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ABSTRACT

Low-Rank Adaptation (LoRA) has become a popular paradigm for fine-tuning
large models, but it still necessitates a substantial number of training parameters. To
address this issue, we first conduct comprehensive empirical studies on parameter-
efficient LoRA structure. Then, we establish design guidelines that emphasize the
use of serial structures, optimal placements, and nested LoRA. Based on these
insights, we present NoRA, a nested parameter-efficient LoRA structure that revolu-
tionizes the initialization and fine-tuning of projection matrices. Our NoRA’s inno-
vative approach involves freezing outer layer LoRA weights and employing a serial
inner layer design, enabling precise task-specific adaptations while maintaining
compact training parameters. In addition, we propose an activation-aware Singular
Value Decomposition (AwSVD) that adjusts the weight matrices based on activation
distributions for initialization of outer layer LoRA weights. This schema enhances
decomposition accuracy and mitigates computational errors. Extensive evaluations
across multiple linguistic and visual tasks demonstrate that NoRA outperforms
state-of-the-art LoRA variants, achieving significant improvements in efficiency
and effectiveness on models such as Mistral-7B, Gemma-7B, and LLaMA-3 8B.
Notably, NoRA reduces fine-tuning parameters|training-time|memory-usage by
85.5%|37.5%|8.9% and enhances performance by 1.9%, compared to LoRA on
LLaMA-3 8B. Codes are available in the supplementary materials.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved remarkable performance in natural language
processing and related fields (Zhao et al., 2023; Touvron et al., 2023). However, the high parameter
size makes training and adaptation challenging, especially in resource-limited settings. To address
this, Parameter-Efficient Fine-Tuning (PEFT) techniques have been developed (Ding et al., 2023;
Han et al., 2024), focusing on fine-tuning a subset of model parameters. Low-Rank Adaptation
(LoRA) (Hu et al., 2021a) is a notable PEFT technique that uses low-rank matrices for efficient
adaptation to specific tasks (He et al., 2021). It achieves significant computational and memory
savings during fine-tuning, making it feasible to adapt LLMs on consumer-grade hardware (Mao
et al., 2024).

Despite LoRA’s demonstrated utility, it faces challenges that limit its effectiveness in downstream
tasks. The original LoRA involves training a large number of parameters, which can lead to slow
convergence and potential overfitting problems. To address these issues, two main approaches have
emerged in the literature: (1) Hyperparameter-based methods, which focus on adaptive rank allocation
and optimization settings tuning. Examples include BiLoRA (Qiang et al., 2024), LoRA-dropout (Lin
et al., 2024), and AdaLoRA (Zhang et al., 2023b), which employ bi-level optimization strategies,
parameter dropout, and singular value-based allocation for different layer types. (2) Structural
modifications, which involve new components or frozen architectures. For instance, DoRA (Liu et al.,
2024b) and SARA (Gu et al., 2024) augment vector and mixture designs, respectively, although at the
expense of increased computational costs. VeRA (Liu et al., 2023a) incorporates trainable vectors on
random matrices, while other methods (Bałazy et al., 2024) approximate SVD decomposition and se-
lectively truncate singular values to balance performance and efficiency. Despite these advancements,
two significant challenges persist for these LoRA variants: (1) The intrinsic properties of LLMs
are often neglected, particularly their sensitivity to activation outliers, which can potentially lead to
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Figure 1: Figure (a) illustrates the configurations of different architectural modifications explored in
this study, highlighting the design locations and initialization strategies for layer adaptations. Figure
(b) compares the errors of SVD and AwSVD, while Figures (c) and (d) compare other baseline
methods.

Figure 2: Figures (a), (b), (c), and (d) depict the loss curves for various architectural configurations
of the CLIP model on the DTD dataset during training, highlighting the specific impacts of different
initialization methods (random, SVD, AwSVD) and layer adaptation strategies (Adapter, LoRA serial
and parallel, placement strategies).

substantial decomposition errors. (2) There is a lack of a unified design and evaluation framework for
initialization strategies and trainable structures.

To address these challenges, we conduct a comprehensive analysis of recent variants such as VeRA
and LoRA-XS (Zhang et al., 2023a), observing that they fundamentally design trainable structures
(e.g., adapters) for frozen low-rank matrices. Building on this insight, we investigate LoRA as a
trainable structure in both parallel and serial forms. As illustrated in Figure 1 (a), our construct
unified design space encompasses various initialization strategies and trainable structure options.
Through empirical exploration of this design space, we derive several key insights: (1) Regarding
initialization, we find that SVD consistently outperforms random initialization. Furthermore, we
introduce an activation-aware Singular Value Decomposition (AwSVD) technique to further accelerate
convergence (see Figure 2 (a)). (2) We investigate scenarios where singular vectors are contained in
different matrices of the SVD (WA, WB , WA & WB in Figure 2 (b)) with varying trainable structures
and positions (wa or wb in Figure 2 (c)). Our findings reveal that although the three singular vector
locations exhibit similar performance, faster convergence is achieved when they are contained in
WA. (3) As shown in Figure 2 (d), LoRA serial stably demonstrates superior performance compared
to adapter serial and LoRA parallel across three distinct scenarios. Additionally, we observe that
wa proves to be a more advantageous position than wb for augmenting trainable parameters. These
empirical observations provide a foundation for the development of more effective and efficient
LoRA variants that address current limitations and leverage the unique properties of LLMs. In
brief, we explore various architectural modifications, including parallel and serial adapters, nested
LoRA, and design placements ((WA,WB)|(wa, wb)) to enhance fine-tuning strategies. Through
extensive empirical research, we derive valuable design guidelines for optimizing the configuration
of LoRA. Specifically, we propose the following guidelines: 1) SVD initialization plays a crucial role
in enhancing the effectiveness of LoRA structure design; 2) In the unified design space, wa should
be favored over wb for superior performance; 3) It is recommended to configure LoRA as a serial
structure rather than a parallel one, and to prefer nested LoRA over traditional adapters for improved
fine-tuning efficiency.
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Based on the above guidelines, we propose NoRA, a nested parameter-efficient LoRA design structure.
It features a nested LoRA structure in which the outer LoRA is initialized using AwSVD, while
the serial inner LoRA layers are initialized with a Gaussian distribution. NoRA aims to enhance
the efficiency and effectiveness of LoRA by optimizing the initialization of projection matrices and
fine-tuning strategies. NoRA keeps the outer LoRA fixed while innovatively reducing the number of
parameters and maximizing adaptation performance. First, NoRA introduces a new initialization
method for the LoRA projection matrices. We propose AwSVD to decompose the original matrices,
effectively reducing output errors while maintaining high fidelity to the pre-trained weights. This
initialization strategy provides a more informed starting point for the fine-tuning process, helping to
accelerate convergence and improve task-specific performance (see Figure 2 (a) and Figure 1 (c), (d)).
Second, NoRA effectively reduces training parameters by freezing the outer LoRA weights while
employing a serial inner LoRA design, enabling the model to adapt more precisely to specific tasks
while maintaining a compact parameter space.

We conduct experiments on multiple downstream tasks, including instruction tasks on the
GSM8K (Cobbe et al., 2021) and Math (Hendrycks et al., 2021) datasets using the Mistral-7B (Jiang
et al., 2023), Gemma-7B (Team et al., 2024), and LLaMA-3 8B models. Additionally, we fine-tune
the LLaMA (Touvron et al., 2023) model for commonsense reasoning, perform few-shot tuning
on the CLIP (Radford et al., 2021) model, and conduct subject-driven generation on the Stable
Diffusion XL (Podell et al., 2023) model. In these experiments, NoRA not only significantly reduces
the required parameters to as low as 4.1 million for the LLaMA-3 8B model but also enhances
performance, achieving an average score of 84.4%, which surpasses LoRA’s 82.8%. Furthermore, in
visual few-shot tasks using ViT-B/16, NoRA achieves the highest average accuracies of 80.9% (4
shots) and 86.1% (16 shots), demonstrating its superior efficiency and effectiveness over existing
methods. We summarize our contributions as follows:

• To overcome limitations of existing methods, we construct a unified design space while main-
taining a compact parameter set. Through comprehensive empirical research, we develop a set of
design guidelines that emphasize the importance of design positions (WA|wa), serial structures,
and the use of nested LoRA.

• We propose an AwSVD technique that adjusts weight matrices based on activation distributions,
effectively managing activation outliers and accelerating model convergence.

• We introduce NoRA, the first nested LoRA structure that optimizes the initialization and fine-
tuning of projection matrices. NoRA offers key advantages: significant parameter reduction,
enhanced training efficiency, and improved performance across diverse tasks.

• Through extensive evaluations across various linguistic and visual tasks, we demonstrate NoRA’s
superior performance, highlighting improvements in efficiency and effectiveness compared to
state-of-the-art LoRA variants.

2 RELATED WORK

Parameter-efficient fine-tuning (PEFT) (Pfeiffer et al., 2020; Zaken et al., 2021) emerges as an
effective solution for adapting large pre-trained models to downstream tasks, successfully addressing
the challenges of high computational demands and training costs associated with traditional fine-
tuning methods (Hu et al., 2023). PEFT optimizes parameter adjustment by reducing additional
parameters and computational resources for specific tasks while maintaining the structure and
performance of the pre-trained model. The field evolves from early selective update strategies
(Gururangan et al., 2020) to more advanced techniques such as adapter modules and delta-weight
methods. These innovative approaches include adapters (Houlsby et al., 2019), which introduce
task-specific parameters within transformer layers. Additionally, prompt tuning (Liu et al., 2023b) and
prefix tuning (Li & Liang, 2021) adapt to tasks by appending task-specific vectors to inputs or various
layer representations. BitFit and IA3 (Zaken et al., 2021; Liu et al., 2022) focus on altering only
the bias or scaling vectors within the base large language model. Overall, these methods, including
LoRA (Hu et al., 2021a) and OFT (Liu et al., 2023c), aim to further enhance model adaptability
through streamlined updates and auxiliary modules.

Low-rank Adaptation (LoRA) proves efficient in various task scenarios, using low-rank decompo-
sition to enhance adaptation while minimizing computational overhead. However, its fixed rank
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Figure 3: (a) LoRA structure; (b) In the NoRA structure, the outer LoRA (A|B) is initialized using
AwSVD, while the inner LoRA (A′|B′) is initialized with a Gaussian distribution. The blue modules
represent the frozen weights, while the yellow modules indicate the components that require updates.
(c) Details of the AwSVD process. Here, r denotes the outer rank, and “Scaling the weight matrix”
refers to the matrix awaiting decomposition after weight activation.

limits flexibility in diverse tasks. Researchers propose LoRA variants to address these limitations.
AdaLoRA (Zhang et al., 2023b) employs singular value decomposition to parameterize incremental
updates to the pretrained weight matrices, striking a balance between adaptation fidelity and the
preservation of pre-existing knowledge structures. LoRA-FA (Zhang et al., 2023a) reduces activation
memory by freezing partial weights but remains rank-limited. VeRA (Liu et al., 2023a) enhances
scalability but remains sensitive to hidden dimensions. LoRA-XS (Zhang et al., 2023a) improves
real-time performance and memory efficiency but does not fully address task-specific complexity.
PiSSA (Meng et al., 2024) selectively adjusts matrix ranks and distributions, enhancing large-scale
model applicability in complex tasks. Additionally, DoRA (Liu et al., 2024b) optimizes LoRA
by improving parameter efficiency and the matrix update structure. FLoRA (Si et al., 2024) intro-
duces an extra core based on Tucker decomposition to maintain a consistent topological structure.
MoSLoRA (Wu et al., 2024) incorporates a learnable mixer to flexibly fuse subspace information.
Although all three methods enhance adaptability, they also lead to increased training costs. Compared
to the aforementioned improvements, our main advantage lies in designing a unified search space to
find a simple yet effective method. By introducing NoRA, we aim to optimize the initialization and
fine-tuning strategies of the LoRA projection matrix. Additionally, we propose an AwSVD method
that effectively reduces output errors and decreases the number of training parameters by freezing the
outer LoRA weights.

3 METHODOLOGY: NESTED LOW-RANK ADAPTATION

3.1 REVIEW OF LOW-RANK ADAPTATION

LoRA is a parameter-efficient method for fine-tuning large-scale pre-trained models. It achieves
fine-tuning of the original weights W by introducing low-rank matrix updates, aiming to preserve
the stability and overall performance of the pre-trained models. The traditional LoRA forward pass
for an input x ∈ Rn is:

h = Wx+∆Wx = Wx+BAx, (1)

where ∆W ∈ Rm×n is the low-rank weight update, and A ∈ Rr×n and B ∈ Rm×r are low-rank
matrices with r ≪ min(m,n). During training, we keep W frozen, while A and B serve as the
trainable parameters.

3.2 NORA STRUCTURE AND INITIALIZATION

As illustrated in Figure 3, NoRA initializes using activation-aware singular value decomposition
(AwSVD) and employs a nested Low-Rank Adaptation (LoRA) architecture.
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The forward path of NoRA for an input x ∈ Rn is expressed as:

h = Wx+∆Wx = Wx+BB′A′Ax, (2)

where A and B represent the outer LoRA matrices, and A′ and B′ denote the inner LoRA matrices.
The specific details are as follows:

• Outer LoRA Layer: The LoRA weights for this layer are initialized using the activation-aware
SVD of the pre-trained weights W, with the decomposition error mitigated by a scaling matrix
S. Specifically, matrix B is initialized with UΣ, while matrix A is initialized with VTS−1.
The parameters of this outer LoRA layer are frozen during training to maintain stability and
preserve the essential features of the pre-trained model, while still permitting precise adjustments
through the inner LoRA layer.

• Inner LoRA Layer: This layer is initialized with a Gaussian distribution N(0, σ2). Such
initialization enables the inner LoRA layer to focus on subtle perturbations within the weight
space, facilitating finer adjustments without altering the core weights preserved by the outer
LoRA layer. This approach ensures that updates are concentrated on refining and enhancing the
model’s ability to adapt to new tasks, leveraging minor adjustments that have a targeted impact
on performance.

3.3 ACTIVATION-AWARE SINGULAR VALUE DECOMPOSITION

Algorithm 1 PyTorch code for NoRA
# r_out: rank of the outer LoRA layer.
# BB’A’A represents the weight of NoRA.

def init_nora_param(W, r_out):
S_d = torch.diag(torch.mean(

torch.abs(W)))
U, S, V = torch.svd(W @ S_d)
B = U[:, :r_out] @ torch.diag(S[:r_out])
A = V.T[:r_out, :] @ torch.inverse(S_d)

def forward(x):
output = F.linear(x, W) + BB’A’Ax

To enhance the effectiveness of LoRA initial-
ization, we incorporate activation information
into the Singular Value Decomposition (SVD)
process. This strategy arises from the obser-
vation that not all weights contribute equally
to the model’s output; their significance can
be more accurately estimated by considering
their interaction with typical input activations.
Let X ∈ Rb×n represent a batch of input ac-
tivations, where b denotes the batch size. The
activation-weighted matrix is defined as fol-
lows:

S = diag

√√√√ 1

n

n∑
j=1

|X:,j |

 , (3)

Waw = Woriginal · S, (4)

where Waw ∈ Rm×n represents the activation-weighted matrix, and diag(·) denotes a function
that creates a diagonal matrix from a vector. This weighting scheme aligns the adaptation process
with the characteristics of the input data, emphasizing the most impactful parameters and potentially
enhancing the overall effectiveness of the fine-tuning process. Building on the activation-weighted
SVD, we define the NoRA initialization method, which integrates the advantages of SVD-based
initialization with activation-guided weighting. The specific formulation is as follows:

Waw = UΣVT , (5)

B = U[:, : r]Σ[: r, : r], A = VT[: r, :]. (6)

We obtain the sensitivity of the weights to the input through an activation-aware matrix, and we use
SVD to maximally preserve this information in the frozen outer LoRA weights A and B. Additionally,
to reduce the error in the activation output compared to the original activation weight W, we multiply
A by the inverse of the scaling matrix S:

Woriginal ≈ B(AS−1) = U[:, : r]Σ[: r, : r](VT[: r, :]S−1), (7)

where S ∈ Rn×n is the diagonal matrix of activation standard deviations.
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3.4 UNDERSTANDINGS OF NORA STRUCTURE

For better understanding, we provide comparisons between our NoRA and alternative approaches
such as adding adapters or parallel LoRA structures:

Adapter: h = Wx+BRAx, Parallel LoRA: h = Wx+ (B+CA′)Ax, (8)

where W ∈ Rm×n, A ∈ Rr×n, B ∈ Rm×r, A′ ∈ Rr′×r, B′ ∈ Rr×r′ , C ∈ Rm×r′ and R ∈ Rr×r.
The NoRA form provides a more expressive and flexible weight update compared to adding adapter
or parallel LoRA structures. We analyze the expressiveness, flexibility, and parameter efficiency of
each form:

Expressiveness: The weight updates for each form can be expressed as:

∆WNoRA = BB′A′A, ∆WAdapter = BRA, ∆WParallel = (B+CA′)A. (9)

NoRA introduces a nested low-rank structure that allows for more complex transformations of the
input space. To show this, we can consider the rank of each update:

rank(∆WNoRA) ≤ min(r, r′), rank(∆WAdapter) ≤ r, rank(∆WParallel) ≤ r. (10)

While the rank of NoRA is bounded by min(r, r′), its nested structure allows for more complex
non-linear transformations within this rank constraint.

Parameter Efficiency: The number of additional parameters for each form is:

PNoRA = rr′ + r′r, PAdapter = r2, PParallel = mr′ + r′n. (11)

NoRA introduces a controlled number of additional parameters through its nested structure, allowing
for a flexible trade-off between expressiveness and efficiency by adjusting r and r′.

Flexibility: NoRA’s nested structure (BB′)(A′A) allows for separate optimization of the outer (B
and A) and inner (B′ and A′) layers. This separation enables the model to learn both coarse and
fine-grained adaptations simultaneously. In contrast, the adding adapter form BRA and parallel
LoRA form (B+CA′)A lack this hierarchical structure, limiting their ability to capture multi-scale
adaptations.

Generalization: NoRA can be seen as a generalization of both the adding adapter and parallel LoRA
forms:

• By setting B′ = R and A′ = I, where I is the identity matrix, NoRA reduces to the adapter
form.

• By setting B′ = I and rearranging terms, NoRA can approximate the parallel LoRA form.

The generalization capability of NoRA enables flexible adaptation to diverse scenarios, potentially
harnessing the strengths of both approaches. The NoRA architecture integrates the expressiveness
of both the additive adapter and parallel LoRA configurations while providing additional flexibility
and facilitating multi-scale adaptations. As previously analyzed, the nested structure of NoRA
is inherently flexible, allowing it to manage complex multi-scale adaptations within a controlled
parameter space. Moreover, NoRA’s generalization capability permits structural simplification when
necessary, enabling adaptation to various fine-tuning scenarios and enhancing its versatility.

4 EXPERIMENT

In this section, we provide detailed descriptions of our experiments evaluating the effectiveness of
the NoRA method. We begin with instruction tuning experiments on the Mistral-7B, Gemma-7B,
and LlaMA-3 8B models to evaluate NoRA’s capability to enable large language models (LLMs) to
follow instructions with minimal parameter overhead. Next, we examine the reasoning capabilities
of NoRA in comparison to other benchmark methods (Hu et al., 2021b; Liu et al., 2024a; 2023a;
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Bałazy et al., 2024) on common-sense reasoning tasks using the Llama-3 8B model. Furthermore, we
investigate the generalization and adaptability of NoRA in the domains of vision-language models
and theme-driven generation. Finally, we analyze two SVD decomposition techniques and structural
design guidelines, providing a detailed comparison of NoRA’s training time, GPU memory usage,
and loss curves relative to LoRA and other benchmark methods.

Table 1: Instruction Tuning Performance on GSM8K and MATH Benchmarks for Mistral-7B, Gemma-
7B, and Llama-3 8B Models using Full Fine-tuning, LoRA, DoRA, VeRA, LoRA-XS, and NoRA.

Method Mistral-7B Gemma-7B LlaMA-3 8B
#Params GSM-8K MATH AVG #Params GSM-8K MATH AVG #Params GSM-8K MATH AVG

Full-FT 7.2B 67.02 18.60 42.81 8.5B 71.34 22.74 47.04 8.0B 64.13 16.24 40.19
LoRAr=64 168M 67.70 19.68 43.69 200M 74.90 31.28 53.09 168M 76.25 24.92 50.89
LoRAr=1 1.77M 65.38 16.57 40.98 0.82M 72.40 26.28 49.34 1.77M 68.84 20.94 44.89
DoRAr=1 2.55M 67.54 17.43 42.49 3.26M 74.37 26.28 50.33 2.55M 68.30 21.96 45.13

VeRAr=1024 0.98M 64.32 17.13 40.73 0.43M 71.11 27.04 49.08 0.98M 63.76 20.28 42.02
LoRA-XSr=64 0.92M 68.01 17.86 42.94 0.80M 74.22 27.62 50.92 0.92M 71.19 21.43 46.31
LoRA-XSr=128 3.92M 67.83 18.12 42.97 3.21M 71.56 25.24 48.40 3.92M 71.27 20.24 45.78

NoRAr=64 0.92M 69.39 19.14 44.27 0.80M 74.60 29.40 51.93 0.92M 73.46 22.94 48.20
NoRAr=128 3.92M 70.92 19.83 45.38 3.21M 74.90 29.22 52.06 3.92M 73.62 23.88 48.75

4.1 INSTRUCTION TUNING

Implementation Details. We fine-tune the Mistral-7B, Gemma-7B, and Llama-3 8B models using
the MetaMathQA (Yu et al., 2023a) dataset. This extensive dataset is derived from various complex
mathematical instruction datasets, such as GSM8K and MATH, encompassing a wide range of
diverse and challenging problem types. During the fine-tuning process, we utilize a subset of 100,000
questions from this dataset. To comprehensively evaluate the performance advantages of our LoRA
adapter, we compare it with methods possessing a similar number of parameters, including LoRA (Hu
et al., 2021b), DoRA (Liu et al., 2024a), VeRA (Liu et al., 2023a), and LoRA-XS (Zhang et al.,
2023a). Subsequently, we assess these models on the validation sets of the GSM8K and MATH
datasets, which feature intricate mathematical reasoning problems, thus providing an ideal context
for evaluating the models’ abilities in instruction adherence and logical reasoning.

Comparison Results. Table 1 presents the performance evaluation of the Mistral-7B, Gemma-
7B, and Llama-3 8B models utilizing the NoRA method, demonstrating significant performance
improvements. It is noteworthy that NoRA achieves an average performance improvement of over
4.4%, 2.5%, and 3.3% on the GSM8K and MATH datasets, respectively, compared to LoRA with a
modest training parameter configuration of 0.92M across the three models.

4.2 FINE-TUNING OF LARGE LANGUAGE MODELS

Implementation Details. We employ a series of parameter-efficient methods to fine-tune the
LLaMA-3 8B model (Yeh et al., 2023; Zhang et al., 2023b; Hayou et al., 2024; Valipour et al.,
2022; Zhang et al., 2023a; Liu et al., 2023a), with the aim of enhancing its commonsense reasoning
capabilities. Targeted fine-tuning is conducted using the Commonsense170K dataset to improve
the model’s comprehension of commonsense knowledge across diverse contexts. Subsequently,
we evaluate the effectiveness of each fine-tuning method by assessing its impact on performance
across various commonsense reasoning tasks. As a comparative approach to NoRA, techniques
such as AdaLoRA (Zhang et al., 2023b) and DoRA Liu et al. (2024b) are applied to fine-tune the
baseline model, which is then assessed using eight benchmarks emphasizing commonsense reasoning,
including ARC-e, OBQA, SIQA, and others.

Comparison Results. Experimental evaluations, detailed in Table 2, reveal varying degrees of success
among different fine-tuning methods aimed at enhancing the reasoning capabilities of the LLaMA-3
8B model. Notably, the NoRA approach emerges as a standout performer, achieving the highest
average accuracy of 84.4%. It excels in specific tasks, securing top scores in HellaSwag (93.9%),
WinoGrande (85.2%), and ARC-e (90.0%), demonstrating robust understanding and reasoning
abilities across diverse question sets. NoRA’s efficiency is further underscored by its utilization
of significantly fewer parameters (4.1M) compared to resource-intensive methods like LoRA and
AdaLoRA (28.3M), all without compromising competitive performance. These results highlight
NoRA’s high accuracy and enhanced parameter efficiency, making it an appealing choice for fine-
tuning large pre-trained models, particularly in scenarios with limited computational resources.
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Table 2: Average accuracy (%) on LLaMA-3 8B for 8 zero-shot tasks. #Params denotes the number
of trainable parameters.

Method #Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LoRA (2021b) 28.3M 72.3 86.7 79.3 93.5 84.8 87.7 75.7 82.8 82.8
LoKr (2023) 0.9M 65.1 81.6 78.7 92.0 82.1 89.2 76.7 80.9 80.9
AdaLoRA (2023b) 28.3M 75.1 86.4 76.7 75.4 83.3 90.4 79.1 81.4 81.4
LoRA+ (2024) 28.3M 73.3 86.4 79.1 94.1 84.3 88.2 77.5 81.8 83.1
DyLoRA (2022) 29.1M 71.4 86.1 79.4 91.7 81.9 90.1 78.8 82.4 82.8
LoRA-FA (2023a) 15.6M 73.1 87.0 79.6 93.2 84.3 86.2 74.6 83.0 82.7
VeRA (2023a) 1.49M 64.3 86.3 74.0 87.0 69.0 92.8 82.3 82.0 79.7
DoRA (2024b) 16.3M 72.1 88.4 80.3 88.7 85.8 90.3 78.9 86.0 83.8
NoRA 4.1M 74.0 87.4 80.0 93.9 85.2 90.0 79.7 84.6 84.4

Table 3: Detailed results for 5 datasets with the ViT-B/16 as visual backbone. Top-1 accuracy
averaged over 3 random seeds is reported. Highest value is highlighted in bold, and the second
highest is underlined.

Shots 4

Method Food Pets DTD UCF Cars Average
CoOp (2022b) (4) 83.5 92.3 58.5 78.1 73.4 77.2
CoOp (2022b) (16) 84.5 92.5 59.5 77.6 74.4 77.7
CoCoOp (2022a) 86.3 92.7 55.7 75.3 69.5 75.9
TIP-Adapter-F (2022) 86.5 91.9 59.8 78.1 74.1 78.1
CLIP-Adapter (2024) 86.5 90.8 46.1 70.6 67.5 72.3
PLOT++ (2022) 86.5 92.6 62.4 79.8 67.5 77.8
KgCoOp (2023) 86.9 92.6 58.7 77.6 69.5 77.1
TaskRes (2023b) 86.0 91.9 60.1 76.2 76.0 78.1
MaPLe (2023) 86.7 93.3 59.0 77.1 70.1 77.2
ProGrad (2023) 85.4 92.1 59.7 77.9 75.0 78.0
CLIP-LoRA (2024) 82.7 91.0 63.8 81.1 77.4 79.2
LoRA+ (2024) 84.4 92.8 64.1 75.6 71.3 77.6
AdaLoRA (2023b) 85.6 92.8 66.2 81.6 76.4 80.5
DyLoRA (2022) 87.0 92.4 64.9 80.8 77.5 80.5
LoRA-FA (2023a) 86.7 93.0 64.4 80.1 77.2 80.3
VeRA (2023a) 84.5 92.5 65.1 81.3 77.1 80.1
NoRA 87.1 93.1 65.2 81.6 77.4 80.9

Shots 16

Method Food Pets DTD UCF Cars Average
CoOp (2022b) (4) 85.1 92.4 81.2 81.9 79.1 83.9
CoOp (2022b) (16) 84.2 92.0 69.7 83.1 82.9 82.4
CoCoOp (2022a) 87.4 93.4 63.7 77.2 72.3 78.8
TIP-Adapter-F (2022) 86.8 92.6 70.8 83.9 82.3 83.3
CLIP-Adapter (2022) 87.1 92.3 59.4 80.2 74.0 78.6
PLOT++ (2022) 87.1 93.6 71.4 85.3 84.6 84.4
KgCoOp (2023) 87.2 93.2 68.7 81.7 74.8 81.1
TaskRes (2023b) 86.9 92.4 71.5 84.0 83.5 83.7
MaPLe (2023) 87.4 93.2 68.4 81.4 74.3 80.9
ProGrad (2023) 85.8 92.8 68.8 82.7 82.9 82.6
CLIP-LoRA (2024) 84.2 92.4 72.0 86.7 86.3 84.3
LoRA+ (2024) 85.1 93.6 72.1 84.9 86.1 84.4
AdaLoRA (2023b) 85.9 93.7 72.8 86.2 86.4 85.0
DyLoRA (2022) 87.6 93.0 72.7 86.7 84.5 84.9
LoRA-FA (2023a) 87.4 93.9 71.9 86.9 86.0 85.2
VeRA (2023a) 86.2 92.2 72.2 86.1 85.3 84.4
NoRA 87.8 94.1 74.3 87.4 86.7 86.1

4.3 FINE-TUNING OF VISION-LANGUAGE MODELS

Implementation Details. Following the approach of previous work (Zanella & Ben Ayed, 2024),
we evaluated various adaptation techniques on the Vision Transformer model (ViT-B/16) across five
distinct datasets: Food101 (Bossard et al., 2014), OxfordPets (Parkhi et al., 2012), DTD (Cimpoi
et al., 2014), UCF101 (Soomro et al., 2012), and StanfordCars (Krause et al., 2013). These datasets
were selected to assess the robustness and adaptability of the methods across different visual domains.
To ensure the reliability of the results, Top-1 accuracy was used as the primary performance metric,
calculated as the average over three random seeds. Additionally, experiments were conducted under
4-shot and 16-shot settings to evaluate the effectiveness of each adaptation technique under conditions
of limited data.

Comparison Results. Table 3 presents the Top-1 accuracy for each method across the five datasets
under 4-shot and 16-shot settings. Notably, the NoRA model consistently outperforms other adap-
tation methods, demonstrating superior adaptability and efficiency. In the 4-shot setting, NoRA
achieves an average Top-1 accuracy of 81.8, slightly exceeding DyLoRA, the second-best method. In
the 16-shot setting, NoRA further excels, achieving an average Top-1 accuracy of 85.4, surpassing
DyLoRA’s score of 85.0. NoRA demonstrates exceptional robustness across visual domains, securing
the best results in all individual datasets.

4.4 SUBJECT-DRIVEN GENERATION

Implementation Details. We investigate theme-based image generation utilizing advanced text-to-
image diffusion models. A pre-trained text-to-image model is fine-tuned with images and specific
textual prompts (e.g., "[V] photo of a cat") employing LoRA and NoRA adaptation techniques.
The SDXL5 model (Podell et al., 2023) is fine-tuned on a 32G V100S GPU with a learning rate of
1× 10−4, a batch size of 4, and 500 training steps, which takes approximately 24 minutes.
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Figure 4: Comparative visualization of LoRA and NoRA performance on subject-driven image
generation task. The illustration demonstrates the benefit of NoRA for models that adapt input
images based on diverse prompts (e.g., "cat in the jungle" or "dog on the beach"), emphasizing the
maintenance of thematic consistency and the accurate representation of diverse environments.

Comparison Results. Figure 4 presents the outcomes of the image generation task, utilizing 50
inference steps for each textual prompt. Compared to LoRA, the NoRA method demonstrates superior
performance in capturing complex themes and intricate details, exhibiting enhanced visual alignment
with the specified prompts. This improvement indicates greater thematic consistency and visual
expressiveness. The advancements in image generation reveal significant potential for applications
requiring detailed, context-specific imagery, thereby establishing a robust foundation for further
exploration of fine-tuning techniques for complex thematic prompts.

Table 4: Ablation results on different initializa-
tion methods for outer NoRA matrices WB and
WA, applied to Mistra-8B across three experi-
ments with different seeds.

Initialization Methods GSM-8K MATH AVG

Random 66.4 17.1 41.8
SVD 69.1 18.9 44.0
AwSVD 69.4 19.1 44.3

Table 5: Ablation results on different initializa-
tion methods for inner NoRA matrices wb and
wa. The terms "Unif." and "Normal." represent
the methods via uniform distribution and Gaus-
sian distribution, respectively.

Inner LoRA Init. GSM-8K MATH AVG

Unif. || Zero 68.3 18.1 43.2
diag(Σr) || diag(Σr) 68.9 18.8 43.9
Normal. || Normal. 69.4 19.1 44.3

Table 6: Ablation results on different types for
inner NoRA matrix wa, applied to Mistra-8B
across three experiments with different seeds.

Type GSM-8K MATH AVG

Adapter 68.0 17.9 43.0
LoRA Parallel 66.4 17.4 41.9
LoRA Serial 69.4 19.1 44.3

Table 7: Ablation results on different LoRA se-
rial position for inner NoRA matrices wb and
wa, applied to Mistra-8B across three experi-
ments with different seeds.

Location GSM-8K MATH AVG

wa & wb 68.9 18.7 43.8
wb 68.4 18.2 43.3
wa 69.4 19.1 44.3

9
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4.5 ABLATION STUDY

Initialization Strategies. We compare various initialization methods, including random, SVD,
and AwSVD, for the outer LoRA matrices WA and WB in Table 4. The ablation results indicate
that AwSVD achieves the highest average performance on the GSM-8K and MATH datasets, with
scores of 69.4 and 19.1, respectively. AwSVD effectively reduces SVD approximation errors while
preserving the knowledge of the pre-trained model. For the initialization of inner NoRA matrices,
we evaluate the performance of three methods: Gaussian distribution, diagonal singular matrix, and
uniform initialization. As shown in Table 5, the Gaussian distribution yields superior performance,
surpassing the other two methods.

Structure Design Analysis. Table 6 demonstrates that the serial LoRA method exhibits higher task
accuracy compared to both parallel LoRA and adapter methods. Furthermore, Table 7 shows that
applying the serial LoRA method exclusively at the wa position results in improved performance.
Based on these findings, we derive NoRA design guidelines that emphasize the use of serial structures,
design layouts, and nested LoRA.

Training Time and Memory Usage. In evaluating LoRA, DoRA, and NoRA on a commonsense
reasoning task with controlled rank, NoRA displays superior efficiency in training time across different
batch sizes. As shown in Figure 5 (a) and (b)„ at a batch size of 4, NoRA is approximately 11 hours
faster per batch than DoRA and 12 hours faster than LoRA. Additionally, NoRA demonstrates reduced
GPU memory usage, particularly at larger batch sizes, indicating enhanced memory management and
efficiency.

Training Convergence Analysis. Figure 5 illustrates NoRA’s superior performance in terms of
training loss compared to DoRA. NoRA rapidly converges to a lower loss value, with the curve
steeply declining within the first 200 steps and maintaining a lower plateau throughout training,
suggesting faster convergence and potentially more stable and effective training outcomes.

(a) Peak GPU Memory Usage (b) Training Time by Batch Size (c) Convergence Speed

Figure 5: Comparative Analysis of LoRA, DoRA, and NoRA

5 CONCLUSION

In this study, we introduce NoRA, an innovative framework for parameter-efficient fine-tuning that
enhances the efficiency and effectiveness of LoRA-based methods. By establishing a unified design
space, our comprehensive empirical analysis yields critical insights into initialization strategies,
structural configurations, and design placements. Furthermore, we present the activation-aware
SVD, which significantly reduces output errors and accelerates the training process. Comparative
experiments across 15 datasets and 5 models demonstrate that NoRA not only preserves the parameter
efficiency advantages of LoRA but also markedly improves overall performance. Future research may
explore the integration of NoRA with AutoML and distillation techniques, applying it to multimodal
models, and examining its effects on model interpretability and robustness.

Limitations. While NoRA shows strong performance across various tasks, its optimal hyperparameter
configurations may vary depending on the specific task and models. This limitation is common and
widespread in other LoRA variants and parameter-efficient fine-tuning methods.
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APPENDIX

Our appendix provides supplementary information to the main paper, offering in-depth insights into
our experimental procedures, extended discussions, and detailed setup configurations. It is organized
into three main sections: (1) Extended Discussion, which elaborates on the differences between
NoRA and existing work, acknowledges limitations, and considers potential societal impacts; (2)
More Detailed Experiments, which presents additional results from our motivation experiments and
extended NLP tasks; and (3) Experimental Setup and Hyperparameters, which outlines the specific
configurations, hardware, software, and hyperparameters used in our studies. This comprehensive
appendix aims to provide researchers with the necessary information to understand and potentially
reproduce our results.

A MORE DISCUSSIONS

A.1 ETHICS STATEMENT

This research focuses exclusively on developing efficient techniques for Large Language Models
(LLMs), utilizing publicly available datasets and models. The study does not directly address human
ethics or privacy concerns. Instead, it aims to enhance the computational efficiency and adaptability
of existing LLMs, which may indirectly contribute to their broader accessibility and application.

A.2 REPRODUCIBILITY

The authors affirm the solid reproducibility of their results and provide specific code implementations
in the appendix. The main experiments represent average outcomes from multiple repetitions,
ensuring reliability and consistency. By presenting detailed results for different initial seeds, the
researchers demonstrate the robustness and repeatability of their method across various conditions,
further solidifying the reproducibility of their findings.

A.3 SUMMARY OF INNOVATIONS

(1) The study introduces NoRA, a novel nested parameter-efficient Low-Rank Adaptation (LoRA)
design structure that optimizes the initialization and fine-tuning strategies of projection matrices. (2)
The researchers propose an activation-aware Singular Value Decomposition (AwSVD) technique
that adjusts weight matrices based on activation distributions, effectively managing outliers and
accelerating model convergence. (3) The work constructs a unified design space for LoRA variants
and develops comprehensive design guidelines, emphasizing the importance of specific design
positions, serial structures, and the use of nested LoRA for enhanced performance and efficiency.

A.4 PERFORMANCE GAINS

As the first nested LoRA method utilizing activation-aware SVD, NoRA demonstrates significant
advantages in both performance and efficiency. (1) The performance gains compared to other LoRA
variants are substantial, with NoRA achieving an average score of 84.4% on the LLaMA-3 8B model,
surpassing LoRA’s 82.8%. (2) In visual few-shot tasks, NoRA achieves the highest average accuracies
of 80.9% (4 shots) and 86.1% (16 shots), outperforming existing methods. (3) The improvements
in inference speed and memory optimization are notable strengths of NoRA, reducing the required
parameters to as low as 4.1 million for the LLaMA-3 8B model while enhancing performance.

A.5 COMPARISON TO OTHER METHODS

(1) While other LoRA variants like AdaLoRA, LoRA-FA, VeRA, and LoRA-XS have made advance-
ments in low-rank adaptation, NoRA distinguishes itself by addressing key limitations in existing
approaches. The unified design space and nested structure of NoRA offer unique advantages in
balancing parameter efficiency and task-specific adaptation. Unlike methods that focus solely on rank
adjustment or activation memory reduction, NoRA’s comprehensive approach to optimization, includ-
ing its AwSVD technique and nested structure, provides a more holistic solution to the challenges of
fine-tuning large language models.
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A.6 SOCIETAL IMPACTS

The development of NoRA has potential societal implications: (1) Democratization of AI: By
reducing computational requirements, NoRA could make fine-tuning large models more accessible to
researchers and organizations with limited resources. (2) Environmental Benefits: Increased efficiency
in model adaptation could lead to reduced energy consumption and carbon footprint associated with
AI research and deployment.

B MORE DETAILED EXPERIMENTS

B.1 MOTIVATION EXPERIMENT RESULTS

Our motivation experiments focused on comparing different initialization strategies and architectural
configurations. Key findings include:

• Figure 6 illustrates a subset of the structures within our unified design framework.

• SVD vs. Random Initialization: As shown in Table 8, SVD consistently outperformed random
initialization across all tested datasets. For instance, in the Fine-tuning Vision-Language
Models task, the maximum difference in average accuracy between SVD initialization and
random initialization across the five datasets is 0.69 and 0.58 for 4-shot and 16-shot scenarios,
respectively.

• AwSVD Performance: As shown in Figure 7, the Activation-aware SVD (AwSVD) method
further improved upon standard SVD, showing about 10% reduction in output errors.

• Architectural Configurations: As shown in Table 9, the CLIP model with LoRA serial config-
uration outperforms the parallel configuration on diverse datasets. The average performance
improvement is 2.5% and 2.55% for 4-shot and 16-shot, respectively. Additionally, compared
to the adapter architecture, the LoRA serial configuration reduces the number of trainable
parameters by 94%, leading to a more efficient parameter utilization.

Table 8: Detailed results for 5 datasets with the ViT-B/16 as visual backbone. Top-1 accuracy
averaged over 3 random seeds is reported. Highest value is highlighted in bold, and the second
highest is underlined.

Shots 4

(WA,WB) Food Pets DTD UCF Cars Average
Random, Random 85.94 93.24 64.07 79.25 73.61 79.22
UΣ,V 87.02 93.70 63.77 79.12 73.39 79.40
U,ΣV 86.69 93.59 64.89 79.75 74.65 79.91
U
√
Σ,

√
ΣV 86.81 93.92 64.18 79.28 73.78 79.59

Shots 16

(WA,WB) Food Pets DTD UCF Cars Average
Random, Random 87.12 94.33 71.28 86.02 84.72 84.69
UΣ,V 87.60 94.49 72.70 86.12 85.46 85.27
U,ΣV 87.44 94.25 72.64 86.62 84.72 85.13
U
√
Σ,

√
ΣV 87.56 94.17 72.40 86.41 85.01 85.11

Table 9: Detailed results for 5 datasets with the ViT-B/16 as visual backbone. Top-1 accuracy
averaged over 3 random seeds is reported. Highest value is highlighted in bold, and the second
highest is underlined. #Param represents the number of trainable parameters.

Shots 4

wa #Param Food Pets DTD UCF Cars Average
LoRA Serial 0.59M 87.02 93.65 66.61 79.73 74.10 80.22
LoRA parallel 0.38M 85.44 93.38 62.35 74.86 72.57 77.72
Adapter Serial 10.62M 86.21 88.36 63.53 77.35 73.64 77.82

Shots 16

wa #Param Food Pets DTD UCF Cars Average
LoRA Serial 0.59M 87.74 94.33 72.40 86.70 87.25 85.68
LoRA parallel 0.38M 86.30 94.36 70.57 85.09 79.31 83.13
Adapter Serial 10.62M 86.80 94.06 70.80 85.70 83.24 84.27

B.2 ADDITIONAL NLP EXPERIMENT RESULTS

Extended results for natural language processing tasks:

• Based on the data in the table, we compared the performance of LoRA and NoRA methods
on commonsense reasoning tasks using the LlaMA 7B model. Notably, NoRA demonstrated
strong performance across multiple tasks, achieving an average score of 75.8%, which is
slightly higher than LoRA’s scores of 74.4% (r=16) and 75.3% (r=32).
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Figure 6: A subset of configurations within the unified design space (wa, wb).
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Figure 7: Comparison of SVD decomposition errors in CLIP text-encoder and vision-encoder across
query projection, key projection, and value projection.

• Question Natural Language Inference: QNLI (Question Natural Language Inference) is a
task from the GLUE (General Language Understanding Evaluation) benchmark. Using the
QNLI dataset, NoRA achieved an accuracy of 94.6%, compared to 94.8% for LoRA and
94.7% for full fine-tuning, while reducing trainable parameters by 91% compared to LoRA
and by 99.8% compared to full fine-tuning (see Table 10).
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Table 10: GLUE Benchmark.

Method Trainable Parameters QNLI

Full FT 355M 94.7
LoRA 800K 94.8
NoRA 70K 94.6

Table 11: Commonsense reasoning on LlaMA 7B

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

LlaMA 7B
LoRAr=16 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.4
LoRAr=32 68.5 81.0 77.4 77.1 79.0 77.8 63.3 77.9 75.3

NoRA 68.1 80.3 76.8 80.6 79.6 80.5 62.6 77.8 75.8

C EXPERIMENTAL SETUP AND HYPERPARAMETERS

C.1 MODEL CONFIGURATIONS

• CLIP ViT-B/16 vision encoder: 86.19 Million parameters, 12 layers, 768 hidden size
• CLIP ViT-B/16 text encoder: 63.43 Million parameters, 12 layers, 512 hidden size
• LLaMA-3 8B: 8 billion parameters, 32 layers, 4096 hidden size
• Mistral-7B: 7 billion parameters, 32 layers, 4096 hidden size
• Gemma-7B: 7 billion parameters, 28 layers, 3072 hidden size

C.2 HARDWARE AND SOFTWARE

• GPUs: 8 x NVIDIA V100S (32GB)
• Framework: PyTorch 1.10.0
• CUDA Version: 11.3

C.3 HYPERPARAMETERS

Instruction Tuning: We perform the instruction tuning experiments on Mistral-7B-v0.1 (Jiang et al.,
2023) , Gemma-7B (Team et al., 2024) and LlaMA-3 8B models. We use a batch size of 128 and train
for 2 epochs on 100k samples of the MetaMathQA dataset. Models are evaluated on the GSM8K and
MATH datasets. The learning rate is set to 7E-3 with the AdamW optimizer (Loshchilov & Hutter,
2017). The warmup ratio is 0.02, and a cosine learning rate scheduler is used. The parameter α for
NoRA modules is always equal to the rank. In NoRA (0.92M), the Outer and Inner LoRA ranks are
64 and 32, respectively. We used 8 × V100S 32GB GPUs for the finetuning

Fine-tuning of Vision-Language Models: Table 12 details our hyperparameter settings for CLIP
ViT-B/16, which remain consistent across all 5 datasets.

Common hyperparameters across experiments:

• Batch size: 32
• Learning rate: 1e-4 (AdamW optimizer)
• Weight decay: 0.01
• Warmup steps: 500
• Max steps: 20,000

Task-specific adjustments:

• GSM8K and Math: Increased max steps to 30,000
• Few-shot CLIP: Reduced batch size to 16, max steps to 5,000

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 12: Our hyperparameter configuration on fine-tuning of Vision-Language model experiments.

Hyperparameters LoRA Serial
Batch size 64

Learning rate 5e-4
Scheduler CosineAnnealingLR
Optimizer AdamW

Weight decay 0.01
Dropout rate 0.25
Placement query, key, value

n_iters 400
(WB ,WA) Init. (UΣ,VS−1)

Outer LoRA rank 256
Inner LoRA rank 16

C.4 EVALUATION METRICS

• NLP tasks: Accuracy, F1 score
• Math reasoning: Pass@1 score
• Few-shot image classification: Top-1 accuracy
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