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Abstract

Generative flows and diffusion models have been predominantly trained on ordinal
data, for example natural images. This paper introduces two extensions of flows
and diffusion for categorical data such as language or image segmentation: Argmax
Flows and Multinomial Diffusion. Argmax Flows are defined by a composition of
a continuous distribution (such as a normalizing flow), and an argmax function.
To optimize this model, we learn a probabilistic inverse for the argmax that lifts
the categorical data to a continuous space. Multinomial Diffusion gradually adds
categorical noise in a diffusion process, for which the generative denoising process
is learned. We demonstrate that our method outperforms existing dequantization
approaches on text modelling and modelling on image segmentation maps in
log-likelihood.

1 Introduction

(a) Argmax Flow: Composition of a flow p(v) and
argmax transformation which gives the model P (x).
The flow maps from a base distribution p(z) using a
bijection g.

(b) Multinomial Diffusion: Each step p(xt�1|xt) de-
noises the signal starting from a uniform categorical
base distribution which gives the model p(x0).

Figure 1: Overview of generative models.

Many sources of high-dimensional data are cat-
egorical, for example language and image seg-
mentation. Although natural images have been
studied to a large extent with generative flows
and diffusion models, categorical data has not
had the same extensive treatment. Currently
they are primarily modelled by autoregressive
models, which are expensive to sample from
(Cooijmans et al., 2017; Dai et al., 2019).

Normalizing flows are attractive because they
can be designed to be fast both in the evaluation
and sampling direction. Typically, normalizing
flows model continuous distributions. As a re-
sult, directly optimizing a flow on discrete data
may lead to arbitrarily high likelihoods. In lit-
erature this problem is resolved for ordinal data
by adding noise in a unit interval around the dis-
crete value (Uria et al., 2013; Theis et al., 2016; Ho et al., 2019). However, because these methods
have been designed for ordinal data, they do not work well on categorical data.

Other attractive generative models are diffusion models (Sohl-Dickstein et al., 2015), which are fast
to train due to an objective that decomposes over time steps (Ho et al., 2020). Diffusion models
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Table 1: Surjective flow layers for applying continuous flow models to discrete data. The layers
are deterministic in the generative direction, but stochastic in the inference direction. Rounding
corresponds to the commonly-used dequantization for ordinal data.

Layer Generation Inference Applications

Rounding x = bvc v ⇠ q(v|x) with support Ordinal Data
S(x) = {v|x = bvc} e.g. images, audio

Argmax x = argmaxv
v ⇠ q(v|x) with support Categorical Data

S(x) = {v|x = argmaxv} e.g. text, segmentation

typically have a fixed diffusion process that gradually adds noise. This process is complemented by a
learnable generative process that denoises the signal. Song et al. (2020); Nichol and Dhariwal (2021)
have shown that diffusion models can also be designed for fast sampling. Thus far, diffusion models
have been primarily trained to learn ordinal data distributions, such as natural images.

Therefore, in this paper we introduce extensions of flows and diffusion models for categorical variables
(depicted in Figure 1): i) Argmax Flows bridge the gap between categorical data and continuous
normalizing flows using an argmax transformation and a corresponding family of probabilistic
inverses for the argmax. In addition ii) we introduce Multinomial Diffusion, which is a diffusion
model directly defined on categorical variables. Opposed to normalizing flows, defining diffusion for
discrete variables directly does not require gradient approximations, because the diffusion trajectory
is fixed. As a result of our work, generative normalizing flows and diffusion models can directly learn
categorical data.

2 Background

Normalizing Flows Given V = Rd and Z = Rd with densities pV and pZ respectively, nor-
malizing flows (Rezende and Mohamed, 2015) learn a bijective and differentiable transformation
g : Z ! V such that the change-of-variables formula gives the density at any point v 2 V:

pV (v) = pZ(z) ·
����det

dz
dv

���� , v = g(z), (1)

where pZ can be any density (usually chosen as a standard Gaussian). Thus, normalizing flows
provide a powerful framework to learn exact density functions. However, Equation (1) is restricted to
continuous densities.

To learn densities on ordinal discrete data (such as natural images), typically dequantization noise
is added (Uria et al., 2013; Theis et al., 2016; Ho et al., 2019). Nielsen et al. (2020) reinterpreted
dequantization as a surjective flow layer v 7! x that is deterministic in one direction (x = round(v))
and stochastic in the other (v = x+ u where u ⇠ q(u|x)). Using this interpretation, dequantization
can be seen as a probabilistic right-inverse for the rounding operation in the latent variable model
given by:

P (x) =

Z
P (x|v)p(v) dv, P (x|v)=�

�
x= round(v)

�
,

where round is applied elementwise. In this case, the density model p(v) is modeled using a
normalizing flow. Learning proceeds by introducing the variational distribution q(v|x) that models
the probabilistic right-inverse for the rounding surjection and optimizing the evidence lower bound
(ELBO):

logP (x) � Ev⇠q(v|x) [logP (x|v) + log p(v)� log q(v|x)] = Ev⇠q(v|x) [log p(v)� log q(v|x)] . (2)

The last equality holds under the constraint that the support of q(v|x) is enforced to be only over the
region S = {v 2 Rd : x = round(v)} which ensures that P (x|v) = 1.

Diffusion Models Given data x0, a diffusion model (Sohl-Dickstein et al., 2015) consists of prede-
fined variational distributions q(xt|xt�1) that gradually add noise over time steps t 2 {1, . . . , T}.
The diffusion trajectory is defined such that q(xt|xt�1) adds a small amount of noise around xt�1.
This way, information is gradually destroyed such that at the final time step, xT carries almost no
information about x0. Their generative counterparts consists of learnable distributions p(xt�1|xt)
that learn to denoise the data. When the diffusion process adds sufficiently small amounts of noise, it
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Algorithm 1 Sampling from Argmax Flows

Input: p(v)
Output: Sample x
Sample v ⇠ p(v)
Compute x = argmaxv

Algorithm 2 Optimizing Argmax Flows

Input: x, p(v), q(v|x)
Output: ELBO L
Sample v ⇠ q(v|x)
Compute L = log p(v)� log q(v|x)

suffices to define the denoising trajectory using distributions that are factorized (without correlation)
over the dimension axis. The distribution p(xT ) is chosen to be similar to the distribution that the
diffusion trajectory approaches. Diffusion models can be optimized using variational inference:

logP (x0) � Ex1,...xT⇠q

h
log p(xT ) +

TX

t=1

log
p(xt�1|xt)

q(xt|xt�1)

i
.

An important insight in diffusion is that by conditioning on x0, the posterior probability
q(xt�1|xt,x0) = q(xt|xt�1)q(xt�1|x0)/q(xt|x0) is tractable and straightforward to compute,
permitting a reformulation in terms of KL divergences that has lower variance (Sohl-Dickstein et al.,
2015). Note that KL

�
q(xT |x0)|p(xT )

�
⇡ 0 if the diffusion trajectory q is defined well:

logP (x0) � Eq

h
log p(x0|x1)�KL

�
q(xT |x0)|p(xT )

�
�

TX

t=2

KL
�
q(xt�1|xt,x0)|p(xt�1|xt)

�i
(3)

3 Argmax Flows

Argmax flows define discrete distributions using 1) a density model p(v), such as a normalizing flow,
and 2) an argmax layer that maps the continuous v 2 RD⇥K to a discrete x 2 {1, 2, ...,K}D using

x = argmaxv where xd = argmax
k

vdk. (4)

This is a natural choice to model categorical variables, because it divides the entire continuous space
of v into symmetric partitions corresponding to categories in x. To sample from an argmax flow
sample v ⇠ p(v) and compute x = argmaxv (Algorithm 1). To generate reasonable samples,
it is up to the density model p(v) to capture any complicated dependencies between the different
dimensions. While sampling from an argmax flow is straightforward, the main difficulty lies in
optimizing this generative model. To compute the likelihood of a datapoint x, we have to compute

P (x) =

Z
P (x|v)p(v)dv, P (x|v)=�

�
x=argmax(v)

�
, (5)

which is intractable. Consequently, we resort to variational inference and specify a variational
distribution q(v|x). We note that naïvely choosing any variational distribution may lead to samples
v ⇠ q(v|x) where �(x = argmaxv) = 0, which yields an ELBO of negative infinity. To avoid this,
we need a variational distribution q(v|x) that satisfies what we term the argmax constraint:

x = argmaxv for all v ⇠ q(v|x).
That is, the variational distribution q(v|x) should have support limited to S(x) = {v 2
RD⇥K : x = argmaxv}. Recall that under this condition, the ELBO simplifies to
Ev⇠q(v|x) [log p(v)� log q(v|x)], as shown in Algorithm 2. For an illustration of the method
see Figure 1a.

3.1 Probabilistic Inverse

The argmax layer may be viewed as a surjective flow layer (Nielsen et al., 2020). With this view, the
variational distribution q(v|x) specifies a distribution over the possible right-inverses of the argmax
function, also known as a stochastic inverse or probabilistic inverse. Recall that the commonly-used
dequantization layer for ordinal data corresponds to the probabilistic inverse of a rounding operation.
As summarized in Table 1, this layer may thus be viewed as analogous to the argmax layer, where the
round is for ordinal data while the argmax is for categorical data.

We are free to specify any variational distribution q(v|x) that satisfies the argmax constraint. In the
next paragraphs we outline three possible approaches. Since operations are performed independently
across dimensions, we omit the dimension axis and let v 2 RK and x 2 {1, . . . ,K}.
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Algorithm 3 Thresholding-based q(v|x)
Input: x, q(u|x)
Output: v, log q(v|x)
u ⇠ q(u|x)
vx = ux

v�x = threshold(u�x,x)
log q(v|x) = log q(u|x)� log | det dv/ du|

Algorithm 4 Gumbel-based q(v|x)
Input: x, �
Output: v, log q(v|x)
�max = log

P
i exp�i

vx ⇠ Gumbel(�max)
v�x ⇠ TruncGumbel(��x,vx)
log q(v|x) = logGumbel(vx|�max)

+ logTruncGumbel(v�x|��x,vx)

Thresholding (Alg. 3). A straightforward method to construct a distribution q(v|x) satisfying the
argmax constraint is to use thresholding. That is, we first sample an unbounded variable u 2 RK

from q(u|x), which can be for example a conditional Gaussian or normalizing flow. Next, we map u
to v such that element x is the largest:

vx = ux and v�x = thresholdT (u�x) (6)

where the thresholding is applied elementwise with threshold value T = vx. This ensures that
element vx is the largest, and consequently that q(v|x) satisfies the argmax constraint. Note that
we require the threshold function to be bijective, thresholdT : R ! (�1, T ), so that we can
use the change-of-variables formula to compute log q(v|x). In our implementation, thresholding is
implemented using a softplus such that all values are mapped below a limit T :

v = thresholdT (u) = T � softplus(T � u), (7)

where softplus(z) = log(1 + ez) and for which it is guaranteed that v 2 (�1, T ).

Gumbel (Alg. 4). An alternative approach is to let q(v|x) = Gumbel(v|�) restricted to
argmaxv = x, where the location parameters �  NN(x) are predicted using a neural network
NN. The Gumbel distribution has favourable properties: The argmax and max are independent and
the max is also distributed as a Gumbel:

max
i

vi ⇠ Gumbel(�max), (8)

where �max = log
P

i exp�i. For a more extensive introduction see (Maddison et al., 2014; Kool
et al., 2019). To sample v ⇠ q(v|x), we thus first sample the maximum vx according to Eq. 8. Next,
given the sample vx, the remaining values can be sampled using truncated Gumbel distributions:

vi ⇠ TruncGumbel(�i;T ) where i 6= x (9)

where the truncation value T is given by vx which ensures that the argmax constraint vx > vi for
i 6= x is satisfied. Recall that to optimize Eq. 2, log q(v|x) is also required, which can be computed
using the closed-form expressions for the log density functions (see Table 5). Another property of
Gumbel distributions is that

P (argmaxv = i) = exp�i/
X

i

exp�i, (10)

which we use to initialize the location parameters � to match the empirical distribution of the first
minibatch of the data.

Gumbel Thresholding. This method unifies the methods from the previous two sections: Gumbel
distributions and thresholding. The key insight is that the Gumbel sampling procedures as defined
above can be seen as a reparametrization of a uniform noise distribution U(0, 1)K which is put
through the inverse CDF of the Gumbel distributions (see Table 5). From the perspective of change-
of-variables, the log likelihood denotes the log volume change of this transformation. To increase
expressitivity the uniform distribution can be replaced by a normalizing flow q(u|x) that has support
on the interval (0, 1)K , which can be enforced using a sigmoid transformation. This section shows
that a large collection of thresholding functions can be found by studying (truncated) inverse CDFs.
In practice we find that performance is reasonably similar as long as the underlying noise u is learned.
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Behavior of the Variational Posterior Although several methods to learn q have been proposed,
it is unclear what expressitivity is required. In the following, the interactions between q(v|x) and the
density model p(v) are discussed. Recall that the variational bound that is optimized under expectation
of a data distribution D can be seen as minimizing the KL distance between the aggregated posterior
q(v) = Ex⇠Dq(v|x) and the density model p(v), so KL(q(v)|p(v)). There are two distinct reasons
which can cause this distance to be large: Firstly, the density model p(v) may not have the right
probability mass in each argmax region. These desired probabilities solely depend on the data
distribution D. Secondly, the variational posterior q(v|x) may not have the correct shape compared
to p(v), within an argmax region. At initialization, the thresholding within q can create low density
regions at argmax boundaries.

In theory, if p(v) is a universal density approximator, then the model can be fitted for any well-
behaved q(v|x). Then p(v) can even fit the low density regions in the boundaries. This argument
is trivial, as one can simply set p(v) to q(v) = Ex⇠Dq(v|x). In practice, over training steps we
find that q does smooth out these boundary artifacts, and counteracts the thresholding so that the
aggregated posterior becomes smoother.

3.2 Cartesian Products of Argmax Flows

In the current description, Argmax Flows require the same number of dimensions in v as there are
classes in x. To alleviate this constraint we introduce Cartesian products of Argmax Flows. To
illustrate our method, consider a 256 class problem. One class can be represented using a single
number in {1, . . . , 256}, but also using two hexadecimal numbers {1, . . . , 16}2 or alternatively using
eight binary numbers. Specifically, any base K variable x(K) 2 {1, . . . ,K}D can be converted
to a base M variable x(M) 2 {1, . . . ,M}dm⇥D where dm = dlogM Ke. Then the variable x(M)

with dimensionality M · dm · D represents the variable x(K) with dimensionality K · D, trading
off symmetry for dimensionality. Even though this may lead to some unused additional classes, the
ELBO objective in Equation 2 can still be optimized using an M -categorical Argmax Flow. Finally,
note that Cartesian products of binary spaces are a special case where the variable can be encoded
symmetrically into a single dimension to the positive and negative part using binary dequantization
(Winkler et al., 2019). In this case, by trading-off symmetry the dimensionality increases only
proportional to log2 K .

4 Multinomial Diffusion

In this section we introduce an alternative likelihood-based model for categorical data: Multinomial
Diffusion. In contrast with previous sections, xt will be represented in one-hot encoded format
xt 2 {0, 1}K . Specifically, for category k, xk = 1 and xj = 0 for j 6= k. Note that again the
dimension axis is omitted for clarity as all distributions are independent over the dimension axis.
We define the multinomial diffusion process using a categorical distribution that has a �t chance of
resampling a category uniformly:

q(xt|xt�1) = C(xt|(1� �t)xt�1 + �t/K), (11)

where C denotes a categorical distribution with probability parameters after |. Further addition (and
subtraction) between scalars and vectors is done elementwise. This convention kept throughout this
section. Since these distributions form a Markov chain, we can express the probability of any xt

given x0 as:
q(xt|x0) = C(xt|↵̄tx0 + (1� ↵̄t)/K) (12)

where ↵t = 1� �t and ↵̄t =
Qt

⌧=1 ↵⌧ . Intuïtively, for each next timestep, a little amount of uniform
noise �t over the K classes is introduced, and with a large probability (1� �t) the previous value
xt�1 is sampled. Using Equation 11 and 12 the categorical posterior q(xt�1|xt,x0) can be computed
in closed-form:

q(xt�1|xt,x0) = C(xt�1|✓post(xt,x0)), where ✓post(xt,x0) = ✓̃/
KX

k=1

✓̃k

and ✓̃ = [↵txt + (1� ↵t)/K]� [↵̄t�1x0 + (1� ↵̄t�1)/K].

(13)
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Figure 2: Overview of multinomial diffusion. A generative model p(xt�1|xt) learns to gradually
denoise a signal from left to right. An inference diffusion process q(xt|xt�1) gradually adds noise
form right to left.

One of the innovations in Ho et al. (2020) was the insight to not predict the parameters for the
generative trajectory directly, but rather to predict the noise using the posterior equation for q.
Although predicting the noise is difficult for discrete data, we predict a probability vector for x̂0

from xt and subsequently parametrize p(xt�1|xt) using the probability vector from q(xt�1|xt, x̂0),
where x0 is approximated using a neural network x̂0 = µ(xt, t). Equation 13 will produce valid
probability vectors that are non-negative and sums to one under the condition that the prediction x̂0

is non-negative and sums to one, which is ensured with a softmax function in µ. To summarize:

p(x0|x1) = C(x0|x̂0) and p(xt�1|xt) = C(xt�1|✓post(xt, x̂0)) where x̂0 = µ(xt, t) (14)

The KL terms in Equation 3 can be simply computed by enumerating the probabilities in Equation 13
and 14 and computing the KL divergence for discrete distributions in Lt�1 with t � 2:

KL
�
q(xt�1|xt,x0)|p(xt�1|xt)

�
= KL

�
C(✓post(xt,x0))|C(✓post(xt, x̂0))

�
, (15)

which can be computed using
P

k ✓post(xt,x0))k · log ✓post(xt,x0))k
✓post(xt,x̂0))k

. Furtermore, to compute
log p(x0|x1) use that x0 is onehot:

log p(x0|x1) =
X

k

x0,k log x̂0,k (16)

5 Related Work

Deep generative models broadly fall into the categories autoregressive models ARMs (Germain
et al., 2015), Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014),
Adversarial Network (GANs) (Goodfellow et al., 2014), Normalizing Flows (Rezende and Mohamed,
2015), Energy-Based Models (EBMs) and Diffusion Models (Sohl-Dickstein et al., 2015).

Normalizing Flows typically learn a continuous distribution and dequantization is required to train
these methods on ordinal data such as images. A large body of work is dedicated to building more
expressive continuous normalizing flows (Dinh et al., 2017; Germain et al., 2015; Kingma et al.,
2016; Papamakarios et al., 2017; Chen et al., 2018; Song et al., 2019; Perugachi-Diaz et al., 2020). To
learn ordinal discrete distributions with normalizing flows, adding uniform noise in-between ordinal
classes was proposed in (Uria et al., 2013) and later theoretically justified in (Theis et al., 2016).
An extension for more powerful dequantization based on variational inference was proposed in (Ho
et al., 2019), and connected to autoregressive models in (Nielsen and Winther, 2020). Dequantization
for binary variables was proposed in (Winkler et al., 2019). Tran et al. (2019) propose invertible
transformations for categorical variables directly. However, these methods can be difficult to train
because of gradient bias and results on images have thus far not been demonstrated. In addition flows
for ordinal discrete data (integers) have been explored in (Hoogeboom et al., 2019; van den Berg
et al., 2020). In other works, VAEs have been adapted to learn a normalizing flow for the latent space
(Ziegler and Rush, 2019; Lippe and Gavves, 2020). However, these approaches typically still utilize
an argmax heuristic to sample, even though this is not the distribution specified during training.

Diffusion models were first introduced in Sohl-Dickstein et al. (2015), who developed diffusion
for Gaussian and Bernoulli distributions. Recently, Denoising Diffusion models Ho et al. (2020)
have been shown capable of generating high-dimensional images by architectural improvements and
reparametrization of the predictions. Diffusion models are relatively fast to train, but slow to sample
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Table 2: Comparison of a coupling and autoregressive generative flows with uniform (Uria et al.,
2013) and variational (Ho et al., 2019) dequantization and our proposed Argmax flows.

Dequantization Flow type text8 (bpc) enwik8 (bits per raw byte)

Uniform dequantization
Autoregressive

1.90 2.14
Variational dequantization 1.43 1.44
Argmax Flow (ours) 1.38 1.42
Uniform dequantization

Coupling
2.01 2.33

Variational dequantization 2.08 2.28
Argmax Flow (ours) 1.82 1.93

from as they require iterations over the many timesteps in the chain. Song et al. (2020); Nichol
and Dhariwal (2021) showed that in practice samples can be generated using significantly fewer
steps. Nichol and Dhariwal (2021) demonstrated that importance-weighting the objective components
greatly improves log-likelihood performance. In Song et al. (2020) a continuous-time extension of
denoising diffusion models was proposed. After initial release of this paper we discovered that Song
et al. (2020) concurrently also describe a framework for discrete diffusion, but without empirical
evaluation.

6 Experiments

In our experiments we compare the performance of our methods on language modelling tasks and
learning image segmentation maps unconditionally.

6.1 Language data

In this section we compare our methods on two language datasets, text8 and enwik8. text8
contains 27 categories (‘a’ through ‘z’ and ‘ ’) and for enwik8 the bytes are directly modelled which
results in 256 categories.

Model description Two versions of generative argmax flows are tested: using an autoregressive
(AR) flow and a coupling-based flow for p(v). In these experiments the probabilistic inverse is based
on the thresholding approach. Specifically, a conditional diagonal Gaussian q(u|x) is trained and
thresholded which gives the distribution q(v|x). The argmax flow is defined on binary Cartesian
products. This means that for K = 27, a 5-dimensional binary space is used and for K = 256
an 8-dimensional binary space. The argmax flow is compared to the current standard of training
generative flows directly on discrete data: dequantization. We compare to both uniform and variational
dequantization, where noise on a (0, 1) interval is added to the onehot representation of the categorical
data. The autoregressive density model is based on the model proposed in (Lippe and Gavves, 2020).
The coupling density model consists of 8 flow layers where each layer consists of a 1⇥ 1 convolution
and mixture of logistics transformations Ho et al. (2019). In the multinomial text diffusion model, the
µ network is modeled by a 12-layer Transformer. For more extensive details about the experiment
setup see Appendix B.

Table 3: Comparison of different methods on text8 and enwik8. Results are reported in negative
log-likelihood with units bits per character (bpc) for text8 and bits per raw byte (bpb) for enwik8.

Model type Model text8 (bpc) enwik8 (bpb)

ARM 64 Layer Transformer (Al-Rfou et al., 2019) 1.13 1.06
TransformerXL (Dai et al., 2019) 1.08 0.99

VAE
AF/AF? (AR) (Ziegler and Rush, 2019) 1.62 1.72
IAF / SCF? (Ziegler and Rush, 2019) 1.88 2.03
CategoricalNF (AR) (Lippe and Gavves, 2020) 1.45 -

Generative Flow Argmax Flow, AR (ours) 1.39 1.42
Argmax Coupling Flow (ours) 1.82 1.93

Diffusion Multinomial Text Diffusion (ours) 1.72 1.75

? Results obtained by running code from the official repository for the text8 and enwik8 datasets.
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Figure 3: Samples from models, text8.

(a) Samples from the Argmax Flow.

(b) Samples from the Multinomial Diffusion model.

(c) Cityscapes data.

Figure 4: Samples from models, cityscapes.

Comparison with Generative Flows Firstly we compare the performance of generative flows
directly trained on language data (Table 2). These experiments are using the same underlying
normalizing flow: either a coupling-based flow or an autoregressive flow. Note that Argmax Flows
consistently outperform both uniform and variational dequantization. This indicates that it is easier
for a generative flow to learn the lifted continuous distribution using an argmax flow. An advantage of
Argmax flows that may explain this difference is that they lift the variables into the entire Euclidean
space, whereas traditional dequantization only introduce probability density on (0, 1) intervals,
leaving gaps with no probability density. The performance improvements of Argmax flows are even
more pronounced when comparing coupling-based approaches. Also note that coupling flows have
worse performance than autoregressive flows, with a difference that is generally smaller for images.
This indicates that designing more expressive coupling layers for text is an interesting future research
direction.

Comparison with other generative models The performance compared to models in literature is
presented in Table 3 alongside the performance of our Argmax Flows and Multinomial Diffusion. The
latent variable approaches containing autoregressive components are marked using (AR). Although
autoregressive flows still have the same disadvantages as ARMs, they provide perspective on where
performance deficiencies are coming from. We find that our autoregressive Argmax Flows achieve
better performance than the VAE approaches, they outperform AF/AF (Ziegler and Rush, 2019) and
CategoricalNF (Lippe and Gavves, 2020).

When comparing non-autoregressive models, Argmax Flows also outperforms the method that lifts
the categorical space to a continuous space: IAF / SCF (Ziegler and Rush, 2019). Interestingly, the
multinomial text diffusion is a non-autoregressive model that performs even better than the argmax
coupling flow, but performs worse than the autoregressive version. For this model it is possible that
different diffusion trajectories for q would result in even better performance, because in the current
form the denoising model has to be very robust to input noise. These experiments also highlight that
there is still a distinct performance gap between standard ARMs and (autoregressive) continuous
density model on text, possibly related to the dequantization gap (Nielsen and Winther, 2020).
Samples from different models trained on text8 are depicted in Figure 3. Because of difficulties
in reproducing results from Discrete Flows, a comparison and analysis of discrete flows are left out
of this section. Instead they are extensively discussed in Appendix C. For additional experiments
regarding Cartesian products and sampling time see Appendix D.
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(a) Ground truth sequence from text8.
mexico city the aztec stadium estadio azteca home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six
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ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

(b) Corrupted sentence.

mexico city the aztec stadium estadio azteca home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

mexico citi the aztec stadium estadio azteca home of clup amerika is on
e of the world s largest stadioms with capakity to seat approsimately o
ne one zeto zero zero zero fans mexico hosted the footpall wolld cup in
 one nine zeven zero and one nyne eiggt six

mexico city the aztec stadium estadio aztecs home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

(c) Suggested, prediction by the model.

Figure 5: Spell checking with Multinomial Text
Diffusion.

Unsupervised spell-checking An interesting
by-product of the text diffusion model is that it
can be used to spell-check text using a single
forward pass. To demonstrate this, a sentence
taken from the test data is corrupted by chang-
ing a few characters. This corrupted sequence is
given as x1 to the generative denoising model,
which is close to the data at step 0. Then the de-
noising model predicts p(x0|x1) and the most-
likely x0 can be suggested. Note that this model
only works for character-level corruption, not
insertions. An example is depicted in Figure 5.
Since the model chooses the most-likely match-
ing word, larger corruptions will at some point
lead to word changes.

6.2 Segmentation maps

For image-type data, we introduce a categorical image dataset: the cityscapes dataset is repurposed
for unconditional image segmentation learning. In contrast with the standard setting, the distribution
over the segmentation targets needs to be learned without conditioning on the photograph. To reduce
computational cost, we rescale the segmentation maps from cityscapes to 32 ⇥ 64 images using
nearest neighbour interpolation. We utilize the global categories as prediction targets which results in
an 8-class problem.

Table 4: Performance of different dequantization
methods on squares and cityscapes dataset, in bits
per pixel, lower is better.

Cityscapes ELBO IWBO

Round / Unif. (Uria et al., 2013) 1.010 0.930
Round / Var. (Ho et al., 2019) 0.334 0.315

Argmax / Softplus thres. (ours) 0.303 0.290
Argmax / Gumbel dist. (ours) 0.365 0.341
Argmax / Gumbel thres. (ours) 0.307 0.287
Multinomial Diffusion (ours) 0.305

Model description The Argmax Flows are de-
fined directly on the K = 8 categorical space.
The density model p(v) is defined using affine
coupling layers parametrized by DenseNets
(Huang et al., 2017). For the probabilistic in-
verse we learn a conditional flow q(u|x) which
is also based on the affine coupling structure.
Depending on the method, either softplus or
Gumbel thresholding is applied to obtain v. Re-
call that for our first Gumbel approach it is equiv-
alent to set q(u|x) to the unit uniform distri-
bution, whereas q(u|x) is learned for Gumbel
thresholding. We compare to existing dequantization strategies in literature: uniform (Uria et al.,
2013) and variational dequantization (Ho et al., 2019) which are applied on the onehot representation.
All models utilize the same underlying flow architectures and thus the number of parameters is
roughly the same. The exception are uniform dequantization and the Gumbel distribution, since no
additional variational flow distribution is needed. For more extensive details see Appendix B.

Comparison The results of this experiment are shown in Table 4 in terms of ELBO and if available
the IWBO (importance weighted bound) (Burda et al., 2016) with 1000 samples measured in bits
per pixel. Consistent with the language experiments, the traditional dequantization approaches
(uniform / variational) are outperformed by Argmax Flows. Interestingly, although argmax flows
with softplus thresholding achieves the best ELBO, the argmax flow with Gumbel thresholding
approach achieves a better IWBO. The Multinomial Diffusion model performs somewhat worse
with 0.37 bpp on test whereas it scored 0.33 bpp on train. Interestingly, this the only model where
overfitting was an issue and data augmentation was required, which may explain this portion of
the performance difference. For all other models training performance was comparable to test and
validation performance. Samples from the different models trained on cityscapes are depicted in
Figure 4. Another interesting point is that coupling flows had difficulty producing coherent text
samples (Figure 3) but do not suffer from this problem on the cityscapes data which is more image-
like. As coupling layers where initially designed for images (Dinh et al., 2015), they may require
adjustments to increase their expressiveness on text.
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7 Social Impact and Conclusion

Social Impact The methods described in this paper can be used to learn categorical distributions.
For that reason, they can potentially be used to generate high-dimensional categorical data, such
as text or image segmentation maps, faster than iterative approaches. Possibly negative influences
are the generation of fake media in the form of text, or very unhelpful automated chat bots for
customer service. Our work could positively influence new methods for text generation, or improved
segmentation for self-driving cars. In addition, our work may also be used for outlier detection to flag
fake content. Also, we believe the method in its current form is still distant from direct applications
as the ones mentioned above.

Conclusion In this paper we propose two extensions for Normalizing Flows and Diffusion models
to learn categorical data: Argmax Flows and Multinomial Diffusion. Our experiments show that
our methods outperform comparable models in terms of negative log-likelihood. In addition, our
experiments highlight distinct performance gaps in the field: Between standard ARMs, continuous
autoregressive models and non-autoregressive continuous models. This indicates that future work
could focus on two sources of decreased performance: 1) when discrete variables are lifted to a
continuous space and further 2) when removing autoregressive components.

Funding Disclosure
There are no additional sources of funding to disclose, beyond the affiliations of the authors.
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