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Abstract

We introduce Three Towers (3T), a flexible
method to improve the contrastive learning of
vision-language models by incorporating pre-
trained image classifiers. While contrastive mod-
els are usually trained from scratch, LiT (Zhai
et al., 2022b) has recently shown performance
gains from using pretrained classifier embeddings.
However, LiT directly replaces the image tower
with the frozen embeddings, excluding any po-
tential benefits of contrastively training the im-
age tower. With 3T, we propose a more flexible
strategy that allows the image tower to benefit
from both pretrained embeddings and contrastive
training. To achieve this, we introduce a third
tower that contains the frozen pretrained embed-
dings, and we encourage alignment between this
third tower and the main image-text towers. Em-
pirically, 3T consistently improves over LiT and
the CLIP-style from-scratch baseline for retrieval
tasks. For classification, 3T reliably improves
over the from-scratch baseline, and while it un-
derperforms relative to LiT for JFT-pretrained
models, it outperforms LiT for ImageNet-21k and
Places365 pretraining.

1. Introduction
Approaches such as CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021) have popularized the contrastive learning
of aligned image and text representations from large scale
web-scraped datasets of image-caption pairs. Compared
to image-only contrastive learning, e.g. Oord et al. (2018);
Chen et al. (2020); He et al. (2020), the bi-modal image-
text objective allows these approaches to perform tasks that
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Table 1. For retrieval, 3T improves on LiT and the CLIP-style
baseline (top-1 recall ↑). Models are g scale, using Text-Filtered
WebLI, and JFT pretraining for LiT/3T, cf. §3.1.

Method Basel. LiT 3T

Flickr img2txt 85.0 83.9 87.3
Flickr txt2img 67.0 66.5 72.1
COCO img2txt 60.0 59.5 64.1
COCO txt2img 44.7 43.6 48.5

require language understanding, such as retrieval or zero-
shot classification (Li et al., 2017; Radford et al., 2021;
Jia et al., 2021). Compared to traditional transfer learn-
ing from supervised image representations (Pan & Yang,
2010; Sun et al., 2017; Mahajan et al., 2018; Kolesnikov
et al., 2020), contrastive approaches can forego expensive
labelling and instead collect much larger datasets via in-
expensive web-scraping (Radford et al., 2021; Chen et al.,
2022; Schuhmann et al., 2022). A growing body of work
seeks to improve upon various aspects of contrastive vision-
language modelling, cf. related work in §B.

CLIP and ALIGN train the image and text towers from
randomly initialized weights, i.e. ‘from scratch’. However,
strong pretrained models for either image or text inputs are
often readily available, and one may benefit from their use
in contrastive learning. Recently, Zhai et al. (2022b) have
shown that pretrained classifiers can be used to improve
downstream task performance. They propose LiT, short for
‘locked-image text tuning’, which is a variation of the stan-
dard CLIP/ALIGN setup that uses frozen embeddings from
a pretrained classifier as the image tower. In other words,
the text tower in LiT is contrastively trained from scratch
to match locked and pretrained embeddings in the image
tower. Incorporating knowledge from pretrained models
into contrastive learning is an important research direction,
and LiT provides a simple and effective recipe for doing so.

However, a concern with LiT is that it may be overly reliant
on the pretrained model, completely missing out on any po-
tential benefits the image tower might get from contrastive
training. Zhai et al. (2022b) themselves give one example
where LiT performs worse than standard contrastive training:
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Figure 1. CLIP and ALIGN do not make use of pretrained models, and LiT directly uses a frozen pretrained model as the image tower.
With Three Towers (3T), we propose a flexible strategy to improve contrastive learning with pretrained models: in addition to a pair of
CLIP-style from-scratch image and text towers, we introduce a third tower which contains fixed pretrained image embeddings; extra
loss terms align the main towers to the third tower. Unlike for CLIP/ALIGN and LiT, the image tower can benefit from both contrastive
learning and pretrained classifier embeddings.

when using models pretrained on Places365 (Zhou et al.,
2017)—a dataset relating images to the place they were
taken—the fixed embeddings do not generalize to down-
stream tasks such as ImageNet-1k (IN-1k) (Krizhevsky et al.,
2009; Russakovsky et al., 2015) or CIFAR-100 (Krizhevsky
et al., 2009). For their main results, Zhai et al. (2019) there-
fore use models pretrained on datasets such as ImageNet-
21k (IN-21k) (Deng et al., 2009; Russakovsky et al., 2015)
and JFT (Sun et al., 2017; Zhai et al., 2022a) which cover
a variety of classes and inputs. However, even then, we
believe that constraining the image tower to fixed classifier
embeddings is not ideal: later, we will show examples where
LiT performs worse than standard contrastive learning due
to labels or input examples not covered by IN-21k, cf. §3.2.
Given the scale and variety of contrastive learning datasets,
it should be possible to improve the image tower by making
use of both pretrained models and contrastive training.

We propose Three Towers (3T): a flexible approach that im-
proves the contrastive learning of vision-language models
by effectively transferring knowledge from pretrained classi-
fiers. Instead of locking the main image tower, we introduce
a third tower that contains the embeddings of a frozen pre-
trained model. The main image and text towers are trained
from scratch and aligned to the third tower with additional
contrastive loss terms (cf. Figure 1). Only the main two
towers are used for downstream task applications such that
no additional inference costs are incurred compared to LiT
or a CLIP/ALIGN baseline. This simple approach allows us
to explicitly trade off the main contrastive learning objective
against the transfer of prior knowledge from the pretrained
model. Compared to LiT, the image tower in 3T can benefit
from both contrastive training and the pretrained model.

2. Three Towers: Flexible Contrastive
Learning with Pretrained Models

With Three Towers (3T), we propose a simple and flexible
approach to incorporate knowledge from pretrained mod-
els into contrastive learning. We refer to §A and §B for
an introduction to contrastive learning of vision-language
models and related work. Instead of directly using the pre-
trained model locked as the main image tower, we instead

add a third tower, h, which contains the fixed pretrained
embeddings. The main image and text towers are trained
from scratch, and we transfer representations from the third
tower to the main towers with additional contrastive losses.
Thus, the main image tower benefits from both pretraining
knowledge and contrastive learning.

More formally, in addition to the standard image and text
towers, fθ and gφ, cf. §A, we now have access to fixed pre-
trained image embeddings p : I → RP . Because P can be
different from the target dimension D, we define the third
tower as h(I) = linear(p(I)), where linear : RP →
RD projects embeddings to the desired dimensionality. In
principle, the 3T architecture is also compatible with pre-
trained text models. However, Zhai et al. (2022b) observe
little-to-no benefits from using pretrained text models, and
so we focus on pretrained image classifiers.

When computing loss terms involving the third tower, we
make use of learned linear projection heads. These heads
afford the model a degree of flexibility when aligning rep-
resentations between towers. First, we define NL(·) =
norm(linear(·)), where norm(x) = x/‖x‖2 normal-
izes with respect to L2 norm and, overloading notation,
linear : RD → RD now preserves dimensionality. We
adapt the main image and text towers as fh(I) = NL(f(I))
and gh(T ) = NL(g(T )). We project the third tower embed-
dings h to hf (I) = NL(h(I)) and hg(I) = NL(h(I)) for
computation of the loss with the image and text towers re-
spectively. The linear layers introduced for fh, gh, hf , and
hg are independently learned from scratch. Per input batch,
the 3T approach then optimizes the following loss objective:

L3T =
1

3
· (Lf↔g + Lfh↔hf

+ Lgh↔hg
). (1)

Here, Lf↔g is the original contrastive loss, cf. Equation (2),
and Lfh↔hf

and Lgh↔hg are additional contrastive losses
between the image/text tower and the third tower projec-
tions. All loss terms share a global temperature τ . We train
both towers, f and g, and all linear layers from scratch by
optimizing Equation (1) over input batches. Figure A.1 (a)
visualizes the adaptor heads and loss computation for 3T.
After training, the third tower is discarded and we use
only the main two towers, cf. Figure A.1 (b). Therefore,

2



Three Towers: Flexible Contrastive Learning with Pretrained Image Models

the inference cost of 3T is equal to the baseline methods.
For training, the additional cost over the from-scratch
CLIP/ALIGN baseline is negligible, as frozen embeddings
from the third tower can be pre-computed and then stored
with the dataset, as also done in Zhai et al. (2019).

Intuitions for the 3T Architecture. Intuitively, the addi-
tional losses align the representations of the main towers to
the pretrained embeddings in the third tower. In fact, Tian
et al. (2020) show that contrastive losses can be seen as
distillation objectives that align representations between a
teacher and a student model. They demonstrate that con-
trastive losses are highly effective for representation transfer,
outperforming alternative methods of distillation. Thus, the
additional terms, Lfh↔hf

and Lgh↔hg
, transfer representa-

tions from the pretrained model to the unlocked main towers,
albeit without the usual capacity bottleneck between the stu-
dent and teacher models. Of course, for 3T, we also need to
consider the original objective Lf↔g between the unlocked
text and image towers. In sum, the unlocked towers benefit
both from the pretrained model and contrastive training.

Discussion. The 3T approach includes pretrained knowl-
edge without suffering from the inflexibility of directly using
the pretrained model as the main image tower. For example,
unlike LiT, 3T allows for architectural differences between
the unlocked image tower and pretrained model. Further,
it seems plausible that 3T should generally be more robust
than LiT: as the image tower learns from the highly-diverse
contrastive learning datasets, the chances of encountering
‘blindspots’ in downstream applications, e.g. due to labels
or examples not included in the pretraining dataset, should
be lower. In a similar vein, LiT is most appropriate for pre-
trained models so capable that they need not adapt during
contrastive training. For example, few-shot classification
performance, which uses only the image tower, by design
cannot improve at all during contrastive training with LiT.
On the other hand, with 3T we may be able to successfully
incorporate knowledge from weaker models, too.

3. Experiments
In this section, we compare 3T to LiT and to a standard
CLIP/ALIGN baseline trained from scratch, which we will
refer to as the ‘baseline’ for simplicity. Our experimental
setup largely follows Zhai et al. (2022b): for all methods,
we use Vision Transformers (ViT) (Dosovitskiy et al., 2021)
for the image and text towers, replacing visual patching
with SentencePiece encoding (Kudo & Richardson, 2018)
for text inputs, further sharing optimization and implementa-
tion details with (Zhai et al., 2022b). We rely on the recently
proposed WebLI dataset (Chen et al., 2022), a large-scale
dataset of 10B image-caption pairs (Unfiltered WebLI). We
also explore two higher-quality subsets derived from WebLi:
Text-Filtered WebLI, which uses text-based filters follow-

Table 2. 3T outperforms LiT and the baseline for retrieval (top-1
recall ↑, L scale models, Unfiltered WebLI, see §3.1).

Pretraining – IN-21k JFT
Method Basel. LiT 3T LiT 3T

Flickr∗ img2txt 75.6 71.7 80.0 78.7 80.0
Flickr∗ txt2img 57.1 49.3 60.9 58.8 61.4
COCO img2txt 51.0 46.1 54.4 52.7 54.4
COCO txt2img 34.2 27.8 37.7 36.7 37.9

ing Jia et al. (2021), and Pair-Filtered WebLi (see §E.1),
which retains about half of the examples with the highest
image-text pair similarity. For image tower pretraining, we
consider both proprietary JFT-3B (Zhai et al., 2022a) and
the publicly available IN-21k checkpoints of Dosovitskiy
et al. (2021). For IN-21k, our largest model scale is L, with a
16×16 patch size for ViT, and for JFT pretraining we go up
to g scale at a patch size of 14×14. Unless otherwise stated,
we train for 5B examples seen at a batch size of 14 336.

3.1. Retrieval

We study zero-shot retrieval performance on Microsoft
COCO (Chen et al., 2015) and Flickr30k (Plummer et al.,
2015). Table 1 shows results for g scale models trained on
Text-Filtered WebLI, with JFT pretraining for 3T and LiT;
we give results for additional WebLI splits in Table E.2. In
Table 2, we report performance of L scale models trained
on Unfiltered WebLI for JFT and IN-21k pretraining.

3T improves on LiT and the baseline for retrieval tasks
across scales, datasets, and for both JFT and IN-21k pre-
training. A rare exception to this are the Unfiltered WebLI
results in Table E.2, where 3T beats LiT for retrieval on
average and for txt2img, but not for img2txt. In general
however, LiT underperforms for retrieval and regularly does
not outperform the baseline: at L scale, LiT shows a strong
dependence on the pretrained model and can only outper-
form the baseline with JFT pretraining. In contrast, 3T
obtains similar improvements over the baseline for both pre-
training datasets. We will continue to see this pattern in our
experiments: 3T consistently improves over the baseline,
while LiT results can vary wildly and depend strongly on the
pretraining dataset. We discuss our retrieval results in the
context of SOTA performance in §E.1: the SOTA method
CoCA (Yu et al., 2022) achieves better results but uses about
4 times more compute; increasing the compute budget for
3T would likely reduce the gap.

Intuitively, while the fixed classifier embeddings in LiT can
∗For historical reasons, Flickr∗ results do not use the ‘Karpa-

thy’ split (Karpathy & Fei-Fei, 2015). However, they are available
for all runs, and they are directly comparable. Our g scale runs
do have Karpathy split results, denoted Flickr (no star).
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categorize inputs into tens of thousands of labels, they may
not be fine-grained enough for retrieval applications. On the
other hand, the contrastive training of the baseline is closely
related to the retrieval task but misses out on knowledge
from pretrained models. Only 3T is able to combine benefits
from both for improved performance.

3.2. Few-Shot and Zero-Shot Image Classification

Next, we compare the approaches on few- and zero-shot
image classification. See §H for citations of all the datasets
that we use. For zero-shot classification, we follow the
procedure described in §A. For few-shot tasks, we report
10-shot accuracy, more specifically, the accuracy of a linear
classifier trained on top of fixed image representations,
averaging over 3 seeds for the 10 random examples per
class. As few-shot performance depends only on the image
embeddings, LiT’s few-shot accuracy is precisely the same
as that of the pretrained model. Despite this, Zhai et al.
(2022b) show that LiT outperforms the unlocked baseline
on few-shot IN-1k and CIFAR-100 evaluations.

For IN-21k pretraining, Table 3 reports the performance
of L scale models trained on Unfiltered WebLI. Here, 3T
outperforms both LiT and the baseline. For JFT pretraining,
Table E.1 give results at L scale on Unfiltered WebLI and Ta-
ble E.2 presents results at g scale across WebLI splits. In all
JFT settings, LiT performs best on average for image classifi-
cation tasks. However, for both JFT and IN-21k pretraining,
3T improves over the baseline for almost all tasks, while
LiT’s performance depends heavily on the pretraining data.

Risk of Locking. There is a risk associated with LiT, both in
a positive and negative sense. Using fixed classifier represen-
tations can result in excellent performance if the downstream
task distribution and pretraining dataset are well-aligned:
for example, IN-21k contains hundreds of labels of bird
species, and IN-21k-LiT performs well on the Birds task,
outperforming 3T by 18%p. However, the IN-21k label set
does not contain a single car brand, and thus, IN-21k-LiT
does not perform well on Stanford Cars, underperforming
relative to the baseline and 3T by almost 40%p. Object-
Net, IN-A, and IN-R were created to be challenging for
ImageNet models, and so IN-21k-LiT performs worse than
the baseline and 3T here, too. For example, IN-R contains
artistic renditions of objects that are challenging for IN-21k-
based models as they have mostly been trained on realistic
images. IN-21k-LiT also struggles with more specialized
tasks, performing 29%p worse than the baseline on the
remote sensing RESISC dataset.

The above results support our hypothesis that image embed-
dings trained on the diverse contrastive learning dataset will
be more broadly applicable. Strikingly, even when using the
same IN-21k model, 3T almost always improves over the
baseline and never suffers the same failures as LiT. However,

Table 3. For IN-21k pretraining, 3T has the best average classifi-
cation accuracy (↑) (L scale models, Unfiltered WebLI).

Method Basel. LiT 3T

Fe
w
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tio

n

IN-1k 62.8 79.0 68.0
CIFAR-100 70.4 83.6 72.5
Caltech 91.0 88.4 92.3
Pets 85.9 89.2 86.5
DTD 70.3 69.2 73.3
UC Merced 91.8 92.8 94.0
Cars 81.5 41.9 84.9
Col-Hist 71.7 86.4 76.6
Birds 53.4 83.4 65.0

Z
er

o-
Sh

ot
C

la
ss

ifi
ca

tio
n

IN-1k 69.5 76.0 71.7
CIFAR-100 73.5 82.9 73.4
Caltech 81.9 82.4 84.1
Pets 84.2 87.1 87.0
DTD 58.6 51.8 60.3
IN-C 49.6 62.0 51.8
IN-A 53.0 45.6 54.3
IN-R 85.8 66.1 88.1
IN-v2 62.2 67.2 64.9
ObjectNet 56.2 41.9 58.3
EuroSat 32.7 27.6 42.8
Flowers 62.0 72.6 65.7
RESISC 58.0 29.0 57.9
Sun397 67.6 65.4 68.7

Average 68.4 68.3 71.4

it seems that JFT-pretrained models can fix many of LiT’s
shortcomings for image classification. JFT-LiT performs re-
markably well and almost never underperforms significantly
compared to the baseline. A deviation from this pattern
are the results for Eurosat and RESISC at g scale for JFT
pretraining in Table E.2, where, e.g. on the Text-Filtered
WebLI, split LiT lacks behind 3T by 12%p and 8%p.

4. Concluding Thoughts
We have introduced the Three Tower (3T) method, a
straight-forward and effective approach for incorporating
pretrained image models into the contrastive learning of
vision-language models. Empirically, 3T outperforms both
LiT and the CLIP/ALIGN baseline for retrieval tasks. We
discuss limitations, impact, and further conclusions in §C.
In §D, we present additional experiments such as a study of
scaling, optimization behavior, and robustness, an ablation
study, a simple post-hoc method to combine 3T- and LiT-
like prediction, as well as calibration and out-of-distribution
detection capabilities of 3T, LiT, and the baseline.
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A. Background: Contrastive Learning of Vision-Language Models
Before introducing 3T, we recap contrastive learning of vision-language models as popularized by (Radford et al., 2021; Jia
et al., 2021; Zhang et al., 2022) and give a more formal introduction to LiT (Zhai et al., 2022b).

CLIP/ALIGN. We assume two parameterized models: an image tower f = fθ with parameters θ and a text tower g = gφ
with parameters φ. Each input sample (Ii, Ti) consists of a pair of matching image Ii ∈ I and text Ti ∈ T , and the
contrastive loss is computed over a batch i ∈ {1, . . . , N} of examples. The towers map the input modalities to a common
D-dimensional embedding space, f : I → RD and g : T → RD. We further assume that f and g produce embeddings
that are normalized with respect to their L2 norm, ‖f(I)‖2 = ‖g(T )‖2 = 1 for any I ∈ I and T ∈ T . For a batch of input
samples, the bi-directional contrastive loss (Sohn, 2016; Wu et al., 2018; Oord et al., 2018; Chen et al., 2020; Zhang et al.,
2022) is computed as

Lf↔g =
1

2
(Lf→g + Lg→f ), where (2)

Lf→g = −
1

N

N∑
i=1

log
exp(f(Ii)

>g(Ti) /τ)∑N
j=1 exp(f(Ii)

>g(Tj)/τ)
, (3)

Lg→f = − 1

N

N∑
i=1

log
exp(f(Ii)

>g(Ti)/τ)∑N
j=1 exp(f(Ij)

>g(Ti)/τ)
. (4)

Here, τ is a learned temperature parameter and f(I)>g(T ) ∈ R are dot products. The two directional loss terms, Lf→g and
Lg→f , have a natural interpretation as standard cross-entropy objectives for classifying the correct matches in each batch.
The parameters θ and φ of the two towers, fθ and gφ, are jointly updated with standard stochastic optimization based on
Equation (2).

Downstream Tasks. After training, f and g are treated as fixed representation extractors. For retrieval, the dot product
f(I)>g(T ) ∈ R ranks similarity between inputs. For few-shot image classification, a linear classifier is trained atop the
feature representations of f from few examples; g is not used. For zero-shot image classification, f embeds images and
g all possible class labels (see (Radford et al., 2021)). For each image, one predicts the label with the largest dot product
similarity in embedding space.

LiT. Zhai et al. (2022b) initialize the parameters θ of the image tower from a pretrained classifier and then keep them frozen
them during training. That is, only the parameters φ of the text tower are optimized during contrastive training. As the image
tower fθ, LiT uses the pre-softmax embeddings of large scale classifiers, such as vision transformers (Dosovitskiy et al.,
2021) trained on JFT-3B (Zhai et al., 2022a) or IN-21k. During contrastive training, the text tower is trained from scratch
using the same objective Equation (2).

Experimentally, Zhai et al. (2022b) investigate all combinations for ‘training from scratch’, locking and finetuning a
pretrained model for both towers on a custom union of the CLIP-subset of YFCC-100M (Thomee et al., 2016) and CC12M
(Changpinyo et al., 2021) (cf. Fig. 3 in (Zhai et al., 2022b)). For the image tower, locking gives a significant lead on
IN-1k over finetuning and training from scratch, and performs similarly to finetuning and better than training from scratch
for retrieval. For the text tower, a locked configuration performs badly, and finetuning gives small to negligible gains

Figure A.1. Details of the 3T approach. (a) Linear adaptor heads (gray) align the representations between the main towers and the third
tower. (b) For downstream tasks, 3T is used in the same way as CLIP/ALIGN and LiT. We discard the third tower, using only the main
towers, f(I) and g(T ).
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over training from scratch. Given these results, Zhai et al. (2022b) choose the ‘locked image tower and from-scratch text
tower’ setup that they call LiT. At large scale, they show that a locked image tower outperforms from-scratch training
and finetuning on zero-shot IN-1k, ImageNet-v2 (IN-v2) (Recht et al., 2019), CIFAR-100, and Oxford-IIIT Pet (Parkhi
et al., 2012) classification tasks. They further show LiT outperforms CLIP/ALIGN on IN-R (Hendrycks et al., 2021a),
IN-A (Hendrycks et al., 2021b), and ObjectNet (Barbu et al., 2019).

While Zhai et al. (2022b) show strong classification performance with LiT on a wide range of datasets, locking the image
tower is a drastic measure that introduces a severe dependency on the pretrained model, prohibiting the image tower from
improving during contrastive training. We will later show that, if the embeddings in the frozen image tower are not suited
to a particular downstream tasks, LiT underperforms compared to approaches that train the image tower on the varied
contrastive learning dataset, see, for example, §3.2 and §D.5. The 3T approach seeks to address these concerns.

B. Related Work
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) are examples of vision-language models that have received
significant attention, e.g. for their impressive ImageNet zero-shot results. Concurrently with LiT (Zhai et al., 2022b), BASIC
(Pham et al., 2021) investigates locking and finetuning from JFT-pretrained models. The above approaches build on large
amounts of prior work. (Mori et al., 1999; Quattoni et al., 2007; Wang et al., 2009; Srivastava & Salakhutdinov, 2012)
explore representation learning from images with natural language descriptions before the deep learning era. Subsequently,
(Frome et al., 2013; Karpathy & Fei-Fei, 2015; Joulin et al., 2016; Faghri et al., 2017; Sariyildiz et al., 2020; Chen et al.,
2021) explore image-text understanding with modern architectures like CNNs or Transformers. In this context, Li et al.
(2017) were the first to introduce the idea of zero-shot transfer to novel classification tasks. The loss objective, Equation (2),
was proposed by Sohn (2016) for image representation learning, and also appears in (Wu et al., 2018; Oord et al., 2018; Chen
et al., 2020). Zhang et al. (2022) then used the objective to align images and captions, although their setting used medical
data. Lots of work has built on CLIP and ALIGN. For example, (Yuan et al., 2021; Yang et al., 2022) have augmented the
objective to optionally allow for labels, (Zhou et al., 2022b;a) proposed methods for improving zero-shot prompts, (Bain
et al., 2021; Luo et al., 2022) applied CLIP to video, and (Patashnik et al., 2021; Nichol et al., 2022; Saharia et al., 2022;
Jain et al., 2021) used CLIP embeddings to improve generative modelling. Relatedly, vast amounts of work have explored
self-supervised or contrastive representation learning of images only, e.g. (Doersch et al., 2015; He et al., 2020; Grill et al.,
2020; Caron et al., 2021). Transfer learning (Pan & Yang, 2010) applies embeddings from large-scale (weakly) labelled
datasets in downstream task (Sun et al., 2017; Mahajan et al., 2018; Kolesnikov et al., 2020).

C. Limitations, Impact, and Conclusions
Limitations. While 3T consistently improves over LiT for retrieval tasks, for classification, 3T outperforms LiT with
ImageNet-21k-pretrained models only at large scales, and may require even larger scales for JFT pretraining. Further, while
inference costs are equal for all methods, 3T incurs additional training costs compared to LiT. We have compared methods
at matching inference cost for simplicity because there are many ways to account for the cost of pretraining and embedding
computation.

Impact. We believe that locking is a suboptimal way to incorporate pretrained image models, and we have demonstrated
clear benefits from exposing the image tower to both the contrastive learning dataset and the pretrained model, particularly as
scale increases. 3T is a simple and effective method to incorporate pretrained models into contrastive learning and should be
considered by future research and applications whenever strong pretrained models are available. For future work that seeks
to improve 3T, we consider it important to understand the differences between embeddings from 3T, LiT, and the baseline. If
we can obtain insights into why they excel at different tasks, we can perhaps (learn to) combine them for further performance
improvements. Our convex combination experiments are a starting point; it would be interesting to continue this direction,
possibly looking at combinations in parameter space (Wortsman et al., 2022a;b). Lastly, future work could explore 3T
for distillation of large pretrained models into smaller models, extend 3T to multiple pretrained models, potentially from
diverse modalities, or explore the benefits of 3T-like ideas for other approaches such as CoCa (Yu et al., 2022).

Conclusions. We have introduced the Three Tower (3T) method, a straight-forward and effective approach for incorporating
pretrained image models into the contrastive learning of vision-language models. Unlike the previously proposed LiT, which
directly uses a frozen pretrained model, 3T allows the image tower to benefit from both contrastive training and embeddings
from the pretrained model. Empirically, 3T outperforms both LiT and the CLIP/ALIGN baseline for retrieval tasks. In

11



Three Towers: Flexible Contrastive Learning with Pretrained Image Models

contrast to LiT, 3T consistently improves over the baseline across all tasks. Further, for ImageNet-21k-pretrained models,
3T also outperforms LiT for few- and zero-shot classification. We believe that the robustness and simplicity of 3T makes it
attractive to practitioners and an exciting object of further research.

D. Additional Main Experiments & Results
D.1. Scaling Model Sizes and Training Duration

Since the publication of LiT, the scale of contrastive learning datasets, both public and proprietary, has increased, for
example with the release of LAION-5B (Schuhmann et al., 2022) or WebLI-10B (Chen et al., 2022); we use the latter
here. Given their cheap collection costs, it seems likely that this growth will continue to outpace that of more expensive
classification datasets. However, locking the image tower ignores any potential benefits from the increased contrastive
learning data for the image tower. Additionally, larger datasets often lead to increases in model scales to fully make use of
the additional information (Zhai et al., 2022a); unlike LiT, 3T can increase the scale of the main image tower independently
of the pretrained model, cf. §D.5.

Here, we separately study the effects that model scale and dataset size have on 3T, LiT, and the baseline. First, we vary
the scale of all involved towers, including the pretrained model. We study both IN-21k and JFT pretraining, always train
contrastively for 5B examples seen, and the S, B, L, and g scales correspond to S/32, B/32, L/16, and g/14 for the ViT
models. We compute averages separately across retrieval, few-shot, and zero-shot classification tasks, where the tasks
are those from Tables 2 and 3.

In Figure D.1, we observe that 3T’s lead over LiT and the baseline in retrieval performance holds across scales and
pretraining datasets. Further, across all tasks and scales, 3T maintains a consistent performance gain over the baseline. Also
across tasks and pretraining datasets, we observe that scaling is more beneficial for 3T than for LiT: as we increase the scale,
3T’s performance increases more than that of LiT. This means that 3T either extends its lead over, overtakes outright, or
reduces its gap to LiT as we increase scale. At L scale with IN-21k pretraining, 3T gives the best average performance of
all methods across tasks. For JFT pretraining, LiT maintains an edge for classification performance, although the scaling
behavior suggests this gap may fully collapse at larger scales.

We observe similar trends when scaling the number of examples seen during training, cf. Figure E.1.

D.2. Ablations

Table D.1. Ablation study, see text for details.

Difference to 3T

Rerun −0.22± 0.25

No Lf↔g Loss −26.63± 10.61
No Lfh↔hf

Loss −1.19± 0.75
No Lgh↔hg Loss −2.77± 0.91
Head Variants 0.09± 0.35
MLP Embedding −0.08± 0.35
More Temperatures −0.26± 0.48
Loss Weights 0.17± 0.53
L2 Transfer −3.80± 1.13
3T Finetuning 1.85± 1.27

Difference to LiT

Rerun −0.10± 0.22

LiT Finetune −14.99± 6.09
FlexiLiT1 −4.63± 1.36
FlexiLiT2 −5.04± 1.54

Next, we provide ablations for some of the design decisions of 3T as well as
insights into LiT training. We perform the ablation study at B scale with patch
size 32, training for 900M examples seen, and use JFT-pretrained models.
In Table D.1, we report the average difference in performance to our default
runs across all tasks, together with two standard errors computed over the
downstream tasks as an indication of statistical significance. We refer to §E.5
for full details and results.

3T Ablations. ‘Rerun’: To study per-run variance, we perform a rerun of the
base 3T model, obtaining an average performance difference of −0.22%p
across tasks. ‘No L·↔·’: When leaving out either of the three loss terms,
average performance suffers significantly. ‘Head Variants’: We try a selection
of different projection head variants, see §E.5. None give significantly better
performance than our default setup. ‘MLP Embedding’: Replacing the linear
projection h in the third tower with an MLP does not improve performance.
‘More Temperatures’: Using three learned temperatures, one per 3T loss
term, instead of a global temperature as in Equation (1), does not improve
results. ‘Loss weights’: Replacing the loss with a weighted objective, 1

3 ·
(Lf↔g+w ·(Lfh↔hf

+Lgh↔hg
)), does not improve performance significantly

across a variety of choices for w. ‘L2 Transfer’: Using squared losses for
the representation transfer objectives Lfh↔hf

and Lgh↔hg
, cf. (Romero et al.,

2014), results in significantly worse performance, even when optimizing the
weight of the transfer terms. ‘3T Finetuning’: Initializing the main tower in 3T
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Figure D.1. We increase the model scale for 3T, LiT, and the baseline and report average retrieval, few- and zero-shot classification
performance for both IN-21k and JFT pretraining. 3T and the baseline benefit more from increases in scale than LiT (their curves are
steeper), with 3T performing better than the baseline. The baseline does not use a pretrained model and is displayed twice (at scale B and
L).

with the same JFT-pretrained model as the third tower increases performance significantly; however, we find this effect
becomes negligible for larger scale experiments, cf. §E.5.

LiT Ablations. ‘Rerun’: We observe similar between-run variance for LiT. ‘LiT Finetune’: We confirm the result of Zhai
et al. (2022b) that finetuning from a pretrained model results in worse performance than locking. ‘FlexiLiT 1/2’: We
investigate simple ways of modifying LiT such that it can adjust the image tower during contrastive learning, see §E.5, but
find these are not successful.

D.3. Training Dynamics
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Figure D.2. Training dynamics: (a) The transfer losses, Lfh↔hf and Lgh↔hg , improve the image-text loss, Lf↔g , in 3T relative to the
baseline. (b) Difference between matching loss terms for 3T, LiT, and the baseline. 3T obtains better image-to-text loss than the baseline
and similar locked-image-to-text loss as LiT. (c) While the loss advantage of 3T over the baseline shrinks during training, this does not
happen for downstream applications; we display image-to-text retrieval on COCO as an example. Moving averages applied to (a-b) for
legibility.

In Figure D.2, we compare the 3T training losses to LiT and the from-scratch baseline, using the familiar L scale setup
with JFT pretraining. For 3T, we display all loss terms separately: the image-text loss Lf↔g , the image-to-third-tower loss
Lfh↔hf

, and the text-to-third-tower loss Lgh↔hg
, cf. Equation (1) and Figure A.1. For LiT and the baseline, there is only

the image-to-text loss as per Equation (2). As we train for less than one epoch, we do not observe any overfitting, in the
sense that contrastive losses are identical on the training and validation set.

The image-to-third-tower loss, Lfh↔hf
, quickly reduces to near zero, indicating successful knowledge transfer of the

pretrained model into the image tower for 3T. Further, Lf↔g behaves similar to the baseline loss; this makes sense because
both objectives compute a loss between an unlocked image tower and a text tower. Lastly, Lgh↔hg closely follows LiT’s
loss; this also makes sense because both are losses between a locked pretrained image model and a text tower trained from
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Figure D.3. Convex combination of the image models in 3T: α · h(I) + (1 − α) · f(I). By varying α, we can generally interpolate
between 3T and LiT performance. Interestingly, for a broad range of weights, the retrieval and few-shot classification performance of the
combination outperforms 3T and LiT.

scratch.

In Figure D.2 (b), we compute the difference of the baseline (LiT) loss and matching 3T Lfh↔hf
(Lgh↔hg ) loss, and

observe that 3T generally achieves lower (similar) values for the same objective. This suggests a mutually beneficial effect
for the individual loss terms of the 3T objective. By aligning the main image and text towers to the pretrained model, 3T
obtains improved alignment between the main towers themselves. For the training loss, this effect is large early in training
and then decreases. However, for downstream task application, we find that the gap between 3T and the baseline persists;
we display retrieval on COCO as an example in Figure D.2 (c).

D.4. Benefits From Using 3T With All Three Towers at Test Time

We usually discard the pretrained model when applying 3T to downstream tasks, cf. Figure A.1 (b). In this section, we instead
explore if we can find benefits from using the locked third tower at test time, similar to LiT. More specifically, we study
the convex combination of the main image tower and locked pretrained model in the third tower, α · h(I) + (1− α) · f(I) ,
to see if we can interpolate between 3T- and LiT-like prediction at α = 0 and α = 1 respectively. We train 3T without linear
projection heads to make embeddings from all towers compatible. Additional details of this setup can be found in §E.4.

Figure D.3 shows we can generally interpolate between LiT- and 3T-like performance as we vary α from 0 to 1. Note that
we do not always recover LiT or 3T performance at α ∈ {0, 1} as explained in §E.4. Interestingly, for retrieval and few-shot
classification tasks, the convex combination yields better performance than either of the underlying methods for a relatively
broad region around α ≈ 0.5. We believe that further study of the convex combination could be exciting future work: the
method is entirely post-hoc and no additional training costs are incurred, although inference costs do increase.

D.5. Pretraining Robustness
Table D.2. 3T is more robust to the pretraining setup than LiT. Zero-shot
classification accuracies (↑), full details in main text.

Setup Mismatched Places365
Method Basel. LiT 3T Basel. LiT 3T

IN-1k 69.5 69.5 71.5 45.6 24.5 47.4
CIFAR-100 73.5 78.6 75.6 48.3 27.4 52.4
Pets 84.2 84.7 87.4 61.5 30.3 60.2

... ... ...
Full Average 66.4 61.7 69.8 47.5 29.4 49.3

Here, we study what happens when 3T and LiT are
used with pretrained models that do not conform
to expectations. We consider two setups: one
that we call ‘mismatched’ and one that considers
pretraining on the Places365 (Zhou et al., 2017)
dataset. In Table D.2, we display zero-shot
accuracies on Pets, IN-1k, and CIFAR-100—tasks
for which LiT usually performs best—as well as
the average performance over the full set of tasks,
see Table E.3 for individual results.

Mismatched Setup. So far, we have always
matched the scale of the pretrained model to the scale of the models trained contrastively. For the mismatched setup, we
now break this symmetry: we use a IN-21k-pretrained B/32 scale image model (3T and LiT) with an L scale text tower
(all approaches) and an L/16 unlocked image tower (3T and baseline). This setup is relevant when pretrained models are not
available at the desired scale: for example, given ever larger contrastive learning datasets one may want to train larger image
models than are available from supervised training, cf. §D.1. Of course, increasing the image tower scale also comes at

14



Three Towers: Flexible Contrastive Learning with Pretrained Image Models

increased compute costs for 3T and the baseline. We observe that LiT suffers from this mismatched setup much more than
3T, which is not restricted by the smaller pretrained model and now achieves higher accuracy than LiT on Pets and IN-1k.

Places365. Zhai et al. (2022b) demonstrate that LiT performs badly when used with models pretrained on Places365. In Ta-
ble D.2, we reproduce this result and observe LiT performing much worse than the baseline. (We here train B scale models for
900M examples seen, and based on our discussion in §D.1, would expect LiT to perform even worse when training longer or
with larger scale models.) The embeddings obtained from Places365 pretraining do not allow LiT to perform well on our set of
downstream tasks. 3T behaves much more robustly and does not suffer from any performance collapse because it incorporates
both the pretrained model and contrastive data when training the image tower. Notably, 3T manages to improve average per-
formance over the baseline even for Places365 pretraining. We further suspect the linear projection heads afford 3T some flex-
ibility in aligning to the pretrained model without restricting the generality of the embeddings learned in the main two towers.

D.6. Robustness Metrics

In this section, we study 3T, LiT, and the from-scratch baseline from a robustness perspective, evaluating on a subset of the
tasks considered by Tran et al. (2022). Following §D.1, we evaluate all methods across multiple model scales and for both
JFT and IN-21k pretraining. We use the full Unfiltered WebLI for all results here. We apply models in zero-shot fashion to
these datasets, following the same protocol as for the main zero-shot classification experiments. We continue to use the
global temperature τ , cf. §2, learned during training to temper the probabilistic zero-shot predictions.

D.6.1. PROBABILISTIC PREDICTION AND CALIBRATION ON CIFAR AND IMAGENET VARIANTS

In Figure D.4, we report accuracy, negative log likelihood (NLL), Brier score (Gneiting & Raftery, 2007), and expected
calibration error (ECE) (Naeini et al., 2015) for 3T, LiT, and the baseline across scales for the following datasets: CIFAR-10,
CIFAR-10-C, ImageNet-1k (IN-1k), IN-A, IN-v2, IN-C, and IN-R.

Accuracy. Across all datasets, we find the familiar scaling behavior discussed in §3.2: 3T is consistently better than the
baseline, 3T benefits more from increases in scale than LiT, LiT performs well with JFT pretraining but shows weaknesses
when pretrained on IN-21k. Note that, for the ImageNet variants, we have previously reported the accuracies (if only at
L scale) in §3.2. (Note further, that there might be small discrepancies, because we actually recompute all numbers from
a different codebase for the robustness evaluations (Djolonga et al., 2020).) For CIFAR-10 (Krizhevsky et al., 2009) and
CIFAR-10-C (Hendrycks & Dietterich, 2019), which we have not previously discussed, we also find the familiar scaling
behavior. The absolute reduction of performance between CIFAR-10 and CIFAR-10-C is similar across methods, indicating
that no approach is significantly more robust to shifts. We observe the same comparing IN-1k to IN-C.

Probabilistic Prediction and Calibration. NLL and Brier scores follow the general trend laid out by the accuracy results.
Evidently, the probabilistic zero-shot predictions of the methods are all of similar high quality, cf., for example, Tran et al.
(2022), who investigate probabilistic few-shot predictions. This is confirmed by the ECE results: across tasks, ECE values
do not exceed 0.1 at L scale. For 3T, calibration results are regularly better than for LiT, particularly if pretrained on IN-21k,
and comparable to those of the baseline: 3T and the baseline have lower calibration error than LiT on 6 out of 7 tasks at L
scale with IN-21k pretraining.

We find the low magnitude of the calibration errors surprising. It is striking that the softmax temperature learned during
contrastive training would work so well across the various downstream task applications. After all, finding matches across a
batch from the contrastive learning dataset and assigning images to labels are, at least superficially, quite distinct tasks. We
stress again that no task adaptation of either the models, prompt templates, or softmax-temperatures was performed. We
refer to Minderer et al. (2021) for a general categorization of our calibration results and discussion in the context of deep
learning models.

D.6.2. OUT-OF-DISTRIBUTION DETECTION

We evaluate the performance of 3T, LiT, and the baseline for out-of-distribution (OOD) detection. We follow the common
practice of thresholding the maximum softmax probabilities (MSP) of the models to obtain a binary classifier into in-
and out-of-distribution (Hendrycks & Gimpel, 2017; Fort et al., 2021). We report the following metrics: area under the
precision-recall curve (AUC(PR)), the area under the receiver operating curve (AUROC), as well as the false positive rate
at 95% true positives (FPR95). Following Tran et al. (2022), we study CIFAR-10 as in-distribution against CIFAR-100,
DTD, Places365, and SVHN as out-of-distribution. We also report numbers for IN-1k (in-distribution) vs. Places365
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LiT, and the baseline for IN-21k and JFT pretraining across scales.
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Figure D.5. Robustness evaluation: 3T, LiT, and the baseline for zero-shot out-of-distribution detection (OOD). Reported metrics are area
under the precision-recall curve (AUC(PR)), the area under the receiver operating curve (AUROC), and the false positive rate at 95% true
positives (FPR95).
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(out-of-distribution).

Typically for OOD evaluations, the model is trained on the in-distribution data. Here, we apply methods in a zero-shot
manner: we only condition the text tower on the label set of the particular in-distribution dataset. Our image and text
towers are trained on the contrastive learning data (image tower trained on JFT/IN-21k for LiT) and not adapted to the
in-distribution samples. Our contrastive learning methods ‘learn’ about the in-distribution data only through the label set,
and they have to classify each incoming sample as ‘in-distribution’ or ‘out-of-distribution’ based solely on how well it aligns
with the given set of labels. If a given sample does not match any of the in-distribution labels well, prediction confidence
is low, and the sample is classified as OOD. This setup diverges from typical assumptions about OOD experiments and
should be interpreted with care. For example, if there were label overlap between the in- and out-of-distribution data (e.g. as
would be the case for SVHN vs. MNIST), it would be impossible for the model to classify between in-distribution and OOD
without further assumptions. OOD for CLIP/ALIGN-style models has been studied in similar settings by Fort et al. (2021);
Esmaeilpour et al. (2022).

We display results in Figure D.5. Generally, OOD detection works well with the contrastively learned models, despite
conditioning only on the label set: for example, the AUROC for CIFAR10 exceeds 0.95 for both 3T and LiT at L scale for
both IN-21k and JFT pretraining. The different metrics, AUC(PR), AUROC, and FPR95, are generally consistent in their
ranking across scales and methods. We again find the familiar pattern: 3T is consistently improving over the baseline, and
3T catches up to LiT as scale is increased. For OOD detection, LiT generally does better than 3T and the baseline, perhaps
owing to the fact that our choice of CIFAR/IN-1k as in-distribution datasets is advantageous for LiT (similar to how LiT
performs particularly well for these datasets for classification).

We find differences between JFT and IN-21k pretraining to be much smaller for the OOD detection task. In fact, in some
cases, IN-21k pretraining outperforms JFT pretraining, for example with LiT for the CIFAR-10 vs. Places365 detection task.
(This might again be due to the fact that IN-21k pretraining is sufficient for application to CIFAR-10, and only struggles to
perform well for other, more varied datasets.) Further, we can observe a rare victory of 3T over JFT-LiT and the baseline at
L and g scale in terms of FPR95 on CIFAR-10 vs. Places365 and CIFAR-10 vs. SVHN. Lastly, we see LiT has almost fixed
performance at ≈ 0.98 for the CIFAR-10 vs. SVHN task across scales, perhaps due to early task saturation.

E. Extended Results & Experiments
E.1. JFT Pretraining – Additional Results

In Table E.1, we report few- and zero-shot classification performance for 3T, LiT, and the baseline across our selection of
datasets for L scale models and JFT pretraining. LiT outperforms 3T and the baseline on average for few- and zero-shot
classification tasks.

In Table E.2, we report performance for g scale models and JFT pretraining across all three splits of the WebLI dataset
described in §3. Retrieval performance is generally best for all methods for the Text-Filtered WebLI split, with 3T generally
performing best across splits and tasks. For classification, for 3T and the baseline, performance on Text- and Pair-Filtered
WebLI is significantly better than on Unfiltered WebLI, with LiT generally performing best across splits. In line with our
previous observations, the differences between the WebLI splits are smaller for LiT. As the image tower is kept fixed during
contrastive training, LiT performance is influenced less by the contrastive learning setup.

Retrieval Results: Comparison to SOTA. While our retrieval performance is competitive, 3T does not set a new state-of-
the art, see, for example, the CoCa paper (Yu et al., 2022) (Table 3) for a comparison of current methods. While SOTA results
were never the aim of this paper—we instead study pretrained models for contrastive learning—there are a few advantages the
CoCa setup has, and from which 3T would likely benefit, too. Most notably, CoCa trains for about 6 times more examples seen
than we do here (32B vs. 5B). Our scaling experiments, cf. Figure E.1, suggest we would expect a significant performance
increase for longer training. There are further differences that likely benefit CoCa, such as the use of a larger batch size (65k
for them vs 14k for us) or training on images with higher resolution for a portion of training (CoCa goes from 288×288
to 576×576, we stay at 288×288)—both of these changes significantly increase computational costs beyond the budget
available to us: while CoCa training takes ‘about 5 days on 2,048 CloudTPUv4 chips’(Yu et al., 2022), our g scale runs train
for about the same duration on only 512 v4 TPU chips. It would be interesting to see if, in a fairer comparison, 3T matches
or outperforms CoCa for retrieval tasks. Alternatively, ideas from 3T could also be used to improve CoCa-like architectures.
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Table E.1. For JFT-pretraining, LiT outperforms 3T and the baseline on average on few- and zero-shot classification tasks. L scale models
trained on Unfiltered WebLI.

Method Basel. LiT 3T

Fe
w

-S
ho

tC
la

ss
ifi

ca
tio

n

IN-1k 62.8 81.3 67.7
CIFAR-100 70.4 83.2 74.3
Caltech 91.0 89.0 91.8
Pets 85.9 96.8 88.4
DTD 70.3 72.1 72.4
UC Merced 91.8 95.5 93.1
Cars 81.5 92.9 87.1
Col-Hist 71.7 81.3 77.0
Birds 53.4 85.6 62.4
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n

IN-1k 69.5 80.1 72.0
CIFAR-100 73.5 80.1 75.2
Caltech 81.9 79.5 82.5
Pets 84.2 96.3 88.7
DTD 58.6 59.0 59.0
IN-C 49.6 68.1 52.8
IN-A 53.0 69.1 56.4
IN-R 85.8 91.7 88.4
IN-v2 62.2 74.0 65.4
ObjectNet 56.2 61.9 59.3
EuroSat 32.7 36.6 54.7
Flowers 62.0 76.7 66.6
RESISC 58.0 58.9 60.9
Sun397 67.6 69.7 68.1

Average 68.4 77.4 72.4
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Table E.2. Results for the baseline, 3T, and LiT for g scale models and JFT pretraining for a selection of different splits of the WebLI
dataset. 3T outperforms LiT for retrieval tasks, while LiT performs better for image classification. The from-scratch CLIP/ALIGN-style
baseline is not competitive.

Dataset Unfiltered WebLI Pair-Filtered WebLI Text-Filtered WebLI
Method Basel. LiT 3T Basel. LiT 3T Basel. LiT 3T

R
et

ri
ev

al

Flickr img2txt 75.2 83.0 81.5 81.4 83.2 84.0 85.0 83.9 87.3
Flickr∗ img2txt 80.0 84.8 84.2 80.7 83.9 85.6 86.7 85.2 88.3
Flickr txt2img 58.2 61.3 64.3 61.4 63.9 66.5 67.0 66.5 72.1
Flickr∗ txt2img 60.1 63.1 65.6 62.7 65.4 68.4 68.2 67.6 72.9
COCO img2txt 52.3 57.7 57.5 58.4 59.7 61.7 60.0 59.5 64.1
COCO txt2img 37.5 40.0 41.1 41.2 41.9 43.9 44.7 43.6 48.5
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IN-1k 67.5 84.6 72.8 71.8 84.6 75.7 69.6 84.6 73.9
CIFAR-100 72.7 83.2 78.0 73.1 83.2 78.7 76.4 83.2 80.0
Caltech 91.8 90.0 93.3 89.7 90.0 90.9 90.8 90.0 92.4
Pets 88.4 97.8 91.5 93.0 97.8 94.3 88.8 97.8 91.4
DTD 70.7 74.6 74.7 74.2 74.6 76.1 73.6 74.6 76.0
UC Merced 92.9 96.9 94.7 95.2 96.9 95.6 95.2 96.9 96.5
Cars 84.1 93.3 88.6 92.6 93.3 93.5 89.0 93.3 91.6
Col-Hist 72.0 83.6 76.2 77.8 83.6 80.9 73.5 83.6 79.4
Birds 60.7 89.7 69.8 76.4 89.7 80.7 62.5 89.7 71.1
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n

IN-1k 73.5 84.0 76.3 78.0 84.7 79.6 75.8 84.3 78.2
CIFAR-100 77.5 81.3 80.3 76.2 81.3 79.5 80.6 81.8 82.3
Caltech 79.8 81.4 82.3 84.0 82.4 82.9 79.5 80.9 81.9
Pets 87.0 96.4 92.7 92.8 97.7 93.0 88.1 96.5 91.5
DTD 59.2 62.1 64.9 58.9 55.6 60.1 61.4 62.0 62.1
IN-C 54.9 72.9 58.2 57.7 73.3 60.3 57.6 73.3 61.3
IN-A 64.9 80.2 67.8 59.9 79.5 65.1 67.8 80.5 70.8
IN-R 89.8 94.4 91.8 90.5 94.2 92.8 91.8 94.6 93.3
IN-v2 66.4 78.1 69.5 70.8 79.2 73.0 69.1 78.5 71.4
Objectnet 62.7 70.3 65.3 56.9 68.3 59.5 63.3 70.0 65.9
Eurosat 55.7 33.6 48.9 32.9 30.7 42.8 47.9 36.1 52.1
Flowers 71.0 84.2 73.5 82.4 86.3 83.0 69.4 86.6 72.5
RESISC 61.5 58.4 60.5 59.8 56.5 64.8 65.4 57.8 61.7
Sun397 68.8 71.0 70.3 68.9 71.9 69.8 70.2 71.6 70.9

Average 70.2 77.0 73.7 72.4 77.0 75.3 73.1 77.7 75.9
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E.2. Pretraining Robustness – Additional Results

In Table E.3, we report results on additional tasks for 3T, LiT, and the baseline for both the ‘mismatched’ setup and Places365
pretraining. We find again that 3T is much more robust in both setups, significantly outperforming LiT. The difference is
particularly striking when using models pretrained on Places365, where LiT’s performance degrades drastically while 3T is
still able to improve over the baseline.

Table E.3. Testing robustness to the ‘mismatched setup’ and Places365 pretraining (instead if IN-21k/JFT) for 3T and LiT. In both
cases, 3T performs significantly better than LiT. In particular when using models pretrained on Places365, LiT’s performance degrades
dramatically while 3T continues to improve over the baseline on average. (Note that the baselines here are different not because they use
the pretraining dataset, but because we compare to an L scale baseline for the mismatched setup and a B scale baseline (trained for only
900M examples seen) for Places365 pretraining.) We refer to the main text for full details.

Experiment Mismatched Setup Places365 Pretraining
Method Basel. LiT 3T Basel. LiT 3T

R
et

ri
ev

al Flickr∗ img2txt 75.6 66.5 80.2 56.0 35.5 58.1
Flickr∗ txt2img 57.1 45.1 62.1 36.2 19.5 38.4
COCO img2txt 51.0 44.1 54.5 34.1 19.3 36.5
COCO txt2img 34.2 26.4 37.8 21.0 10.9 22.1
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IN-1k 62.8 70.3 67.6 37.8 16.6 41.5
CIFAR-100 70.4 80.3 73.8 47.1 33.9 52.7
Caltech 91.0 88.1 91.7 87.9 66.5 88.5
Pets 85.9 86.0 86.8 56.8 20.3 59.9
DTD 70.3 66.3 73.4 58.4 39.7 63.1
UC Merced 91.8 91.5 93.8 85.8 80.8 89.4
Cars 81.5 36.7 85.3 57.0 10.1 58.6
Col-Hist 71.7 84.4 74.3 72.9 70.7 78.7
Birds 53.4 76.8 65.2 33.2 15.7 38.1
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IN-1k 69.5 69.5 71.5 45.6 24.5 47.4
CIFAR-100 73.5 78.6 75.6 48.3 27.4 52.4
Caltech 81.9 82.0 81.2 76.6 62.7 77.0
Pets 84.2 84.7 87.4 61.5 30.3 60.2
DTD 58.6 49.4 60.6 39.8 23.6 39.7
IN-C 49.6 55.5 51.8 25.3 14.4 27.3
IN-A 53.0 29.1 54.1 12.0 4.7 12.5
IN-R 85.8 60.7 87.9 56.1 20.3 58.2
IN-v2 62.2 61.1 65.0 39.4 20.7 40.5
Objectnet 56.2 34.9 57.8 28.4 7.3 29.6
Eurosat 32.7 33.1 52.5 33.7 15.6 27.3
Flowers 62.0 74.1 66.2 37.6 17.4 37.3
RESISC 58.0 29.0 57.4 37.9 24.0 38.3
Sun397 67.6 62.0 68.4 55.1 60.6 57.3

Average 66.4 61.7 69.8 47.5 29.4 49.3

E.3. Scaling Model Sizes and Training Duration – Additional Results

Complementing the results of §D.1, in Figure E.1 we report the performance when scaling only the number of examples
seen during training, keeping the model sizes fixed at B scale. We observe a similar trend to §D.1 / Figure D.1, where 3T
benefits more from increases in scale than LiT. Note that, because the dataset size is 10B samples, all of our runs equate to
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less than a full epoch.
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Figure E.1. Increasing training duration of 3T, LiT, and the baseline; average retrieval, few- and zero-shot classification performance. The
model scale is B (B/32 for ViTs) for all approaches and towers. 3T and the baseline benefit more from increases in scale than LiT, with 3T
maintaining a consistent increase in performance over the baseline. Note that the few-shot performance for LiT is fixed, as only the locked
pretrained image tower is used for fewshot applications.

E.4. Benefits From Using 3T With All Three Towers at Test Time – Extended Version

We usually discard the pretrained model when applying 3T to downstream tasks, cf. Figure A.1 (b). Instead, in this section,
we explore whether we can find benefits from using the locked third tower at test time, similar to LiT. More specifically,
we are interested in interpolating between the main image tower and locked pretrained model in the third tower. Can we
interpolate between 3T- and LiT-like prediction by combining the image embeddings?

This idea does not work directly with the default 3T due to our use of linear projection heads, cf. Figure A.1 (a), since there
is no unified embedding space that all towers embed to. Therefore, we introduce a ‘headless 3T’ variant, for which we do
not use the linear projection heads, hf , hg , fh, and gh. (Alternatively, one may think of all linear projection heads fixed to
identity mappings.) Thus, all losses directly use the same embeddings, f(I), p(I), and g(T ), making the embedding spaces
directly comparable. Here, we train B scale models for 3.6B examples seen and use an IN-21k-pretrained model. Further
note that the average zero-shot classification performance we report here is over only a subset of the list of tasks used in
§3.2: we consider IN-1k, CIFAR-100, and Pets. The selection of few-shot classification and retrieval tasks remains the same,
although we do not use the Karpathy split for Flickr here.∗

In Figure E.2, we display the average retrieval, few-shot classification, and zero-shot classification performance for the
convex combination, alongside a comparable LiT run and a 3T run with default projection head setup. Across all tasks, we
observe similar behavior: for α = 0 (full weight on the third tower), we obtain performance close to, but ultimately below,
LiT; performance then increases with α, peaking for α ∈ [1/4, 3/4], before decreasing again. At α = 1 (full weight on main
image tower), we recover the performance of the headless 3T setup. Interestingly, for retrieval and few-shot classification
tasks, the convex combination yields better performance than either of the towers separately across a relatively broad band
of α values.

Perhaps counterintuitively, for α = 0, we do not recover the performance of LiT exactly. The reasons for this differ between
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Figure E.2. Convex combination of the image models in 3T: α · h(I) + (1 − α) · f(I). By varying α, we can generally interpolate
between 3T and LiT performance. Interestingly, for a broad range of weights, the retrieval and few-shot classification performance of the
combination outperforms 3T and LiT.
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Table E.4. Extended results for the 3T ablation study. Difference to the 3T reference run for various architecture ablations. We report
mean, standard deviation, and two standard errors of the differences over the downstream task selection.

Difference Mean Standard Deviation Two Standard Errors

Rerun -0.22 0.50 0.25

No Lf↔g -26.63 21.22 10.61
No Lfh↔hf

-1.19 1.51 0.75
No Lgh↔hg -2.77 1.83 0.91

(Head Variants (best)) 0.09 0.70 0.35
Heads Only on Third Tower 0.09 0.70 0.35
Heads Only on Main Towers -0.67 0.66 0.33
Heads Fully Independent -0.60 0.63 0.32
No Heads/Headless -0.47 1.04 0.52

MLP Embedding -0.08 0.69 0.35
More Temperatures -0.26 0.95 0.48

(Loss weight = 2 (best)) 0.17 1.06 0.53
Loss weight 0.1 -2.31 1.33 0.67
Loss weight 0.5 -0.90 0.81 0.41
Loss weight 2 0.17 1.06 0.53
Loss weight 10 -0.56 1.74 0.87

(L2 Transfer (best)) -3.80 2.27 1.13
L2 Transfer w=0.0001 -4.40 1.89 0.94
L2 Transfer w=0.001 -3.80 2.27 1.13
L2 Transfer w=0.05 -4.41 2.24 1.12
L2 Transfer w=0.01 -4.17 1.97 0.99
L2 Transfer w=.1 -3.97 2.06 1.03
L2 Transfer w=.5 -7.12 2.95 1.48
L2 Transfer w=1 -11.38 4.39 2.19
L2 Transfer w=2 -16.09 5.14 2.57
L2 Transfer w=10 -46.80 14.32 7.16

3T Finetuning 1.85 2.53 1.27

tasks: For retrieval and zero-shot applications, while the image tower is identical to that of LiT, the text tower is different as
it has been trained with the 3T objective. For few-shot application, the default evaluation procedure of Zhai et al. (2022b)
uses the prelogits of the ViTs underlying f and h as inputs to the few-shot classifier, i.e. not the final embeddings. As the
prelogit spaces of f and h are not aligned, here, we need to instead construct the convex combination in embedding space,
which does however mean that α = 0 does not give performance equivalent to LiT. Lastly, although the 3T run with the
default projection heads does not seem to perform better than ‘3T headless’ in this instance, we have seen ‘headless’ setups
underperform in preliminary experiments and would suggest additional experiments before opting for a headless design, see
also §E.5.

We believe that further study of this approach is exciting future work: the method is entirely post-hoc and no additional
training costs are incurred, although inference costs do increase.

E.5. Ablation

In this section, we give additional results and details for the ablation study presented in §D.2. Table E.4 gives additional
results, extending Table D.1 in the main paper. In addition to the mean and two standard errors, we also report standard
deviations over tasks here. Note that, for zero-shot classification performance, we only have access to a subset of the full list
of tasks used in Section 3.2: we consider IN-1k, CIFAR-100, and Pets. The selection of few-shot classification and retrieval
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Table E.5. Finetuning for 3T: Initializing the main tower in 3T with the same pretrained model as the third tower improves performance
significantly at smaller but not larger experiment scales.

Pretraining Scale Avg. Performance 3T Avg. Performance 3T Finetuned

JFT B 56.76 58.61
L 73.97 74.22

IN-21k S 44.39 47.61
B 56.30 58.83
L 73.63 73.83

tasks remains the same, although we do not use the Karpathy split for Flickr here.∗

No L·↔· – Details. For this ablation we consider leaving out either of the three loss terms. ‘No Lf↔g’: We replace the
3T loss by 1

2 · (Lfh↔hf
+ Lgh↔hg

). ‘No Lfh↔hf
’: We replace the 3T loss by 1

2 · (Lf↔g + Lgh↔hg
). ‘No Lgh↔hg

’: We
replace the 3T loss by 1

2 · (Lf↔g + Lfh↔hf
). When leaving out either of the three loss terms, average performance suffers

significantly. Leaving out the loss between the main two towers (obviously) has the biggest negative effect, as the main
embeddings, f(I) and g(T ), are not aligned during training.

Head Variants – Details and Additional Results. In the main part of the paper, we have only given results for the best
alternative variant for the projection head setup. Here, we describe all variants and report results individually. We refer to
Figure A.1 (a) for the projection head notation. ‘Heads only on Third Tower’: The main tower projection heads fh and
gh are fixed to identity mappings. ‘Heads Only on Main Towers’: The third tower projection heads hf and hg are fixed
to identity mappings. ‘No Heads/Headless’: This is the setup described in §E.4: all linear projections hf , hg, fh, gh are
fixed to identity mappings. ‘Heads Fully Independent’: This setup adds linear projection heads before the computation
of Lf↔g, i.e. we compute fg(I) = Lin(f(I)) and gf (T ) = Lin(g(T )), and then compute the loss Lfg↔gf (instead of
Lf↔g). In Table E.4, we give results for all variants that we try; none outperform the base variant significantly, while some
underperform.

MLP Embedding – Details. When replacing the linear projection h in the third tower with an MLP, we use the following
architecture: MLP(x) = Lin2(GELU(Lin1(x)), where we use GELU non-linearities (Hendrycks & Gimpel, 2016), Lin1

expands the embedding dimensionality of the input by a factor of 4, and Lin2 maps to the shared embedding dimension D.

3T with Loss Weights – Details and Additional Results. We replace the standard 3T loss with a weighted objective
1
3 · (Lf↔g +w · (Lfh↔hf

+Lgh↔hg )). For the weights w, we sweep over w ∈ {0.1, 0.5, 2, 10}. All weights except w = 2
lead to an average performance decrease. However, the size of the effect for w = 2 is small relative to twice the standard
error.

L2 Representation Transfer – Details and Additional Results. We investigate the use of squared losses for the represen-
tation transfer between the main towers and the third tower instead of relying on the contrastive loss. Concretely, we replace
the 3T loss, Equation (1), with

1

3

{
Lf↔g + w

1

N

N∑
i=i

[
‖fh(Ii)− hf (Ii)‖2 + ‖gh(Ti)− hg(Ii)‖2

]}
. (5)

For the weight hyperparameters w, we sweep over a large set of values, w ∈ {0.0001, 0.001, 0.05, 0.01, 0.1, 0.5, 1, 2, 10}.
L2 representation transfer gives worse results than the contrastive loss for all values of w we try, corroborating the results of
Tian et al. (2020).

Finetuning – Details and Additional Results. Initializing the main tower in 3T with the same JFT-pretrained model as the
third tower boosts performance significantly, increasing average performance from 56.76 to 58.61. A rerun confirmed these
results; we obtained an increase from 56.46 to 58.82. Excited by this, we explored the 3T finetuning setup at other scales,
and report performance in Table E.5. Note that here, we increase the numbers of examples seen during training from 450M
(S scale) to 900M (B scale) to 5B (L scale). We observe that, as we increase the scale of the experiments, the gains from
finetuning the main image tower decrease until they are negligible (compared to rerun variance). We therefore have opted to
not make finetuning the main tower part of the standard 3T setup, as it (a) complicates the setup and (b) restricts the main
tower to be the same model architecture and scale as the third tower.
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‘FlexiLiT 1/2’ – Details. With the FlexiLiT variants, cf. Table D.1 in the main body of the paper, we investigate if there
are other, simple ways to improve LiT. For both variants, we create a new ‘half-locked’ image tower by adding learnable
components to the frozen pretrained image model. For FlexiLiT 1, we add a lightweight learnable 4-layer MLP on top of the
frozen backbone: FlexiLiT-1(I) = MLP(LiT(I)). The MLP has 4 layers, uses GELU-nonlinearities, and an expansion
factor of 4. For FlexiLiT 2, we add an additional learnable ViT next to the locked backbone (adding significant cost) and
merge representations with an MLP: FlexiLiT-2(I) = MLP(concat(LiT(I)),ViT(I)). The additional ViT is B/32,
following the main locked image tower. The MLP merging the two representations is an MLP with the same configuration
as for FlexiLiT 1.

F. Implementation Details
We follow Zhai et al. (2022b) for optimization and implementation details. We use the open-source vision transformer
implementation available from Beyer et al. (2022).

Unless otherwise mentioned, we use Transformers of scale L, with a 16×16 patch size for the ViT image towers, i.e. L/16.
We train for 5B examples seen at a batch size of 14 · 1024, i.e. for about 350 000 steps. We resize input images to 224× 224
resolution, and normalize pixel values to the [−1, 1] range. Note that for experiments with g scale models, we resize images
to 288 × 288 instead. We use a learning rate of 0.001, warming up linearly for 10 000 steps, before following a cosine
decay schedule. We use the Adafactor optimizer (Shazeer & Stern, 2018) with default β1 = 0.9 and β2 = 0.99, and we clip
gradients if their norm exceeds 1.0. We use weight decay of 0.001.

We aggregate embeddings across tokens using multihead attention pooling, i.e. an attention block where the query is a single
learned latent vector, and the keys and values are the outputs of the vision transformer (cf. vit.py in the code base (Beyer
et al., 2022)).

For details on how the different model scales and patch sizes relate to transformer width, depth, MLP dimension, the number
of heads, or parameter count, we refer to Table 1 in (Dosovitskiy et al., 2021) and Table 2 in (Zhai et al., 2022a).

Compute Cost. We train our models on v3 and v4 TPUs. For our main experiments at L scale, we use 256 TPU chips
per experiment. Our 3T runs converge in about three days, for example, the 3T run with JFT pretraining took 63 hours of
training time to converge over 348772 training steps. The baseline converges in 54 hours, and LiT in 35. For our five main
experiments at L scale—3T, LiT for JFT and IN-21k pretraining, and a baseline run—the total runtime was about 280 hours,
or about 8 TPU–Chip years worth of compute for the L scale experiments of this project. At g scale, we use 512 TPU chips
per run, and our 3T runs converge in about 5 days.

Below we mention additional details pertaining to only some of the experiments.

Details on Few-Shot Classification. Following Zhai et al. (2022b), we use the prelogits of the ViTs instead of the final
embeddings as input to the linear few-shot classifier.

Details on Places Experiment. Following Zhai et al. (2022b), for the Places365 experiment, we use a B/16 ResFormer
(Tian et al., 2022) as the pretrained model.

G. Societal Impact
With 3T, we introduce a novel machine learning method for learning joint embeddings of images and text. We train on large
datasets of noisy and potentially biased data crawled from the internet. The same general caveats that apply to CLIP/ALIGN
and LiT may also apply to 3T. We refer to §7 in Radford et al. (2021) for a general discussion of the societal impact these
methods may have.

Additionally, we wish to highlight the importance of carefully evaluating these models, testing for specific undesired
behavior, before applying them in production. While the zero- and few-shot classification capabilities of these models are
generally impressive, it is also important to consider their limitations and not succumb to wishful thinking when it comes
to the real-world performance of these models on arbitrary tasks. For example, all of the approaches we study here do
not perform well for zero-shot prediction on the structured and specialized tasks contained in VTAB, which include, for
example, medical applications. It is therefore particularly important to carefully evaluate the performance of these methods
when applied to real-world applications. Lastly, because 3T and LiT rely on two datasets for training, a classification and a
contrastive learning dataset, this can complicate investigations into undesired biases in the final model.
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H. Libraries & Dataset
We rely on the Jax (Bradbury et al., 2018), Flax (Heek et al., 2023), and TensorFlow (Abadi et al., 2015) Python libraries for
our implementation. Additionally, we make use of the Big Vision (Beyer et al., 2022) and Robustness Metrics (Djolonga
et al., 2020) code bases.

For retrieval performance, we evaluate on Microsoft COCO (Chen et al., 2015) and Flickr30k (Plummer et al., 2015). For
image classification, we evaluate on IN-1k (Krizhevsky et al., 2009; Russakovsky et al., 2015), CIFAR-100 (Krizhevsky
et al., 2009), Caltech-256 (Griffin et al., 2007), Oxford-IIIT Pet (Parkhi et al., 2012), Describable Textures (DTD) (Cimpoi
et al., 2014), UC Merced Land Use (Yang & Newsam, 2010), Stanford Cars (Krause et al., 2013), Col-Hist (Kather et al.,
2016), Birds (Wah et al., 2011), ImageNet variants -C (Hendrycks & Dietterich, 2019), -A (Hendrycks et al., 2021b), -R
(Hendrycks et al., 2021a), -v2 (Recht et al., 2019), ObjectNet (Barbu et al., 2019), EuroSat (Helber et al., 2017), Oxford
Flowers-102 (Nilsback & Zisserman, 2008), NWPU-RESISC45 (Cheng et al., 2017), and Sun397 (Xiao et al., 2016).

We take the EuroSat, Flowers, RESISC, and Sun397 datasets from the Visual Task Adaptation Benchmark (VTAB) (Zhai
et al., 2019). They are the only VTAB datasets for which at least one method achieved better than trivial performance.
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