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Abstract

Large Language Models (LLMs) are powerful001
tools with extensive applications, but their ten-002
dency to memorize private information raises003
significant concerns as private data leakage can004
easily happen. In this paper, we introduce Pri-005
vate Association Editing (PAE), a novel defense006
approach for private data leakage. PAE is de-007
signed to effectively remove Personally Identi-008
fiable Information (PII) without retraining the009
model. Our approach consists of a four-step010
procedure: detecting memorized PII, applying011
PAE cards to mitigate memorization of private012
data, verifying resilience to targeted data extrac-013
tion (TDE) attacks, and ensuring consistency014
in the post-edit LLMs. The versatility and ef-015
ficiency of PAE, which allows for batch modi-016
fications, significantly enhance data privacy in017
LLMs. Experimental results demonstrate the018
effectiveness of PAE in mitigating private data019
leakage. We believe PAE will serve as a critical020
tool in the ongoing effort to protect data privacy021
in LLMs, encouraging the development of safer022
models for real-world applications.023

1 Introduction024

A massive pretraining phase seems to be the key025

to obtaining versatility and accuracy in a large026

number of tasks: Large language models (LLMs)027

are indeed able to perform accurately many tasks028

by capturing information from their training data.029

Even in zero-shot scenarios, LLMs serve as alter-030

native sources of information (Hou et al., 2024),031

perform translation tasks (Mu et al., 2023), trans-032

late natural language requests into code (Ranaldi033

et al., 2024), and are definitely capable of captur-034

ing world knowledge (Petroni et al., 2019, 2020).035

The massive pretraining phase seems to be the key036

to obtaining versatility and accuracy in this large037

variety of tasks.038

However, growing larger, training data for LLMs039

have become uncontrollable and may inadvertently040

contain some private personal information of un- 041

aware people. LLMs may potentially retain this 042

sensitive information (Carlini et al., 2021, 2023; 043

Huang et al., 2022). This is a potential threat in 044

privacy of unaware people. Indeed, by perform- 045

ing Training Data Extraction attacks, (Carlini et al., 046

2021) showed that LLMs may verbatim generate 047

strings containing sensitive information observed 048

during training. Then, attackers may gain access to 049

private information. 050

Figure 1: Preserving privacy for LLMs by using Private
Association Editing

Strategies to remove sensitive information from 051

LLMs are needed and mandatory, as preserving pri- 052

vacy is a must. Yet, the straight-forward technique 053

of remove-and-retrain is unfeasible as extremely 054

expensive. 055

In this paper, we propose Private Association 056

Editing (PAE) to remove memorized private in- 057

formation adjusting parameters of LLMs without 058

re-training (see Fig. 1). Stemming from MEMIT 059

(Meng et al., 2023b) formulation to edit factual 060

knowledge, we define PAE as a novel model- 061

editing defense strategy based on the idea of break- 062

ing the association between personal information 063

and the identity of the person to whom it belongs. 064

We anonymize the private information directly in 065

the model, replacing the original information with 066
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masked – but semantically equivalent – informa-067

tion. We experiment with GPT-J (Wang and Ko-068

matsuzaki, 2021) as it is an open-source model that069

contains documented private information. We per-070

form Training Data Extraction attacks (Huang et al.,071

2022) before and after our model-editing defenses072

and we show that our strategies are an efficient al-073

ternative to make a model more robust against the074

generation of private information while keeping075

constant its performance in generating texts.076

2 Background077

Large Language Models (LLMs) are prone to emit078

private information. Indeed, attacking LLMs to ex-079

tract memorized private information is possible by080

using black-box access to language models. Train-081

ing Data Extraction (TDE) is a technique to extract082

this private information (Carlini et al., 2021). It083

consists of querying the target model to force it to084

produce its own training data. A textual training085

example is considered "extractable" if a specific086

prefix can be used to prompt the model to gen-087

erate the exact training example from its training088

set. Carlini et al. (2021) found that GPT-2 often089

retains and reveals personal information such as090

Twitter handles, email addresses, and Universal091

Unique Identifiers (UUIDs). The memorization092

of training examples explains the success of these093

attacks: when LLMs are prompted with a prefix094

encountered during training, they often complete095

the prompt with the remaining part of the training096

sequence (Carlini et al., 2023).097

Attacks may be particularly effective in open098

LLMs. Huang et al. (2022) demonstrated that con-099

ditioning a model with a prompt that is part of100

the training data can result in the leakage of per-101

sonal identifiable information (PII), such as email102

addresses. They also showed that this method is103

more effective than creating entirely new, unseen104

prompts. Nasr et al. (2023) revealed that Carlini105

et al. (2021) method is even more effective than106

previously expected. By querying open-source107

models, they confirmed the success of the attack108

procedure using the training data solely for veri-109

fication purposes. They conducted these attacks110

on open models like GPT-Neo (Black et al., 2022)111

and Pythia (Biderman et al., 2023), starting with112

prompts sourced from Wikipedia.113

Even closed LLMs may reveal private informa-114

tion by using Training Data Extraction. Since these115

attacks require only black-box access to the model,116

closed models like GPT-3.5 and GPT-4 can be at- 117

tacked. In fact, using the same prompts proposed 118

by Huang et al. (2022), Wang et al. (2024) demon- 119

strate that GPT-3.5 and GPT-4 can predict respec- 120

tively around 5% and 4% of the email addresses 121

accurately. 122

As personal information leakage from LLMs is 123

a concrete possibility, model editing is a possible 124

solution as opposed to an expensive remove-and- 125

retrain strategy. 126

Model editing in LLMs refers to the process 127

of modifying specific aspects of a model’s be- 128

havior or knowledge without retraining it from 129

scratch. This involves making targeted adjustments 130

to the model’s parameters or responses to correct 131

errors, update information, or adapt to new re- 132

quirements. Mitchell et al. (2022) introduced a 133

semi-parametric editing methodology, employing 134

a retrieval-augmented counterfactual model, that 135

effectively modulates neural network predictions 136

over the SERAC dataset. Cao et al. (2021) pro- 137

posed KNOWLEDGEEDITOR that efficiently and 138

reliably edits factual knowledge within language 139

models, ensuring consistency across various for- 140

mulations of facts. Furthermore, Yao et al. (2023) 141

introduced MEND on various datasets, demonstrat- 142

ing its ability to rapidly and effectively edit large- 143

scale models’ behaviors without extensive retrain- 144

ing. Since these methods can modify factual infor- 145

mation memorized in LLMs, our goal is to exploit 146

them to erase private information inadvertently in- 147

gested during training. 148

Similarly to the method defined in our pa- 149

per, Patil et al. (2023) investigated model editing 150

techniques to modify the information memorized 151

in LLMs concluding that information cannot be 152

erased. In particular, they applied TDE attacks 153

against the GPT-J (Wang and Komatsuzaki, 2021) 154

model and demonstrated that in black-box access– 155

performing attacks that also include paraphrases 156

of the original prompt– model editing cannot erase 157

factual information memorized in GPT-J. Our set- 158

ting is different: in fact, Patil et al. (2023) inves- 159

tigated the effectiveness of model editing only on 160

factual information from sentences derived from 161

Wikipedia, and not directly present in the training 162

data – the Pile (Gao et al., 2020). By definition, the 163

model under attack does not verbatim memorize 164

information that is not in training data: since the 165

examples used by Patil et al. (2023) are derived 166

from Wikipedia and not included in the Pile, while 167

the factual information they contain is memorized, 168
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they cannot be verbatim memorized. In our ex-169

periments, we directly study the effectiveness of170

model editing to delete private information that is171

verbatim memorized with a focus on privacy rather172

than factual information.173

To the best of our knowledge, this is a novel174

approach to protect private LLMs from personal in-175

formation leakage that show the potential beneficial176

effect on privacy preserving.177

3 Attacking and Defending LLMs from178

Private Data Leakage179

Large Language Models (LLMs) have a tendency180

to memorize examples from their training data, and181

Training Data Extraction (TDE) attacks can be used182

to recover these memorized examples. When fed183

with the right prompt, LLMs emit verbatim memo-184

rized information. In fact, if a model is prompted185

with a prefix encountered during training, it often186

completes it with the rest of the training sequence187

(Carlini et al., 2023; Huang et al., 2022).188

In this scenario, we aim to deliver solutions to189

help people and owners of LLMs remove unde-190

sirably memorized Personally Identifiable Infor-191

mation from LLMs. The procedure we propose192

consists of four steps (see Fig. 1):193

• detecting the presence of memorized Person-194

ally Identifiable Information (PII) in pre-edit195

LLMs performing black box TDE attacks196

(Sec. 3.1);197

• Private Association Editing (PAE) to remove198

PII by editing parameters of LLMs obtaining199

post-edit LLMs (Sec. 3.2);200

• assessing that post-edit LLMs are more201

resilient to attacks with TDE attacks (as202

in Sec. 3.1);203

• a final consistency check of post-edit LLMs204

to assess that LLMs are not corrupted205

after PAE behaving similarly to pre-edit206

LLMs (Sec. 3.3)207

This procedure is extremely more versatile than208

erase-and-retrain and can be used in small batches209

of modification of an LLM. The core of our pro-210

cedure is the method we propose called Private211

Association Editing (PAE).212

3.1 Training Data Extraction Attacks to 213

recover Sensitive Information 214

To detect the presence of memorized Personally 215

Identifiable Information LLMs, we follow the at- 216

tack pipeline and attack prompts defined by Huang 217

et al. (2022). They defined two kinds of attacks 218

depending on how information is stored and re- 219

trieved: (1) a model memorizes personal informa- 220

tion if there exists a prompt from the training data 221

that leads the model to generate that information; 222

(2) in contrast, a model associates an individual to 223

its personal information if there exists a prompt 224

not seen during training but containing a refer- 225

ence to an individual that leads to the generation of 226

PII. (Huang et al., 2022) already demonstrated that 227

memorization is more common in LLM than asso- 228

ciation, showing that a model from the GPT-Neo1 229

family can predict emails more accurately when 230

conditioned with prompts from the training data 231

rather than wthen analyzely unseen prompts. 232

We then analyze two attacking schemes: the 233

Memorization attacks and the Association attacks. 234

In a Memorization attack, a model is fed with 235

a prompt extracted from its pretraining data. This 236

prompt is the context that precedes the private PII 237

in the training data. For example, a context prompt 238

attack to recover the email address of Jonh Brown 239

would look like: "All the winter months might 240

settle 2.25. As such, the best thing to 241

be short is jan. —–Original Message—– 242

From: Jonh, Brown". In this attack, following 243

Huang et al. (2022), we simulate that the attacker 244

has more or less knowledge about the training data 245

by conditioning the generation of the model to con- 246

text prompts of different lengths in terms of tokens. 247

In the Association Attack, the model is instead 248

fed with a prompt that contains an identifier of the 249

person whose information is to be extracted, but 250

that does not exactly match the training data. In par- 251

ticular, Huang et al. (2022) defined four zero-shot 252

attack prompts, identified by letters from a to d. 253

All zero-shot prompts contain the name of the per- 254

son that owns the email the attacker wish to obtain 255

and the model is asked to predict the email: for ex- 256

ample, the zero-shot prompt a to recover the email 257

adress of John Brown is “the email address of 258

John Brown is”. The attack succeeds if, during 259

the generation of the subsequent tokens, the model 260

generates the target’s private information, that is, 261

the correct email address. 262

1https://www.eleuther.ai/artifacts/gpt-neo
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In both Memorization and Association attacks,263

the adversary in black-box access wants to force264

the model to generate some PII regarding a person.265

The analyzed framework encompasses a malicious266

attacker – or any individual aiming to detect unau-267

thorized use of their data – who has assumptions268

about the original text that was used during train-269

ing or who has no prior clues about the original270

data that contained the private information but who271

has some other knowledge about the identity of the272

individual whose sensitive information they wish273

to extract.274

3.2 Private Association Editing as Efficient275

Defense against Privacy Attacks276

To defend people from privacy attacks of LLMs,277

we propose Private Association Editing (PAE),278

which is the second step of our procedure. This279

editing technique involves disrupting the link be-280

tween an individual identity and their PII. The tech-281

nique proposed here is efficient since it allows the282

anonymization of private information directly into283

the model parameters. Moreover, our solution is284

also scalable since it can be used to protect the285

privacy of multiple users.286

A private association is an association be-287

tween the name of an individual and a PII288

that should not be revealed. This associa-289

tion is a triple <subject,predicate,PII-object>, as290

the following example: <John Smith, owns,291

john.smith@company.com>; in the example, the292

PII-object is the email address of the person.293

Our PAE employs model editing techniques294

based on ROME (Rank-One Model Editing) (Meng295

et al., 2023a) and MEMIT (Model Editing via Iter-296

ative Training) (Meng et al., 2023b) as a defensive297

strategy against attacks aimed at safeguarding the298

sensitive data used to train Large Language Mod-299

els (LLMs). Then, the scalability to editing dif-300

ferent facts in a batch is facilitated by the MEMIT301

framework, which allows us to incorporate as many302

elements in the form of modifications as desired.303

These modifications are seamlessly executed on304

the same model also avoiding degradation of the305

model’s performance.306

In private association editing, once a user of the307

system has understood that their personal informa-308

tion has been inadvertently inserted into the train-309

ing data and consequently memorized, a model edit310

can be performed to mask the private information.311

The procedure to edit a private association uses312

PAE cards based on the MEMIT modification card.313

prompt The email address of {subject}
is

ground truth john.brown@nowhere.com
target mail@domain.com
subject John Brown

Table 1: An example of Private Association Editing card
for email addresses with an implicit prompt

The basic structure of a MEMIT modification card 314

is composed of a prompt, a ground truth, a 315

target, and a subject. Our PAE cards specialize 316

the MEMIT modification card on a particular PII. 317

We have defined two main types of PAE cards to 318

mask the private information of users. The first 319

type is called "explicit" because it directly iden- 320

tifies the connection between the person and the 321

private data and perfectly adheres to the MEMIT 322

implementation. For example, an explicit prompt 323

is "{name} has an email address that is". The sec- 324

ond type is "implicit" which features a prompt that 325

does not necessarily include the person’s name as 326

the subject of the sentence, favoring a more precise 327

meaning of the sentence. An example of an implicit 328

prompt is "The mail address of {name} is". 329

It is important to note that we used MEMIT in 330

"batch" mode because we are interested in fixing 331

the model and subjecting it to k modifications. In 332

this way, we are able to use MEMIT performing k 333

modifications at the same time, instead of perform- 334

ing single edits separately and recreating the model 335

based on the post-edited weights obtained from the 336

last edit every time. 337

In a real-world scenario, recreating or retraining 338

a model for each requested modification is not fea- 339

sible. Instead, with our strategy called "one model, 340

n edits" we are able to make all requested changes 341

to a single model. By masking and anonymizing 342

the email address, we make it more challenging 343

for attackers to elicit specific private data from 344

the model in response to particular prompts. This 345

methodology effectively reduces the risk of sensi- 346

tive information being inadvertently disclosed by 347

the model. 348

3.3 Evaluating Language Modeling 349

Performance 350

The final step of the procedure for preserving pri- 351

vacy with PAE is to investigate whether the LLM 352

maintains its behavior in text generation. In fact, 353

Model Editing techniques, in general, and PAE, in 354

particular, may perturb the language model capa- 355
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bilities due to the intervention on the model param-356

eters.357

The LLM assessment procedure we describe358

in this Section aims to verify that the privacy-359

preserving language model is not a worse model360

than the original one. The main idea is that LLMs361

capabilities are not perturbed if people are not able362

to determine which of the two models is respon-363

sible for which generation, then it means that the364

edit procedure does not affect model performance:365

there is no one better than the other, a user of the366

system would be equally happy to use one or the367

other.368

The description of the LLM assessment proce-369

dure in this section is twofold: (1) the automatic370

assessment procedure that should be used when371

PAE is used in real scenarios; (2) the manual as-372

sessment procedure that is used in this paper to373

determine if the automatic assessment procedure374

capture the main idea of non-perturbed LLM.375

The automatic assessment procedure is the oper-376

ational procedure to automatically compare a pre-377

edit version LLM and a post-edit version LLM. The378

idea is to simply collect generations for a given set379

of prompts for pre-edit LLM and post-edit LLM.380

Then, these generations are compared with string-381

based similarity metrics, in particular BLEU and382

METEOR metrics. With these measures, we can383

automatically assess if pre-edit LLM and post-edit384

LLM behave in a similar way.385

The manual assessment procedure is instead an386

experimental procedure to confirm that the auto-387

matic assessment procedure can be used to deter-388

mine if pre-edit LLM and post-edit LLM are simi-389

lar. In this procedure, we again collect generations390

for given prompts for pre-edit LLM and post-edit391

LLM. In this case, we ask annotators to choose392

which model generated each text in a sort of clas-393

sification task. We argue that a low accuracy in394

this classification task and a low agreement among395

annotators mean that the models are not distinguish-396

able and, in particular, that the privacy-preserving397

models are no worse than the original ones.398

4 Experiments399

4.1 Experimental Setup400

In this section, we discuss the parameters of our ex-401

periment to allow replicability: the analized LLM402

and related datasets, the intricacies of MEMIT used403

in our PEA, and, finally, the set-up of the evaluation404

of the LLMs.405

Analized LLM and related datasets In our ex- 406

periments, we test the GPT-J model (Wang and 407

Komatsuzaki, 2021) that is designed to generate 408

human-like text continuations from prompts: it 409

is a large model, with 6 billion parameters. This 410

model is trained on an open dataset, the Pile (Gao 411

et al., 2020). The Pile is a diverse, large-scale text 412

corpus that aggregates various sources, including 413

books, articles, websites, and scientific papers. It 414

spans multiple languages and domains, making it 415

an ideal training resource for language models like 416

GPT-J. The Pile contains a rich variety of text, en- 417

abling the model to learn from a wide range of 418

contexts and topics. One of the constituent sub- 419

datasets within The Pile is the Enron Emails (Klimt 420

and Yang, 2004) corpus. This dataset contains text 421

from approximately 150 users, primarily senior 422

management of Enron, organized into folders. It 423

includes a total of about 0.5 million email mes- 424

sages. The Enron Emails dataset was originally 425

made public during the investigation into Enron’s 426

accounting methods. Its inclusion in the Pile mimic 427

the inadvertently insertion into the training data of 428

private information, in particular of PII like email 429

adressess. For this reason, the Enron Email dataset 430

represents a natural starting point to test GPT-J 431

memorization of PII. 432

Intricacies of MEMIT There are two distinct 433

ways to apply model editing using MEMIT(Yao 434

et al., 2023) given N elements to modify: batch and 435

sequential editing. Batch editing involves editing k 436

elements in an LLM simultaneously. Conversely, 437

sequential editing focuses on editing N elements 438

within an LLM in a sequential way, with each edit 439

on a subset of the N elements, performed on the 440

new model retaining previous edits. While batch 441

editing may be sufficient to preserve privacy, the 442

sequential editing approach is closer to the real- 443

world need to constantly update model parameters, 444

as more privacy leakages may be discovered over 445

time. 446

In our research, we initially adopt the batch edit- 447

ing approach with k = N . This approach is the 448

safest – in principle – since the post-edited param- 449

eters are directly the pretrained ones. Then, we 450

investigate the effect of sequential editing with 451

k < N , simulating the real-world scenario in 452

which multiple edits are necessary over time. For 453

PAE to be applicable, in both scenario our method 454

should lead to a comparable decrease in privacy 455

leaks. 456
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Pre-edit Post-edit
Implicit Explicit

Leaked emails Number of predicted emails Attack Accuracy Leaked emails Attack Accuracy Leaked emails Attack Accuracy

Memorization Attacks

gr
ee

dy

context 50 353 2827 0.125 203 0.072 218 0.077
context 100 476 2932 0.162 301 0.103 317 0.108
context 200 537 2951 0.182 368 0.125 396 0.134

be
am

se
ar

ch context 50 346 2689 0.129 244 0.091 248 0.092
context 100 476 2809 0.169 339 0.121 339 0.121
context 200 515 2863 0.180 394 0.138 405 0.141

Association Attacks

gr
ee

dy
zero-shot a 5 3130 0.002 1 0.000 1 0.000
zero-shot b 2 3229 0.001 0 0.000 0 0.000
zero-shot c 26 3234 0.008 13 0.004 11 0.003
zero-shot d 68 3237 0.021 48 0.015 42 0.013

be
am

se
ar

ch

zero-shot a 6 3178 0.002 3 0.001 5 0.002
zero-shot b 1 3178 0.000 0 0.000 0 0.000
zero-shot c 28 3232 0.009 20 0.006 11 0.003
zero-shot d 73 3234 0.023 50 0.015 37 0.011

Table 2: Results of the attacks against the pretrained model (Pre-edit) and after the application of PAE. The training
data extraction attacks that exploit the memorization of PII after PAE tends to lose their efficacy in retrieving private
information from the model.

Evaluation of post-edited LLM For the auto-457

matic assessment procedure, we measure the dif-458

ference in generations for the pre-trained GPT-J459

model and the post-edited version by generating a460

small paragraph starting from 45 prompts extracted461

from the Book3 (Rae et al., 2022) dataset, included462

in the Pile . We prompted the post-edited models463

and the pretrained one with 20 tokens of the 45464

randomly selected examples and we evaluate how465

similar the generations are measuring their overlap.466

he higher the similarity, the higher the likelihood467

that the PAE does not influence the overall perfor-468

mance of the model. Evaluation measures are the469

ROUGE and the METEOR scores.470

For the manual assessment procedure, we gener-471

ate with post-edited models and with the pretrained472

one a short paragraph from 10 different prompts473

(a complete list can be found in the Appendix 6.1).474

We collect the generations for the pre-edit model475

and the model post-edited according to each of476

the editing strategies. Hence, in total, we collect477

30 generations. Then, five annotators are asked478

to choose which of the models generated each of479

the paragraphs. Three sample generations of each480

model were provided, and the annotators were in-481

formed that two out of three models had been post-482

edited, but none of them were informed which of483

the three systems had been post-edited. Evaluation484

measures are the classification accuracy of each an-485

notator and the Fleiss’ K inter-annotator agreement:486

a low score on both can confirm that the models487

are indistinguishable.488

4.2 Results and Discussion489

LLMs leak Private Information Since LLMs490

tend to leak training data, we aim to quantify the491

amount of private information that can be retrieved492

from the pre-trained GPT-J. Unfortunately, GPT-J493

makes no exception to the trend noticed by Huang 494

et al. (2022) for the GPT-Neo models. In fact, also 495

this model tends to generate PII. 496

In Table 2, it is possible to observe that Training 497

Data Extraction Attacks that are based on Memo- 498

rization are particularly effective against the GPT-J 499

model: on average, the model tends to accurately 500

predict the mail observed during training the 16% 501

of the times. 502

It is worth noting the scale of the leakage: the 503

model is originally prompted with 3238 examples. 504

The column Generated emails reports the number 505

of times during generation that the model answers 506

with an email address, while Leaked emails reports 507

the number of times the generation is correct, mean- 508

ing that the generated email corresponds to the one 509

observed in the training data. On average, 450.5 510

emails are correctly generated by those attacks: the 511

privacy of a large number of people is threatened. 512

Moreover, as the attacker gets more information, 513

the accuracy of the attacks gets higher: the accuracy 514

of the attacks strongly depends on the length of the 515

prompt. In fact, the lower accuracy – the number 516

of correctly leaked email addresses over the total 517

email adresses generated– that can be registered in 518

Memorization Attacks is 12% : the model in that 519

case is fed with a context prompt that is 50 tokens 520

long. However, when the context prompt given to 521

the model is composed of 200 tokens, the accuracy 522

of the attack peaks at 18.2% with greedy decoding 523

and 18% using beam search decoding. 524

The accuracy of the Association Attacks is much 525

more modest. The results of those attacks against 526

GPT-J model exhibit similar patterns to the one 527

observed by Huang et al. (2022) against the GPT- 528

Neo models. The larger number of email addresses 529

leaked by those kind of attacks is 68, a modest 530

number compared to the accuracy obtained in the 531
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Memorization Attacks. However, in an adversar-532

ial scenario even low accuracy may cause harm to533

people. Hence, in the next Section, we will demon-534

strate the efficacy of PAE against both types of535

attacks.536

PAE in batch editing Preserves Privacy In Ta-537

ble 2, it is possible to observe the reduced effective-538

ness of Memorization and Association attacks after539

the GPT-J model has undergone an editing process540

(Post-edit columns), with Post-edit results further541

divided into Implicit and Explicit categories. This542

Section investigates the impact of these edits, focus-543

ing on their efficacy against more or less informed544

attacks. We argue that PAE edits are effective if545

they can reduce the leakage of private information,546

regardless of the nature of the attack.547

Post-edit results show, in fact, a significant re-548

duction in the effectiveness of Association attacks.549

This reduction is particularly notable in scenarios550

where the number of leaked emails drops close551

to zero. For example, under the Implicit strategy,552

zero-shot b result in 0 leaked emails and 0 Attack553

accuracy, indicating a complete mitigation of the554

attack. However, some prompts still cause leak-555

age; for instance, in prompt zero-shot b the edit556

reduces the number of email addresses leaked sig-557

nificantly but not completely (from 68 pre-edit to558

48 post-edit in the Implicit). Crucially, while not559

perfect, the PAE edits – both Implicit and Explicit560

– always cause an increase in privacy protection,561

since reduce the number of email correctly leaked562

by Association Attacks.563

However, it is crucial to consider the originally564

leaked emails when interpreting post-edit results.565

While a reduction to near-zero leakage is impres-566

sive, the impact is more pronounced when start-567

ing from a higher number of pre-edit leaks. For568

this reason, we focus on the discussion around the569

Memorization Attacks, that cause a larger number570

of private email addresses to be generated.571

PAE is an effective solution against Memoriza-572

tion Attacks. In particular, the accuracy of the573

attacks steady decreases in each configuration. The574

average drop in accuracy after an Implicit edit is575

5% and 4.5% after Explicit edit: this means that576

PAE is able to modify model parameter so that,577

on average, the 32% of the previously predicted578

email addresses are no more verbatim generated579

by the model using Implicit defense strategy, 29%580

with the explicit one. Against attacks with context581

prompt of 50 tokens, PAE effectiveness peaks, with582

42.5% of the email addresses anonymized. As ex- 583

pected, more informed context prompts are more 584

challenging: however, also with context prompts 585

of 200 tokens, PAE make the accuracy attack drop 586

from 0.18 to 0.12 in Greedy decoding and to 0.138 587

using Beam Search in the Implicit edit, and from 588

0.18 to 0.134 in greedy decoding and to 0.141 us- 589

ing Beam Search in the Explicit edit. In general, 590

studying the effect of the decoding algorithm on 591

the attacks accuracy we can state that this factor 592

does not influence much the results: under Memo- 593

rization Attacks only a slight difference in term of 594

accuracy can be registered From this analysis can 595

conclude that PAE can help in protecting privacy. 596

Finally, it is possible to notice that there is a 597

consistent difference between Implicit and Explicit 598

post-edit results. Explicit edits generally result in a 599

slightly higher number of leaked emails and attack 600

accuracy compared to Implicit edits, expecially un- 601

der Memorization Attacks. For example, in the 602

case of a context prompt of 200, the Explicit edit 603

cause a larger number of emails to be correctly 604

generated (396 in greedy deconding, 405 in beam 605

search decoding) than the corresponding Implicit 606

edit (368 email addresses leaked in greedy decod- 607

ing, 394 in beam search decoding) 608

In summary, post-edit measures, particularly im- 609

plicit edits, demonstrate a strong capability to safe- 610

guard email data from various attack strategies, 611

significantly lowering both the number of leaked 612

emails and the attack accuracy across different con- 613

figurations. For our experiments, we adopted the 614

"one model, n edits" philosophy. This approach 615

is based on the practical scenario where an LLM 616

producing private data needs to be edited for a large 617

number of potentially threatened individuals: with 618

PAE, the model owner can perform a single edit to 619

the model parameters to reduce privacy risks. Our 620

investigation on the emails that the model generates 621

when subjected to Memorization and Association 622

attacks confirm that the Memorization Attacks are 623

able to recover a larger number of private informa- 624

tion also after the editing. However, the evaluation 625

confirms the effectiveness of our model editing 626

techniques in preventing the disclosure of private 627

data since also informed attacks –like the Memo- 628

rization Attacks – are less effective on edited mod- 629

els. This setup is particularly challenging because 630

it requires analyzing the impact of n modifications 631

at the same time. In the next Section, we also 632

demonstrate that the original language model is not 633

negatively influenced by PAE. 634
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E1-O 0.808(±0.198)
E2-O 0.793(±0.199)BLEU
E1-E2 0.790(±0.203)
E1-O 0.841(±0.173)
E2-O 0.826(±0.172)

Automatic
Evaluation

METEOR
E1-E2 0.824(±0.183)

Accuracy 0.35(±0.07)Manual
Revision Fleiss’ K 0.002

Table 3: PAE preserves language model performances.
In the Manual revision of the generation, annotators
are not able to detect which model generated each para-
graph. Moreover, on a larger scale of examples, the
Automatic Evaluation reveals that the generation of post-
edit LLMs E1 and E2 are both similar to one another
(E1-E2) and with respect to the pre-edit LLM O (E1-O
and E2-O)

PAE preserves the Language Modelling Capa-635

bilities PAE preserves privacy of people while636

not affecting the Language Modeling performances.637

Results of the evaluation can be found in the Table638

3. The results of the automatic assessment proce-639

dure can quantitatively give us insight that models640

generations are, in fact, similar. Both according to641

BLEU metric and to METEOR, the systems gen-642

erate (in greedy decoding) very similar paragraph643

when prompted with the same tokens. In particular,644

the post-edited models E1 and E2 – post-edited645

with implicit and explicit PAE – are similar to the646

original, pre-edited model O and are also similar647

with respet to each other. Finally, the manual as-648

sessment procedure suggest that the models are649

indistinguishable from one another. In fact, the an-650

notators asked to detect wich model is responsible651

for a generation among E1, E2, and O can only652

randomly guess, with an average accuracy on this653

classification task (0.35(±0.07)) close to random654

choice. Also the very low agreement suggest that655

tge three systems are indistinguishable.656

This evaluation procedure can attest that the EAP657

is applicable because it not only helps to preserve658

user privacy, but also leaves the capabilities of the659

systems language model intact.660

PAE is applicable with sequential editing Fi-661

nally, in Table is it possible to notice that the se-662

quential update is definetely applicable with PAE.663

In this experiments, we perform sequential edit of664

the GPT-J model, varying the number of email ad-665

dresses anonymized per edit, varying from 5 to 300.666

We indicate the number of anonymized emails per667

edit as batch size k: with k < N we mimic the668

real world scenario of updating a model each time669

a privacy leak is detected. To understand whether670

Figure 2: Memorization Attack against sequentially
post-edited models. The smaller the batch size k, the
larger the number of sequential updates are necessary
to edit all the private emails addressess leaked by the
original model. After the Sequential edits, the stronger
Memorization Attack (|pM | = 200) achieve similar
performances at all the configurations.

sequential editing has a negative impact on effec- 671

tiveness of the edit, we evaluate the effectiveness 672

of PAE for each of the batch sizes in the Memoriza- 673

tion Attack with the more effective of the prompts 674

(|pM | = 200). The results in Table 2 refers to a 675

model post-edited with "implicit" PAE. As can be 676

observed in Table 2, the accuracy of the edit is 677

rather stable and similar to the results obtained in 678

the batch editing scenario. Those results confirm 679

the applicability of PAE also in sequential editing. 680

5 Conclusion 681

In this paper, we address the critical issue of private 682

data leakage in Large Language Models (LLMs) 683

due to their tendency to memorize training data. We 684

propose Private Association Editing (PAE), a novel 685

defense mechanism that effectively removes Per- 686

sonally Identifiable Information (PII) from LLMs 687

without requiring retraining. 688

Our methodology involves a four-step procedure: 689

detecting memorized PII, applying PAE cards, ver- 690

ifying resilience to targeted data extraction (TDE) 691

attacks, and ensuring consistency in the post-edit 692

LLMs. The PAE method stands out for its versatil- 693

ity and efficiency, allowing for small batch modifi- 694

cations and significantly enhancing the privacy of 695

LLMs. 696

Our experiments demonstrate that the PAE ap- 697

proach is both effective and efficient in mitigat- 698

ing the risk of private data leakage. We believe 699

PAE will be a valuable tool in the ongoing effort 700

to protect data privacy in LLMs and encourage its 701

adoption to prevent potential privacy violations as 702

these models continue to be deployed in real-world 703

applications. 704
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Limitations705

We outline some limitations and possible directions706

for future research in enhancing data privacy in707

Large Language Models (LLMs).708

As the landscape of LLMs evolves, it may be709

useful to extend the Private Association Editing710

(PAE) mechanism to accommodate new types of711

models and data. Currently, we apply our proposed712

PAE method on a limited set of LLMs. A pos-713

sible extension could involve testing and refining714

PAE across a broader spectrum of LLM architec-715

tures and training datasets. Our approach focuses716

on removing Personally Identifiable Information717

(PII) from LLMs without retraining. However, this718

method might not address all types of sensitive data.719

Future research could explore additional techniques720

to enhance the comprehensiveness of PII removal.721

While PAE shows promise in its current form, its722

real-world applicability and scalability need thor-723

ough validation. By addressing these limitations,724

future research can further solidify the role of PAE725

in safeguarding data privacy in LLMs and ensure726

its robustness and adaptability in various contexts.727
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6 Appendix 873

6.1 All the prompts of the manual assessment 874

procedure 875

• "My name is"; 876

• "The weather today is"; 877

• "Ever since I was a child, I’ve always liked"; 878

• "My dear friend Mary"; 879

• "Swimmers are usually"; 880

• "Modern art is"; 881

• "The Industrial Revolution"; 882

• "Follow those steps to cook"; 883

• "It is forbidden to"; 884

• "It is very likely". 885
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