
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JOINT OR DISJOINT: MIXING TRAINING REGIMES FOR
EARLY-EXIT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Early exits are an important efficiency mechanism integrated into deep neural net-
works enabling the network’s forward pass to terminate early. These methods add
trainable internal classifiers to the backbone network, which, however, changes
the training dynamics. Most early exit methods either train the backbone network
and exit heads simultaneously, or train the heads independently. However, the
impact of this design choice on the overall network performance remains largely
unexplored, as most studies simply select one approach without discussing its im-
plications. In this paper, we analyze the effects of these training strategies on
multi-exit networks, showing that joint training leads to impaired performance at
higher computational budgets, while disjoint training results in suboptimal perfor-
mance at lower budgets. To address these limitations, we propose a mixed training
strategy where the backbone is trained first, followed by the training of the entire
multi-exit network. Our results show that this alternative training regime arrives at
solutions similar to standard static neural networks, yet does not share the disad-
vantages of disjoint training. We further analyze the differences between training
regimes in terms of numerical rank, gradient dominance of each exit, and mutual
information. Comprehensive evaluations across various architectures, datasets,
and early-exit methods show consistent improvements in performance and effi-
ciency using the proposed mixed strategy.

1 INTRODUCTION

Figure 1: Performance-cost trade-off of
the multi-exit network trained using three
regimes considered in this paper. The choice
of training regime impacts the performance
across all computational budgets. (ViT /
CIFAR-100).

Deep neural networks have achieved remarkable re-
sults across a variety of machine learning tasks.
While the depth of these networks significantly con-
tributes to their enhanced performance, the necessity
of using large models for all inputs, especially in
resource-constrained environments like mobile and
edge computing devices, is questionable.

Early exit methods for deep neural networks have
gained importance due to their potential to signif-
icantly improve computational efficiency. By exit-
ing at earlier layers, these methods can decrease the
number of operations needed for computation of the
forward pass, leading to faster inference times. In
doing so they allow the network to adapt its com-
putational cost to the difficulty of the input sample.
Simpler inputs can be processed with fewer layers,
while more complex inputs can utilize the full capacity of the network.

Early exit methods are implemented through augmentation of the original architecture with inter-
nal classifiers (ICs) attached to selected intermediate layers (11). These ICs are designed to perform
classification tasks based on the representations available at their respective positions in the network.
A common approach for training early-exit models involves training the entire multi-exit network,
including the added classifiers, from scratch (9; 33; 19) (”joint” regime). Alternatively, some meth-
ods train the backbone network first, then freeze its weights and train the parameters of the newly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

added ICs in the second, separate phase of training (26; 15; 36) (”disjoint” regime). To the best of
our knowledge, no study compares or explores the relationship between these training regimes.

In this study, we perform an extensive assessment of early-exit regimes and notice the choice of
training strategy has a significant impact on the final model’s performance, as can be seen in Fig. 1.
We identify the relationship between computational budget and the choice of the regime. Using
the disjoint regime results with a network that is significantly impaired when smaller computational
budget is assumed. While the joint regime might initially seem as the appropriate way of training
multi-exit networks, we demonstrate that due to its training dynamics it biases the network and
produces a model with subpar performance on higher computational budgets.

In order to address these weaknesses of multi-exit networks, we propose a novel “mixed” regime:
train the backbone network until convergence, then train the entire model jointly, including the inter-
nal classifiers, until convergence. This approach ensures that the backbone architecture is adequately
trained before optimizing it alongside the internal classifiers for improved performance.

To gain a deeper understanding of learning and optimization in multi-exit architectures, we conduct
an analysis of early-exit models trained under various regimes via mode connectivity, numerical
rank and mutual information We also introduce the gradient dominance metric, and use it to reveal
the set of ICs that have the largest impact on the backbone during training.

We provide a thorough empirical evaluation of early-exit regimes across different network architec-
tures, data modalities, datasets and early-exit methods. Our results show that proposed alternative
strategy enables significant improvements in performance in medium and high budgets over the
commonly used joint training.

2 TRAINING REGIMES

Early exit methods fundamentally alter the organization of neural networks. It is widely believed
that neural networks develop a hierarchical representation of features, where earlier layers learn
basic shapes and patterns, while later layers progressively capture more complex abstractions (35).
In other words, the earlier layers are characterized by higher frequency features while later layers
learn low frequency elements. This regularity is disrupted in the case of early exit architectures as
the backbone network is given additional classifiers that are placed in earlier parts of the network.
These changes in architecture require a different approach for training and more nuanced analysis
how the training should proceed.

In early-exit setting, the parameters can be divided into backbone parameters and internal classifier
(IC) parameters. Each of these two groups of parameters can be trained separately, or jointly. In
this paper, we frame the training process of any early-exit method as consisting of three following
phases:

Phase 1: Train the backbone network parameters θb by minimizing the loss at the final output layer
(could be the last IC or an added final classifier).

θ∗b = argmin
θb

E(xi,yi)∼D

[
L(K)(θb, θ

(K)
IC )

]
(1)

During this phase, θIC are either not present or not trained.

Phase 2. Train both the backbone network and the ICs simultaneously from scratch.

θ∗ = argmin
θ

K∑
k=1

αkE(xi,yi)∼D

[
L(k)(θb, θ

(k)
IC )

]
(2)

Phase 3. Freeze θ∗b and train only the IC parameters θIC .

θ∗IC = argmin
θIC

K∑
k=1

αkE(xi,yi)∼D

[
L(k)(θ∗b , θ

(k)
IC )

]
(3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In practical applications one can also use a set of pre-trained weights instead of training the model
from scratch. Correspondingly, we generalize the early exit training regimes into three types based
on which of the phases are performed:

Disjoint training (Phase 1+3, ”+-+”). The model parameters undergo training during the first and
third phases, that is the backbone architecture is trained first, and then the ICs are trained separately
with the backbone parameters being frozen.

Joint Training (Phase 2, ”-+-”). The training consists only of the second phase in which the entire
model including the IC is trained from scratch. It is currently the most common way of training
early-exit methods (18).

Mixed training (Phase 1+2, ”++-”). The training consists of two phases. The backbone is trained
in isolation first, and then the entire network, including the ICs, is trained jointly. The regime
emphasizes the importance of backbone pre-training as a better way to initialize the architecture for
further training. This is our proposed way to improve early-exit training.

3 UNDERSTANDING MULTI-EXIT TRAINING REGIMES

In this section, we analyze the training dynamics of multi-exit networks. We examine the final
models trained under the three training regimes, and investigate the gradient dominance of each
head during training. In the appendix we also provide the loss landscape visualizations along with
the details of the experimental setup.

3.1 MODE CONNECTIVITY

In this section, we demonstrate that the training dynamics of the proposed mixed regime differ from
the commonly used joint regime, while the dynamics of the disjoint and mixed regimes are more
similar.

We explore mode connectivity theory, which suggests that independently trained models often ex-
hibit similar characteristics. Notably, after training two independent models, it is possible to find
a continuous path in the parameter space where the loss remains low, enabling the models to be
connected without encountering high-loss regions (6).

Figure 2: Mode connectivity between models
trained with different training regimes . Colors
represent the values of loss function, with yel-
low representing high loss (≥ 2.0). Disjoint and
mixed regimes produce similar models, while the
model trained in joint regime lies in a different
basin (ResNet-20, CIFAR-10).

Building on the observation that independently
trained neural networks can be linearly con-
nected in weight space after accounting for
permutation symmetries, as described in (1),
we extend this idea to early-exit architectures
trained under different regimes. Instead of
focusing solely on independently trained net-
works, we investigate early-exit architectures
trained in distinct regimes. Interestingly, the
training regime plays a significant role in deter-
mining the mode connectivity between models.

While the model produced by the joint regime
training occupies a different basin, the models
trained in mixed and disjoint regime are much
more closer to each other, as shown in Fig. 2.
In fact, after accounting for permutation sym-
metries, the loss never gets high during linear
interpolation of their weights, which indicates
that they lie in the same basin.

This indicates that models trained under mixed
and disjoint regimes find solutions that are not
isolated. However, the disjoint regime is more constrained, as it trains only internal classifiers in the
second phase. In contrast, the mixed regime benefits from the possibility of adapting the weights of
the backbone to adjust for the added ICs, which leads to the overall lower loss of the model.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 NUMERICAL RANK

While different regimes may fall into different loss basins, the question arises how that affects the
learning outcome. To build a better understanding of multi-exit models, we look at how the choice of
early-exit training regime influences intermediate representations of the backbone architecture. We
analyze the expressiveness of early-exit architectures under different regimes by means of numerical
ranks of activation maps (17). Mathematically, the rank is evaluated as:

r = Rank(A), A ∈ Rn×m (4)

where A is the activation matrix of dimensions n (number of samples) and m (number of features).

The rank of the internal representations associated with different layers can provide insight into
the “expressiveness”, or capacity of the network. A higher rank (closer to the maximum possible
for a given layer’s matrix dimensions) indicates that the layer can capture more complex patterns
or features in the data, as it implies a greater degree of linear independence among the feature
detectors in that layer. High-rank activations matrices in a network suggest that the network is
utilizing its capacity to learn diverse, high-frequency features, whereas a low rank might indicate
that the network is not fully exploiting its potential.

In this framework, the numerical rank of the backbone architecture is analyzed under different early-
exit regimes. A regular neural network is characterized by higher rank in earlier layers and lower
rank in deeper layers as shown in Fig. 3a. Note that training only the backbone corresponds to
the model obtained in the disjoint regime, as the backbone is not modified in this approach. In
Fig. 3a we can see the change in network expressiveness after adding intermediate classifiers and
training the entire architecture jointly. The numerical rank rises across the layers and becomes more
uniform as consequence. This result indicates that optimal multi-exit models necessitates higher
expressiveness of layers, and training with the disjoint regime prevents this from occurring.

Fig. 3b shows the difference between the network trained with mixed and joint regime. The mixed
regime has a flatter structure with relatively lower ranks earlier and higher ranks later. We hypoth-
esize this since early-exit architecture consists of a set of classifiers placed across the network, the
flatter architecture is desired for better performance across all the classifiers. In contrast, a steeper
curve as in the case of joint regime may resemble more a regular architecture and be less suitable
for early-exit task.

(a) The change in expressiveness of the network from
Phase 1 (backbone) to Phase 2 (backbone+ICs).

(b) Mixed vs joint training. The vertical lines indicate
IC placement.

Figure 3: Numerical ranks of backbone network in early-exit architecture trained with different
regimes.

3.3 GRADIENT DOMINANCE

The use of internal classifiers during training in joint or mixed regime fundamentally alters the
training dynamics, as these classifiers contribute to the overall loss. The gradient update now comes
from multiple classifiers instead of just the final one, as in a standard neural network.

This leads to the following question: which gradients contribute the most to the overall gradient, and
how do the gradients from different classifiers align? To answer this question, we first introduce a

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Joint regime (b) Mixed regime (c) Difference between the regimes.

Figure 4: Gradient dominance for different regimes. Each line indicate how well gradients from
different ICs align with the total gradient over course of the training. The last IC dominates the most
in the mixed regime, which explains its excellent performance on higher computational budgets
(ResNet-50, Tiny ImageNet).

metric called gradient dominance, which computes the cosine similarity between gradient from an
individual internal classifier, gIC, and the overall gradient, gtotal:

gradient dominance(gIC,gtotal) =
gIC · gtotal

∥gIC∥∥gtotal∥

Gradient Dominance measures the consistency of the gradient directions produced by the early-exit
classifiers and evaluates how well gradients from separate classifiers align with the overall gradient
across the entire model. If the cosine similarity is close to 1, the auxiliary classifier’s gradient is
highly aligned with the total gradient, indicating that it potentially dominates other ICs with lower
alignment in its impact on the total gradient.

In Fig. 4 we plot the Gradient Dominance for mixed and joint regimes, highlighting the difference in
the training process between the two. In the mixed regime, deeper classifiers dominate the gradients,
meaning that these early layers are more optimized to support the learning objectives of the later
classifiers, potentially at the expense of earlier ones. Conversely, in the joint regime, the optimization
tends to favor the subnetworks in the middle, where the gradients from the closest classifiers have a
stronger impact.

Consequently, dominating gradients indicate that mixed regime is better optimized for samples that
exit by deeper heads while joint for samples that are easier to classify at earlier ICs. Note that this
observation is in line and with the study of information flow and explains the results of our empirical
evaluation. The fact that the gradient of the last IC dominates the total gradient during almost the
entire training period in the mixed regime explains why it never leaves the basin that models trained
with the disjoint regime occupy.

3.4 MUTUAL INFORMATION.

In the context of neural networks, mutual information between X and Z represents how much
information the input X provides about the internal representation Z after passing through a neu-
ral network. For random variables X and Z, the mutual information is defined as: I(X;Z) =∫
x∈X

∫
z∈Z p(x, z) log p(x,z)

p(x)p(z) dx dz where p(x, z) is the joint probability distribution of X and Z,
and p(x) and p(z) are the marginal distributions of X and Z, respectively. In practical terms, for
neural networks, we use Monte Carlo sampling to estimate I(X;Z) due to the high dimensionality
of feature spaces.

In their work, (10) utilize the concept of mutual information between X and Z (I(X;Z)) in the
framework of the information bottleneck (IB) principle. The IB principle aims to find a balance
between the informativeness of the representation Z for predicting the target variable Y and the
complexity of Z in terms of its mutual information with the input X . Specifically, minimizing
I(X;Z) reduces the complexity and overfitting by ensuring Z retains only the essential information
from X , and maximizing I(Y ;Z) ensures that the representation Z is informative enough to predict
the target variable Y effectively.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Mutual information I(X;Z) between the input X
and the internal representation Z of the backbone at differ-
ent layers of the network for the three considered multi-exit
model training regimes.

Early-exit architectures attach inter-
mediate classifiers (ICs) to internal
layers, altering the distribution of in-
formation flow as seen in Fig. 5. The
effect is two-fold and differs between
earlier and later layers. Earlier lay-
ers. The mutual information between
X and Z is larger compared to a net-
work trained without additional clas-
sifiers. Deeper layers. The mutual in-
formation for early-exit architecture
is lower in the final layers.

The above effect is seen in both
regimes but is more pronounced in the joint regime. The information flow in the joint regime is
more skewed and different from backbone-only training. Backbone training in the mixed regime
makes the information flow fall between backbone-only and joint training. This is due to the fact
that the representation of easy samples is not complex (that is, it is processed with just a few layers
before exiting through an early IC). As the sample is easy, it is clearly and distinctly located within
the boundaries of a single class. To describe it in terms of mutual information, the network does
not need to reduce the complexity of X to fit the internal representation Z, as X has little irrelevant
details. Consequently, the input X is not compressed and the internal representation Z has similar
complexity to the representation of X , hence I(X;Z) is higher.

Following this observation, we note that with higher I(X;Z) in earlier layers, the joint strategy
is more suitable for easy datasets where more samples exit at earlier layers. Similarly, the mixed
regime learns more uniform representation of the I(X;Z) across the network (one may observe an
analogy to the numerical rank results in the Sec. 3.2) and may be preferred for more difficult datasets
that exit at later internal classifiers.

4 EMPIRICAL EVALUATION OF TRAINING REGIMES

Experimental set-up. In this section, we perform tests on the commonly used simple early-exit
method SDN (11), in which sample exits early if the confidence of a classifier is larger than a prede-
fined threshold. We also include, MSDNet – a convolutional neural network architecture designed
specifically for multi-exit models (9). In the next section we test regimes on a range of early-exit
methods. To ensure proper model training, we test different learning rates for pre-training the back-
bone and separately for the next phase of training in each regime, and select the optimal one for each
phase. For proper model convergence in each phase we utilize early-stopping to select a termination
point of the training. This procedure halts training if there is no improvement in validation set ac-
curacy over a specified number of epochs. In appendix we include all the experimental details for
better reproducibility.

(a) Resnet-34 / CIFAR-100 (b) MSDNet / CIFAR-100. (c) ViT / CIFAR-100

Figure 6: Comparison of training regimes for computer vision tasks. See more results in Appendix.

Evaluation plots. In all figures in this section, we assess a model by examining the trade-off be-
tween computational cost (FLOPs) and task performance (accuracy). The plots allow to see the
performance of a training regime across a range of computational budgets.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Comparison of
training regimes for ViT-T /
ImageNet-1k dataset.

Figure 8: Comparison of train-
ing regimes for BERT / SST-2
dataset.

Figure 9: Comparison of train-
ing regimes for BERT / News-
groups dataset.

Figure 10: GPF (15) method
implemented ViT and trained
on CIFAR-100.

Figure 11: Performance of ViT-
B pretrained on ImageNet-1k
and fine-tuned on CIFAR-100.

Figure 12: Alternative exit cri-
terion based on entropy. Train-
ing ResNet-34 on CIFAR-100.

To generate a plot, we set 100 evenly spaced early-exit confidence thresholds, and for each one
we evaluate the model on the test set. We record when a sample achieves confidence threshold
and exits, and then average FLOPs incurred and classification accuracy over all the samples. The
trade-offs are aggregated for each method as a line on a two-dimensional plot, accompanied by its
standard deviation. The standard deviation is calculated by conducting the experiment four times
with different seeds. In the presented figures we also plot points, each one representing the score
of a model with an exit strategy statically fixed to exit at a single particular IC. That is, we force
every sample to exit at that given IC (which determines the FLOP count) instead of exiting by the
threshold criterion.

4.1 EFFICIENCY TRADE-OFFS IN VISION AND NATURAL LANGUAGE PROCESSING.

In Fig. 6 we present the performance of training regimes in two vision settings. We perform experi-
ments on a ResNet-34, (8), MSDNet (9), and vision transformer (ViT) (2) architectures. We attach
multiple ICs to each non-multi-exit model. In all setups, the disjoint regime performs significantly
worse than the other two regimes, particularly under lower computational budgets. This highlights
the dissonance between the features learned in the early layers of the backbone architecture and
the early IC layers, which are trained separately, and do not perform well when merged together.
On the other hand, the mixed and the joint regimes perform competitively with mixed slightly but
consistently outperforming the joint regime. Mixed regime is particularly effective for higher com-
putational budgets where samples are more complex and leave by later classifiers. However, for
extremely low-budgets, joint regime may be preferable.

To test whether the results change when the scale is increased, we perform the same experiment for
a vision transformer model trained on the ImageNet-1k dataset (22). From the results, which we
present in Figure 7, we can see that the findings are mostly similar, with the difference being that the
disjoint regime has similar performance to the mixed regime for the highest computational budgets.

In Figures 8 and 9 we present the performance of the BERT (5) multi-exit models on two natural
language classification tasks. The significant difference is that the disjoint regime has better per-
formance on the later classifiers and achieves the highest accuracy on SST dataset among all the
regimes. SST is arguably the simplest dataset used in our experiments in terms of the complex-
ity of input data and the number of classes. Nevertheless, in both tasks the mixed regime presents
improved results over the joint regime across most of the computational budgets.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 VARYING EARLY-EXIT METHODS, EXIT CRITERIA AND PRETRAINED MODELS

In Fig. 26 we present an example of an alternative method, GPF (15). In appendix we also include
the experiments on PBEE (36) and ZTW (29). The results are consistent with the previous ones, and
again highlight the improvement achieved by training the network in the proposed regime.

In Fig. 27 we repeat the experiment, but on the practical setup where we have a model pre-trained on
a different dataset. Mixed regime still outperforms the remaining two regimes, and achieves superior
performance even on the lowest computational budgets. This means that the mixed regime adapts
well to a pre-training model and can can transfer the features in the course of the second phase joint
training. This finding has positive benefits. It demonstrates the effectiveness of using a pre-trained
model and facilitates the training of an early-exit architecture by enabling the use of a model trained
on a different dataset, even if the dataset is not directly accessible.

Finally, we compare different exit strategies. In all experiments, we employ the commonly used
maximum softmax confidence criterion, which triggers an exit when the probability of the most
likely class exceeds a certain threshold. In Fig. 22, we also present results for an alternative strategy
based on the entropy exit criterion. Entropy is computed over the predicted probability distribution
from the neural network’s softmax output, and an exit occurs when the entropy surpasses a specified
threshold. Though the mixed regime exhibits a slight decline for lower computational budgets, the
conclusions from the other experiments still hold.

4.3 PROPER BACKBONE TRAINING

Figure 13: Performance of models
trained in the mixed regime drops
with undertrained backbone (SDN, ViT,
CIFAR-10).

In this work, we argue that training the backbone first
has a beneficial effect on the early-exit architecture per-
formance. In this section, we look at the effects of un-
dertraining the backbone in the first phase of training on
the performance-score trade-off results of models trained
with the mixed regime.

As shown in Fig. 13, undertraining the backbone nega-
tively affects mixed training setting in a significant way.
We perform the same experiments as previously for our
ViT-B model, but with the backbone trained with a lower,
unoptimal learning rate, which results in an undertrained
backbone after the first phase that achieves on average
77% accuracy. In such case mixed training underper-
forms and joint training yields a better outcome. This
highlights the importance of training the backbone properly.

4.4 IC DENSITY PLACEMENT

The density of placing the internal classifiers in early exit architectures refers to how often these
classifiers are inserted at different layers within the neural network. This can range from being
placed at every layer to being placed at strategic intervals, depending on the architecture and the
specific use case.

This density influences the network’s performance across different training regimes, as shown in
Table 1. When ICs are placed after each layer, the mixed regime outperforms the joint regime,
particularly when accounting for input variation. The mixed regime excels with frequent classifier
placement, making it well-suited for inputs with varying complexity. As placements become less
frequent, the difference between joint and mixed regimes becomes less pronounced. Nevertheless,
the mixed regime generally remains superior, and the disjoint regime performs the worst overall. In
appendix we perform a similar analysis for different head sizes.

4.5 IMPACT OF LOSS AND GRADIENT SCALING

Section 3.3 highlights how the mixed regime effectively emphasizes deeper intermediate classifiers.
A comparable effect can be achieved by assigning larger coefficients to the losses of deeper ICs and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: The effect of varying head placement frequencies on the SDN early-exit architecture with
ViT as a backbone, trained on Imagenette. Heads are placed after every n layers. Given accuracy is
obtained as in (29) using the time budget: 25%, 50%, 75%, 100% of the base network and without
any limit (Max).

n Regime 25% 50% 75% 100% Max

1
mixed 82.21 ±0.08 83.20 ±0.39 83.19 ±0.41 83.19 ±0.41 83.18 ±0.45
joint 81.44 ±1.54 82.51 ±1.40 82.46 ±1.41 82.46 ±1.41 82.45 ±1.40
disjoint 74.69 ±1.08 78.17 ±1.49 78.08 ±1.35 78.07 ±1.31 78.07 ±1.31

2
mixed 79.17 ±0.83 80.98 ±1.35 80.81 ±1.17 80.81 ±1.17 80.80 ±1.17
joint 76.92 ±1.57 80.08 ±1.92 80.24 ±2.07 80.21 ±2.03 80.22 ±2.05
disjoint 73.61 ±0.46 78.24 ±1.14 78.09 ±1.34 78.07 ±1.31 78.07 ±1.31

3
mixed 78.87 ±1.10 80.69 ±1.08 80.64 ±0.96 80.64 ±0.96 80.64 ±0.96
joint 77.83 ±0.27 80.14 ±0.63 80.11 ±0.51 80.10 ±0.51 80.10 ±0.51
disjoint 72.14 ±1.05 77.88 ±1.38 78.11 ±1.41 78.07 ±1.31 78.07 ±1.31

Figure 14: Multi-exit models
trained with loss weights that
change during training (11).

Figure 15: Multi-exit models
with simple loss scaling (7).

Figure 16: Multi-exit models
with gradient scaling (14).

smaller coefficients to earlier ones, as demonstrated in prior work (11; 7). Similarly, the gradient
equilibrium method proposed by Li et al. (14) achieves this prioritization by attenuating the gradient
magnitudes of earlier ICs. In this section, we revisit these approaches within both the joint and mixed
regimes to further substantiate the advantages of the proposed mixed regime.

Kaya et al. (11) introduced a technique that linearly increases loss coefficients during training. In
Figure 14, we evaluate this loss scaling method on a multi-exit ResNet-50 model trained on the
TinyImagenet dataset. Our findings indicate that: (1) for the joint regime, loss scaling enhances
performance at higher computational budgets but leads to reduced performance at lower budgets;
and (2) for the mixed regime, there is no observable improvement, while performance at lower
budgets is still reduced.

We extend our analysis to the constant loss weighting scheme proposed by Han et al. (7). Specif-
ically, this approach maintains an average coefficient of 1, and the coefficients either increase or
decrease linearly along model depth, with first and last coefficient being equal to 0.6 and 1.4. The
results, shown in Figure 15, align with those observed in the previous experiment.

Finally, in Figure 16, we conduct a similar experiment using the gradient equilibrium method pro-
posed by Li et al. (14). Consistent with the findings of the original study, gradient scaling enhances
performance at higher computational budgets for the joint regime without compromising perfor-
mance at lower budgets. However, for the mixed regime, there is again no observable improvement,
highlighting that the straightforward mixed regime training obviates the need for scaling tech-
niques.

5 RELATED WORK

Early exiting is a notable application of the conditional computation paradigm (3). While concep-
tually similar to earlier classifier cascades (32; 27), it differs in that all classifiers are integrated

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

within a single model, enabling end-to-end training. The first multi-exit model was introduced by
Teerapittayanon et al. (26), and the field has expanded considerably since its inception.

Joint training is the most widely used and well-established strategy for early-exit models (18). This
approach has been successfully applied to dynamic inference under various constraints, such as
energy or time limitations (28), and extended to diverse early-exit applications, including low-
resolution classification (31), quality enhancement (33), and Question-Answering systems (25).
While joint training has proven effective, several studies have demonstrated significant improve-
ments through modifications to the training process. For instance, knowledge distillation from the
final classifier to earlier internal classifiers has been shown to enhance their performance (20; 14; 16).
Similarly, ensembling multiple intermediate classifiers can improve prediction accuracy (21; 23).
The Global Past-Future (GPF) method (15) incorporates information from both earlier predictions
and surrogate later predictions to improve inference. Additionally, recent works (7; 34; 4) identify
a train-test mismatch in conventional multi-exit approaches and propose strategies to address this
issue, further enhancing the robustness of early-exit models.

SDN (11) was one of the first to explore the training of early-exit models through the pre-training
of the architecture’s backbone followed by separate training of the classifiers. Multiple subsequent
works have focused on optimizing early-exit models based only on this setup (29; 12; 16), potentially
limiting the general applicability of their findings. For instance, Wołczyk et al. (30) employ an
ensembling technique that combines predictions from earlier internal classifiers, weights of which
are trained in a separate, third training phase. Lahiany et al. (12) propose PTEENet, which augments
pre-trained networks with confidence heads that dynamically adjust based on available resources and
unlabeled data.

Kaya et al. (11) were the first to explore both joint and disjoint training approaches for early-exit
models. These approaches are also briefly reviewed in surveys such as (24; 18). Furthermore,
techniques like weighting the losses at each exit head (36; 11; 7) or scaling gradients (14) can be
regarded as variations of the joint training paradigm. To the best of our knowledge, this work is the
first to directly compare models trained under different regimes and to provide a detailed analysis of
the training dynamics of multi-exit models.

6 CONCLUSION, DISCUSSION AND TAKEAWAYS

This study contributes insights into the training of early-exit models, providing a foundation for
developing more efficient dynamic deep learning systems. The work presents a comprehensive
analysis and evaluation of different training regimes for early-exit models in deep neural networks.
By categorizing training approaches into disjoint, joint, and mixed regimes, we have demonstrated
that the way the backbone and internal classifiers in early-exit architectures are trained influences its
performance and efficiency. Below we summarize some practical takeaways when training early-exit
architectures.

Mixed. Mixed regime demonstrates substantial robustness across various factors, including different
data modalities and early-exit approaches with varying exit criteria. Therefore, the mixed regime is
generally preferred, combining the benefits of both disjoint and joint training. The mixed regime
ensures that the backbone network is well-optimized before integrating internal classifiers, leading
to improved computational efficiency and accuracy. It is particularly recommended for cases where
the performance on medium and higher computational budgets is the most important requirement.

Joint. Joint regime may be preferable as it is relatively simple to implement, and performs well for
small computational budgets. However, it underperforms when the backbone is initialized from a
pre-trained model.

Disjoint. This regime is generally inferior compared to the others in multiple setups, but performs
well for some language datasets with a low number of classes. It may be preferred when the back-
bone is shared, or the lack of resources prevents us from training the backbone network.

Future research should investigate more sophisticated optimization techniques, such as adaptive
learning rates or meta-learning strategies, specifically designed for early-exit models. Moreover,
other training strategies may be proposed where training is tailored to particular sub-networks within
the entire early-exit architecture.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging mod-
els modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

[2] Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv: 2010.11929, 2020.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

[4] Joud Chataoui, Mark Coates, et al. Jointly-learned exit and inference for a dynamic neural
network. In The Twelfth International Conference on Learning Representations, 2023.

[5] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[6] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

[7] Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng Cao, Wenhui Huang,
Chao Deng, and Gao Huang. Learning to weight samples for dynamic early-exiting networks.
In European Conference on Computer Vision, pages 362–378. Springer, 2022.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[9] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Multi-scale dense networks for resource efficient image classification. In International
Conference on Learning Representations, 2018.

[10] Kenji Kawaguchi, Zhun Deng, Xu Ji, and Jiaoyang Huang. How does information bottleneck
help deep learning? In International Conference on Machine Learning, pages 16049–16096.
PMLR, 2023.

[11] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understand-
ing and mitigating network overthinking. In Proceedings of the International Conference on
Machine Learning, ICML, pages 3301–3310, 2019.

[12] Assaf Lahiany and Yehudit Aperstein. Pteenet: Post-trained early-exit neural networks aug-
mentation for inference cost optimization. IEEE Access, 10:69680–69687, 2022.

[13] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[14] Hao Li, Hong Zhang, Xiaojuan Qi, Yang Ruigang, and Gao Huang. Improved techniques for
training adaptive deep networks. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1891–1900, 2019.

[15] Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin He. A global past-future
early exit method for accelerating inference of pre-trained language models. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 2013–2023, 2021.

[16] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-
distilling bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020.

[17] Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pascanu, Piotr Miłoś, and
Tomasz Trzcinski. The tunnel effect: Building data representations in deep neural networks.
Advances in Neural Information Processing Systems, 36, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[18] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early
exiting for deep learning applications: Survey and research challenges. ACM Computing Sur-
veys, 55(5):1–30, 2022.

[19] Lassi Meronen, Martin Trapp, Andrea Pilzer, Le Yang, and Arno Solin. Fixing overconfi-
dence in dynamic neural networks. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2680–2690, 2024.

[20] Mary Phuong and Christoph Lampert. Distillation-based training for multi-exit architectures.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1355–1364,
2019.

[21] Lorena Qendro, Alexander Campbell, Pietro Lio, and Cecilia Mascolo. Early exit ensembles
for uncertainty quantification. In Machine Learning for Health, pages 181–195. PMLR, 2021.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[23] Simone Sarti, Eugenio Lomurno, and Matteo Matteucci. Anticipate, ensemble and prune: Im-
proving convolutional neural networks via aggregated early exits. Procedia Computer Science,
222:519–528, 2023.

[24] Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini. Why should we
add early exits to neural networks? Cognitive Computation, 12(5):954–966, 2020.

[25] Luca Soldaini and Alessandro Moschitti. The cascade transformer: an application for efficient
answer sentence selection. arXiv preprint arXiv:2005.02534, 2020.

[26] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast infer-
ence via early exiting from deep neural networks. In Proceedings of the International Confer-
ence on Pattern Recognition, ICPR, pages 2464–2469, 2016.

[27] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and Joseph E Gon-
zalez. Idk cascades: Fast deep learning by learning not to overthink. arXiv preprint
arXiv:1706.00885, 2017.

[28] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen, Richard Baraniuk,
Zhangyang Wang, and Yingyan Lin. Dual dynamic inference: Enabling more efficient, adap-
tive, and controllable deep inference. IEEE Journal of Selected Topics in Signal Processing,
14(4):623–633, 2020.

[29] Bartosz Wójcik, Marcin Przewieźlikowski, Filip Szatkowski, Maciej Wołczyk, Klaudia
Bałazy, Bartłomiej Krzepkowski, Igor Podolak, Jacek Tabor, Marek Śmieja, and Tomasz
Trzciński. Zero time waste in pre-trained early exit neural networks. Neural Networks,
168:580–601, 2023.

[30] Maciej Wołczyk, Bartosz Wójcik, Klaudia Bałazy, Igor T Podolak, Jacek Tabor, Marek Śmieja,
and Tomasz Trzcinski. Zero time waste: Recycling predictions in early exit neural networks.
Advances in Neural Information Processing Systems, 34:2516–2528, 2021.

[31] Qunliang Xing, Mai Xu, Tianyi Li, and Zhenyu Guan. Early exit or not: Resource-efficient
blind quality enhancement for compressed images. In European Conference on Computer
Vision, pages 275–292. Springer, 2020.

[32] Zhixiang Xu, Matt J Kusner, Kilian Q Weinberger, Minmin Chen, and Olivier Chapelle. Clas-
sifier cascades and trees for minimizing feature evaluation cost. The Journal of Machine Learn-
ing Research, 15(1):2113–2144, 2014.

[33] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive
networks for efficient inference. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2369–2378, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[34] Haichao Yu, Haoxiang Li, Gang Hua, Gao Huang, and Humphrey Shi. Boosted dynamic neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
10989–10997, 2023.

[35] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.

[36] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. BERT loses
patience: fast and robust inference with early exit. arXiv:2006.04152, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LOSS LANDSCAPE

The concept of a loss landscape in the context of neural networks is crucial for understanding the
training dynamics and generalization properties of models. The loss landscape provides a visual and
analytical representation of how the loss function changes with respect to the model’s parameters.
By visualizing the loss landscapes of different neural network architectures, we can understand how
design choices affect the shape of the loss function.

For a trained model with parameters θ∗, one can evaluate the loss function for the numbers x, y

f(x, y) = L(θ∗ + xδ + yη) (5)

such that δ, η are random directions sampled from a probability distribution, usually a Gaussian
distribution, filter-normalized (13), obtaining a 3D plot. In contrast to a typical neural network
architecture, in early-exit set-up, both the final and internal classifiers are considered. We consider
total training loss and separate losses for each IC. When evaluating head losses, we use common
random directions(δ, η) for each IC. The δ, η directions contain both backbone and head parameters.

Figure 17: Training loss landscapes: comparison for Joint, Mixed, and Disjoint regimes (left to
right), head 1. Landscapes for SDN architecture with Resnet20 as backbone, on CIFAR-10 dataset

As shown in Fig. 17 there is a significant difference in loss landscapes between the Disjoint regime
and the Joint one. The Joint and Mixed regimes are similar in this regard.

In Fig. 13 we also include depictions for losses where δ and η are sampled from uniform distribution.
In this setting, mixed regime is characterized by smoother losses compared to joint regime showing
that backbone pre-training may lead to easier optimization problem for early-exit architecture.

B IC SIZE

The size of an internal classifier in early exit architectures refers to the number of layers and neurons
that make up the classifier inserted at intermediate layers of a neural network. The internal classifier
typically consists of a linear layer, such as a fully connected (dense) layer or a small convolutional
block, although there is no standard IC architecture in literature.

The size of the internal classifier directly affects the computational cost of the early exit. Smaller
internal classifiers are computationally cheaper and faster, enabling quick early exits without sig-
nificant overhead. Larger internal classifiers, while potentially more accurate due to their increased
capacity, may negate some of the computational savings achieved by early exits, especially if they
are nearly as large as the remaining layers of the network.

We examine the effect of varying head sizes for the SDN architecture with ViT as the backbone.
Each head architecture consists of either one or two connected layers with output dimensions of
1024 or 2048, followed by a softmax layer. As shown in Table 2, smaller architectures outperform
larger ones. However, for larger architectures, there is a decrease in variation when using the joint
training regime.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The loss landscape for mixed regime.

The loss landscape for joint regime.

Figure 18: The loss landscape with uniform sampling.

Table 2: The effect of varying head architecture size on the SDN early-exit architecture with ViT as
a backbone, trained on Imagenette. Size describes number of layers used and output dimension.

Size Regime 25% 50% 75% 100% Max

1L-1024
mixed 82.21 ±0.08 83.20 ±0.39 83.19 ±0.41 83.19 ±0.41 83.18 ±0.45
joint 81.44 ±1.54 82.51 ±1.40 82.46 ±1.41 82.46 ±1.41 82.45 ±1.40
disjoint 75.61 ±0.10 78.72 ±1.24 78.32 ±1.62 78.29 ±1.63 78.28 ±1.65

2L-1024
mixed 80.25 ±0.59 81.28 ±0.44 81.13 ±0.40 81.13 ±0.40 81.11 ±0.37
joint 80.00 ±0.69 81.06 ±0.57 80.99 ±0.69 80.99 ±0.69 81.00 ±0.68
disjoint 77.41 ±0.39 79.04 ±1.26 78.36 ±1.63 78.29 ±1.63 78.28 ±1.65

2L-2048
mixed 79.63 ±0.67 80.77 ±0.58 80.70 ±0.51 80.70 ±0.51 80.67 ±0.52
joint 79.68 ±0.28 80.67 ±0.08 80.64 ±0.15 80.64 ±0.15 80.61 ±0.13
disjoint 77.10 ±0.40 79.02 ±1.26 78.39 ±1.69 78.30 ±1.65 78.28 ±1.65

C EARLY-EXIT METHODS

We include experiments for additional early-exit method, PABEE (36), which has also alternative
exit-policy, and ZTW (29), which reuses predictions returned by its predecessors.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 23: GPF (15) method
implemented ViT and trained
on CIFAR-10.

Figure 24: Performance of ViT-
B pretrained on ImageNet-1k
and fine-tuned on CIFAR-100.

Figure 25: Alternative exit cri-
terion based on entropy. Train-
ing ResNet-34 on CIFAR-100.

Figure 26: GPF (15) method
implemented ViT and trained
on CIFAR-10.

Figure 27: Performance of ViT-
B pretrained on ImageNet-1k
and fine-tuned on CIFAR-100.

Figure 28: Alternative exit cri-
terion based on entropy. Train-
ing ResNet-34 on CIFAR-100.

Figure 19: PBEE (36) Figure 20: ZTW (29)

Figure 21: ViT / CIFAR-10 / GPF Figure 22: ViT / CIFAR-10 / SDN

D REPRODUCIBILITY AND TRAINING DETAILS

For better reproducibility we include all the details of the experiments and analysis that we per-
formed in this work. Upon publishing this work, we will also release the entire codebase.

D.1 VIT

Model set-up. The model’s hyperparameters include a patch size of 4, a hidden dimension of 256,
7 layers, and 8 heads. We place internal classifiers after 2nd to 7th layers. The backbone achieves
79% accuracy.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Training set-up. During training, we use a batch size of 128 and the AdamW optimizer
with no weight decay. For the backbone, we find learning rate of 5e− 4 to be opti-
mal. For phases 2 and 3 we have performed a search through the following learning rates,
{1e− 3, 1e− 4, 1e− 5, 4e− 3, 8e− 3, 5e− 4, 8e− 4, 4e− 5, 8e− 5}.

D.2 RESNET

Training set-up. In each training session, the SGD optimizer is utilized. For every training,
the batch size is set to 125, and the hyperparameter learning rate is selected as the value from
{8e− 3, 2e− 2, 5e− 2, 8e− 2, 2e− 1} which provide the best test classification performance.

Model set-up. ICs are placed in every other backbone block starting from the fifth block.

D.3 EFFCIENTNET

Training set-up. We use SGD optimizer with cosine scheduler with early stopping with patience
10 epochs, momentum 0.9, batch size of 128 and gradient clipping at norm 1. We have performed
a search through the following learning rates: {3e− 1, 1e− 1, 3e− 2, 1e− 2, 1e− 3, 3e− 3} and
we have found 0.1 to be the best.

D.4 BERT

Training set-up We use AdamW optimizer with cosine scheduler for 10 epochs
for Newsgroup dataset and 5 epochs for SST dataset, batch size of 32, weight de-
cay 0.0001. We have performed a search through the following learning rates,
{1e− 6, 5e− 6, 1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2}

D.5 NUMERICAL RANK

In this experiment, the ResNet-34 model is trained on the CIFAR-100 dataset using cross-entropy
loss. The hyperparameters are taken from the run that provides the best performance when ResNet-
34 is trained as described in subsection 5.1. The SGD optimizer is used with a learning rate of 8e-2,
no learning rate scheduler, and a weight decay of 0.0. The Mixed and Joint regimes are trained using
SDN under the same conditions, but with learning rates that provide the best performance within
their respective regimes. All runs are trained with early stopping. Ranks are computed by creating a
2D matrix from tensors gathered right after the operations on a layer and before activation and batch
normalization. The batch size dimension is kept as the first axis, and the subsequent dimensions are
flattened into a single dimension, where the same 6000 features are randomly selected across the
obtained matrices. The rank is then computed from the obtained matrices. The input used to obtain
the tensors is the entire test set of the CIFAR-100 dataset. Similar results were observed on 10,000
randomly selected examples from the training set, chosen in a stratified manner.

D.6 MUTUAL INFORMATION

In this experiment, the ResNet-34 model is trained on the CIFAR-100 dataset using cross-entropy
loss. The hyperparameters are taken from the run that provides the best performance when ResNet-
34 is trained as described in subsection 5.1. The SGD optimizer is used with a learning rate of 8e-2,
no learning rate scheduler, and a weight decay of 0.0. The Mixed and Joint regimes are trained
using SDN under the same conditions, but with learning rates that provide the best performance
within their respective regimes. All runs are trained with early stopping. Mutual information is
computed as described in the article [4]. The Jensen approximation was used, but similar results
were observed with the Monte Carlo approximation. The input used to obtain the tensors is the
entire test set of the CIFAR-100 dataset. Similar results were observed on 10,000 randomly selected
examples from the training set, chosen in a stratified manner.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.7 LOSS LANDSCAPES

Experiments were performed for SDN architecture, with Resnet-20 as a backbone. The loss was
calculated for the training dataset of CIFAR-10. For each loss landscape plot, the model is evaluated
at 10,000 points in parameters space.

D.8 MODE CONNECTIVITY

Experiments were performed for SDN architecture, with one model checkpoint chosen for each
regime. Checkpoints for Mixed and Disjoint regimes use backbones from different seeds. Back-
bones are of Resnet-20 architecture with widen factor of 32 (1). The loss is calculated on the train-
ing dataset of CIFAR-10. In total, we visualize 22,500 points, each representing loss function for
a model with weights lying in a plane defined by 3 points corresponding to 3 models (obtained by
interpolation). One model is distinguished and is unchanged and other two are functionally equiv-
alent (1) to the corresponding original models (obtained by permuting the weights with the weight
matching algorithm)

18


	Introduction
	Training regimes
	Understanding multi-exit training regimes
	Mode connectivity
	Numerical rank
	Gradient dominance
	Mutual information.

	Empirical evaluation of training regimes
	Efficiency trade-offs in Vision and Natural Language Processing.
	Varying early-exit methods, exit criteria and pretrained models
	Proper backbone training
	IC density placement
	Impact of loss and gradient scaling

	Related Work
	Conclusion, Discussion and Takeaways
	Loss landscape
	IC size
	Early-exit methods
	Reproducibility and training details
	ViT
	Resnet
	EffcientNet
	Bert
	Numerical Rank
	Mutual Information
	Loss landscapes
	Mode connectivity


