.

GPT-Neo GPT-J
AGNews TREC SST2 Amazon RTE MRPC MNLI

Default Prompts
Random 59.47±8.54 54.68±1.68 68.48±1.87 73.95±2.03 52.86±2.41 69.01±4.61 39.58±3.98

Votek 62.77±4.82 53.12±4.07 73.69±9.05 75.13±0.98 54.16±2.30 68.10±2.75 39.72±2.07

COVERICL 70.95±1.87 55.33±2.57 79.68±1.77 77.73±2.23 56.90±1.75 70.17±1.72 40.36±1.75

Alternative Prompts
Random 73.69±1.21 51.76±4.55 59.89±3.98 73.82±3.35 56.41±2.13 56.37±3.72 38.93±1.18

Votek 72.78±2.12 50.38±5.90 64.84±2.92 73.43±2.23 56.38±2.70 51.95±2.53 40.49±2.05

COVERICL 76.95±1.27 54.94±1.43 65.88±4.58 75.64±1.29 56.37±1.29 59.22±2.39 35.40±1.31
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Table 16: Dataset examples. < S1 > denotes the input sequences.

Dataset Task Example x Labels/Annotations y

AGNews Topic Classi-
fication

< S1 >: “Amazon Updates Web Services
Tools, Adds Alexa Access The Amazon Web
Services (AWS) division of online retail giant
Amazon.com yesterday released Amazon E-
Commerce Service 4.0 and the beta version of
Alexa Web Information Service.”

World, Sport, Business,
Sci-Tech

TREC Answer Type
Classifica-
tion

< S1 >: “What is the date of Boxing Day?” Abbreviation, Entity, De-
scription, Human, Loca-
tion, Numeric

SST2 Sentiment
Analysis

< S1 >: “covers this territory with wit and
originality , suggesting that with his fourth
feature”

Positive, Negative

Amazon Sentiment
Analysis

< S1a >:“Very Not Worth Your Time”, <
S1b >:“The book was written very horribly.
I would never in my life recommend such a
book..."

Positive, Negative

RTE Natural Lan-
guage Infer-
ence

< S1 >:“In a bowl, whisk together the
eggs and sugar until completely blended and
frothy.”, < S2 >:“In a bowl, whisk together
the egg, sugar and vanilla until light in color.”

Entailment,
Not Entailment

MRPC Paraphrase
Detection

< S1 >:“He said the foodservice pie business
doesn’t fit the company’s long-term growth
strategy.”, < S2 >:“The foodservice pie busi-
ness does not fit our long-term growth strat-
egy.”

Equivalent, Not Equiva-
lent

MNLI Natural Lan-
guage Infer-
ence

< S1 >:“The new rights are nice enough”,
< S2 >: “Everyone really likes the newest
benefits”

Entailment, Neutral, Con-
tradiction

XSUM Summarization < S1 >:“The 3kg (6.6lb) dog is set to be-
come part of a search-and-rescue team used
for disasters such as earthquakes. Its small size
means it will be able to squeeze into places too
narrow for dogs such as German Shepherds.
Chihuahuas, named after a Mexican state, are
one of the the smallest breeds of dog. "It’s
quite rare for us to have a chihuahua work
as a police dog (said a police spokeswoman
in Nara, western Japan). We would like it to
work hard by taking advantage of its small
size. Momo, aged seven, will begin work in
January.”

“A chihuahua named
Momo (Peach) has passed
the exam to become a
dog in the police force in
western Japan, in what
seems to be a first.”

GSM8K Math Rea-
soning

< S1 >:“James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?”

“He writes each friend
3*2=6 pages a week So
he writes 6*2=12 pages ev-
ery week That means he
writes 12*52=624 pages a
year. Thus, the answer is
624.”
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