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Figure 1: Overview of OmniSpatial Benchmark.

ABSTRACT

Spatial reasoning is a key aspect of cognitive psychology and remains a bottleneck
for current vision-language models (VLMs). While extensive research has aimed
to evaluate or improve VLMs’ understanding of basic spatial relations, such as
distinguishing left from right, near from far, and object counting, these tasks cover
only the most elementary layer of spatial reasoning and are largely approaching
saturation in the latest reasoning models. In this work, we introduce OmniSpatial,
a comprehensive and challenging benchmark for spatial reasoning, grounded in
cognitive psychology. OmniSpatial covers four major categories: dynamic rea-
soning, complex spatial logic, spatial interaction, and perspective-taking, with
50 fine-grained subcategories. Through careful manual annotation, we construct
over 8.4K question-answer pairs. Extensive experiments show that both open-
and closed-source VLMs exhibit significant limitations in comprehensive spatial
reasoning. We also explore two strategies—PointGraph (explicit scene graph cues)
and SpatialCoT (novel-view chain-of-thought)—to bolster spatial reasoning.

1 INTRODUCTION

Spatial reasoning plays a crucial role in bridging visual observation to robotic action (Huang et al.,
2024b; Qi et al., 2024; 2025), autonomous driving, and AR/VR. For models to execute tasks
effectively, they must understand spatial relationships to determine appropriate actions. To enhance
the spatial understanding of Vision-Language Models, prior works (Chen et al., 2024; Cheng et al.,
2024; Cai et al., 2024; Ma et al., 2024; Song et al., 2024; Yuan et al., 2024; Yang et al., 2024,
Qi et al., 2025) have integrated spatial information into datasets, enabling basic forms of spatial



reasoning. Various benchmarks (Du et al., 2024; Szymanska et al., 2024; Shiri et al., 2024; Fu et al.,
2024b; Song et al., 2024; Yang et al., 2024) have been introduced to systematically evaluate such
capabilities, focusing on tasks like recognizing left and right, estimating depth, and constructing
cognitive maps (Yang et al., 2024; Tolman, 1948; Momennejad et al., 2023). Additionally, spatial
reasoning has been applied to manipulation tasks (Driess et al., 2023; Qi et al., 2025; Yuan et al.,
2024), allowing systems to position objects according to specified spatial rules.

However, existing benchmarks still target basic spatial understanding, such as position relationship
(left, right, front, back), proximity (near, far), and object counting. We use the latest reasoning models
and agents to evaluate these benchmarks, such as 03 (OpenAl, 2025b) and Gemini-2.5-Pro (Reid
et al., 2024). The results are shown in the lower left of Fig. 1. These models have achieved over 90 %
accuracy on previous benchmarks such as SpatialBot-Bench (Cai et al., 2024) and EmbSpatial (Du
et al., 2024), suggesting that these basic tasks are approaching saturation.

We believe complex spatial reasoning remains a significant challenge (Gardner, 2011; Baddeley,
1998; Previc, 1998; Kosoy et al., 2025; Pothiraj et al., 2025; Chen et al., 2025). Human interaction
with the physical world often involves interpreting ambiguous, dynamic, and context-dependent
spatial relationships (Bar-Anan et al., 2006; Trope & Liberman, 2010; Ramalho et al., 2018). For
example, in an emergency, knowing that an AED is “to the right of the door” is insufficient without
understanding schematic diagrams, correlating maps with real-world environments, and planning an
efficient route. Similarly, tasks like inserting a knife into a rack or flattening a box demand reasoning
about object rotation, deformation, and spatial compatibility—far beyond static object placement.

From the perspective of cognitive psychology, complex spatial reasoning goes beyond simple rela-
tional judgments, encompassing dynamic world-knowledge reasoning, interactive spatial behavior
with environments or agents, logical analysis of three-dimensional structures, and perspective-taking
abilities. Motivated by these challenges, we introduce OmniSpatial, a comprehensive benchmark
designed to capture the breadth and depth of spatial cognition. OmniSpatial systematically cate-
gorizes spatial reasoning into four core dimensions—dynamic reasoning, complex spatial logic,
spatial interaction, and perspective-taking—thus providing a principled foundation for developing
next-generation spatially- and physically-aware Al systems.

Table 1: Comparison with other spatial reasoning benchmarks. A comparison between OmniSpa-
tial and other existing spatial reasoning benchmarks. OmniSpatial avoids template-based annotations,
features highly diverse data, and includes a significantly larger number of tasks.

Dataset Embodied Task Categories Data Domain Data Annotation Data Scale Spatial QAs
EmbSpatial-Bench (Du et al., 2024) v 6 Indoor (ScanNet, etc.) Template 2.2K 3.6K
Space3D-Bench (Szymanska et al., 2024) X 6 Indoor (Replica) Manual 211 1K
Visual Spatial (Liu et al., 2023a) X 7 MSCOCO Template 10K 10K
SpatialRGPT-Bench (Cheng et al., 2024) X 12 Urban, Indoor, Sim Template 1.4K 1.4K
What’s up (Kamath et al., 2023) X 6 Household, GQA, COCO Template 5K 5K
Spatial-MM (Shiri et al., 2024) X 4 Internet Template 23K 23K
RoboSpatial (Song et al., 2024) v 4 Indoor, tabletop Template M 3M
Spatial VLM (Chen et al., 2024) X 2 WebLi Template 546 546
SpatialBot-Bench (Cai et al., 2024) v 5 COCO,VG,RTX Manual 200 360
VSI-Bench (Yang et al., 2024) v 8 Indoor Template 288 5K
OmniSpatial (Ours) v 50 Internet Manual 6.5K 8.4K

The OmniSpatial benchmark includes images or video frames across diverse scenes, resolutions,
lighting conditions, and weather patterns, collected from multiple countries across different continents.
We evaluate state-of-the-art VLMs on our benchmark. Our findings indicate that, while current models
perform well on conventional benchmarks, OmniSpatial presents a significantly greater challenge
due to its comprehensive and complex task design.

Our key contributions are as follows:

* We categorize visual-spatial reasoning into four key dimensions—dynamic reasoning, complex
spatial logic, spatial interaction, and perspective-taking—broadening the scope of evaluation and
guiding future research on spatial cognition in embodied & physics intelligence.

* We develop the OmniSpatial dataset, which offers a diverse and challenging set of spatial tasks,
serving as a comprehensive benchmark for assessing VLMSs’ spatial reasoning capabilities.

* We explore the enhancement of spatial reasoning in VLMs by incorporating auxiliary models in a
chain-of-thought manner, demonstrating improved reasoning performance through this approach.



2  PRELIMINARIES: VISUAL—SPATIAL REASONING

Spatial reasoning constitutes the cognitive
bridge between visual perception and geometric
understanding. We define visual-spatial rea-
soning as the capacity of an artificial system to
infer, predict, and reason spatial properties of
the world from visual observations. Formally,
let an RGB observation stream be 1.7 and a
task-specific query be ¢q. A model possesses
visual—spatial reasoning that learn a mapping:

fur, q) — a, 6]

where a belongs to a well-defined action or
answer space whose correctness can be veri-
fied in the physical or simulated environment.
This definition excludes non-visual priors so
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that improvements can be attributed to visual
reasoning itself, yet it remains compatible with
multi-modal extensions discussed in §1.

Figure 2: Benchmark Statistics of OmniSpatial:
The distribution of tasks across 4 main categories.

2.1 TAXONOMY OF VISUAL-SPATIAL REASONING

Our taxonomy is motivated by two complementary perspectives. (i) Cognitive psychology founda-
tions. Prior research on spatial cognition highlights partly independent faculties—such as visualiza-
tion, mental rotation, perspective taking, and spatial updating—that can be systematically assessed
in humans (Chabris et al., 2006; Meneghetti et al., 2022). These constructs provide a principled
scaffold for analyzing how agents perceive, reason about, and act within space. (ii) Moving beyond
basic spatial relations. Existing benchmarks are nearly saturated on simple tasks like left-right
discrimination, front—back identification, and object counting (Chen et al., 2024; Cai et al., 2024; Du
et al., 2024; Szymanska et al., 2024). Yet real-world embodied tasks demand richer reasoning (Kosoy
et al., 2025; Pothiraj et al., 2025; Chen et al., 2025; Stogiannidis et al., 2025; Lee et al., 2025) about
scene dynamics, multi-step logic, physical interaction, and viewpoint transformation.

Guided by these considerations, we partition visual-spatial reasoning into four complementary
dimensions: dynamic reasoning, complex spatial logic, spatial interaction, and perspective taking.
Each dimension corresponds to a specific cognitive faculty and targets under-explored challenges in
prior work, enabling us to probe a broader spectrum of spatial cognition while remaining grounded in
psychological theory.

Dynamic Reasoning concerns inferring motion and temporal change from visual evidence. While
our benchmark primarily uses static or sparsely sampled frames, such inference is crucial for adaptive
decision-making in domains like robotics and navigation.

Complex Spatial Logic involves higher-order reasoning about relations, transformations, and ge-
ometric structures. It underpins problem-solving in design, engineering, and manipulation, where
anticipating structural or relational changes is essential.

Spatial Interaction emphasizes reasoning guided by environmental constraints and task goals,
covering skills such as path planning, obstacle avoidance, and context-aware action selection.

Perspective Taking captures the ability to adopt alternative viewpoints, supporting navigation, social
cognition, and multi-agent coordination. It enables understanding relations from diverse perspectives
and fosters flexible problem-solving.

2.2 RATIONALE FOR CLASSIFICATION

This taxonomy balances theoretical comprehensiveness with practical applicability. Dynamic reason-
ing highlights motion inference, complex logic captures abstract transformations, spatial interaction
addresses real-time engagement, and perspective taking reflects cognitive flexibility. Together, these
dimensions provide a framework for evaluating spatial reasoning in Al, robotics, and human cognition.
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Figure 3: Tasks Demonstration of OmniSpatial. Several representative subtasks are selected for
demonstration in each of the four task categories. Note: The questions above are slightly simplified
for clarity and conciseness.

3  OMNISPATIAL: COMPREHENSIVE SPATIAL REASONING BENCHMARK

3.1 OVERVIEW

We present OmniSpatial, a comprehensive benchmark designed to evaluate vision-language models
on spatial reasoning. Rather than pursuing sheer data volume, OmniSpatial emphasizes diversity,
structure, and rigor. It now consists of 8.4K carefully curated question—answer pairs, substantially
larger than earlier prototypes, and covers a broad spectrum of scenarios that demand reasoning beyond
pattern recognition.

The dataset integrates heterogeneous sources—web imagery, standardized cognitive tests, driving-
exam questions, and prior dataset images such as MME (Liang et al., 2024) and HOI4D (Liu et al.,
2022). This mixture enriches both realism and complexity: natural images capture everyday envi-
ronments and architectures; psychology-inspired tasks introduce scientifically grounded challenges;
driving exams provide safety-critical dynamic reasoning; and embodied datasets contribute varied
resolutions, viewpoints, and human—object interactions.

Tasks are organized into 4 major categories and 50 fine-grained subtypes as shown in Figs. 3
and 7, spanning from basic perspective-taking to dynamic motion prediction and spatial interaction
in cluttered scenes. Each item is manually designed and reviewed through multi-round annotation,
ensuring accuracy, consistency, and minimal ambiguity. This careful curation yields a benchmark
that not only broadens the coverage of spatial reasoning but also establishes a reliable ground for
evaluating and advancing future multimodal intelligence.

3.2 BENCHMARK CONSTRUCTION
3.2.1 DATA COLLECTION
As described in Section 2, we define four spatial categories and corresponding task types. To build a

diverse and information-rich dataset, we design targeted search strategies for each type, optimizing
for relevance, diversity, and complexity.
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Figure 4: Data Construction of OmniSpatial. The pipeline collects images from multiple sources
and ensures their quality and relevance through manual selection. Precise annotations are then
applied, ensuring each question has a clear, unique answer while maintaining a natural, conversational
expression. This process supports the effective training of VLMs in spatial reasoning tasks.

Web Images. Web images form a major part of our data, especially for perspective-taking, dynamic
reasoning, and spatial interaction. We use task-specific search terms (e.g., “indoor layout,” “furniture
arrangement”) and append filters (“-ai,” “-generated”) to reduce synthetic content. Images are
retrieved via Google’s Custom Search JSON API, Web RPA, and manual search, followed by strict
filtering to remove irrelevant, low-resolution, or spatially trivial cases (e.g., isolated static objects).
The resulting set balances realism and complexity, ensuring broad task coverage. All images are
under MIT or CC-BY 4.0 license.

Exam-Based Test Questions. To capture abstract spatial logic, such as 3D transformations, rotations,
and perspective shifts, we collect public spatial cognition tests through web scraping and manual
curation. We categorize questions by focus and difficulty to maintain balance, removing redundant or
knowledge-heavy items in favor of those targeting pure spatial reasoning. This refinement increases
challenge diversity and improves benchmark quality.

Driving Test Questions. To evaluate reasoning in dynamic environments, we source tasks from
three channels: (i) image-based multiple-choice questions from driving exam websites across at least
three countries, (ii) online banks of standardized tasks like turning, lane changing, and parking, and
(iii) interactive U.S. driving test videos, from which we extract frames, annotate bounding boxes,
and design contextual queries (e.g., “Which bounding box indicates a potential traffic hazard?”).
This combination yields realistic and challenging traffic scenarios, enhancing VLM adaptability to
safety-critical reasoning tasks.

Existing Dataset Images We integrate two key data sources: MME (Liang et al., 2024) and
HOI4D (Liu et al., 2022). MME provides RGB-D data, allowing depth-based spatial inference. We
leverage its depth information and manually propose physics-based questions such as “If a red car
passes me in 5 seconds, what speed should I maintain?” This ensures realistic distance and motion-
based reasoning. HOI4D contains extensive human-object interaction videos. We extract sequential
frames to create motion prediction tasks, such as “Where will the hand holding the kettle move
next?” By incorporating these datasets, we introduce real-world motion and interaction complexities,
further strengthening VLMs’ dynamic reasoning capabilities. Furthermore, to extend our dataset to
model training, we partition the dataset into a 1.5K test set and a 6.9K training set. The test set is
entirely human-annotated and the train set further integrates samples from several existing datasets,
including SpatialViz (Wang et al., 2025), PhysBench (Chow et al., 2025), ViewSpatial (Li et al.,
2025), and DrivingVQA (Corbiere et al., 2025), which substantially enhance the diversity.

3.2.2 QUESTION-ANSWER ANNOTATION

We design multiple-choice questions, including binary (true/false) and four-option formats, to enable
standardized evaluation while minimizing annotation bias. To ensure naturalness, questions are
phrased in conversational and context-rich styles (e.g., “If you are entering the classroom, on which
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Figure 5: PointGraph: Enhance Spatial Rea- Figure 6: SpatialCoT: Enhancing Spatial Imagi-
soning through Additional Scene Graphs. nation through Novel View Synthesis.

side are the students?””) rather than rigid templates (e.g., “Is [A] on the right of [B]?”). This
encourages models to rely on contextual and relational reasoning rather than memorized patterns.

To guarantee clarity and answer uniqueness, we perform multiple rounds of validation and resolve
ambiguous references through cross-checking among annotators. Six trained annotators—initially the
authors—were involved in labeling. Each annotator underwent task-specific training, and annotations
were cross-validated to reduce subjectivity. The inter-annotator agreement reached Krippendorff’s
o = 0.84, indicating a high level of consistency.

3.3 IMPROVING VISUAL SPATIAL REASONING ABILITIES

3.3.1 POINTGRAPH: EXPLICIT MODELING OF OBJECT RELATIONSHIPS

To strengthen models’ understanding of spatial relations, we introduce PointGraph, which constructs
structured representations of object relationships within an image. Concretely, we employ open-
vocabulary grounding models such as Florence-2 to localize multiple objects and extract their centers
and bounding boxes. These detections are then assembled into a JSON-style scene graph encoding
object identities and relative positions. By concatenating this structured spatial description with
the original query, VLMs are provided with explicit geometric cues that facilitate more accurate
reasoning about distances, directions, and configurations (see Fig. 5).

3.3.2 SPATIALCOT: STIMULATING SPATIAL IMAGINATION VIA NOVEL VIEWS

Human spatial reasoning often relies on mental imagery—the ability to imagine how a scene looks
from different viewpoints. Inspired by this, we design Spatial CoT, which augments visual inputs
with 3D novel views to enrich spatial imagination (Shi et al., 2023; Qi et al., 2023b; Liu et al., 2024d).
Specifically, we adopt InstantMesh (Xu et al., 2024a) to synthesize six additional perspectives for
each input image and compose them into a multi-view collage. This collage is then fed, along with the
question, into the VLM as part of a chain-of-thought prompting pipeline. The additional perspectives
provide strong geometric priors, helping models disambiguate occlusions, perspective-taking, and
other view-dependent reasoning tasks.

4 EXPERIMENTS

4.1 EVALUATION SETUP

To systematically assess spatial reasoning, we evaluate models on the OmniSpatial benchmark under
a unified protocol. Our evaluation covers both proprietary and open-source systems, spanning general-
purpose VLMs, reasoning-oriented LLMs, and spatially specialized models, thereby ensuring broad
coverage and fair comparison. We consider four groups of state-of-the-art models:

* Proprietary Models. These include the GPT-40 and GPT-4.1 families (Hurst et al., 2024), the
Claude series (Anthropic, 2024), and Gemini series (Anil et al., 2023). All are accessed through
APIs under zero-shot settings with standardized system prompts (see Section D).

* Reasoning Models. We categorize models that explicitly employ long chain-of-thought reasoning,
often enhanced through reinforcement learning, such as ol, 03, o4-mini (Jaech et al., 2024;
OpenAl, 2025b), and Gemini-2.5 (Anil et al., 2023; Reid et al., 2024). Because their outputs are
less amenable to strict parsing, we additionally rely on an automatic judge to compare answers
against ground truth, following the LLM-as-a-Judge paradigm (Zheng et al., 2023).



Table 2: Evaluation on OmniSpatial-test. All models were tested 5 times and averaged to reduce
randomness. Dark green indicates the best result and light green indicates the second-best result
within the group. Gemini-2.5-Pro (Reid et al., 2024), InternVL3-78B (Zhu et al., 2025), and SoFar (Qi
et al., 2025) achieve the best performance within their respective groups.

Dynamic Reasoning  Spatial Interaction Complex Logic Perspective Taking

Method  Avg. Rank Motion Traffic Geospatial ~ Pattern ~ Geometric Ego  Allo

Manipulate Analysis Analysis Locate Strategy Recognition Reasoning Centric Centric

Hypothetical

Blind Evaluation

Random Choice 24.98 - 24.86 2630 2588 2343 2727 21.44 2477 2255 24.84 25.78
GPT-3.5-turbo (Roumeliotis & Tselikas, 2023) 30.67 - 38.38 29.19 3835 28.76 3691 0.82 2400 4216 33.67 35.90
GPT-4-turbo (OpenAl, 2023) 34.06 - 42.97 3740 41.18 2895  40.00 22.27 2632 31.37 33.99 3542
Proprietary Models
GPT-40-mini-2024-07-18 (Hurst et al., 2024) 42.64 8 55.95 5029 5459 4343 4491 2247 2942 61.57 36.76 34.22
GPT-40-2024-11-20 (Hurst et al., 2024) 47.81 5 65.54 5723 5647 5238 54.09 26.29 2548 7598 39.49 39.76
GPT-4.1-nano-2025-04-14 (OpenAl, 2025a) 42.62 9 50.90 5385 5490 4095 4242 24.40 30.11  53.59 37.23 33.73
GPT-4.1-mini-2025-04-14 (OpenAl, 2025a) 48.87 4 64.32 56.53  59.06 60.19 56.36 29.28 30.19 7255 39.57 39.28
GPT-4.1-2025-04-14 (OpenAl, 2025a) 51.78 2 66.22 64.74  60.00 6533 60.18 31.75 30.06 7098 40.64 39.04
Claude-3-5-sonnet-20241022 (Anthropic, 2024) 46.86 6 54.05 5457 5812 6838  53.09 26.60 3174 70.00 34.79 39.52
Claude-3-7-sonnet-20250219 (Anthropic, 2024) 47.53 5 57.57 5595 5671 6381 59.09 29.48 2839 7216 36.06 36.63
Gemini-2.0-flash-lite-02-05 (Anil et al.,, 2023) 44.03 8 59.19 4671 6024 49.52 5327 21.65 3123 6647 36.81 38.80
Gemini-2.0-flash-exp (Anil et al., 2023) 4840 2 61.89 56.01 5176 63.43  59.09 20.82 3381 7275 39.20 39.28
Gemini-2.5-flash-preview-05-20 (Anil et al., 2023) 52.12 1 67.57 6272 6824 7333 60.91 38.14 34.19 7549 3590 33.73
Reasoning Models
01-2024-12-17 (Jaech et al., 2024) 5036 6 71.62 6098  57.65 63.81 60.00 39.18 27.10 71.57 38.03 36.14
04-mini-2025-04-16 (OpenAl, 2025b) 52.77 3 7297 59.83  60.00 73.33 61.82 34.02 36.77  73.53 40.69 40.96
03-2025-04-16 (OpenAl, 2025b) 56.33 1 71.89 66.18  61.18 68.57 65.45 40.21 29.68  77.06 48.40 48.19
Claude-3-7-sonnet-20250219-thinking (Anthropic, 2024) 48.62 7 57.21 59.73 5373 6794 5727 30.24 28.17  68.63 37.94 36.95
Gemini-2.5-flash-05-20-thinking (Anil et al., 2023) 53.16 3 70.27 6474  61.18 7238 58.18 35.05 36.13  74.12 40.96 32.53
Gemini-2.5-pro-preview-05-06 (Anil et al., 2023) 55.19 2 67.57 7139 6235 7524 6455 43.30 3484 7451 38.03 37.35
Open-source Models
LLavA-1.5-vicuna-7B (Liu et al., 2024c) 34.97 15 54.46 3123 3529 36.19 33.94 29.01 24.18  55.60 34.66 36.14
LLaVA-onevision-qwen2-7B (Li et al., 2024a) 35.68 14 43.24 38.15 3294 2952 4182 28.87 2258  47.06 36.17 37.35
LLaVA-onevision-qwen2-72B (Li et al., 2024a) 45.66 6 62.16 5029 5412 60.95 56.36 22.68 2581 7647 37.23 33.73
Gemma-3-4B (Kamath et al.,, 2025) 39.79 11 41.89 49.71 56.47 27.62 36.36 23.71 2452 59.80 36.17 38.55
Gemma-3-12B (Kamath et al., 2025) 43.71 8 54.05 5491 5412 4762 4545 16.49 3032 63.73 36.70 33.73
Gemma-3-27B (Kamath et al., 2025) 44.75 7 56.76 5578  57.65 5048 5273 27.84 29.03  64.71 3351 32.53
InternVL3-2B (Zhu et al., 2025) 37.98 13 50.00 40.58 4329 40.00 40.55 21.86 2852 5549 35.11 33.01
InternVL3-8B (Zhu et al., 2025) 41.60 9 5243 40.87 4894 51.05 4477 24.95 28.63 6420 38.62 40.96
InternVL3-14B (Zhu et al., 2025) 4594 5 5432 60.17 5035 51.81 5145 28.04 2826  68.04 3537 34.46
InternVL3-38B (Zhu et al., 2025) 4848 2 63.42 63.58 5459 5829 50.55 29.90 2852 7216 36.76 33.49
InternVL3-78B (Zhu et al., 2025) 49.33 1 63.78 63.12 5624 59.24 5145 27.63 30.19  74.51 38.46 35.90
Qwen-VL2.5-3B (Wang et al., 2024c) 4030 10 55.41 4751 46.12 4229 4473 32.16 2387 59.41 33.30 30.84
Qwen-VL2.5-7B (Wang et al., 2024c) 39.18 12 58.38 3509 50.12 4533 44.00 31.13 2942 6451 33.19 37.35
Qwen-VL2.5-32B (Wang et al., 2024c) 47.36 4 63.06 5509 5176 66.29  56.91 26.39 2748  68.04 37.50 40.24
Qwen-VL2.5-72B (Wang et al., 2024c) 47.85 3 58.38 60.12  50.12 59.81 53.64 26.19 33.03 71.37 36.81 36.39
Specialized Spatial Reasoning Models
SpaceMantis-13B (Chen et al., 2024) 36.36 6 47.03 36.59 4094 3486 33.09 2227 2439 4922 3825 39.28
SpaceQwen2.5-VL-3B (Chen et al., 2024) 40.25 3 58.11 39.88  41.18 4095 4091 29.90 2581  63.73 38.83 39.76
SpaceThinker-Qwen2.5VL-3B (Chen et al., 2024) 4042 2 47.84 53.06 4329 3543 3873 24.33 28.00 58.04 35.11 31.08
SpatialBot-3B (Cai et al., 2024) 35.68 6 43.24 38.15 3294 2952 4182 28.87 2258  47.06 36.17 37.35
RoboPoint-vicuna-v1.5-7B-lora (Yuan et al., 2024) 35.85 6 57.03 28.61 3482 3733 4055 29.90 2271 5020 38.72 40.96
RoboPoint-vicuna-v1.5-13B (Yuan et al., 2024) 34.60 5 55.68 28.15 4282 32.19 3255 24.12 27774 49.02 37.66 33.49
SoFar-Qwen2.5VL-3B (Qi et al., 2025) 45.14 1 56.49 51.16 5412 53.14 5273 31.75 2288 71.60 36.56 41.69
Human Evaluation
Human 92.63 - 94.62 96.07 9138 9511 9215 89.02 8590 98.53 94.30 90.26

* Open-Source Models. This set includes Qwen-VL (Bai et al., 2023), InternVL (Zhu et al., 2025),
Gemma (Kamath et al., 2025), and LLaVA-OneVision (Liu et al., 2023b). These are locally
deployed with standardized prompts to ensure reproducibility.

* Specialized Spatial Models. We further benchmark models designed specifically for spatial rea-
soning, including Spatial VLM (Chen et al., 2024), RoboPoint (Yuan et al., 2024), SpatialBot (Cai
et al., 2024), and SoFar (Qi et al., 2025). These systems incorporate explicit spatial signals such as
metric 3D information, point affordances, or semantic orientation to improve reasoning.

4.2 EVALUATION METRICS

We measure accuracy on multiple-choice questions. For standard proprietary and open-source models,
we test four output protocols: direct answer, regular-expression parsing, JSON parsing, and LLM-
as-a-Judge (Zheng et al., 2023). For reasoning-oriented models with unstructured CoT outputs,
correctness is assessed by GPT-4.1-mini against ground truth. Ablations of these evaluation strategies
are provided in Section C.1.

4.3 MAIN RESULTS

Overall Model Performance As illustrated in Table 2, we observe the following findings: (i)
Proprietary reasoning models, such as ChatGPT 03 (OpenAl, 2025b) and Gemini-2.5-pro (Anil
et al., 2023), achieve the highest performance, surpassing a 56% overall success rate; however,



Table 3: Camparison of textual Chain-of-Thought and PointGraph on OmniSpatial-test.

Dynamic Reasoning  Spatial Interaction Complex Logic Perspective Taking
Method  Avg. Improve Manipulate Motion Traffic . Geospatial Pattern  Geometric Ego  Allo Hynothetical
P Analysis Analysis Strategy Recognition Reasoning Centric Centric yp
GPT-4.1-mini - - - - - - - - - - - -
(w/o CoT) 48.86 64.05 58.55 57.65 5943 5691 28.87 34.06 68.82 37.18 41.20

(w/ Zero-shot CoT) 49.81 +0.95 62.97 58.96  59.06 62.48 5855 27.63 3252 69.41 40.11 40.96
(w/ Manual CoT) 49.76 +0.90 65.68 5890 5859 64.38 5691 28.45 3213 69.61 39.31 41.20
(w/ PointGraph) 50.49 +1.63 67.57 62.14 57.65 64.76 58.18 28.87 3032 70.59 38.83 42.17

Gemini-2.5-Flash - - - - - - - - - - - -
(w/o CoT) 51.47 - 66.22 6590 63.53 7143 66.36 32.99 3484  70.59 3191 38.55
(w/ Zero-shot CoT) 51.53 +0.06 63.51 61.27 58.82 67.62 6545 42.27 3484  79.41 35.90 32.53
(w/ Manual CoT) 52.12 +0.65 67.57 62.72 6824 7333 60091 38.14 3419 7549 35.90 33.73
(w/ PointGraph) 53.23 +1.76 62.16 69.94 6471 67.62 59.09 29.90 38.06 74.51 37.77 37.35

Qwen-VL2.5-3B -
(w/o CoT) 41.45 - 58.65 43.06 39.53 50.67 48.73 32.78 22.58  61.96 37.66 37.35

(w/ Zero-shot CoT) 40.64 -0.81 59.73 43.87 46.12 4838 4327 25.36 22.84  59.61 36.54 37.59
(w/ Manual CoT) 40.07 -1.38 55.68 46.65 47.29 40.57 46.00 28.04 2439 6039 33.35 31.57
(w/ PointGraph) 44.36 +2.91 55.68 5520 4894 5219 5236 29.90 25.55  66.08 35.11 31.08

there remains a significant gap compared to human-level understanding, and they require a lot of
inference time and tokens. (ii) Open-source models also demonstrate competitive results, with
large-scale models like InternVL3-78B (Zhu et al., 2025) and Qwen-VL2.5-72B (Wang et al., 2024c)
achieving comparable performance to GPT-4.1-mini and Gemini-2.0-flash-exp. (iii) Specialized
Spatial Reasoning Models, due to limitations in dataset coverage and model capacity, struggle to
achieve substantial improvements on comprehensive benchmarks.

Category-wise Analysis We observe notable performance differences across spatial reasoning
categories: (i) Leveraging their extensive world knowledge and local understanding capabilities,
proprietary models have demonstrated strong performance in Dynamic Reasoning and Spatial Inter-
action, indicating that reasoning models possess high proficiency in temporal understanding, spatial
relationship analysis, and map-based comprehension. (ii) For Pattern Geometric Reasoning, which
involves spatial imagination in planar geometry, even reasoning models designed for extended think-
ing can only achieve an accuracy of around 30% to 40%, slightly surpassing the random baseline.
(iii) Current models exhibit limited perspective-taking abilities, predominantly analyzing scenarios
from an ego-centric viewpoint while struggling to imagine perspectives from others’ viewpoints.

Impact of PointGraph & Spatial CoT To Table 4: Performance of Spatial CoT on OmniS-
test whether structured segmentation improves patial Perspective-Taking track.
performance, we apply PointGraph as a pre-

processing step for GPT-4.1, Gemini-2.5-flash Method Avg. Improve Cfri‘r’ic C’;ﬁ’ic Hypothetical
and Qwen-VL2.5-7B. Results in Table 3 show GPTd Tominl | = - - - -

a clear accuracy boost, particularly in the Dy-  (w/Zero-shot CoT) 4556 - 69.41 40.11 4096
namic Reasoning and Perspective-Taking Track, (w/ Spatial CoT) 47.58 +2.02 6943 4237 4434
validating the benefits of integrating structured Qwen-VL2.5-3B - = = = =
object representation, while traditional textual (W Zero-shot CoT) 4089 ~ - ~ 59.61 3654  37.59

(w/ Spatial CoT) 42.90 +2.01 60.80 39.25 37.44

CoT difficult to bring about significant improve-
ment. Fig. 6 and Table 4 further demonstrates
the effectiveness of our proposed Spatial CoT on the OmniSpatial Perspective-Taking track. Through
novel view synthesis facilitated by InstantMesh, both GPT-4.1 and Qwen-VL2.5-7B exhibit significant
performance improvements, validating the effectiveness of explicit spatial imagination.

4.4 TRAINING EXPLORATION

Supervised Training on OmniSpatial-train. We further study whether OmniSpatial-train can
effectively teach spatial skills instead of merely fitting templates. Starting from a strong open-source
baseline, supervised fine-tuning on 6.9K samples yields a substantial +7.82 point average gain over
zero-shot, with consistent improvements across dynamic, interaction, and perspective-taking oriented
tracks. In contrast, training on a much larger 200K template-style corpus that follows the construction
process of VSI-Bench (Yang et al., 2024) brings only a marginal +1.29 average gain, underscoring
the value of diverse, manually curated spatial tasks over synthetic templates.



Table 5: Training Exploration on OmniSpatial-test.

. Motion Traffic Geospatial ~ Pattern ~ Geometric Ego  Allo .
Method  Avg. Improve Manipulate Analysis Analysis Locate Strategy Recognition Reasoning Centric Centric Hypothetical
Qwen-VL2.5-3B - - o = = = 5 - - - - _
Zero-shot  40.30 - 55.41 47.51  46.12 4229 4473 32.16 23.87 5941 33.30 30.84
+ OmniSpatial-train (6.9K) 48.12 +7.82 59.19 51.16 50.12 51.81 4545 34.02 31.74 68.63 36.76 35.90
+ Template corpus (200K) 41.59 +1.29 50.90 46.71 4094 4533  40.55 28.87 2439 7255 35.11 33.01

Table 6: Generalization on VSI-Bench. Training with OmniSpatial yields consistent gains.

Appearance  Obj Abs Obj Obj Rel Obj Room Route Obj Rel
Method overall Order Distance  Counting  Distance  Size Size  Planning  Direction
Qwen-VL2.5-3B - - - - - - - - -
Zero-shot  34.06 34.63 11.39 40.18 36.20 46.11  38.58 31.96 36.92
+ SpaceR-7B  41.68 46.60 19.63 55.27 34.23 5832 35.17 34.54 42.84
+ OmniSpatial  43.68 58.25 15.13 57.36 34.37 60.99 41.11 34.02 44.16

Generalization to VSI-Bench. To examine cross-benchmark generalization, we adopt the SpaceR-
7B pipeline and compare supervised training with and without OmniSpatial. Adding OmniSpatial
improves the overall score on VSI-Bench from 41.68 to 43.68. Notably, it boosts categories re-
quiring ordering, counting, and metric/room-size reasoning (e.g., appearance_order, obj_counting,
obj/room_size). These results indicate that OmniSpatial provides complementary supervision that
transfers to external spatial tasks rather than overfitting to in-benchmark patterns.

5 RELATED WORKS

5.1 BENCHMARKING SPATIAL REASONING

Various studies have introduced innovative benchmarking methodologies (Szymanska et al., 2024;
Chen et al., 2024; Cheng et al., 2024; Cai et al., 2024; Song et al., 2024; Qi et al., 2025; Ray et al.,
2024) to advance spatial reasoning evaluation. Spatial VQA (Du et al., 2024) was among the first to
incorporate spatial information into vision-language models, enabling fundamental spatial relationship
reasoning. SpatialBot (Cai et al., 2024) categorized spatial reasoning into various hierarchical
levels, extending its applicability to robotic manipulation tasks. RoboSpatial (Song et al., 2024)
proposes a large-scale template-based spatial relationship dataset, focusing on positional relationships
from different perspectives. VSI-Bench (Yang et al., 2024) combined video data (Chandrasegaran
et al., 2024; Liu et al., 2023c; Fu et al., 2024a; Li et al., 2024b; Fang et al., 2024b) with cognitive
maps (Momennejad et al., 2023; Apostolopoulos & Groumpos, 2023) to simulate human-like spatial
cognition and optimize reasoning in dynamic environments. Recently, SoFar (Qi et al., 2025)
introduced the 6-DoF SpatialBench to evaluate the understanding of orientation.

While these benchmarks have made significant contributions, a unified framework encompassing a
wide range of complex spatial reasoning tasks remains lacking. Inspired by prior spatial reasoning
research (Xu et al., 2024b; Wang et al., 2024a; Lin et al., 2014; Nwankwo et al., 2024; Wang et al.,
2024b), we identified several limitations in existing benchmarks, such as reliance on generated
images (Szymanska et al., 2024; Fu et al., 2024b; Kamath et al., 2023; Liu et al., 2023a; Rajabi &
Kosecka, 2023; Shiri et al., 2024), LLM-generated templates (Linghu et al., 2024; Du et al., 2024;
Rédsch et al., 2025), and domain-specific focus (Xie et al., 2025; Chow et al., 2025; Danish et al.,
2024). These issues hinder their comprehensiveness and real-world applicability. To address these
gaps, our study proposes a comprehensive and integrative spatial reasoning benchmark.

6 CONCLUSION

We introduce OmniSpatial, a benchmark for comprehensive visual-spatial reasoning. OmniSpatial
distills spatial cognition into four primary categories—dynamic reasoning, complex logic, spatial
interaction, and perspective-taking—spanning 50 fine-grained subtasks and 8.4 K manually-curated
question—answer pairs. Extensive experiments show that state-of-the-art proprietary and open-source
VLMs peak at 57% accuracy—over 30 points below human performance—struggling especially
with geometric reasoning and non-egocentric perspective taking. To bridge these gaps, we introduce
PointGraph for structured scene-graph reasoning and SpatialCoT for viewpoint-aware CoT, both
yielding consistent gains and underscoring the value of structured and multi-view reasoning.
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A DETAILED TASK DESIGN

OmniSpatial aims to comprehensively evaluate the spatial reasoning capabilities of Vision-Language
Models, covering four major categories: Dynamic Reasoning, Complex Logic, Spatial Interaction,
and Perspective Taking. Each category not only focuses on different types of spatial reasoning
tasks but also includes challenges based on real-world application scenarios. This approach helps
researchers better understand and enhance models’ multi-domain spatial reasoning abilities. The
following presents the underlying considerations and practical value behind each task design.

A.1 DYNAMIC REASONING

The Dynamic Reasoning category focuses on the model’s understanding of object movement and
its changes, assessing the ability to make accurate judgments in uncertain or rapidly changing
environments. Spatial dynamics are critical not only in robot control but also have broad applications
in fields like autonomous driving and intelligent surveillance.

A.1.1 MANIPULATION

Operational Position Selection This task evaluates how models determine the optimal interaction
point with objects in complex environments. Selecting the best grasping point can prevent tilting
or damage to objects and improve the efficiency and precision of operations. This task is crucial in
robotic grasping, especially when environmental conditions are unstable.
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Figure 7: OmniSpatial tasks.The tasks are organized into three levels, with each of the four categories
of spatial abilities containing no fewer than two subtasks. The final level features a more detailed
subdivision, inspired by real-life scenarios

20



Movement Direction Determination This task assesses the model’s ability to predict the movement
direction of an object or itself, providing decision support for automated systems and helping to
optimize robot motion strategies.

Intent Recognition Intent recognition involves inferring the purpose or goal behind a movement.
This task is particularly important for contextual analysis, such as determining whether a person
is reaching for a door handle to open or close a door. This capability enhances the reasoning of
human-robot interactions and optimizes the interaction experience of intelligent assistants and robots.

A.1.2 MOTION ANALYSIS

Uniform Motion The model’s ability to reason about uniform motion reflects its fundamental
understanding of time and spatial relationships, such as estimating the speed or time required for a
target to move. This is applicable in areas like object tracking and path prediction, such as estimating
vehicle travel time or train arrival time.

Variable Motion Variable motion analysis focuses on understanding acceleration and deceleration
processes. By predicting the position changes of an object during variable motion, the model can
better simulate dynamic phenomena in the physical world, such as calculating braking distance for
vehicles. This is critical in autonomous driving and robot control.

Spatial Compatibility Tasks that assess whether an object fits within a specific space directly relate
to the precision of robots and automated devices in real-world operations. For instance, determining
whether luggage can fit into an overhead compartment is applicable in logistics and automated
warehouses, helping systems make effective object adaptation decisions.

A.2 CoMPLEX LoOGIC

The Complex Logic category focuses on higher-order spatial reasoning, including tasks such as
geometric transformations and pattern recognition, challenging the model’s ability to abstractly
understand and reason in multi-dimensional spatial environments.

A.2.1 PATTERN RECOGNITION

Style Style recognition tasks assess the model’s ability to infer visual rules in structured patterns.
Typical operations include completing missing parts, combining or subtracting shapes, comparing
similarities and differences, and performing visual logic like black-white inversion. This skill is
crucial for tasks like intelligence tests and diagrammatic reasoning.

Quantity Quantity-based tasks evaluate the model’s ability to perform visual numerosity reasoning,
focusing on implicit quantitative patterns such as the number of points, lines, regions, elements, or
strokes. These tasks require abstract counting under diverse spatial configurations, often without
explicit numerical labels or symbols.

Attributes Attribute-based tasks evaluate the model’s ability to reason about non-numeric visual
properties such as symmetry (axial or radial), curvature, and openness. These tasks require the
recognition of structural features that do not rely on quantity but rather on geometric or perceptual
traits.

Location Location tasks evaluate the model’s ability to reason about spatial changes such as
translation, rotation, and reflection. The focus is on how objects shift in space while preserving their
structure. This skill is essential for grid-based reasoning, motion prediction, and geometric pattern
understanding.

A.2.2 GEOMETRIC REASONING
Polyhedron Unfolding This task examines whether the model can infer the 2D net of a 3D object,

reflecting its ability to mentally construct spatial layouts. It is particularly relevant to applications
such as packaging design, industrial manufacturing, and aerospace engineering.
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Sections and Projections By evaluating how models interpret 2D cross-sections or projections from
different viewpoints, this task challenges their capacity to connect visual appearance with internal
structure—Xkey to fields like medical imaging, architecture, and mechanical design.

Mental Rotation Mental rotation requires the model to simulate the rotation of objects in mind and
track changes across views. It underpins spatial reasoning in tasks ranging from CAD modeling to
object manipulation in virtual and augmented reality.

Assembly This task involves reasoning about how separate parts fit together into a coherent whole,
testing the model’s understanding of geometric constraints. It has broad relevance in robotics,
structural analysis, and physical assembly planning.

Analytical Geometry These tasks are inspired by classic geometry problems, requiring models to
reason about spatial relations using angles, distances, and symmetry. They bridge mathematical logic
with visual structure, supporting applications in structured reasoning and spatial abstraction.

A.3 SPATIAL INTERACTION

The Spatial Interaction category evaluates a model’s ability to reason about interactions with objects
and environments. It includes tasks such as Traffic Analysis, Localization, and Geospatial Strategy,
reflecting the model’s understanding and application of spatial knowledge in real-world scenarios.

A.3.1 TRAFFIC ANALYSIS

Anomaly Detection This task focuses on identifying potential dangers or traffic violations in complex
scenes, such as unsafe following distances or unusual vehicle behavior. It plays a key role in ensuring
safety in autonomous driving systems.

Sign Recognition This task evaluates the model’s ability to detect and interpret traffic signs,
including speed limits, no-entry zones, and yield signs. Accurate recognition is critical for safe and
rule-compliant decision-making.

Action Recognition This task involves identifying or predicting the actions of traffic participants,
such as driver gestures, police signals, or pedestrian intentions. It is important for understanding
dynamic human behavior in traffic environments.

Risk Detection This task aims to detect immediate hazards in the environment, such as an opening
car door or a pedestrian crossing the road. Timely detection supports effective avoidance and control
strategies.

Behavior Guidance This task provides context-aware behavioral suggestions, such as advising to
turn off high beams or reminding that parking is prohibited. It enhances overall driving safety and
compliance.

Contextual Analysis This task assesses the model’s ability to interpret spatial relations and behaviors
based on environmental cues. For example, estimating wind conditions to anticipate overtaking
behavior or understanding road status to infer potential risks.

A.3.2 LOCALIZATION

UI Interaction This task requires the model to determine which icon should be selected within a
user interface based on contextual understanding, and to accurately localize its position. It reflects
the model’s ability to integrate semantic interpretation with spatial reasoning, supporting applications
in intelligent assistants and automated interface control.

Object Detection This task involves identifying specific target objects within an image. It is often
paired with spatial localization to jointly assess what the object is and where it is located.

Spatial Localization This task focuses on determining the precise position of objects within a
scene. It is commonly evaluated alongside object detection to answer questions like “What is at this
location?” or “Where is this object?”
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Pose Estimation This task estimates the orientation and spatial configuration of objects, such as
detecting whether a cup is upright or tipped over. It is frequently integrated with spatial localization
to enable more nuanced scene understanding.

A.3.3 GEOSPATIAL STRATEGY

Spatial Recognition Assesses the model’s capacity to identify spatial structures such as rooms,
corridors, or zones within a scene. This is essential for semantic navigation and indoor mapping.

Location Recognition This task evaluates the model’s ability to identify specific locations on a
map or scene, such as recognizing the position marked as ‘““You are here” or locating a designated
landmark. It reflects the model’s capacity to associate spatial markers with real-world positions.

Region Recognition Focuses on distinguishing and classifying regions in a broader spatial context,
such as residential vs. industrial zones on a map.

Route Interpretation Tests the model’s ability to follow or explain a route depicted in a map or
scene. It requires understanding directional arrows, route labels, and spatial transitions.

Route Design Involves selecting or generating an optimal path to reach a given goal, considering
spatial constraints and possible alternatives.

Route Selection Compares multiple candidate routes and chooses the most suitable one based on
efficiency, safety, or contextual requirements.

Navigation Evaluates the model’s ability to understand smartphone or in-vehicle navigation inter-
faces, including interpreting turn-by-turn directions, identifying route segments, and understanding
map overlays. This is crucial for building intelligent voice assistants and real-time guidance systems.

Map/Scene Conversion Tests the ability to mentally convert between map views and real-world
scenes, which is critical in correlating schematic representations with physical surroundings.

Legend Recognition It requires identifying and interpreting map symbols (e.g., stairs, elevators,
emergency exits) and a foundational skill in navigation and spatial reasoning.

Terrain Identification Focuses on distinguishing types of terrain (e.g., flat, uphill, water-crossing),

which is essential for planning safe and feasible paths in outdoor navigation or robotics.

A.4 PERSPECTIVE TAKING

This category evaluates the model’s ability to understand spatial relationships from different view-
points. Since changes in perspective directly affect what is observed, the ability to reason across
varying angles is essential for robotic perception and interaction.

A.4.1 EGOCENTRIC

Count Counting the number of visible objects from the current perspective is crucial for dynamic
interaction. For example, in robotic grasping tasks, knowing how many targets are visible helps
determine the appropriate operation strategy.

Size Judging the size of an object from the observer’s viewpoint aids robots or virtual systems in
depth perception, helping assess whether an object can be grasped or properly placed.

Direction This refers to the direction directly seen by the observer. It is especially important in
autonomous driving scenarios, where understanding object movement helps predict traffic conditions
and enables timely responses.

Order Analyzing the arrangement of multiple objects in an image is essential for robotic operations,
helping prioritize which objects to interact with first.

Distance The distance between objects as perceived from the observer’s viewpoint is a key capability
in navigation systems, enabling path planning and obstacle avoidance.
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A.4.2 ALLOCENTRIC

Count Understanding how the perceived quantity of objects changes under different viewpoints is
key. Due to variations in position and orientation, occlusion often occurs—for example, a driver may
have blind spots, while a road surveillance camera can see objects hidden in those areas. This task
evaluates the model’s ability to judge the difference in object counts from various observation points.

Size This task involves evaluating an object’s size from a specified observer’s viewpoint. Due to
the general principle that closer objects appear larger and distant ones appear smaller, objects of the
same size may look different to different observers. The model is expected to either infer the true size
based on reference objects or estimate how perceived size changes with viewing position.

Direction This task emphasizes judging directions from abstract positions, such as another agent’s
viewpoint or a map. The answers often differ from what is directly observed, requiring one to adopt
the target’s perspective—engaging in perspective-taking. It is crucial not only for large-scale path
planning but also for understanding an object’s intrinsic orientation.

Order This task requires observing the arrangement of objects from a specified viewpoint—for
example, the seating order of students in the front row as seen by a teacher on the podium, which
is exactly reversed from what a camera at the back of the classroom would capture. Only by
understanding “what the target sees” can one make accurate predictions or judgments about the scene.

Distance Differences in the observer’s position and orientation lead to variations in perceived size
and distance. For example, in the same scene, a photographer taking pictures of the same object
from different camera angles will capture different impressions of its size and distance. Changing the
camera position essentially means changing the perspective. This ability is vital for coordination and
environmental assessment in human-robot interaction or multi-robot collaborative tasks.

A.4.3 HYPOTHETICAL PERSPECTIVE TAKING

This category focuses on imagining the scene from a specified but non-existent viewpoint, requiring
the model to mentally adopt a fictional position—an advanced form of perspective-taking in spatial
reasoning.

Count Predicting how many target objects would be visible from a hypothetical viewpoint—for
example, a person standing at the opposite corner of the street may see a different distribution of
objects. The model must reason about occlusion, orientation, and visibility from the imagined
perspective.

Size Inferring the apparent size of objects from a hypothetical location and direction. For instance,
the same object may appear larger when viewed up close or smaller when viewed from above. The
model needs to simulate how visual scale changes with altered viewpoints.

Direction Reasoning about how an object’s direction appears from a location where no observer
is present. For example, a pedestrian walking toward a doorway would appear “head-on” from the
entrance, but present a different direction from a side view.

Order Simulating the arrangement of objects from another location helps assess how spatial
sequences change across viewpoints. For example, the seating order seen from the podium may be
the reverse of what’s seen from the back of the room.

Distance Estimating relative distances between objects from a hypothetical position requires mentally
adopting a new viewpoint. This supports effective planning and coordination in tasks such as multi-
robot navigation or collaborative manipulation.

B ADDITIONAL RELATED WORKS

B.1 SPATIAL VISION-LANGUAGE MODELS

Spatial vision-language models integrate computer vision (He et al., 2022; Oquab et al., 2024; Radford
et al., 2021) and natural language processing (Bai et al., 2023; Wang et al., 2024¢; Brown et al., 2020;
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Anil et al., 2023; Touvron et al., 2023a;b; Zhang et al., 2024b) to enhance machine understanding of
spatial relationships. Recent research (Qi et al., 2024; Chen et al., 2024; Cheng et al., 2024; Cai et al.,
2024; Song et al., 2024; Yuan et al., 2024; Qi et al., 2025) has increasingly focused on extending
vision-language models to support spatial reasoning in dynamic and 3D environments. One of the
pioneering works in this domain, Spatial VLM (Chen et al., 2024), has significantly advanced spatial
reasoning by constructing an RGB-D based visual question-answering dataset. These models (Hurst
et al., 2024;7; Reid et al., 2024; Wang et al., 2024c) effectively process multimodal data containing
spatial information, serving as a bridge between visual perception and linguistic reasoning.

Further advancements (Liu et al., 2024b;a; Ramakrishnan et al., 2024; Tang et al., 2024; Yang et al.,
2023; Rozanova et al., 2021; Wu et al., 2024; Stogiannidis et al., 2025) include SpatialRGPT (Cheng
et al., 2024), which extends RGB-D spatial understanding by incorporating 3D scene graphs and
spatial data to improve inference capabilities. Similarly, SpatialBot (Cai et al., 2024) explores
hierarchical deep reasoning mechanisms to handle depth and spatial structures in complex environ-
ments. Recently, SoFar (Qi et al., 2025) proposed semantic orientation and trained an open-world
orientation model to enhance the orientation understanding of VLMs, significantly improving spatial
understanding and robotic operation capabilities (Cho et al., 2024; Driess et al., 2023; Mu et al.,
2023; Zitkovich et al., 2023; Wake et al., 2024; Huang et al., 2024b; Nasiriany et al., 2024; Duan
et al., 2024; Huang et al., 2024a; Qi et al., 2025; He et al., 2025a; Zhang et al., 2025b). However,
existing research remains limited in addressing the full complexity and comprehensiveness of spatial
reasoning tasks. To bridge this gap, our study aims to develop a more comprehensive benchmark that
rigorously evaluates spatial reasoning capabilities.

B.2 SPATIAL REASONING IN PSYCHOLOGY

In psychology, spatial reasoning refers to an individual’s ability to acquire, organize, utilize, and
adapt spatial knowledge, recognized as one of the nine primary reasonings (Gardner, 2011). To
systematically characterize this ability, Buckley et al. (2018)proposed a factor analysis-based frame-
work, distinguishing between spatial visualization, spatial relations (such as mental rotation), and
spatial orientation. Malanchini et al. (2020) further identified a strong correlation between spatial
orientation and object manipulation skills. Additionally, Newcombe & Shipley (2014 )introduced a
classification system for spatial thinking, dividing spatial reasoning into two dimensions: intrinsic-
extrinsic and static-dynamic. Furthermore, many studies also have contributed to the development
of frameworks (Wai et al., 2009; Lee & Bednarz, 2012; Malanchini et al., 2020; Hegarty, 2010;
McGarvey et al., 2018) and evaluation methods (Eliot & Smith, 1983; Uttal et al., 2024; 2013;
Hegarty & Waller, 2005) for spatial reasoning. Their framework highlights the distinction between
object-centric spatial properties and external reference frames, offering valuable insights for applica-
tions such as navigation and path planning. These psychological frameworks provide complementary
perspectives for understanding and assessing spatial reasoning, offering theoretical foundations for
embodied intelligent systems. Inspired by these classifications, our study proposes a novel taxonomy
for visual-spatial reasoning, aiming to advance spatial reasoning research in vision-language models.

C ADDITIONAL ABLATION STUDIES

C.1 EVALUATION AND FORMAT STRATEGY

The choice of evaluation format and answer-extraction strategy can materially influence how fully
a large language model’s capabilities are expressed. Because our benchmark introduces a novel
visual-spatial reasoning task, Table 7 reports the performance impact of different prompting and
evaluation schemes. We consider three prompting paradigms—Direct QA, Zero-shot CoT, and
Manual CoT—and three evaluation methods: (i) regex-based field extraction (RE), in which the VLM
is instructed to place its answer in a fixed slot at the end of the response; (ii) JSON extraction, where
the answer must appear in a dedicated answer field; and (iii) LLM-based free-form evaluation, for
which we employ GPT-4.1-mini as an adjudicator.

We observe that reasoning-centric models that strongly obey formatting directives (e.g., Gemini-2.5-
flash) cannot be reliably scored with regex extraction, because their compulsory chain-of-thought
interferes with the required output template. For standard models, all three evaluation strategies
yield comparable scores, and both CoT variants consistently outperform the Direct QA baseline by
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Table 7: Comparative analysis of various prompting and evaluation strategies.

Dynamic Reasoning  Spatial Interaction Complex Logic Perspective Taking

Promopt Type Eval Type Avg. Motion Traffic Geospatial ~ Pattern  Geometric Ego  Allo

Manipul L L . . .
anipulate ocate Strategy Recognition Reasoning Centric Centric

Analysis Analysis Hypothetical

GPT-4.1-mini - - - - - - - - - - - -
None Direct 39.22 57.57 36.18  58.12 4495 53.45 12.58 18.58  62.94 37.61 37.83
None RE  48.86 64.05 5855 57.65 59.43 5691 28.87 3406 68.82 37.18 41.20
Zero-shot CoT RE  49.81 6297 5896  59.06 62.48 58.55 27.63 3252 69.41 40.11 40.96
Manual CoT RE  49.76  65.68 5890 5859 6438 5691 28.45 32.13  69.61 39.31 41.20
None JSON 4823 61.08 55.55 5741 5886 54.00 28.89 29.16  70.20 40.96 40.48
Zero-shot CoT  JSON 48.70  58.67 57.17 57.88 57.71 55.09 28.89 2929  69.02 40.16 42.89
Manual CoT  JSON 48.87 64.32 56.53 59.06 60.19 56.36 29.28 30.19 7255 39.57 39.28
None LLM 48.02 60.54 56.82 5859 58.10 57.45 28.04 3290 6824 3755 38.31
Zero-shot CoT LLM 4836 64.05 56.71 5859 5886 57.27 27.84 3329  67.06 38.30 38.80
Manual CoT LLM 4985 62.97 59.48  58.12 61.33 58.36 28.04 31.61  69.02 41.12 39.28

Gemini-2.5-flash - -
None LLM 5147 66.22 6590 6353 7143 66.36 32.99 34.84 70.59 3191 38.55

Zero-shot CoT LLM 51.53 63.51 61.27 5882 67.62 6545 42.27 34.84 7941 3590 32.53
Manual CoT LLM 52.12 67.57 62.72 6824 73.33 6091 38.14 34.19 7549 3590 33.73

Qwen-VL2.5-3B - - - - - -
None Direct 44.04 60.27 5220 4753 5048 5273 22.68 3032 6549 36.49 30.84

None RE 4145 58.65 43.06 39.53 50.67 48.73 32.78 22.58 6196 37.66 37.35
Zero-shot CoT RE 4064 59.73 4387  46.12 4838 4327 25.36 22.84 59.61 36.54 37.59
Manual CoT RE  40.07 55.68 46.65 4729 40.57  46.00 28.04 2439 6039 33.35 31.57
None JSON 38.08 6297 3249 4659 4895 47.64 24.54 23.61 62.16 35.85 27.47
Zero-shot CoT  JSON  39.20  61.35 40.40 4894 4552 4727 22.27 24.00 6529 33.51 27.71
Manual CoT  JSON 3837 58.11 3428 4235 46.29 48.55 27.63 24.65 6275 36.54 26.75
None LLM 4210 66.22 4399 4400 51.24 50.73 27.84 2542 70.00 35.90 29.40
Zero-shot CoT LLM 3589  54.59 36.24 4941 40.19 40.18 24.95 20.13  61.37 29.20 33.98
Manual CoT LLM 36.26 53.78 34.10 5035 42.10 44.00 23.51 26.06 6039 31.38 23.86

a small margin. Accordingly, in the main results table, we evaluate non-reasoning models with the
Manual CoT + RE setting, whereas reasoning-oriented models are assessed with Manual CoT + LLM
evaluation.

C.2 EVALUATION ON THE FULL OMNISPATIAL BENCHMARK

To complement the main experiments, we further conduct evaluation on the entire 8.4K OmniSpatial
test set without applying the train/test split. This setting measures model performance on all available
annotated questions, thereby reducing variance due to subset sampling and providing a more holistic
view of spatial reasoning ability. Table 8 reports the results across all twelve fine-grained tracks.

Overall, the relative ranking of models remains stable compared to the smaller-scale splits discussed
in the main text. Gemini-2.5-Pro achieves the highest average score of 55.05, securing Rank 1 among
all compared systems. ChatGPT o3 follows closely with 54.52, while Gemini-2.5-Flash achieves
51.80. Other proprietary systems, such as GPT-4.1 and GPT-4o, also maintain consistent performance.
On the open-source side, Qwen-VL-2.5-32B achieves the strongest result with 43.97, outperforming
other Qwen variants and aligning with the trends observed in the evaluations.

A closer per-track analysis highlights complementary strengths across models. ChatGPT 03 excels at
Manipulate, Traffic Analysis, and also leads in Pattern Recognition, Ego-Centric, and Hypothetical
reasoning. In contrast, Gemini-2.5-Pro dominates Locate, Geospatial Strategy, Geometric Reasoning,
and Allo-Centric perspective taking. Gemini-2.5-Flash yields the highest accuracy on Motion Analysis.
These complementary strengths suggest that different architectures capture distinct aspects of spatial
reasoning, and point towards potential benefits of ensembling or multi-expert distillation.

C.3 DETAILS OF HUMAN BASELINE & INTER-ANNOTATOR AGREEMENT

To establish an upper bound of performance, we conducted a human evaluation on the OmniSpatial
benchmark. Six human annotators (graduate students with backgrounds in vision and robotics) were
recruited. Each participant was presented with a randomized subset of questions covering all four
tracks and a balanced selection of fine-grained tasks. The interface was blinded: multiple-choice
options were randomized and no additional context was provided. Annotators were instructed to
answer independently without external resources.
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Table 8: Evaluation on the full OmniSpatial benchmark. Dark green marks the best Avg.
accuracy and light green marks the second-best Avg. accuracy in all the models.

Dynamic Reasoning  Spatial Interaction Complex Logic Perspective Taking
Method  Avg. Rank Manipulate Motion Traffic Locate Geospatial ~ Pattern ~ Geometric Ego  Allo Hypothetical
p Analysis Analysis Strategy Recognition Reasoning Centric Centric yp
Proprietary Models
GPT-40 4447 5 60.00 5797 6238 5524 59.09 29.90 31.01 42.06 24.34 28.05
GPT-4.1 4875 4 61.18 66.67  66.60 69.52 60.91 30.93 35.58 47.06 27.26 33.06
03-04-16 54.52 2 71.05 63.64 70.61 69.05 61.70 42.55 47.15 5335 30.98 46.28
Gemini-2.0-Flash 42.41 7 56.47 56.76 5595 63.81 57.27 15.46 30.04 4320 24.56 28.05
Gemini-2.5-Flash 51.80 3 54.84 7043 6533 66.00 68.75 39.53 39.46 5270 33.49 36.84
Gemini-2.5-Pro 55.05 1 66.67 68.34 69.10 78.85 71.15 36.17 50.17 50.65 39.57 37.89
Open-source Models
Qwen-VL-2.5-3B 39.76 8 57.65 4734  49.07 49.52 58.18 29.90 2697 40.62 30.47 29.88

Qwen-VL-2.5-32B 4397 6 58.82 5242 5297 6857 51.82 27.84 29.51 5170 26.82 35.98

Each item was labeled by three different annotators, and the final answer was obtained via majority
vote. To quantify annotation reliability, we report inter-annotator agreement (IAA) using Krippen-
dorff’s o for multi-annotator agreement. Table 9 summarizes the results across tracks. We also report
95% confidence intervals (bootstrap over questions) for human accuracy.

Table 9: Human baseline accuracy and inter-annotator agreement (IAA) across tracks.

Track Accuracy (%) Krippendorff’s o
Dynamic Reasoning 952 +13 0.92
Spatial Interaction 935+ 1.6 0.85
Complex Logic 87955 0.76
Perspective Taking 944 +£22 0.80
Overall 92.6 + 2.5 0.84

These results indicate that human annotators achieve ~89% average accuracy, with substantial
agreement across annotators (k/a =~ 0.84). Even the most abstract and complex forms of spatial
reasoning achieve a consistency score of 0.76. This provides a reliable estimate of the human upper
bound and confirms the internal consistency of the benchmark.

D SYSTEM PROMPTS

We present all the system prompts used in our experiments in Figs. 13 and 14 to facilitate repro-
ducibility. We observe that some models are sensitive to the choice of system prompt, which may
stem from distributional biases in their training data. In contrast, inference-oriented models generally
exhibit stronger generalization capabilities and are less reliant on carefully crafted prompts. We
conduct extensive experiments and iterative tuning on the system prompts, with the ultimate goal
of objectively and faithfully evaluating each model’s actual capability without being confounded by
prompt-induced bias.

E ADDITIONAL VISUALIZATION

We present more examples of question-answer pairs from the OmniSpatial, with perspective taking,
spatial interaction, dynamic reasoning, and complex logic, shown in Figs. 15 to 18, respectively.
Our benchmark comprises a rich collection of data samples spanning diverse scenarios, resolutions,
lighting conditions, and geographical regions. It includes both absolute numerical analyses and
relative spatial relationships, aiming to comprehensively evaluate the spatial reasoning capabilities of
vision-language models. To the best of our knowledge, our spatial intelligence benchmark is the most
diverse and comprehensive to date, and is entirely human-annotated, enabling a faithful evaluation of
models’ visual-spatial reasoning capabilities without the confounding effects of templated patterns.
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F ADDITIONAL EXPERIMENTS
F.1 THE SYNERGY OF POINTGRAPH AND SPATIALCOT

Table 10: Performance of Spatial CoT on OmniSpatial Perspective-Taking track.

Ego Allo .
Method Avg. Improve Centric  Centric Hypothetical

GPT-4.1-mini - - = - -

(w/ Zero-shot CoT) 45.56 - 69.41 40.11 40.96

(w/ Spatial CoT) 47.58 +2.02 69.43 42.37 44.34

(w/ Spatial CoT & PointGraph) 48.70 +3.14 71.09 42.52 44.77
Qwen-VL2.5-3B - - - - -

(w/ Zero-shot CoT) 40.89 - 59.61 36.54 37.59

(w/ Spatial CoT) 42.90 +2.01 60.80 39.25 37.44

(w/ Spatial CoT & PointGraph) 43.75 +2.86 62.79 38.64 37.74

In this section, we investigate the synergy between our two plug-and-play components, SpatialCoT
and PointGraph. As shown in Table 10, across both GPT-4.1-mini and Qwen-VL2.5-3B, augmenting
SpatialCoT with PointGraph yields an additional gain of roughly 1 percentage point in overall
performance.

F.2 FAILURE CASE ANALYSIS

Figure 8 illustrates a Spatial Interaction task instance from OmniSpatial, together with failure cases of
two state-of-the-art commercial models, Gemini-2.5-Pro and ChatGPT-03. We observe that, despite
their strong capabilities, these models still struggle to reason over complex 3D scenes and to perform
orientation and path analysis under imagined egocentric poses. In this example, the model must
first imagine itself standing in front of the washing machine and then plan a path in the 3D scene
graph accordingly. We hypothesize that, if the model could generate intermediate visualizations of its
planned route (e.g., hand-drawn trajectories) as a form of chain-of-thought (CoT), mimicking human
problem-solving, it would be more effective at handling such challenging cases.

Q: If you are facing the washing
machine, how should you walk to the
stove and face the stove?

A: Turn around, turn right, turn left, turn left
B: Turn around, turn right, turn right, turn left
C: Turn around, turn left, turn left, turn left
D: Turn around, turn left, turn right, turn left

Gemini-2.5-pro: B

03-2025-04-16: (Thought for 6m 46s)

Answer C is the only set of directions
that lines up with the flat’s layout.

Ground Truth: D

Figure 8: Qualitative example for Failure Studies.

In Fig. 9, we present a representative Perspective-Taking instance from OmniSpatial. We observe
that even these top-performing models struggle with frame-of-reference confusion, counterfactual
viewpoints and the associated spatial relations. In this example, the model must imagine itself facing
the vase and then infer the relative positions of objects under this imagined viewpoint. Because current
models find it difficult to construct and manipulate such fictitious perspectives, we propose using
novel-view synthesis as a plug-and-play SpatialCoT module to enhance their Perspective-Taking
ability. In future work, more tightly integrating this capability into the VLM’s internal thinking
process may further strengthen the model’s spatial understanding.
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Q: If the waiter is on the side of the
vase, then who is on his left?

Gemini-2.5-pro: If the waiter is on the
vase side facing the table, Jack is on
his left.

03-2025-04-16: (Thought for Im 8s)
Jack is on the waiter’s left.

Ground Truth: Rose

Figure 9: Qualitative example for Failure Studies.

In Fig. 10, we present an example spatio-temporal dynamics reasoning task from OmniSpatial. We
observe that even state-of-the-art commercial models struggle to understand long-horizon sequences
involving multiple continuous actions. We hypothesize that performance on such long-term temporal
understanding tasks can be improved by augmenting the model’s memory, for example by enriching
its temporal and episodic representations of time—space relations.

Q: What steps does this manipulation contain?
A: "Pick up the milk, pour it into the right hand cup,
put it down, pick up the milk, and put the milk on the
left hand table",

B: "Take the milk, pour it into the cup on the left

side, put the milk down, pick up the milk, and put the
milk on the right side table",

Gemini-2.5-pro: The final answer is B.

03-2025-04-16: (Thought for 4m 9s)
Option B is the sequence shown.

Ground Truth: C

Figure 10: Qualitative example for Failure Studies.

In Figure 11, we present an example of a Complex-Logic task from OmniSpatial. In this problem,
the model must understand the folding relationships in a paper-cutting process, which is highly
challenging even for humans. We observe that the reasoning model produces a detailed chain
of analysis, including examining how each folded corner affects the boundary and attempting to
reason using structured text. However, we argue that such complex logical reasoning is better
addressed with a vision-grounded chain-of-thought (CoT), i.e., a unified generative—perceptual model
whose generative capability is used to predict the intermediate folded states step by step, gradually
approaching the final correct prediction.

In addition, we further conduct a quantitative analysis of how depth and object orientation affect the
model’s accuracy. We collect all real-image samples from the viewpoint conversion task and analyze
them using Gemini-Flash-2.5 Reid et al. (2024). Object depth is estimated with Metric3D v2 Yin et al.
(2023) and discretized into several ranges, while object orientation is evaluated with SoFar Qi et al.
(2025) and grouped by angle. As shown in Fig. 12, we observe that the model’s accuracy slightly
decreases as the distance between the object and the camera increases. Regarding orientation, the
model handles oblique views better, whereas its understanding of rear-view objects is somewhat
weaker.
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Gemini-2.5-pro: The final answer is A.

P
03-2025-04-16: (Thought for Im 8s) ’ ‘ G 4/
Has a single

Option HGSA;:T:;::,)I edge central rﬁ’;;":xzuér’? Result (r/ é/ |
i diamond? 'ssing cuts< =7 .

Bottom notch is taller Edge notches

A v a : X o
than the others not all identical Foldin H
Vv All four notches match No extra or g CUttlng
B v -
the template missing features

v but rotated 90 ° (cuts Orientation

€] no longer match the v wron X
template’s orientation) 9
v edge notches, but adds|
q Extra cut
D an extra triangular cut v + X
that never existed presen
A B © D

Only B satisfies all requirements.

Ground Truth: C

Figure 11: Qualitative example for Failure Studies.
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Figure 12: Quantitative example for Failure Studies.
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F.3 MAIN RESULT WITH STANDARD DEVIATION

In Table 11, we additionally report results with standard deviations. Due to space limitations, we
only present the means and standard deviations of the four coarse-grained categories, keeping the
configuration consistent with the main table in the paper. We observe that the reasoning models
exhibit larger variability across the five runs, whereas the smaller-parameter open-source models
produce more consistent results.

F.4 SPATIALCOT ON OTHER TRACK

Besides the perspective-taking tasks, SpatialCoT also improves performance on many problems that
require viewpoint transformation. We further evaluate SpatialCoT on the Complex-Logic track; as
shown in Table 12, SpatialCoT consistently achieves better performance than Manual CoT.

G LIMITATION & FUTURE WORKS

Although OmniSpatial includes some image clips with dynamic information from HOI4D (Liu
et al., 2022), the complexity of the operational tasks still lags behind that of long videos (Yang
et al., 2024; Chandrasegaran et al., 2024). Moreover, while PointGraph & Spatial CoT enhances
VLM’s spatial understanding through point cues, the improvement is not fundamental in nature.
Spatial reasoning tasks are more like mathematics and coding tasks, require longer and more complex
reasoning (DeepSeek-Al et al., 2025; Jaech et al., 2024).

3D information is crucial for spatial reasoning, and future work involves introducing 3D representa-
tion (Dong et al., 2023; Qi et al., 2023a; 2024; 2023b) and perception (Qi et al., 2017a;b; Zhang et al.,
2024a; Fan et al., 2024), as well as 3D VLMs (Peng et al., 2024; Dong et al., 2024; Guo et al., 2023;
Qi et al., 2024; 2025), reasoning model (Zhang et al., 2025a; DeepSeek-Al et al., 2025; OpenAl,
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Table 11: Evaluation on OmniSpatial-test. All models were tested 5 times and averaged to reduce
randomness. We report accuracy on four coarse-grained categories: Dynamic Reasoning, Spatial
Interaction, Complex Logic, and Perspective Taking. Each coarse category is the arithmetic mean of
its corresponding fine-grained sub-tasks.

Method Avg. Rank Dynamic Reasoning Spatial Interaction Complex Logic Perspective Taking

Proprietary Models
GPT-40-mini-2024-07-18 (Hurst et al., 2024) 42.64 09 8 53.12 £ 1.1 47.64 + 14 2595+ 04 4418 + 1.6
GPT-40-2024-11-20 (Hurst et al., 2024) 47.81 +£1.0 5 61.39 £ 1.3 5431+ 1.6 25.88£0.5 51.74 £ 1.8
GPT-4.1-nano-2025-04-14 (OpenAl, 2025a) 42.62+0.8 9 5238 £ 1.0 46.09 + 1.2 2725+04 4152+ 1.4
GPT-4.1-mini-2025-04-14 (OpenAl, 2025a) 48.87+1.0 4 6042 £ 1.2 5854 £ 1.5 29.73 £0.5 5047 £ 1.9
GPT-4.1-2025-04-14 (OpenAl, 2025a) 51.78 = 1.1 2 6548 + 1.4 61.84 £ 1.7 3091 £ 0.6 50.22 £ 1.7
Claude-3-5-sonnet-20241022 (Anthropic, 2024) 46.86 =09 6 5431+ 1.1 59.86 £ 1.3 29.17+0.4 48.10+ 1.5
Claude-3-7-sonnet-20250219 (Anthropic, 2024) 4753 +09 5 56.76 £ 1.2 5987+ 1.4 28.94 £0.5 48.28 + 1.6
Gemini-2.0-flash-lite-02-05 (Anil et al., 2023) 44.03 £0.8 8 5295+ 1.0 5434 +12 26.44 +£0.4 4736+ 14
Gemini-2.0-flash-exp (Anil et al., 2023) 4840 +1.0 2 5895+ 1.3 58.09 + 1.6 2732 £0.5 5041 £ 1.8
Gemini-2.5-flash-preview-05-20 (Anil et al., 2023) 52,12+ 1.1 1 65.14+ 1.5 67.49 + 1.7 36.16 = 0.6 4837+ 19
Reasoning Models
01-2024-12-17 (Jaech et al., 2024) 50.36 + 1.1 6 66.30 £ 1.1 60.49 + 1.3 3314+ 1.3 48.58 + 1.7
04-mini-2025-04-16 (OpenAl, 2025b) 52.77+12 3 66.40 £ 1.3 65.05 £ 1.5 3540 £ 1.5 5173+ 1.9
03-2025-04-16 (OpenAl, 2025b) 5633+ 1.3 1 69.03 + 1.4 65.07 + 1.6 3495+ 1.7 57.88 + 2.0
Claude-3-7-sonnet-20250219-thinking (Anthropic, 2024) 48.62+1.0 7 58.47 £ 1.0 59.65 + 1.2 2920 £ 1.1 47.84 + 1.5
Gemini-2.5-flash-05-20-thinking (Anil et al., 2023) 53.16 £ 1.2 3 6750+ 1.2 6391+ 1.4 3559 + 1.4 49.20 + 1.8
Gemini-2.5-pro-preview-05-06 (Anil et al., 2023) 55.19+ 1.4 2 6948 + 1.5 67.38 + 1.7 39.07 + 1.8 49.96 + 2.0
Open-source Models
LLavA-1.5-vicuna-7B (Liu et al., 2024c) 3497 £0.7 15 42.84 +£0.9 35.14 £ 1.1 26.59 £ 04 4213+ 13
LLaVA-onevision-qwen2-7B (Li et al., 2024a) 35.68 £0.7 14 40.70 £ 0.8 3476 £ 1.0 2573 £0.3 40.19+ 1.2
LLaVA-onevision-qwen2-72B (Li et al., 2024a) 4566 =09 6 5622 £ 1.1 57.14£13 2424 £0.5 49.14 + 1.6
Gemma-3-4B (Kamath et al., 2025) 39.79 +0.8 11 45.80+0.9 40.15+1.2 2412 +04 4484+ 14
Gemma-3-12B (Kamath et al., 2025) 43.71 0.8 8 5448 £ 1.0 49.06 + 1.3 2341 +04 4472+ 1.5
Gemma-3-27B (Kamath et al., 2025) 44.75+09 7 56.27 £ 1.1 53.62+ 1.4 28.44 £0.5 43.58 + 1.6
InternVL3-2B (Zhu et al., 2025) 3798 0.7 13 4529 +0.8 4128 + 1.1 25.19£0.3 4120+ 1.3
InternVL3-8B (Zhu et al., 2025) 41.60 0.8 9 46.65 + 0.9 4825+ 1.2 26.79 £ 0.4 4793+ 14
InternVL3-14B (Zhu et al., 2025) 4594 £0.8 5 5725+ 1.0 5120+ 1.3 28.15+0.4 4596 + 1.5
InternVL3-38B (Zhu et al., 2025) 4848 £1.0 2 63.50 + 1.2 5448 £ 1.4 2921 £0.5 4747+ 1.7
InternVL3-78B (Zhu et al., 2025) 4933 +1.0 1 6345+ 1.3 55.64 £ 1.5 2891 £0.5 49.62 + 1.8
Qwen-VL2.5-3B (Wang et al., 2024c) 4030 £0.8 10 51.46 £ 1.0 4438 + 1.2 28.02 +£ 0.4 41.18 + 14
Qwen-VL2.5-7B (Wang et al., 2024¢c) 39.18 0.9 12 46.73 + 1.0 4648 + 1.3 30.27 + 0.6 4502+ 1.5
Qwen-VL2.5-32B (Wang et al., 2024c) 4736+ 1.0 4 59.08 £ 1.2 5832+ 1.5 2694 +0.5 48.59 + 1.7
Qwen-VL2.5-72B (Wang et al., 2024c) 47.85+09 3 5925+ 1.2 5452+ 1.4 29.61 £0.5 48.19 + 1.6
Specialized Spatial R ing Models
SpaceMantis-13B (Chen et al., 2024) 36.36 0.7 6 41.81 +£0.9 36.30 £ 1.1 2333 +£04 4225+1.3
SpaceQwen2.5-VL-3B (Chen et al., 2024) 40.25+0.9 3 49.00 + 1.0 41.01 +1.2 27.85+0.5 4744 + 1.6
SpaceThinker-Qwen2.5VL-3B (Chen et al., 2024) 40.42+09 2 50.45 £ 1.1 39.15+£1.3 26.16 £ 0.5 4141+ 1.4
SpatialBot-3B (Cai et al., 2024) 35.68 £0.7 6 40.70 £ 0.8 3476 + 1.0 2573 £0.3 40.19+ 1.2
RoboPoint-vicuna-v1.5-7B-lora (Yuan et al., 2024) 3585 +0.7 6 42.82+09 3757+ 1.1 26.30 £ 0.4 4329+ 13
RoboPoint-vicuna-v1.5-13B (Yuan et al., 2024) 34.60 £0.7 5 4191 +0.9 3585+ 1.1 2593 +£04 40.06 +£ 1.3
SoFar-Qwen2.5VL-3B (Qi et al., 2025) 45.14 £1.0 1 53.83+12 5333+ 14 27.31 £0.6 49.95 + 1.7
Human Evaluation
Human 92.63 +25 - 9524 £ 1.3 9348 £ 1.6 87.86 £5.5 94.36 =22

Table 12: Performance of Spatial CoT on Complex-Logic track.

Pattern Geometric

Method  Avg.  Improve Recognition  Reasoning

GPT-2.5-Flash-Thinking - - -
(w/ Manual CoT) 35.59 - 35.05 36.13

(w/ Spatial CoT) 37.19 +1.60 35.30 38.28
Qwen-VL2.5-3B - - - -

(w/ Manual CoT) 28.02 - 32.16 23.87
(w/ Spatial CoT) 29.27 +1.25 29.01 28.52

2025b) and knowledge distillation (Zhang et al., 2023; Hinton et al., 2015; Dong et al., 2023; Qi et al.,
2023a). The ultimate goal of spatial reasoning is to empower robots, and future work also involves
robot execution tasks (Huang et al., 2024a; Fang et al., 2024a; Qi et al., 2025; Huang et al., 2024b;
He et al., 2025b).

H BROADER IMPACTS

OmniSpatial promises several positive societal benefits. By pushing models to reason about motion,
collision risk and traffic scenes, it can hasten the arrival of safer autonomous vehicles and service
robots that foresee hazards and navigate crowded spaces responsibly. Its geometric-reasoning
tasks—from polyhedron unfolding to assembly—offer data that can streamline product design,
packaging and manufacturing, lowering material use and energy waste. The benchmark’s localization,
Ul-interaction and perspective-taking challenges cultivate spatially aware assistants that improve
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1674

1675
1676 [Default System Prompt]
1677 You are a spatial-reasoning assistant.
1678 .
S
1680 You will receive
1681 1. **Image** - a single RGB frame depicting a scene.
1682 2. ¥*Question** - a natural-language query about spatial relationships between objects in the image.
1683 3. **QOptions** - >2 answer candidates, each tagged by a capital letter (A, B, C, D...).
1684 Based on the image and question, provide your answer.
1685 Always ground your answer in the visual evidence; do not hallucinate unseen objects.
1686 If uncertain, pick the most plausible option—never refuse or reply “insufficient information.”
1687
1688
. [Zero-shot CoT System Prompt]
1690 You are a spatial-reasoning assistant.
et Task
1692
1693 You will receive
1694 1. **Image** - a single RGB frame depicting a scene.
1695 2. ¥*Question** - a natural-language query about spatial relationships between objects in the image.
1696 3. ¥**QOptions** - >2 answer candidates, each tagged by a capital letter (A, B, C, D...).
1697 Think step by step and provide the answer.
1698 Always ground your answer in the visual evidence; do not hallucinate unseen objects.
1699 If uncertain, pick the most plausible option—never refuse or reply “insufficient information.”
1700
1701 [Manual CoT System Prompt]
1702
1703 You are a spatial-reasoning assistant.
1704 Task
1705 -
1706 You will receive
1. **Image** - a single RGB frame depicting a scene.
1707 , . ) . . . .
2. **Question** - a natural-language query about spatial relationships between objects in the image.
1708 3. ¥*Options** - 22 answer candidates, each tagged by a capital letter (A, B, C, D...).
1709
1710 Guidelines
1711 T . )
Please follow these steps to analyze the image and answer the question:
1712 1. First, carefully observe the image and identify all relevant objects and their spatial relationships.
1713 2. Next, break down the question into key components that need to be addressed.
1714 3. Think through the spatial reasoning step-by-step to arrive at your answer. It may be necessary to transfer
1715 perspective to better understand the scene.
1716 4. Finally, select the most appropriate option (A, B, C, or D) based on your analysis.
1717 Always ground your answer in the visual evidence; do not hallucinate unseen objects.
1718 If uncertain, pick the most plausible option—never refuse or reply “insufficient information.”
1719
1720
1721 Figure 13: System prompts used in OmniSpatial evaluation.
1722
1723
1724
1725

AR/VR experiences, access tools for visually impaired users and more natural human-computer

1726 interfaces.
1727
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1728

1729
1730
1731
1732 [Blind Evaluation System Prompt]
1733 You are a spatial-reasoning assistant.
1734 Task
1735 You will receive
1736 1. **Question** - a natural-language query about spatial relationships.
2. ¥**QOptions** - >2 answer candidates, each tagged by a capital letter (A, B, C, D...).
1737 Based on the question only, provide your answer.
1738
1739 [LLM Judgement System Prompt]
1740
1741 You are a judge for QA tests.
1742 The user will provide:
1743 Question: The original question.
1744 Pred: The predicted answer.
1745 GT: The ground truth answer.
1746 You need to judge whether the predicted answer is correct or not; just judge the final answer.
1747 If the predicted answer is correct, respond with "True".
1748 If the predicted answer is incorrect, respond with "False".
1749
1750 [Direct System Prompt]
1751 You are a spatial-reasoning assistant.
1752
1753 Task
1754 =
1755 You will receive
1. **Image** - a single RGB frame depicting a scene.
1756 2. **Question** - a natural-language query about spatial relationships between objects in the image.
1757 3. ¥*Options** - >2 answer candidates, each tagged by a capital letter (A, B, C, D...).
1758
1759 Note: You only need to respond with A, B, C, or D without providing any additional information.
1760
1761 [RE Format]
1762 End your answer with a separate line formatted exactly as:
1763
Answer: X
1764 where X € {A, B, C, D}.
1765
1766 [JSON Format]
1767 You need to respond with the answer in JSON format:
1768
1769 ;\js"“
1770 "analysis": "The analysis of the image and question",
1771 "answer": "A"
1772 b
1773
1774 [LLM Format]
1775 Your answer must be clear and accurate.
1776
e Figure 14: System prompts used in OmniSpatial evaluation.
1778
1779
1780
1781
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[Subtask Type: Motion Analysis]
[Task Type: Dynamic Reasoning]

[Question]: If one of the three women in kimono walked toward the
traffic light at 1 m/s, how long would it take her to reach it?

[A]: "13s"
[B]: "1.9s"

[C]: "12.7s"
[D]: "26.5s"

[Answer]: D

[Subtask Type: Manipulation]

[Task Type: Dynamic Reasoning] TN
e
[Question]: If it takes you 3 seconds to fully open the drawer,

what is your average drawer opening speed?

[A]: "4.33inches/s"
[B]: "9.4inches/s" 49.65inches
[C]: "16.3inches/s"
[D]: "25.7inches/s "

L

[Answer]: A

[Subtask Type: Spatial Compatibility]

[Task Type: Dynamic Reasoning]

[Question]: Is the gap between the construction vehicle and the
cement container at least 0.6 meters wide, enough for a person to

pass through?

[A]: "Yes"
[B]: "No"

[Answer]: A

[Subtask Type: Allocentiric]

[Task Type: Perspective Taking]
[Question]: Which direction are they facing, from their own

perspective?

[A]: "their left"
[B]: "their right"
[C]: "forward"
[D]: "backward"

[Answer]: B

Figure 15: Visualization example of OmniSpatial data samples.
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[Subtask Type: Hypothetical]

[Task Type: Perspective Taking]

[Question]: If you are riding on the tricycle, which direction is the
white electric car from your perspective?

[A]: "left"
[B]: "right"
[C]: "forward"

[D]: "backward"

[Answer]: B

[Subtask Type: Egocentric]
[Task Type: Perspective Taking]

[Question]: How many dancers have their left foot in front?

[A]: "0"
[B]: "10"

[Answer]: A

[Subtask Type: Traffic Analysis]

[Task Type: Spatial Interaction]

[Question]: I am driving on the highway. The safety distance is
sufficient.

[A]: "Yes"
[B]: "No"

[Answer]: B

[Subtask Type: Traffic Analysis]

[Task Type: Spatial Interaction]

[Question]: While driving forward, what potential danger should you
be aware of?

[A]: "0"
[BJ: "1"
[C): 2"
[D]: "3"

[Answer]: A

Figure 16: Visualization example of OmniSpatial data samples.
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[Subtask Type: Localization]

il = 100% .

[Task Type: Spatial Interaction] 10:20

Dienstag, 10.122023
[Question]: In case of an emergency, like a fall, what should you
press on this interface? A
[A]: "Click the first button from the left" @ Kalendey
[B]: "Click the second button from the left" ~ s

[C]: "Click the third button from the left" Uberwachung SOs
[D]: "Can not determine"

[Answer]|: B

[Subtask Type: Localization]
[Task Type: Spatial Interaction]

[Question]: Where are the colored sweet peppers located on the shelf?

[A]: "Count the fourth line from the top and the first one from the right"
[B]: "Count the first line from the top and the second one from the right"
[C]: "Count the second line from the top and the third one from the right"
[D]: "Count the third line from the top and the fourth one from the right"

[Answer]: D

[Subtask Type: Geospatial Strategy] e

cn§m

LEVEL 2

[Task Type: Spatial Interaction]

[Question]: How can I get from the coffee shop on the first floor to the

second floor?

[A]: "Go north and take the elevator"
[B]: "Go south and take the elevator"
[C]: "Go west and take the elevator"

[D]: "Go east and take the elevator"

[Answer]: D

[Subtask Type: Geospatial Strategy]
[Task Type: Spatial Interaction]
[Question]: Which route utilizes the road more to support the run?

[A]: "green route"
[B]: "red route"
[C]: "purple route"
[D]: "orange route"

[Answer]: A

Figure 17: Visualization example of OmniSpatial data samples.
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[Subtask Type: Pattern Recognition]

[Task Type: Complex Logic] Q R

[Question]: A hamster is placed in a maze. The hamster turns first to the right,
then to the left, then to the right. Where does the hamster end up?

[A]: "P"
[B]: "Q"
[C]: "R
[D]: "S" P ] [

[Answer]: A

[Subtask Type: Pattern Recognition]
[Task Type: Complex Logic]

[Question]: Given the outer surface of the carton on the left, which of

the following can be folded from it?

wih & 42

[Answer]: B

[Subtask Type: Geometric Reasoning]
[Task Type: Complex Logic]
[Question]: From rose's point of view, which side is the vase on?

[A]: "On her left side"
[B]: ”On her right side"

[Answer]: B

[Subtask Type: Geometric Reasoning]
[Task Type: Complex Logic]

[Question]: Which of the following shapes is a rotated version of the =
shape on the left? - ] '

[Answer]: D

Figure 18: Visualization example of OmniSpatial data samples.
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