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Abstract
Diffusion Transformers (DiTs) excel in generat-
ing high-quality images and videos but suffer
from redundant computations at inference, in-
creasing costs. Observing that only a small frac-
tion (5-25%) of activations in attention and MLP
layers account for 70-90% of the change across
inference steps, we introduce Chipmunk, a dy-
namic sparsity method that recomputes only these
rapidly changing activations while caching the
remainder. Dynamic sparsity, however, poses
system-level challenges, specifically GPU tensor
core underutilization and additional runtime over-
head from computing sparsity patterns and man-
aging cached activations. To maximize GPU effi-
ciency and approximation quality, Chipmunk em-
ploys voxel-based token reordering and efficient
column-sparse kernels, achieving a 9.3x kernel
speedup at 93% sparsity. Chipmunk also overlaps
sparsity pattern computation and cache updates
with ongoing computation to mask overhead la-
tency. Chipmunk achieves up to 2.16x speedup on
HunyuanVideo and 1.41x on FLUX.1-dev. Fur-
thermore, we show that Chipmunk can be stacked
on top of full step caching, achieving a 3.72x
speedup on HunyuanVideo, a 2.67x speedup on
WAN2.1, and a 2.56x speedup on FLUX.1-dev
with minimal quality impact.

1. Introduction
Diffusion Transformers (DiTs) have emerged as state-of-
the-art (SOTA) models for generating high-quality images
and videos (Peebles & Xie, 2023; Zheng et al., 2024; Hong
et al., 2022; Kong et al.; Labs, 2024; Chen et al., 2023).
However, DiTs are increasingly constrained by their sub-
stantial computational requirements as sequence lengths and
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parameters scale up (Sun et al., 2024; Yao et al., 2024). For
example, HunyuanVideo, with a 118k sequence length and
13B parameters, requires 18 minutes to generate a 5s video
on an H100 GPU (Kong et al.). In particular, two major
redundancies contribute significantly to unnecessary com-
putation: the slow-changing latent vector (DiT model input)
(Ma et al., 2024; Sun et al., 2024; Yuan et al., 2024) across
generation steps, and the inherent sparsity in DiT activations
(Li et al., 2022b; Liu et al., 2024b).

Existing approaches leverage these redundancies by caching
per-step (Liu et al., 2024a), per-layer (Wimbauer et al.,
2024), or per-token (Zou et al., 2025) outputs, or by com-
puting sparse attention with static local window techniques
(Zhang et al., 2025b; Yuan et al., 2024). In this paper, we
ask whether we can achieve greater training-free accelera-
tion by exploiting this redundancy dynamically, in the most
granular manner possible.

We begin with an initial quantitative analysis of activation
patterns in two state-of-the-art open source DiTs (Hunyuan-
Video and FLUX.1-dev). We find that over 90% of the
variance in cross-step attention activation changes is ex-
plained by only 5-25% of the intermediate activation values
(Table 1). That is, recomputing only the top 5-25% of atten-
tion interactions and reusing the rest from the previous step
captures over 90% of the cross-step change. For MLPs, we
find 15-25% of the intermediate activation values explain
over 70% of the variance (Table 1).

Chipmunk. This finding motivates our method, Chipmunk,
which caches intermediate activations and uses dynamic
sparsity to recompute only the fastest-changing activations.
We exploit a common computational structure of attention
and MLPs–act(a @ b) @ c–both using a back-to-back ma-
trix multiply to produce a linear combination of vectors in
c (Section 2). Sparsity on the intermediate activations of
both operations corresponds one-to-one with these individ-
ual vector contributions. Specifically, Chipmunk uses the
magnitudes of intermediate activations to determine which
vectors of c to recompute at each step, and uses cached
values of the rest of the vectors from the previous step. For
attention, Chipmunk chooses the top-k column-chunks of
the attention matrix to recompute, and for MLP, Chipmunk
computes an approximate difference against cached acti-
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Figure 1. Left: Chipmunk uses intermediate activation sparsity to recompute only the fastest changing vectors in the output linear
combinations of attention and MLPs. Middle: Column sparse kernels achieve low approximation error and hardware-efficiency by packing
dense SRAM tiles for peak tensor core utilization. Right: Extra operations required to compute dynamic sparse deltas, such as sparsity
pattern identification and cache updates, are fused with other operations to minimize overhead.

vations to identify the top-k column-chunks to recompute.
This can be interpreted intuitively as computing sparse devi-
ations from straight line paths in latent space (Fig. 1, left),
where the recomputed vectors are dynamically allocated
more sequential computation steps.

Systems Challenges. Dynamic sparsity introduces two sys-
tems challenges: (1) Sparse attention and MLP operations
tend to underutilize tensor cores, which can make it chal-
lenging to achieve wall-clock speedup relative to dense base-
lines. (2) Computing dynamic sparsity patterns at runtime
and caching activations introduces additional overhead.

To address these challenges, Chipmunk uses a voxel-based
ordering of the pixels (Fig. 5, left) to regroup spatiotempo-
rally local tokens into column-wise sparsity patterns (Fig. 1,
middle). In particular, a contiguous group of tokens activates
the same sparse set of individual keys/values (attention) or
weights (MLPs). This corresponds to selecting columns of
KT /W1 and rows of V /W2.

This column-wise sparsity pattern admits efficient attention
and MLP kernels using sparse gathers from GPU global
memory (HBM) to packed dense tiles in GPU shared mem-
ory (SRAM), which can then fully utilize GPU tensor cores
(Fig. 1, middle) (NVIDIA, 2024; Chen et al., 2021b; Li
et al., 2022a; Ye et al., 2025). To reduce the overhead of
computing dynamic sparsity patterns and maintaining an
activation cache, Chipmunk uses custom kernels to overlap
sparsity pattern identification and cache I/O operations with
other computations (Fig. 1, right). Chipmunk’s kernels
scale linearly with sparsity with little overhead, achieving
nearly-optimal speedup while providing 2x less approxima-
tion error than block sparsity. At 93% sparsity, our column-

sparse attention kernel is 9.3x faster than FlashAttention-3
in the ThunderKittens library (Shah et al., 2024; Spector
et al., 2024).

Evaluation. We evaluate Chipmunk on state-of-the-art text-
to-video generation models (HunyuanVideo and WAN2.1)
and one state-of-the-art text-to-image generation model
(FLUX.1-dev).

• Quality. Chipmunk attains up to 92% attention sparsity
across 44 of 50 generation steps on HunyuanVideo
with minimal impact to VBench scores. On FLUX.1-
dev, Chipmunk achieves 84% attention sparsity and
70% MLP sparsity for 44 of 50 steps without affecting
ImageReward and CLIP scores.

• Fast Generation. Chipmunk alone achieves end-to-
end generation speedups of 2.16x on HunyuanVideo
and 1.41x on FLUX.1-dev.

• Stacked Acceleration. Chipmunk natively stacks with
existing caching strategies, such as step caching, lead-
ing to further acceleration—achieving speedups of
3.72x on HunyuanVideo, 2.67x on WAN2.1, and 2.56x
on FLUX.1-dev.

2. Background
Here we summarize the core aspects of Diffusion Transform-
ers (DiTs) and GPU architectures relevant to Chipmunk.
The key points are: (1) DiT inference computes latent-space
paths from noise to output, and (2) GPU efficiency hinges
on saturating tensor cores with large matrix multiplications.
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Table 1. R2 scores between true cross-step activation change and approximated change.
Attention Active Explained Change MLP Active Explained Change

HunyuanVideo 5% 92.4% 25% 70.8%
FLUX.1-dev 25% 90.7% 15% 69.0%

Diffusion Transformers (DiTs). Diffusion models recon-
struct data from noise by reversing a forward noising process
through iterative denoising steps with neural networks (Sohl-
Dickstein et al., 2015). DiTs apply Vision Transformer
architectures (Dosovitskiy et al., 2021) to diffusion tasks,
modulating attention and MLP outputs based on timesteps
and prompts (Peebles & Xie, 2023). DiTs represent im-
ages as token vectors derived from pixel patches, iteratively
refining these latent vectors during inference. While single-
step inference follows a straight line, multi-step inference
paths adjust their direction iteratively, significantly increas-
ing computational cost but improving generation quality
(Song et al., 2023; Esser et al., 2024). A final important
piece of the DiT architecture is the shared computational
form of attention and MLP layers: both compute non-linear
scalar coefficients to produce a linear combination of vec-
tors (scaled rows of V in attention, and scaled rows of W2

in MLPs).

GPU Architecture. GPUs accelerate attention and MLPs
in DiTs with efficient matrix multiplications executed on
Streaming Multiprocessors (SMs) with dedicated tensor
cores and local SRAM (NVIDIA, 2024). Both kernels load
data blocks from global memory to SRAM, perform ma-
trix multiplications via tensor cores, and store results back
in global memory. FlashAttention fuses both GEMMs of
attention to minimize memory transfers (Dao et al., 2022).
Achieving peak GPU performance demands keeping tensor
cores continually supplied with large matrix tiles (at least
64x64), maximizing their utilization and throughput (Luo
et al., 2024; Spector et al., 2024).

3. Method
We first quantify sparse activation changes across diffusion
steps, motivating Chipmunk’s unified caching and sparse
recomputation strategy; next, we show column sparsity’s
hardware efficiency and low error; finally, we describe Chip-
munk’s algorithm that interleaves dense and sparse compu-
tation, stacking natively with coarser caching methods.

3.1. Motivation: Sparse Cross-Step Changes in
Attention and MLPs

DiT inference shows sparse, slow-changing activations
across diffusion steps. A natural question arises: how much
change between steps can be captured by sparse recompu-
tation? Formally, considering attention and MLP layers at

consecutive steps i = 1, 2, outputs can be approximated
using a binary mask M to identify rapidly changing activa-
tions:

oattn
2 ≈ oattn

1 −
[
softmax(q1 k⊤1 )∗ M

]
v1

+
[
softmax(q2 k⊤2 )∗ M

]
v2,

omlp
2 ≈ omlp

1 −
[
gelu(x1 W1)∗ M

]
W2

+
[
gelu(x2 W1)∗ M

]
W2

(1)

Empirical results (Table 1) indicate that recomputing only
5-25% of the fastest-changing activations explains most ac-
tivation changes across steps. Motivated by this, Chipmunk
employs unified caching and sparse recomputation strate-
gies for both attention and MLP layers, recomputing only
rapidly changing vectors.

3.2. Hardware-Aware Sparse Deltas

Chipmunk employs column sparsity to efficiently map
sparse computations into compacted dense computations
while maintaining low approximation error (Fig. 5, Table
4). While block sparsity provides high hardware efficiency
by skipping entire tiles during computation, it suffers from
approximately double the approximation error compared
to column sparsity (Table 4, Fig. 5). Chipmunk achieves
efficient computation with column sparsity by using sparse
gathers that pack sparse activations from high-bandwidth
memory (HBM) into dense shared memory (SRAM) tiles,
thus maintaining high tensor core utilization and competi-
tive speedups (Fig. 1). Column sparsity uses a granularity of
[C, 1], meaning each token chunk of size C selectively acti-
vates individual keys/values or neurons, as opposed to MoE
models that route individual tokens to entire contiguous
expert chunks. Lastly, reordering tokens into video voxel
or image patch chunks further improves the approximation
quality of sparse attention by exploiting local token simi-
larities, achieving a 1.2x reduction in unexplained variance
(Fig. 5). Please see Appendix B for a full description of
Chipmunk’s kernels.

3.3. Chipmunk Algorithm

Chipmunk interleaves three types of steps: dense, sparse,
and skipped.

Dense Steps: Refresh cached activations and dynamically
identify sparsity patterns.
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Method Efficiency VBench Dimension
Speedup ↑ Latency (s) ↓ Total ↑ Quality ↑ Semantic ↑

HunyuanVideo, T=50 (720 x 1280 x 129)
Hunyuan 1x 1030s 83.24 85.09 75.82
STA 1.79x 575s 82.46 84.63 73.83
Chipmunk 2.16x 477s 82.94 84.60 76.3
Step Caching (TeaCache) 3.69x 279s 80.79 82.87 72.5
Chipmunk+Step Cache 3.72x 277s 82.5 84.23 75.6

WAN2.1, T=50 (720 x 1280 x 121)
WAN2.1 1x 1357s 81.47 83.57 73.08
Step Caching (TeaCache) 2.0x 678s 81.17 83.24 72.87
Chipmunk-56+Step Cache 2.20x 616s 81.73 83.74 73.69
Chipmunk-73+Step Cache 2.67x 508s 81.11 82.88 74.05

Table 2. Performance comparison of various methods across different datasets for video generation. Note: Chipmunk-X denotes a sparsity
level of X% to assess the speed-quality tradeoff.

Sparse Steps: Compute sparse activation deltas based on
cached activations, recomputing only the most significantly
changing vectors.

Skipped Steps: Fully reuse cached outputs without addi-
tional computation.

Chipmunk is parameterized by a step schedule, attention
sparsity, and MLP sparsity levels, complementing coarser
caching techniques like step- and token-level caching.
Please see Appendix C for a full description of the algo-
rithm.

4. Experiments
We evaluate Chipmunk on state-of-the-art text-to-video and
text-to-image tasks, summarizing our setup (D.1), quantita-
tive performance (Tables 2, 6; D.2), and qualitative results
(Fig. 9; D.3).

4.1. Setup

We assess Chipmunk using three DiT models: Hunyuan-
Video, WAN2.1 (text-to-video), and FLUX.1-dev (text-to-
image), all at default 50-generation steps on H100-SXM5
GPUs. Baselines include TeaCache (Liu et al., 2024a), ToCa
(Zou et al., 2025), STA (Zhang et al., 2025b), and DiTFas-
tAttn (Yuan et al., 2024). We use standard metrics: VBench
for videos and ImageReward (ImRe) and CLIP for images.
Chipmunk’s hyperparameters (attention/MLP sparsity and
step schedule) are chosen to capture 95% of cross-step acti-
vation changes.

4.2. Quantitative Results

Chipmunk achieves superior efficiency-quality tradeoffs
across tasks (Table 2). For equivalent acceleration, Chip-

munk preserves higher quality compared to TeaCache due
to granular vector caching. Holding quality constant, Chip-
munk outperforms STA, ToCa, and DiTFastAttn in speed
due to granular, dynamic sparsity identification. Sparsity
adjustments can also modulate Chipmunk’s speed-quality
balance.

4.3. Qualitative Results

Qualitatively, Chipmunk maintains detailed visual fidelity,
effectively preserving critical elements like moving hands
or intricate prompt details (Fig. 9). Failure modes include
slightly unfocused backgrounds in videos and small differ-
ences in image details compared to references, reflecting
the FLOPs reduction.

5. Conclusion
We introduce Chipmunk, a training-free approach that accel-
erates DiT inference by dynamically exploiting the inherent
sparsity and slow-changing patterns of intermediate acti-
vations. By leveraging the shared computational structure
of attention and MLPs, Chipmunk selectively recomputes
only rapidly changing activations, caching the remainder
for reuse, significantly reducing computational load with
minimal impact on visual quality. Chipmunk’s speedups
are most pronounced in large, compute-bound DiTs, while
smaller models or those with compact matrix shapes may
see less benefit due to overhead from managing sparsity.
Models with fewer inference steps also yield modest ac-
celeration, as caching opportunities diminish with larger
activation changes. Future work should explore integrating
sparse recomputation during training to allow models to
dynamically target the fastest-changing activations and in-
vestigate combining Chipmunk with per-layer and per-token
caching methods.
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A. Extended Discussion of Latent Space Path Decompositions
In this appendix, we formally demonstrate that the latent space paths of rectified flow Diffusion Transformers (DiTs) can be
decomposed into a sum of individually scaled vectors output by the attention and MLP layers (Fig. 2). This decomposition
does not claim that each individual vector evolves along an independent path (since the vectors interact via non-linearities)
– rather, we claim that the final latent space path comprises only scaled and shifted vectors output by attention and MLP
layers. We assume that in each step of the diffusion process, the DiT output is scaled according to the noise schedule and
added to the latent vector representation, as in the architectures of HunyuanVideo and FLUX.1-dev (Esser et al., 2024).

Attention and MLP Outputs as Scaled Vector Additions. We begin by explicitly defining attention and MLP layers
within a DiT residual block.

Attention: Given query q ∈ Rn×dc , key k ∈ Rn×dc , and value v ∈ Rn×dc matrices projected from the residual stream
x ∈ Rn×d, attention computes:

Attention(q, k, v) = softmax
(
qk⊤√
dc

)
v (2)

To explicitly show the decomposition into individual vectors, we rewrite attention per-head and per-token. Consider a single
attention head h with projection matrices Wh

q ,W
h
k ,W

h
v ∈ Rd×dc , and output projection Wh

o ∈ Rdc×d. For each token
i, attention can be expressed as a linear combination of dynamically computed vectors from the combined value-output
projection:

Attnh(xi) =
∑
j

αh
ij · (xjW

h
v W

h
o ), (3)

where αh
ij = softmaxj

(
(xiW

h
q )(xW

h
k )

⊤
√
dc

)
(4)

This shows that attention produces a weighted sum of vectors (xjW
h
v W

h
o ), with scalars αh

ij computed via softmax (Fig. 3,
left). Each individual vector is thus scaled dynamically based on token interactions.

MLP: Similarly, given weight matrices W1 ∈ Rd×df , W2 ∈ Rdf×d and biases b1 ∈ Rdf , b2 ∈ Rd, the MLP operation
computes:

MLP(x) = GELU(xW1 + b1)W2 + b2 (5)

The MLP can be viewed as outputting scaled rows of W2 (the bias is a single extra static vector). Specifically, for token xi:

MLP(xi) =

df∑
m=1

GELU(xiW
:,m
1 + b1) ·Wm,:

2 + b2 (6)

Thus, MLP outputs scaled rows from W2, with scalar coefficients computed as GELU applied to the dot product of xi with
each column of W1 (plus a static shift from the bias).

Distributive Operations. Having established attention and MLP as explicitly adding scaled vectors, we now formally
discuss operations distributing over vector addition within DiTs.

Modulations: Element-wise multiplication by modulation factors m ∈ Rd distributes trivially:

m⊙
∑
i

vi =
∑
i

(m⊙ vi) (7)

Layernorm: For vectors vi, layer normalization is defined element-wise:

LN

(∑
i

vi

)
=
∑
i

vi − E[
∑

i vi]√
Var[

∑
i vi]

γ + β (8)
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Figure 2. An individual-vector interpetation of the full HunyuanVideo DiT architecture. Attention and MLPs add new vectors to the
residual stream, with downstream modulation, layernorm, and linear projection operations distributing over the vector sums.
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Figure 3. Left: Both MLP and attention operations use a non-linearity to compute the scalar coefficients for a linear combination of value
vectors. In attention, the value vectors are dynamic (V is projected from the current token representation). In MLP, the value vectors are
static (rows of the weights W2). Right: DiTs accumulate sums of these scaled and shifted value vectors (MLP and attention outputs).

The mean and variance computations do not distribute over vector addition – however, the resulting modification to the
residual stream, as visualized in Fig. 2, only uses the mean and variance scalars as scale and shift factors, which do distribute
over the sum of individual vectors. Thus, in the residual stream framework (Elhage et al., 2021), layernorm can be interpreted
as performing a two phase computation: (1) a non-distributive ”read” of the residual stream to compute scale and shift
factors, (2) a distributive ”write” over all vectors in the residual stream using the now fixed scale and shift factors computed
in phase (1). This means that after layernorm, the residual stream is still a sum of individually identifiable vectors.

Linear Projections: Linear projections defined by matrices W distribute linearly:

W

(∑
i

vi

)
=
∑
i

Wvi (9)

Non-Distributive Operations. Operations such as softmax and GELU do not distribute over vector addition, but similar
to layernorm, they do not directly modify the vectors in the residual stream in a non-distributive manner. Instead, they
compute scalar coefficients that scale the vectors newly added to the residual stream (Fig. 2).

Final Latent Space Path Decomposition. Considering these properties collectively, we assert the following:

1. Attention and MLP layers output sums of scaled vectors, incrementally updating the residual stream.

2. Modulations, scale and shift factors computed by layer normalization, and linear projections distribute over these vector
additions.

3. Non-distributive operations (softmax, GELU) are solely used to compute scalar coefficients of newly added vectors
without directly modifying the residual stream.

Thus, the latent space path of a DiT output at any inference step t, denoted zt, can be formally expressed as a sum of
individually scaled vectors from attention and MLP layers across all previous steps t′ > t (where z0 is the fully denoised
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Figure 4. Left, Middle: Sparse kernel runtime scales linearly with sparsity. Column sparsity is competitive with block sparsity. Right:
FLOP breakdown by model at Chipmunk hyperparameters.

output):

zt = LNt(Modt,final ⊙ zt+1We)Wu ∗ st (10)

+
∑

l∈layers

∑
h

∑
j

LNt(Modl,t,attn ⊙ αh,l,t
j (xl,t

j Wh,l
v Wh,l

o ))Wu ∗ st (11)

+
∑

l∈layers

∑
m

LNt(Modl,t,mlp ⊙ βl,t
mWm,:,l

2 )Wu ∗ st (12)

Here, vectors xl,t
j Wh,l

v Wh,l
o and Wm,:,l

2 represent individual vectors produced by attention and MLP respectively, and
scalars αh,l,t

j , βl,t
f represent their corresponding coefficients computed through non-linear activations. LNt represents

layernorm with scale and shift factors computed according to the state of the residual stream at timestep t. We, Wu represent
the embed/unembed linear projections, respectively, and st represents the scale factor applied to the DiT output at timestep t
according to the diffusion noise schedule.

B. Kernel Optimizations

Method Speedup

Attention & unfused column-sum 1.0x
→ Fused Kernel 3.26x

MLP & unfused cache operations 1.0x
→ Fused Kernel 1.41x

Attention mask to indices conversion (unfused) 1.0x
→ Fused Kernel 1.39x

PyTorch top-k 1.0x
→ Approximate top-k 3.42x

Table 3. Kernel optimizations applied to Chipmunk’s end-to-end algorithm measured on FLUX.1-dev shapes on H100-SXM5 GPUs with
CUDA 12.8 and PyTorch 2.5.0.

In this appendix, we provide additional details on Chipmunk’s kernel optimizations. We structure this discussion into three
primary categories: (1) efficiently identifying dynamic sparsity patterns in attention kernels, (2) optimizing column-sparse
computations in MLP layers, and (3) reducing GPU memory overhead through effective caching strategies.

B.1. Architecture Agnostic

Chipmunk works on all modern GPUs with tensor cores. Although our CUDA kernels are optimized specifically for NVIDIA
H100 GPUs, Chipmunk can be efficiently implemented on earlier or later GPU architectures by using architecture-agnostic
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Figure 5. Left: Chipmunk reorders tokens such that column sparse patterns route voxels (3D cubes of pixels) to the same set of activated
keys/values (attention) or model weights (columns/rows of W1/W2 in MLPs). Right: We plot the unexplained variance in cross-step
activation changes (1 - R2). Relative to dynamic block sparsity, dynamic column sparsity gives a 2x reduction in unexplained variance
across both attention and MLPs. Voxel order reduces unexplained variance in attention but has nearly zero impact in MLP (overlapping
with the blue line).

kernels written in Triton. These kernels can also be tuned for optimal performance on other hardware. We include several
example Triton kernels in our codebase for reference.

B.2. Tile Packing: Mapping Sparse Computation to a Compacted Dense Computation

Chipmunk uses column sparse patterns on intermediate activations (Chen et al., 2021b; Li et al., 2022a; Ye et al., 2025),
where a group of contiguous tokens only activates a certain set of individual keys/values (attention) or neurons (MLPs), to
achieve low approximation error while remaining hardware-efficient.

Table 4. Comparing hardware efficiency and approximation error of block sparsity vs. column sparsity. Approximation error is measured
as unexplained variance as described in 3.1. Runtime is measured as a % relative to dense computation at HunyuanVideo sequence length
(118k).

Attention MLP
Sparsity Error Runtime Sparsity Error Runtime

[192, 128] Block 95% 17.4% 5.1% 75% 61.3% 27.1%
[192, 1] Column 95% 8.5% 8.5% 75% 29.1% 27.7%

Block sparsity is efficient but has a higher approximation error than column sparsity. As described in Section 2,
GPU kernels achieve peak efficiency by computing large block matrix multiplications. Block sparse kernels maintain
hardware-efficiency because the outer loop simply skips certain tiles while leaving inner logic unchanged (Tillet et al., 2019).
Block sparsity achieves near-optimal performance (Fig. 4, purple lines), but suffers from 2x higher approximation error than
finer-grained column sparsity patterns (Table 4, Fig. 5).

Column sparsity can be made efficient with sparse gathers from HBM to SRAM. We implement column-sparse
attention and MLP kernels to achieve 2x less approximation error than block sparsity (Fig. 5, purple & cyan lines) while
maintaining competitive speedups (Table 4, Fig. 4). Traditional high-performance dense attention and MLP kernels, such
as FlashAttention-3 and cuBLAS GEMMs, use the following structure: (1) load dense 2D tensors from HBM to SRAM,
(2) compute the large matrix multiplications with tensor core instructions, and (3) store results back to HBM (Shah et al.,
2024; Spector et al., 2024). To maintain tensor core utilization with column sparsity, we modify step (1) to pack sparse
keys/values from non-contiguous rows in global memory into a dense tile in shared memory (Fig. 1) (Chen et al., 2021b; Li
et al., 2022a; Ye et al., 2025). Tangentially, Chipmunk’s sparse kernels can take on any static sparsity pattern (e.g. Sliding
Tile Attention (Zhang et al., 2025b), DiTFastAttn (Yuan et al., 2024)) by simply passing in a particular set of indices.

Column sparsity routes a chunk of tokens to a set of individual key/values (attention) or neurons (MLP). Given an
arbitrary attention or MLP computation, column sparse patterns mask intermediate activations with granularity [C, 1] (Chen
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et al., 2021b; Li et al., 2022a; Ye et al., 2025). This means that, given a chunk of contiguous tokens of size C, the chunk
only activates a certain set of individual keys/values (attention) or neurons (MLPs). This is in contrast to MoE models,
which route individual tokens to chunks of contiguous MLP neurons (experts) (Jiang et al., 2024). Column sparsity is
parameterized by the chunk size C, and on H100 GPUs, we find C = 192 is efficient.

Reordering tokens into video voxel/image patch chunks improves attention quality. By default, contiguous tokens
follow raster order (left-to-right, top-down, sequential frames). However, small video voxels (3D cubes of pixels) or image
patches have similar color and brightness, and we expect them to exhibit similar interactions with other tokens. Thus, we
reorder tokens at the beginning of the diffusion process such that each contiguous token chunk, which is routed to the same
set of sparse indices, corresponds to a voxel/patch. We find this to improve attention approximation quality by 1.2x (Fig. 5).

B.3. Efficient Dynamic Sparsity Pattern Identification in Attention

We now address the challenge of efficiently identifying sparsity patterns in attention computations. As discussed previously
(Section 3.2.2 of the main paper), Chipmunk employs fused kernels that simultaneously compute attention outputs and
sparsity patterns via column sums (Alg. 4). A direct summation of the unnormalized logits (qkT ) across rows is infeasible
because row magnitudes can vary significantly without softmax normalization. Naively computing column sums directly on
the post-softmax matrix is also impractical due to FlashAttention’s (Dao et al., 2022) incremental softmax, which never fully
materializes intermediate softmax results within the kernel.

To overcome these limitations without resorting to slower, unfused kernels, we employ an approximation leveraging the
slow-changing nature of activations across inference steps. Specifically, we reuse softmax normalization constants from the
previous inference step to approximate column sums. Although slightly stale, these constants remain effective due to the
incremental changes between steps. Thus, our fused kernel outputs both the correctly normalized attention result and an
approximate column sum (normalized using previous constants) suitable for subsequent top-k sparsity selection.

B.4. Optimizing Column-Sparse Delta MLP Computations

Next, we detail kernel optimizations specific to column-sparse delta computations within the MLP layers. Here, the static
nature of MLP value vectors (rows of weight matrix W2) allows for additional optimization compared to attention, which
has dynamic vectors projected from token representations.

B.4.1. COMPUTING MLP STEP-DELTAS EFFICIENTLY IN ONE PASS

Unlike attention, MLP step-deltas can be efficiently computed in a single step rather than requiring a subtraction and
subsequent addition of vectors (Alg. 6). Given cached activations and MLP outputs, we directly compute sparse cross-step
deltas as follows:

1. Compute sparse intermediate activations.

2. Compute the difference against the cached activation.

3. Multiply this sparse delta by the static value vectors (rows of W2).

4. Directly accumulate this result into the cached output.

This reduces computational overhead compared to the two-step subtraction-addition method required for dynamic attention
vectors, but introduces additional challenges in kernel optimization.

B.4.2. PERSISTENT GRID AND WARP-SPECIALIZATION FOR COMPLEX EPILOGUES

The first GEMM kernel in Chipmunk’s MLP delta computation involves a complex epilogue due to the combined computa-
tional steps of delta computation and memory operations (Alg. 6). To optimize these, we find the combination of persistent
grids and warp-specialization to be particularly effective:

1. Persistent Grid Kernels: One threadblock is launched per GPU Streaming Multiprocessor (SM), allowing each
threadblock to iterate over multiple work tiles.
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2. Warp-Specialization: Within each threadblock, separate warp groups are assigned to compute/data loading operations,
allowing better overlap between computation and memory operations.

This combination allows the overlap of the producer warpgroup’s memory loading prologue with the consumer warpgroups’
high latency epilogue operations.

B.4.3. CUSTOM KERNEL FOR EFFICIENT CACHE WRITEBACK

We also found the most time-consuming step in the first MLP GEMM epilogue to be the scattering of activation cache
updates into global memory. To address this, we fuse this memory-bound cache writeback operation into the second GEMM
operation, which is compute-bound. Specifically, we utilize the CUDA driver API to allocate streaming multiprocessors
(SMs) to a custom kernel implementing the cache writeback operation, while using the rest of the SMs for the GEMM. We
compute the number of SMs to allocate based on the degree of wave quantization so that this does not impact the runtime of
the GEMM—it just repurposes any leftover SMs. Our custom cache writeback kernel uses the TMA-based reduction PTX
instructions (cp.reduce.async.bulk) to perform large atomic updates into global tensors.

B.5. Minimizing GPU Memory Overhead from Activation Caches

Finally, Chipmunk stores activation caches MLP and attention layers, making memory efficiency critical—particularly
in single-GPU workloads with large sequence lengths (e.g., HunyuanVideo with 118k tokens per video). Each attention
layer requires caching (1) boolean masks indicating active [192, 1] columns, and (2) activation outputs from the previous
inference step.

We implement two optimizations to reduce GPU memory footprint:

1. Bitpacked Sparsity Masks: Standard boolean masks (torch.bool) consume one byte per entry. With a torch-compiled
bitpacking function, we reduce memory usage by 8x, while incurring negligible computational overhead.

2. CPU Offloading with Double-Buffered Communication: We preallocate pinned (page-locked) CPU tensors and
implement double-buffering on the GPU. This approach reduces GPU memory and communication overhead by
overlapping GPU computations of the current layer with simultaneous transfers of the next layer’s sparsity masks and
activations from CPU to GPU memory.

Table 5. Memory usage comparison between naive and optimized implementations.
Naive Optimized Memory Reduction

Sparsity Mask Cache 104 GB 13 GB 8x
Activation Cache 43 GB 2.8 GB 15x
Column-Sum Intermediate State 668 GB 3.5 GB 192x

C. Chipmunk Algorithm
In this appendix, we describe the Chipmunk algorithm in detail. Chipmunk accelerates Diffusion Transformer (DiT)
inference by interleaving dense and sparse-delta steps to exploit the slow changing activations across steps. Dense steps
refresh cached activations and identify dynamic sparsity patterns, while sparse steps efficiently compute sparse activation
deltas against cached activations. Structured column-chunk sparsity patterns are applied to the intermediate activations
of both attention and MLP to enable hardware-efficient sparse algorithms. To improve this column-sparse approximation
quality, Chipmunk applies a reordering to tokens at the beginning of the diffusion process such that each contiguous chunk
of c tokens corresponds to a 3D video voxel (Alg. 1). All tokens in one voxel will therefore share the same sparsity pattern
in later steps. The inverse permutation is applied before the model’s final projection. We will now discuss the details of
Chipmunk’s dense and sparse computations for attention and MLP layers1.

1We note that the algorithms described here are for reference correct implementations, rather than optimized for speed. In practice,
operations in these algorithms implemented in optimized CUDA kernels as described in Section 3 of the main paper and Appendix B.
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Algorithm 1. Voxel Reordering. Reorders tokens so that contiguous chunks correspond to coherent 3D voxels, improving the quality of
subsequent column-sparse approximations.� �
# x : (b, t, h, w, d) 3D tokens
# vt, vh, vw : int, int, int Voxel shape

def voxel_order(x, vt, vh, vw):
return rearrange(

x,
’b (tc vt) (hc vh) (wc vw) d -> b tc hc wc vt vh vw d’,
vt=vt, vh=vh, vw=vw

)

def reverse_voxel_order(x, vt, vh, vw):
return rearrange(

x,
’b tc hc wc vt vh vw d -> b (tc vt) (hc vh) (wc vw) d’,
vt=vt, vh=vh, vw=vw

)� �
C.1. Chipmunk Attention

Dense Steps. We run full scaled-dot-product attention on the reordered sequence

Q,K,V ∈ RB×H×N×E , P = softmax
(
QK⊤
√
E

)
, Odense = PV.

We then partition the query axis of attention matrix P into chunks of c contiguous tokens (the queries of one voxel),

P → reshape
(
B,H, N

c , c,N
)

and sum over the c dimension. The result is a “column-sum” tensor

D ∈ RB×H×N
c ×N , Db,h,i,j =

(i+1)c−1∑
q=ic

Pb,h,q,j

which tells us, for each voxel i, how much total attention probability it assigns to key j (Alg. 4). A top-k over the last
dimension then selects the most-attended keys/values for each query voxel:

idxb,h,i,:k = TopKk

(
Db,h,i,:

)
These indices are cached for the upcoming sparse steps. Finally, Chipmunk defines the attention activation cache as

Ocache = Odense − softmax
(
QK⊤

idx

)
Vidx

such that subsequent steps can directly add to this cache to compute a sparse replacement of the top attention interactions
identified by the cached indices (Alg. 2).

Sparse Delta Steps. In subsequent sparse steps Chipmunk only recomputes the top attention interactions defined by the
indices cache (Alg. 3):

∆O = softmax
(
QK⊤

idx

)
Vidx, O = Ocache +∆O.

The computational complexity of attention thus drops from O(N2) to O(Nk), reproducing the dense result when k = N .
Conceptually, this computation corresponds exactly to Fig. 1 in the main paper, where we visualize the sparse recomputation
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of the fastest changing vectors in attention’s output linear combination (scaled rows of V), while reusing the remaining
vectors from the cache.

C.2. Chipmunk MLP

For MLP layers, Chipmunk similarly alternates dense and sparse-delta computations. Dense steps fully compute activations
and initialize caches, while sparse steps efficiently identify and recompute only activations that significantly change across
steps (Alg. 5).

Dense steps. A standard two-layer MLP layer produces

A = σ
(
XW⊤

1 + b1

)
, Odense = AW2,

with shapes X ∈ RB×N×D, W1,2 ∈ RF×D. Chipmunk caches three tensors on dense steps:

1. Tile-mean pre-activation Tm = meanc(reshapec(X)W⊤
1 ) ∈ RB×N/c×F .

2. Full activation tensor Acache.

3. MLP output Mcache = Odense.

Sparse Delta Steps. Chipmunk uses a token-merged approximation to identify the k neurons that have changed the most
since the last step (for each size-c chunk of contiguous tokens) (Alg. 7):

∆tm = |T−Tm|, idx = TopK(∆tm) ∈ RB×N/c×k,

We then recompute only those token-neuron interactions and reuse the rest from the cache (Alg. 6). As an optimization, we
compute MLP in a single step—without the separate subtraction and addition of Eq. 1 in the main paper—because of the
static nature of the second operand (W2).

∆M = σ
(
XW⊤

1,idx −Acache, idx
)
W2,idx, O = Mcache +∆M.

Analogous to attention, this computation corresponds exactly to Fig. 1 in the main paper. We compute a sparse replacement
of the fastest changing vectors in MLP’s output linear combination (scaled rows of W2), while reusing the remaining
vectors from the cache.
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Algorithm 2. Chipmunk Attention. Computes attention outputs by interleaving dense and sparse-delta steps. Dense steps initialize
sparsity patterns and caches, while sparse steps selectively recompute attention interactions based on cached indices and activations.� �
def chipmunk_attn(q, k, v, is_dense_step):

# q, k, v : (b, h, n, e)
# is_dense_step : bool
# returns o : (b, h, n, e)

if is_dense_step:
o, cs, m, l = colsum_attn(

q, k, v,
prev_m, prev_l

)
inds, counts = topk(cs, dim=-1)
prev_m = m
prev_l = l
o_cache = colsparse_delta_attn(

q, k, v,
inds, counts,
o, o_scale = -1

)

else:
o = colsparse_delta_attn(

q, k, v,
inds, counts,
o_cache, o_scale = 1

)

return o� �
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Algorithm 3. Column Sparse Delta Attention. Efficiently recomputes sparse attention interactions defined by previously cached indices.� �
def colsparse_delta_attn(q, k, v, inds, counts, o_cache, o_scale):

# q, k, v : (b, h, n, e)
# inds : (b, h, n/c, topk) sparse indices per Q-tile
# counts : (b, h, n/c) number active per Q-tile
# o_cache : (b, h, n, e)

# c : q tile size
# ck : kv tile size

o = o_cache.clone()
for i in range(0, n, c):

q_tile = q[:, :, i : i+c] # (b, h, c, e)
o_tile = o[:, :, i : i+c] # (b, h, c, e)
idx_q = inds[:, :, i//c, :] # (b, h, topk)
counts_amt = counts[:, :, i//c] # (b, h, 1)

for j in range(0, counts_amt, ck):
idx_tile = idx_q[..., j : j+ck] # (b, h, ck)
k_tile = k.gather(idx_tile, dim=-2) # (b, h, ck, e)
v_tile = v.gather(idx_tile, dim=-2) # (b, h, ck, e)
qk = q_tile @ k_tile.T(-2, -1) # (b, h, c, ck)
p = online_softmax(qk) # (b, h, c, qk)
o_tile += o_scale * (p @ v_tile) # (b, h, c, e)

return o� �

Algorithm 4. Column Sum Attention. Computes standard attention along with column-wise sums of attention probabilities, which are
used for dynamically identifying sparsity patterns.� �
def colsum_attn(q, k, v, prev_m, prev_l):

# q, k, v : (b, h, n, e)
# prev_m : (b, h, n, 1)
# prev_l : (b, h, n, 1)
# returns o : (b, h, n, e)
# cs : (b, h, n/c, n) column-chunk sums

qk = q @ k.T(-2, -1) / sqrt(e) # (b, h, n, n)
p = softmax(qk, dim=-1) # (b, h, n, n)
o = p @ v # (b, h, n, e)

p_approx = exp(qk - prev_m) / prev_l # (b, h, n, n)
cs = rearrange( # (b, h, n/c, n)

p_approx,
’b h (nc c) m -> b h nc c m’,
c=c

).sum(dim=-2)

return o, cs� �
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Algorithm 5. Chipmunk MLP. Performs MLP layer computations by alternating dense and sparse-delta steps. Dense steps compute full
activations and initialize caches, and sparse steps efficiently update only the activations that exhibit significant changes across inference
steps.� �
def chipmunk_mlp(x, w1, w2, is_dense_step):

# x : (b, n, d)
# w1, w2 : (f, d)
# is_dense_step : bool
# returns o : (b, n, d)

if is_dense_step:
o, preact, act = mlp(x, w1, w2)
tm_cache = rearrange(

preact,
’b (nc c) d -> b nc c d’,
c=192

).mean(dim=-2)
act_cache = act.clone()
mlp_cache = o.clone()

else:
inds, counts = compute_mlp_indices(

x,
w1,
tm_cache

)
o = colsparse_delta_mlp(

x,
w1, w2,
self.inds, self.counts,
act_cache, o_cache

)

return o� �
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Algorithm 6. Column Sparse Delta MLP. Computes sparse deltas for MLP outputs by selectively recomputing only significantly changed
neuron activations.� �
def colsparse_mlp_delta(x, w1, w2, inds, counts, a_cache, o_cache):

# x, w1, w2 : (b, n, d), (f, d), (f, d)
# inds : (b, n/c, topk) active neurons per token-tile
# counts : (b, n/c) number active per token-tile
# a_cache : (b, f, n) cached activations
# o_cache : (b, n, d) cached MLP output
#
# c : M tile size
# cn : N tile size
# ck : K tile size

# ---- GEMM1 : delta = x @ W1[idx, :].T - a_cache ----
tasks = [(i, j) for i in range(0, n, c)

for j in range(0, counts[i], cn)]
for (i, j) tasks:

idx_tile = inds[:, i//c, j : j+cn] # (b, cn)
a_tile = a_cache[idx_tile].T # (b, c, cn)
pre = zeros_like(a_tile) # (b, c, cn)

for k in range(0, d, ck):
x_tile = x[:, i: i + c, k: k + ck] # (b, c, ck)
w1_tile = w1[idx_tile, k : k + ck] # (b, cn, ck)
pre += x_tile @ w1_tile.T # (b, c, cn)

a = act_fn(pre + w1.bias[idx_tile]) # (b, c, cn)
delta = a - a_cache # (b, c, cn)
a_cache.scatter_(-2, idx, a.T) # (b, cn, c)

# ---- GEMM2 : o_cache += delta @ W2[idx, :] ----
tasks = [(i, j) for i in range(0, n, c)

for j in range(0, d, cn)]
for (i, j) tasks:

o_tile = o_cache[:, i: i + c] # (b, c, cn)

for k in range(0, counts[i], ck):
idx_tile = inds[:, i//c, k: k + ck] # (b, ck)
d_tile = delta[:, i: i + c, k: k + ck] # (b, c, ck)
w2_tile = w2[idx_tile, j : j + cn] # (b, ck, cn)
o_tile += delta @ w2_tile # (b, c, cn)

return o_cache # (b, n, d)� �
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Algorithm 7. Computing MLP Sparse Indices. Identifies neurons in MLP layers with the largest cross-step activation changes.� �
def compute_mlp_indices(x, w1, tm_cache):

# x : (b, n, d)
# w1 : (f, d)
# tm_cache : (b, n/c, f)
#
# returns inds : (b, n/c, topk) top neurons per token-group
# counts : (b, n/c, 1) active neurons per token-group

tm = rearrange( # (b, n/c, d)
x,

’b (nc c) d -> b nc c d’,
c=c

).mean(dim=-2)
tm = tm @ w1.T # (b, n/c, f)
delta = (tm - tm_cache).abs() # (b, n/c, f)
inds, counts = delta.topk(dim=-1).indices # (b, n/c, topk)

return inds, counts� �
D. Experiments
We evaluate Chipmunk against state-of-the-art DiT acceleration methods on text-to-video and text-to-image tasks. First,
we outline our experimental setup (D.1). Quantitative comparisons in Tables 2 and 6 demonstrate Chipmunk’s efficiency
and quality improvements (D.2). Qualitative examples (Fig. 9) illustrate Chipmunk’s preservation of visual quality under
significant acceleration (D.3).

Method Efficiency Visual Quality
FLOPs ↓ Speedup ↑ Latency (s) ↓ ImRe ↑ CLIP ↑

FLUX.1-dev, T=50 (768 × 1280)
Flux 100% 1x 6.60s 0.76 31.07
STA 84% 1.15x 5.73s 0.75 31.13
DiTFastAttn 83% 1.09x 6.05s 0.80 31.29
Chipmunk 58% 1.41x 4.90s 0.80 31.31
Step+Token Caching (ToCa) 66% 1.51x 4.37s 0.76 31.21
Step Caching (TeaCache) 39% 2.51x 2.64s 0.68 31.37
Chipmunk+Step Cache 31% 2.56x 2.57s 0.77 31.44

Table 6. Performance comparison of various methods across different datasets for image generation.

D.1. Setup

Models. We evaluate Chipmunk across three state-of-art DiT models: HunyuanVideo and WAN2.1 for text-to-video
generation and FLUX.1-dev for text-to-image generation, all using their default number of generation steps (50). As shown
in Fig. 4 (right), these models vary in sequence and FLOP breakdown, creating a strong evaluation of acceleration ability
in different inference regimes. Of the three models, FLUX.1-dev has the smallest sequence length at 4.5k and allocates a
majority of FLOPs to MLP layers. WAN2.1 and HunyuanVideo are extremely bound by attention at sequence lengths of
76k and 118k, respectively. All benchmarks are performed on H100-SXM5 GPUs with CUDA 12.8 and PyTorch 2.5.0,
comparing against a 650 TFLOP FlashAttention-3 baseline (Shah et al., 2024).

Baselines. We compare Chipmunk against a number of recent DiT acceleration techniques including TeaCache (Liu et al.,
2024a), ToCa (Zou et al., 2025), Sliding Tile Attention (STA) (Zhang et al., 2025b), and DiTFastAttn (Yuan et al., 2024).
TeaCache is a method for dynamically reusing DiT step outputs during slow-changing portions of the generation process,
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and ToCa dynamically computes token importance scores to recompute activations for only the most important tokens while
reusing the rest. STA extends sliding window attention to 3D video to exploit the natural locality in attention computations,
and DiTFastAttn reuses non-local attention interactions in a subset of steps to avoid a full recomputation. Here, we also stack
Chipmunk with a simple static step cache schedule, untuned for any particular model/prompt. Full baseline descriptions are
available in Appendix D.

Evaluations and Metrics. We evaluate text-to-video generation with the standard VBench evaluation, comprised of 16
dimensions that are weighted to produce a final score shown to align with human judgement (Huang et al., 2023). For
text-to-image generation, we compute two standard metrics: ImageReward (ImRe) (Xu et al., 2023), a common human-
preference trained reward model, and CLIP, a widely used metric assessing semantic alignment between text prompts and
images (evaluated on the ImRe dataset) (Radford et al., 2021).

Figure 6. Qualitative comparisons across videos (left) and images (right). For videos, frames are stacked vertically (down is later). See
Appendix D for more.

Hyperparameters. In a warm-up phase for each model, we test 100 E2E generations in order to select values of MLP
sparsity level and attention sparsity level that will achieve 95% of the change in activations across steps. For the step schedule
hyperparameter, we choose a simple schedule of interleaving 1 dense step every 10 sparse steps; further optimization could
yield additional efficiency improvements.

D.2. Quantitative Results

Across image and video models, Chipmunk achieves the largest acceleration levels while maintaining near-lossless quality
across ImageReward, CLIP, and VBench (Tables 2 and 6). We evaluate results in the context of three regimes: (1)
Acceleration Held Constant. Holding acceleration level constant, Chipmunk’s fine-grained caching of individual attention
and MLP vectors enable it to maintain higher quality than TeaCache, which caches full step outputs (HunyuanVideo, rows
4-5; FLUX.1-dev, rows 6-7). (2) Quality Held Constant. When quality is held nearly constant, Chipmunk achieves
higher acceleration than STA, ToCa, and DiTFastAttn, due to its dynamic, granular identification of sparsity patterns
(HunyuanVideo, rows 2-3; FLUX.1-dev, rows 2-5). (3) Chipmunk Speed-Quality Tradeoff. Chipmunk’s sparsity
hyperparameter can modulate the speed-quality tradeoff (WAN2.1, rows 3-4).

D.3. Qualitative Results

In videos, we observe that Chipmunk preserves small, high-moving parts such as hands knitting (Fig. 9). In images,
Chipmunk maintains strong visual quality, including details from long prompts. In both text-to-image and text-to-video tasks,
Chipmunk enhances details on the subject of the generation, such as the buttons on the captain’s jacket. We hypothesize
this is due to the ∼90% sparse attention matrix focusing on the most relevant parts of the prompt (e.g., the subject). We
speculate Chipmunk’s improved ImageReward, VBench, and CLIP scores may stem from this focus on subject prominence,
as these metrics evaluate how closely outputs align with prompts that largely describe a subject (Radford et al., 2021; Xu
et al., 2023).

In Fig. 10, we test the effect of reusing non-recomputed attention interactions from a previous step and using dynamically
identified sparsity patterns. On the left, we observe that only using a static local mask at high sparsity levels introduces
quality degradation and object warping. On the right, we find that reusing attention interactions and adding only 1% of
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dynamically selected top attention interactions restores significant quality. We also study the speed-quality tradeoff at
high levels of sparsity in Fig. 11. At high levels of sparsity, such as 92% on the left, we observe warping on detailed
objects such as a hand making fine motor movements to draw on paper. We find that slightly increasing the number of
dynamically selected attention interactions to be recomputed, from 1% to 5%, significantly improves quality. For a sample
of playable VBench video generations from HunyuanVideo VBench, please see this anonymized YouTube link: https:
//www.youtube.com/watch?v=rr0Pg4LHqVI. For a sample of playable VBench video generations from WAN2.1
VBench, please see this anonymized YouTube link: https://www.youtube.com/watch?v=etquKck_wtc

Failure Modes. At times, the background of videos appears slightly out of focus (bookshelf behind the woman knitting),
which we similarly speculate can be attributed to the sparsity in the attention matrix concentrating on subject-based parts of
the prompt. In text-to-image tasks, even though Chipmunk maintains prompt adherence and high visual quality, we find
minor differences in details of the generations when compared to the reference images (e.g., the number of background
birds in row 1), likely due to the number of FLOPs removed.

D.4. Hyperparameters

In this section, we expand upon the hyperparameters of all methods used to create the tables.

• TeaCache: The threshold parameter is set to 0.78 for FLUX.1-dev, 0.2 for WAN2.1, and 0.65 for HunyuanVideo.

• Sliding Tile Attention: We approximated the tile size to approximately cover 58% sparsity, as described in their paper
(Zhang et al., 2025b).

• DiTFastAttn: The default hyperparameters available at the GitHub implementation repository
xdit-project/xDiT were used: window size=512, number of calibrations=4, and with caching enabled.

• ToCa: The default hyperparameters suggested in their paper were used (N=2, R=90%) (Zou et al., 2025).

• Chipmunk: We apply 84% attention sparsity and 70% MLP sparsity for FLUX.1-dev. For text-to-video generation we
use 95% attention sparsity on HunyuanVideo and 82% attention sparsity on WAN2.1. Since MLP runtime accounts for
a very small percentage of wall clock time in both HunyuanVideo and WAN2.1, we only apply sparse attention deltas
to achieve the best speed-quality tradeoff.

• Step Caching: For entries marked Chipmunk + Step Caching, we use a simple uniform schedule we found to
approximate the behavior of a number of adaptive scheduling methods. In the middle W steps of the diffusion process,
we only compute every nth step, skipping all others by reusing the last computed model output. We use W = 30 and
n = 4, which corresponds to a roughly 1.8x speedup with 50 total steps. Thus, each step is either (i) fully skipped, (ii)
partially sparse (Chipmunk), or (iii) fully dense.

D.4.1. QUALITATIVE EVALUATIONS

Evaluation across prompts. Using the methods of the main results table in the paper body, we generate images across a
variety of prompts and methods (Fig. 7). We observe that naively skipping steps may impair visual quality due to blur and
loss of detail. We find Chipmunk preserves aesthetic quality but may change some details of the image while maintaining
strong adherence to prompts. Although DiTFastAttn has strong quality, it only achieves a minor speedup.

Evaluation across speed-quality tradeoff. We evaluate multiple values of MLP and attention sparsity, ranging from 0%
to 90%, to better understand how the MLP & attention sparsity parameters modulate the speed-quality tradeoff (Fig. 8). The
images maintain strong quality levels of sparsity reaching 70-80%. Beyond 80%, significant artifacts are introduced.

E. Extended Related Work
Towards Few-Step Diffusion Models. Early diffusion models required hundreds to thousands of denoising steps per
generated sample, originating from the foundational work of Sohl-Dickstein et al. (Sohl-Dickstein et al., 2015) and Ho et
al. (Ho et al., 2020). Subsequent methods significantly reduced inference steps by enhancing sampling efficiency: DDIM
introduced a non-Markovian forward diffusion process that decouples training and sampling steps, while the DPM-Solver
family achieved substantial speedups by utilizing dedicated diffusion ODE solvers without retraining (Song et al., 2022;
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Figure 7. Images on 1280x768 FLUX.1-dev evaluated on different captions and prompts randomly sampled from the ImageReward
dataset. On the left, we have vanilla reference images. Naively skipping steps (third column) introduces significant artifacts, such as a
blurry images and a loss of detail. Chipmunk preserves aesthetic quality but may change some details of the image (despite maintaining
prompt adherence). DiTFastAttn also achieves high quality but only a minor speedup.
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Figure 8. Speed-quality tradeoff on 1280x768 images generated on FLUX.1-dev with 50 steps at varying levels of Chipmunk sparsity.
The images maintain strong quality at high levels of sparsity reaching 70-80%. Beyond 80%, significant artifacts are introduced and
visual quality noticeably degrades resulting in blurry images or loss of detail. A single value was used for both attention and MLP sparsity.
Prompts are listed below:

• ”anthropomorphic crow werecreature, photograph captured in a forest”

• ”a concept art of a vehicle, cyberpunk”

• ”astronaut drifting afloat in space, in the darkness away from anyone else, alone, black background dotted with stars,
realistic”

• ”photo of a interior taken with a cheap digital camera at night flash lighting”

• ”A realistic photo of a man with big ears”

• ”delicious plate of food”

• ”tumultuous plunging waves, anime, artwork, studio ghibli, stylized, in an anime format”

• ”an alien planet viewed from space, extremely, beautiful, dynamic, creative, cinematic”
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Figure 9. Qualitative comparisons across videos (left) and images (right). For videos, frames are stacked vertically (down is later). See
Appendix D for more.

Lu et al., 2022). Another line of research has specifically targeted training processes optimized for single-step inference.
For instance, Rectified Flow (Liu et al., 2022) learns straight-line mappings from noise to data, and Consistency Models
(Song et al., 2023) directly model single-step noise-to-data transformations from arbitrary points along the noising trajectory.
Additionally, step-distillation techniques, such as Progressive Distillation (Salimans & Ho, 2022), efficiently train few-
step student models to approximate the longer sampling trajectories of multi-step teacher models. Complementing these
approaches, which allocate computational resources uniformly once the number of steps is determined, Chipmunk studies
an orthogonal dimension of efficiency: dynamically allocating computation within individual inference steps by selectively
recomputing only the most important activations.

Efficient Attention Approximations. The quadratic complexity of self-attention mechanisms has driven extensive research
into efficient approximations. Prior works have explored many strategies, including low-rank approximations (Wang et al.,
2020), random-feature projections (Choromanski et al., 2022), locality-sensitive hashing or local attention masks (Kitaev
et al., 2020; Zaheer et al., 2021), and combined sparse-plus-low-rank decompositions (Chen et al., 2021a; Arora et al., 2025).
Recent studies on video and diffusion models have adopted static sliding-window attention masks (Zhang et al., 2025b;
Yuan et al., 2024) and quantized attention computations (Zhang et al., 2025a). Chipmunk focuses on a dynamic sparse
attention approximation to speedup DiTs and can be complemented with other techniques such as low-rank approximations
or static mask patterns.

Efficient MLP Approximations. Conditional computation strategies such as Mixture-of-Experts (Shazeer et al., 2017;
Fedus et al., 2022) selectively activate a subset of expert MLP modules per token, reducing FLOPs proportionally to top-k
gating decisions. More fine-grained neuron-level sparsity methods, such as contextual sparsity (Liu et al., 2023), dynamically
select only the most relevant neurons during autoregressive decoding, guided by a lightweight prediction model. Chipmunk
complements these existing conditional computation techniques with the addition of activation reuse across inference steps.
Instead of purely gating experts or neurons, Chipmunk leverages multi-step inference to selectively recompute only the
neurons exhibiting significant changes, while reusing the activations of non-activated neurons from a cache. While initially
demonstrated for diffusion models, the general concept of caching and sparse recomputation has potential applicability in
other multi-step inference contexts, such as autoregressive decoding.
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Figure 10. Ablation of adding deltas (to reuse attention interactions that are not recomputed) and 1% dynamic TopK attention mask on top
of static local voxel attention. We find that at high sparsity levels, using only a static local mask results in artifacts and object warping.
Adding deltas and just 1% of the dynamically selected top attention interactions significantly improves quality. Note: Because the 3D
dimensions do not divide evenly into 3D voxels, both configurations shown above also use full attention to and from the remainder slice in
each dimension.
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Figure 11. Comparing the quality of WAN2.1 generation at 1% dynamic top-k attention interactions and 5% dynamic top-k attention
interactions. On the left, we see that at high sparsity levels, detailed objects such as the pencil and hands begin to experience warping. We
then see on the right that increasing the number of dynamically selected top-k attention interactions from 1% to 5% restores high quality
generation of the pencil and hands.
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