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Abstract

We study the Logistic Contextual Slate Bandit
problem, where, at each round, an agent selects
a slate of N items from an exponentially large set
(of size 2Ω(N)) of candidate slates provided by the
environment. A single binary reward, determined
by a logistic model, is observed for the chosen
slate. Our objective is to develop algorithms that
maximize cumulative reward over T rounds while
maintaining low per-round computational costs.
We propose two algorithms, Slate-GLM-OFU
and Slate-GLM-TS, that accomplish this goal.
These algorithms achieve NO(1) per-round time
complexity via “local planning” (independent slot
selections), and low regret through “global learn-
ing” (joint parameter estimation). We provide theo-
retical and empirical evidence supporting these
claims. Under a well-studied diversity assump-
tion, we prove that Slate-GLM-OFU incurs only
Õ(
√
T ) regret. Extensive experiments across a

wide range of synthetic settings demonstrate that
our algorithms consistently outperform state-of-
the-art baselines, achieving both the lowest regret
and the fastest runtime. Furthermore, we apply our
algorithm to select in-context examples in prompts
of Language Models for solving binary classifica-
tion tasks such as sentiment analysis. Our approach
achieves competitive test accuracy, making it a vi-
able alternative in practical scenarios.

1 INTRODUCTION

Online slate bandit problems provide a popular framework
for modeling decision-making scenarios where multiple
items must be selected in each round. A slate consists of
multiple slots, each with its own pool of candidate items,
which may change over time. In each round, the learner

selects one item per slot, thereby forming a slate. A single
reward drawn from a logistic model with unknown parame-
ters is then received for the entire slate. The learner’s objec-
tive is to adaptively optimize their slate selection policy to
maximize the cumulative reward (or equivalently, minimize
the cumulative regret) over time. Online slate bandits nat-
urally model various real-world applications. A prominent
example is landing page optimization [Hill et al., 2017],
where the goal is to optimize the selection of components
for each part of a landing page to maximize conversions.
Another important application is the automatic optimization
of advertising creatives [Chen et al., 2021], which requires
advertisers to automatically compose ads from multiple
elements, such as product images, text descriptions, and ti-
tles. Beyond these practical applications, slate bandits have
been extensively studied in the academic literature, leading
to the development of many interesting algorithms in di-
verse settings [Kale et al., 2010, Dimakopoulou et al., 2019,
Rhuggenaath et al., 2020].

Although good progress has been made on a variety of on-
line slate bandit settings, some significant challenges still
remain that limit the applicability of these algorithms. In
applications such as those mentioned above, at each round,
the learner has access to some contextual information (such
as user query, user history, or demographics) which influ-
ences the set of available items per slot. To the best of our
knowledge, the current literature focuses heavily on the
non-contextual (fixed arms1) setting, i.e., they do not as-
sume access to such contexts and therefore keep the set of
items unchanged over time. Another limitation is that most
of the prior work assumes that the reward of a slate is a
function (known or unknown) of rewards of the items in the
slate which are themselves either adversarially chosen or are
stochastic but disjoint from each other (i.e., each item’s re-
ward comes from a different distribution). This assumption
neglects the inherent similarities between items. A more
realistic approach is to assume a unified parametric reward
model shared across all slates. This model allows the learner

1We use the terms arms and actions interchangeably.
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to leverage shared information, significantly simplifying
the learning process. Specifically, for binary rewards, mod-
els based on the logistic or probit function can effectively
capture the reward structure.

A third, and equally important, limitation is the prevalent
focus on the semi-bandit feedback setting. This setting pro-
vides separate reward feedback for each item within a se-
lected slate. However, many practical applications (e.g., the
ad creatives problem [Chen et al., 2021]) offer only a single,
slate-level reward (i.e., bandit feedback). Although there are
some methods for converting bandit feedback to semi-bandit
feedback [Dimakopoulou et al., 2019], these are often heuris-
tic and lack theoretical guarantees. The item-level feedback
in the semi-bandit setting facilitates per-slot exploration
and exploitation, enabling the development of algorithms
with NO(1) per-round complexity (e.g., [Kale et al., 2010,
Rhuggenaath et al., 2020]) by avoiding explicit iteration
over the entire slate space. It remains unclear how to achieve
similar efficiency in the more challenging bandit feedback
setting. For example, directly applying state-of-the-art ban-
dit algorithms [Lattimore and Szepesvári, 2020] to the slate
bandit problem (treating slates as arms) and selecting a slate
by iterating through the 2Ω(N) sized set of all possible slates,
results in exponential per-round time complexity.

Motivated by these challenges, our work introduces efficient
and optimal algorithms for the logistic contextual slate ban-
dit problem under bandit feedback, assuming time-varying
item features and rewards generated from a global logistic
model. We make the following contributions.

1.1 OUR CONTRIBUTIONS

1. We propose two new algorithms Slate-GLM-OFU
and Slate-GLM-TS that solve the logistic con-
textual slate bandit problem under bandit feedback.
While Slate-GLM-OFU is based on the OFU (Op-
timization in the Face of Uncertainty) paradigm,
Slate-GLM-TS follows the Thompson Sampling
(TS) paradigm. Under a diversity assumption (Assump-
tion 2.1), we prove that Slate-GLM-OFU incurs a
regret of Õ(dN

√
T ) with high probability. Here, d is

the dimensionality of the items in the slate, N is the
number of slots and T is the total number of rounds
the algorithm is run for. Both algorithms explore and
exploit at the slot level and thus have a per round time
complexity that grows polynomially in N and log T ,
making them feasible in practice.

2. We also propose a fixed arm version
Slate-GLM-TS-Fixed of the Slate-GLM-TS
algorithm for the non-contextual (fixed arm) set-
ting. Using an assumption similar to Assumption
2.1, we prove an O(d3/2N3/2

√
T ) regret guar-

antee for Slate-GLM-TS-Fixed. Similar to
Slate-GLM-TS, Slate-GLM-TS-Fixed also

explores and exploits at the slot level and has per
round complexity polynomial in N and log T .

3. We perform extensive experiments to validate the
performance of our algorithms for both the con-
textual and the non-contextual settings. Under a
wide range of randomly selected instances, we
see that Slate-GLM-OFU incurs the least regret
compared to all baselines and Slate-GLM-TS,
Slate-GLM-TS-Fixed are competitive with other
state-of-the-art algorithms. We also evaluate the max-
imum and average per round time complexity of our
algorithms and compare it to the time complexities of
the baselines. Our algorithms are exponentially (most
of the time) faster than all baselines.

4. Finally, we use our algorithm Slate-GLM-OFU to
select in-context examples for tuning prompts of lan-
guage models, applied to binary classification tasks.
We perform experiments on two datasets SST2 and
Yelp Review and achieve a competitive test accuracy
of ∼ 80% making it a possible alternative in practical
prompt tuning scenarios.

1.2 RELATED WORK

Online slate bandits have received significant attention due
to their wide applicability in applications such as recom-
mendations and advertising [Hill et al., 2017, Chen et al.,
2021, Dimakopoulou et al., 2019], however, there are only a
few theoretical studies that provide regret guarantees [Kale
et al., 2010, Rhuggenaath et al., 2020]. While these pa-
pers make progress on the slate bandit problem, neither do
they address the contextual setting, nor do they accommo-
date bandit feedback which are the main motivations of our
work. Theoretical analysis might be feasible for the Thomp-
son Sampling approach in Dimakopoulou et al. [2019], but
proving optimal guarantees might still be hard since their
algorithm assigns equal rewards to all slots in order to main-
tain slot level policies for efficiency purposes. However, we
would like to acknowledge that in our experiments (Section
5), for the fixed arms setting, we found their algorithm to be
quite competitive to ours on the instances we considered.

One way of achieving optimal regret guarantees for the slate
bandit problem is to reduce it to the canonical logistic bandit
problem by considering each candidate slate as a separate
arm and then using state of the art algorithms such as those
in [Faury et al., 2020, Abeille et al., 2021, Faury et al., 2022].
While these algorithms do achieve optimal (κ free) regret,
they are infeasible in practice. During the arm selection
step they require an iteration through all the arms which is
a 2Ω(N) sized set, thereby incurring exponential time per
round. Even though these algorithms are inefficient for the
slate bandit problem, we combine some of their key ideas
with an efficient planning approach to design our algorithms.
In Section 5, we demonstrate that our algorithms perform



better than these state of the art logistic bandit algorithms
both in regret and time complexity, when applied to a wide
variety of slate bandit instances.

Recently a large number of works [Swaminathan et al., 2017,
Kiyohara et al., 2024, Vlassis et al., 2024] have studied the
slate bandit problem in the off-policy setting, wherein they
utilize a dataset collected using some base policy to find
optimal slate bandit policies. While these works have made
significant progress both from the theoretical and practical
sides, they are not relevant to our work since we focus on
the online setting only.

2 PRELIMINARIES

In this section, we define the notations used in the paper.
Following this, we formulate the Slate Bandits problem and
present the assumptions that enable us to prove the regret
guarantee provided in Theorem 3.1 and Theorem C.1.

Notations The set {1, 2 . . . , N} is denoted as [N ]. Un-
less otherwise specified, we use bold upper case letters
for matrices, bold lower case letters for vectors, and up-
per case calligraphic symbols or greek letters for sets. For
any matrix A, we denote its minimum and maximum
eigenvalues as λmin(A) and λmax(A) respectively. We
write A ≽ 0, if matrix A is positive semi-definite and
A ≽ B, if A − B ≽ 0. For a positive semi-definite ma-
trix A, we define the norm of a vector x with respect to
A as ∥x∥A =

√
x⊤Ax and the spectral norm of A as

∥A∥2 =
√
λmax (A⊤A). We use Im and 0m to denote

the m ×m identity and zero matrices respectively. When
the dimension m is clear from the context, we use I and
0 instead. The symbols P and E denote probability and
expectation respectively. For sets A,X that are subsets of
some ambient space Rm, we define the diameter of X as
diam(X ) = max

x1,x2∈X
∥x1 − x2∥ and the diameter with re-

spect to A as diamA(X ) = max
a∈A

max
x1,x2∈X

|a⊤(x1 − x2)|.

2.1 SLATE BANDITS

In the Slate Bandits problem, a learner interacts with the
environment over T rounds. At each round t ∈ [T ], the
learner is presented with N finite sets X i

t (⊂ Rd), i ∈ [N ],
of items and is expected to select one item (say xi

t) from
each X i

t . Based on the selected N -tuple xt = (x1
t , . . .x

N
t )

(called a “slate”) the learner receives a stochastic binary
reward yt(xt). The learner’s goal is to select slates xt, t ∈
[T ] such that her expected regret,

Regret(T ) =

T∑
t=1

{
max
x∈Xt

E[yt(x)]− E[yt(xt)]

}

is minimized2. Here, Xt denotes the set X 1
t × . . .×XN

t of
all possible slates at round t. When the chosen slate xt is
clear from the context, for simplicity, we will denote yt(xt)
as yt. For convenience, we say that the slate xt comprises
of N “slots”, and the item xi

t is placed in slot i in the slate.

In this work, we consider two well known settings; (a)
Stochastic Contextual and (b) Non-Contextual (also
known as Fixed-Arm setting). In the first setting, we as-
sume that at every round t ∈ [T ], the set X i

t is constructed
by sampling from a distribution (unknown to the learner) Di,
in an i.i.d fashion. Moreover, X i

t and X j
s are sampled inde-

pendently of one another, for all s, t ∈ [T ] and i, j ∈ [N ]. In
the second setting, we assume X i

t remains fixed over time.
Thus, in this setting, for simplicity, we denote X i

t by X i.

Logistic rewards In this paper, we assume that the binary
reward variable yt comes from a Logistic Model. Therefore,
P[yt = 1 | xt] = µ(x⊤

t θ
⋆), where µ : R→ R is the logistic

function, i.e., µ(a) = 1/(1 + exp(−a)), and θ⋆ ∈ RdN is
an unknown d×N dimensional parameter vector. Similar to
prior works on Logistic bandits [Faury et al., 2020, Abeille
et al., 2021, Faury et al., 2022], we assume that ∥θ⋆∥2 ≤ S,
where S is known to the learner, and

∥∥xi
∥∥
2
≤ 1/

√
N , for all

xi ∈ X i
t , i ∈ [N ], t ∈ [T ]3. Recent logistic bandit literature

[Filippi et al., 2010, Faury et al., 2020, Abeille et al., 2021,
Faury et al., 2022] also identifies a critical parameter κ,
that captures the non-linearity of the reward for the given
problem instance, defined as follows.

κ = max
t∈[T ]

max
x∈Xt,θ∈Θ

1

µ̇(x⊤θ)
(1)

where Θ = {∥θ∥2 ≤ S} ⊂ RdN . The parameter κ can be
intuitively seen as the mismatch between the true reward
function and a linear approximation of the same. Devel-
oping algorithms with regret independent of κ has gained
significant attention recently [Faury et al., 2020, Abeille
et al., 2021, Faury et al., 2022, Sawarni et al., 2024] and is
an active area of research. We refer the reader to Section 2
of Faury et al. [2020] for a thorough discussion on κ and its
implications on regret analysis.

Assumption 2.1. (Diversity Assumption) We describe a
key assumption that enables us to design algorithms with
low per-round computational complexity and strong regret
guarantees (Theorem 3.1 in Section 3 and Theorem C.1 in
Appendix C). Let Ft be the sigma algebra generated by
{x1, y1, . . . ,xt−1, yt−1} and ϕ = F0 ⊂ F1 ⊂ . . .FT , be
the associated filtration. For each i ∈ [N ], t ∈ [T ], we
assume that,

E[xi
t | Ft] = 0 and E[xi

tx
i
t

⊤ | Ft] ≽ ρκI

2We also use R(T ) for shorthand.
3This implies the usual assumption ∥x∥2 ≤ 1 for all x ∈ Xt.



where ρ > 0 is a fixed constant and κ is the non-linearity
parameter defined earlier in Section 2.

Remarks on Assumption 2.1: The assumption intuitively
means that for each slot i ∈ [N ] and round t ∈ [T ], the item
features xi

t that can be selected by the algorithm are suffi-
ciently “diverse”, i.e., the expected matrix E[xi

tx
i
t
⊤ | Ft]

is full rank and has sufficiently large eigenvalues. In our
proofs, this assumption is used to first prove that with high
probability the minimum eigenvalue of certain design ma-
trices Wi

t = γI +
∑

s∈[t] µ̇(x
⊤
s θs+1)x

i
sx

i
s
⊤ used by our

algorithms (Algorithms 1, 3, 4) grows (sufficiently) linearly
with t. In particular, we show that (Lemma D.1, Appendix
D) λmin(W

i
t) ≥ γ + cρκt, for a fixed constant c > 0. We

critically utilize this linear growth of the minimum eigen-
value (Lemma B.9, Appendix B.1 and Lemma C.2, Ap-
pendix C.2) to prove multiplicative equivalence between
the block diagonal matrix Ut = diag(W1

t , . . . ,W
N
t )

and a similarly defined slate-level design matrix Wt =
γI+

∑
s∈[t] µ̇(x

⊤
s θs+1)xsx

⊤
s . As a result of this multiplica-

tive equivalence, we are able to use slot level exploration
bonuses4 (leading to low per round time complexity in Algo-
rithms 1, 3 and 4), and still continue to have optimal regret.
Details of the algorithm and the regret proof can be found in
Sections 3, 4 and Appendix C. We would like to highlight
that many similar diversity assumptions have been used in
the literature and connections between them have also been
studied (Section 3 Papini et al. [2021]). Depending on the
strength of the assumption, novel and stronger regret guar-
antees for well-known algorithms have been established,
(e.g., Lemma 2, Papini et al. [2021] and Corollary 4, Das
and Sinha [2024]). Interestingly, their regret proofs also
proceed by first showing a linear lower bound on the mini-
mum eigenvalue of the design matrix. Since the assumption
is instance/algorithm dependent, there could be instances
where the linear lower bound might not hold. To study this,
we empirically examine the growth of the minimum eigen-
values (λmin(W

i
t)) for a large number of randomly chosen

instances and see a clear linear trend validating the assump-
tion, at least for these randomly picked instances. More
details can be found in Appendix G.

3 SLATE-GLM-OFU

In this section, we present our first algorithm
Slate-GLM-OFU (Algorithm 1) based on the OFU
(Optimization in the Face of Uncertainty) paradigm
[Abbasi-yadkori et al., 2011] used in bandit algorithms. At a
high level, Slate-GLM-OFU (along with sub-routine Al-
gorithm 2) builds upon the ada-OFU-ECOLog algorithm
(Algorithm 2 in Faury et al. [2022]) which achieves an
optimal (κ-free) O(

√
T ) regret guarantee for logistic reward

models and incurs O(K log T ) per round computational

4Instead of slate level exploration.

Algorithm 1 Slate-GLM-OFU
1: Inputs: T, δ, S
2: Initialize W1

1 = . . . = WN
1 = Id, W1 = IdN , Θ1 =

{∥θ∥2 ≤ S}, θ1 ∈ Θ1, ηt(δ) = O(S2Nd log(t/δ)),
andH1 = ∅

3: for each round t ∈ [T ] do
4: Obtain the set of items X i

t , ∀i ∈ [N ], and find xi
t =

argmaxx∈X i
t
⟨x⊤θit⟩+

√
ηt(δ) ∥x∥(Wi

t)
−1

5: Select slate xt = (x1
t , . . . ,x

N
t ) and get reward yt.

6: Obtain θt+1, {Wi
t+1}Ni=1, Θt+1, Ht+1 by calling

Algorithm 2 with inputs xt, yt, θt, Wt, {Wi
t}Ni=1,

Θt,Ht

7: end for

Algorithm 2 ada-OFU-ECOLog-Updates

1: Inputs: xt, yt,θt,Wt, {Wi
t}Ni=1,Θt,Ht

2: Initialize γt(δ) = O(S2Nd log(t/δ)) and βt(δ) =
O(S6Nd log(t/δ)).

3: Compute θ̄t, θ0t , and θ1t using 3 and 4
4: if µ̇(x⊤

t θ̄t) ≤ 2µ̇(x⊤
t θ

u
t ) for u ∈ {0, 1} then

5: Let θt+1 be solution of 5 up to precision 1/t.
6: Wi

t+1 = Wi
t + µ̇(x⊤

t θt+1)x
i
tx

i
t
⊤, ∀i ∈ [N ]

7: Wt+1 = Wt + µ̇(x⊤
t θt+1)xtxt

⊤

8: Ht+1 = Ht and Θt+1 = Θt

9: else
10: Ht+1 = Ht ∪ {(xt, yt)}.
11: Let θHt+1 be solution of 6 up to precision 1/t.
12: VH

t =
∑

x∈Ht
xx⊤/κ+ γt(δ)INd

13: Θt+1 =
{∥∥θ − θHt+1

∥∥2
VH

t
≤ βt(δ)

}
∩Θ1

14: θt+1 = θt, Wt+1 = Wt, Wi
t+1 = Wi

t, ∀i ∈ [N ]
15: end if
16: return θt+1,Wt+1, {Wi

t+1}Ni=1,Θt+1,Ht+1

cost, where K is the total number of actions to choose
from. In the slate bandit setting, K is exponential in N , the
number of slots in the slate, making a direct application
of ada-OFU-ECOLog infeasible when N is large. To
address this, Slate-GLM-OFU selects an item for each
slot independently, reducing the per round computational
cost to NO(1). Interestingly, despite the independent
selection of items to build the slate, Slate-GLM-OFU
(via sub-routine Algorithm 2) estimates only a single
reward model using the slate level reward feedback. This
is a critical difference with respect to prior works on slate
bandits with bandit feedback [Dimakopoulou et al., 2019]
which attribute the single slate level reward feedback to
individual items in the slate and estimates N separate
reward models.

Input to Slate-GLM-OFU are T, δ and S, where T is
the time horizon i.e., the total number of rounds, δ is
the error probability and S is a known upper bound for
∥θ⋆∥2. Similar to ada-OFU-ECOLog [Faury et al., 2022],



Slate-GLM-OFU maintains vectors θt, and sets Θt and
Ht. The vector θt provides an estimate of θ⋆ during the
tth round. Set Θt ⊆ Θ1 = {∥θ∥2 ≤ S} is an admissi-
ble set for the values of θt+1 and contains the true reward
parameter θ⋆ with high probability (See Proposition 7 in
Faury et al. [2022] for more details). In order to facilitate
adaptivity, ada-OFU-ECOLog introduced the setHt com-
prising pairs (xs, ys(xs)) (s ≤ t) at which an inequality
criterion (described in Step 3 of Algorithm 2) fails. In addi-
tion to these, ada-OFU-ECOLog also introduces a matrix
Wt = λI+

∑t−1
s=1 µ̇(x

⊤
s θs+1)xsx

⊤
s as on-policy proxy for

the concentration matrix Ht = λI+
∑t−1

s=1 µ̇(x
⊤
s θ

⋆)xsx
⊤
s ,

to enable efficient per round computation of parameter es-
timates. In Slate-GLM-OFU, along with Wt, we also
maintain N other such matrices (one for each slot i ∈ [N ]),
Wi

t = λI +
∑t−1

s=1 µ̇(x
⊤
s θs+1)x

i
sx

i
s
⊤. These matrices help

us in the explore-exploit trade-off while selecting the item
for the ith slot.

Next we go through the steps of Slate-GLM-OFU (Al-
gorithm 1) and its sub-routine (Algorithm 2) to pro-
vide a more detailed explanation. Steps 3-7 (Algorithm
1) is where Slate-GLM-OFU differs significantly from
ada-OFU-ECOLog. Instead of getting the set of arm fea-
tures Xt (slates in our case) directly from the environment
(as in ada-OFU-ECOLog), Slate-GLM-OFU receives
N different sets of items X i

t , for each slot i ∈ [N ]. Then, it
picks one item xi

t ∈ X i
t , using the optimistic rule mentioned

in Step 4 (Algorithm 1). Note that, the underlying optimiza-
tion problem for slot i, only requires the candidate items in
X i

t and the components θit of θt that correspond to the ith

slot, and thus, can be solved independently and in parallel
for all slots. Why the selection of items independently at
the slot level leads to optimal selection at the slate level
is quite interesting and constitutes the core technical part
of our regret guarantee (Theorem 3.1). Essentially, we can
show that, under our diversity assumption (Assumption 2.1),
the positive definite matrices Wt and diag(W1

t , . . . ,W
N
t )

are multiplicatively equivalent, further implying that, for
all slates xt = (x1

t , . . . ,x
N
t ), the quantities ∥xt∥Wt

and∑
i∈[N ]

∥∥xi
t

∥∥
Wi

t
are multiplicatively equivalent. This obser-

vation is exploited in our algorithm to convert an optimistic
selection rule at the slate level into an equivalent optimistic
selection rule for each slot. In Step 5 (Algorithm 1), we
select the slate xt = (x1

t , . . . ,x
N
t ), yielding a reward yt.

At this point, Slate-GLM-OFU calls a sub-routine de-
scribed in Algorithm 2 which updates the parameters θt,
Wt, (W1

t , . . . ,W
N
t ), Θt, and Ht. The update rules in Al-

gorithm 2 largely follow the one in ada-OFU-ECOLog,
which is based on the following inequality criterion.

µ̇(x⊤
t θ̄t) ≤ 2min{µ̇(x⊤

t θ
0
t ), µ̇(x

⊤
t θ

1
t )} (2)

Here θ̄t,θ
0
t ,θ

1
t ∈ RdN , are Ft-adapted parameters that

enable adaptivity. They are obtained as follows.

θ̄t = argmin
θ∈Θt

η ∥θ − θt∥2Wt
+

∑
u∈{0,1}

ℓ(x⊺
t θ, u)

 (3)

θut = argmin
θ∈Θt

[
η ∥θ − θt∥2Wt

+ ℓ(x⊺
t θ, u)

]
(4)

where ℓ(x, y) = −y logµ(x)− (1−y) log(1−µ(x)) is the
cross entropy loss and η = (2 + diam(Θt))

−1. When the
inequality in 2 holds, θt,Wt and Wi

t (i ∈ [N ]) are updated
as described in Steps 4-6 (Algorithm 2). First, in Step 4,
θt+1 is computed by solving the following optimization
problem up to a precision of 1/t.

θt+1 = argmin
Θt

[
η ∥θ − θt∥2Wt

+ ℓ(x⊺
t θ, yt)

]
(5)

Following this, Wi
t (i ∈ [N ]) and Wt are updated in Step

5 and Step 6 as per their definitions provided earlier. When
the inequality in 2 does not hold, Ht and Θt are updated
as described in Steps 9-12 (Algorithm 2). In Step 9, since
the inequality criterion failed, Ht is updated to Ht+1 by
appending the pair (xt, yt) to it. Using Ht+1, in Step 10,
another estimate θH

t+1 of θ⋆ is computed by minimizing the
regularized cross-entropy loss (up to a precision 1/t).

θHt+1 = argmin
∑

(x,y)∈Ht+1

ℓ(x⊺θ, r) + γt(δ) ∥θ∥22 (6)

Using this estimate, and a design matrix VH
t computed

in Step 11, in Step 12 the set Θt is updated to Θt+1 by
taking an intersection between a confidence set of radius
βt(δ) = O(dN log(t/δ)) around the new estimate θH

t+1

(that contains θ⋆ with probability 1− δ) and the initial set
Θ1 = {∥θ∥2 ≤ S}. In Lemma 8, Faury et al. [2022] show
that |HT | = Õ(κdNS6). The rounds corresponding toHT ,
therefore, incur at most Õ(κdNS6) regret.

In Theorem 3.1, we provide a regret guarantee for
Slate-GLM-OFU and present its proof in Appendix B.1.

Theorem 3.1 (Regret of Slate-GLM-OFU). Let T de-
note the set of rounds until round T where the inequality
condition in 2 fails, i.e., T = {s ∈ [T ] : (xs, ys) ∈ HT }.
Let x⋆,t = argmaxx∈Xt

µ(x⊤θ⋆), be the optimal slate at
round t ∈ [T ]. Under the diversity assumption (Assumption
2.1), at the end of T rounds, with probability at least 1− 6δ,
the regret R(T ) of Slate-GLM-OFU satisfies,

R(T ) = Õ

(
SdN

√∑
t/∈T

µ̇(x⊤
⋆,tθ

⋆) + S6d2N2κ

)

Remark: Let T be as defined in Theorem 3.1. The
per-round time complexity of Slate-GLM-OFU is
O((dN log t)2) for rounds t ∈ [T ] \ T and it is O(Ndt)
for rounds t ∈ T . Lemma 8 in Faury et al. [2022] implies
that |T | = O(κdNS6). Thus, the O(Ndt) per-round com-
plexity is incurred for only these many rounds.



4 SLATE-GLM-TS

In this section, we present our second algorithm,
Slate-GLM-TS (Algorithm 3) based on the Thompson
Sampling paradigm [Thompson, 1933, Russo et al., 2018]
used in bandit algorithms. Slate-GLM-TS builds upon
the TS-ECOLog algorithm (Algorithm 3 in Appendix D.2,
Faury et al. [2022]) while adapting to the changing action
sets using the update strategy in Algorithm 2. TS-ECOLog
adapts the Linear Thompson Sampling algorithm from
Abeille and Lazaric [2017] (Figure 1 in Abeille and Lazaric
[2017]) that perturbs the estimated parameter vector by
adding an appropriately transformed noise vector sampled
from a suitable multivariate distribution DTS satisfying
some nice properties (See Definition 1 of Abeille and
Lazaric [2017]). Following this, the optimal action (slate
in our case) with respect to the new perturbed parameter
vector is chosen. While TS-ECOLog also achieves an op-
timal O(

√
T ) regret guarantee for logistic reward models

(for fixed action sets), similar to ada-OFU-ECOLog it
also incurs per round computational cost proportional to
the number of actions K (recall K = 2Ω(N) in our setting)
due to its selection at the slate level. To circumvent this,
Slate-GLM-TS operates at the slot level and for each slot
i ∈ [N ], it perturbs the components of the estimated pa-
rameter vector (corresponding to the ith slot) using a noise
vector sampled independently of all other slots. This is fol-
lowed by selecting the optimal items for each slot indepen-
dently, thereby incurring an NO(1) per round time complex-
ity in choosing the slate. While the items for each slot are
independently determined, similar to Slate-GLM-OFU,
Slate-GLM-TS also estimates a single reward model and
updates the parameter vector for this model jointly using
the slate level reward yt, by employing the update strategy
in Algorithm 2.

Input to Slate-GLM-TS are T, δ, S and DTS , where T
is the time horizon i.e., the total number of rounds, δ is
the error probability, S is a known upper bound for ∥θ⋆∥2
and DTS is a multivariate distribution satisfying properties
in Definition 1 in Abeille and Lazaric [2017]. During the
course of the algorithm, Slate-GLM-TS maintains vec-
tors θt, matrices Wt, Wi

t (i ∈ [N ]) and sets Θt,Ht with
exactly the same definition as in Slate-GLM-OFU.

Next, we go through the steps of Slate-GLM-TS (Al-
gorithm 3). Steps 3-10 is where Slate-GLM-TS differs
significantly from TS-ECOLog. Instead of getting the set
of arm features Xt (slates in our case) directly from the en-
vironment (as in TS-ECOLog), Slate-GLM-TS receives
N different sets of items X i

t , i ∈ [N ] in Step 4. While
TS-ECOLog samples one noise vector η ∈ RdN fromDTS

and perturbs the estimated parameter vector θt by adding
(a scalar multiple of) (Wt)

−1/2η, Slate-GLM-TS inde-
pendently samples N such vectors η1, . . . ,ηN and perturbs
the components θi

t of θt = (θ1
t , . . . ,θ

N
t ) (corresponding

to the item features in the ith slot) to θ̃i
t ∈ Rd by adding

to it (a scalar multiple of) (W i
t )

−1/2ηi (Step 7 and 8). The
algorithm continues to sample these noise vectors until the
perturbed vector θ̃t = (θ̃1

t , . . . , θ̃
N
t ) belongs to the admissi-

ble set Θt. Once this happens, in Step 11, it picks the item
xi
t ∈ X i

t , which is optimal with respect to the perturbed
parameter vector θ̃i

t. Note that, the underlying optimiza-
tion problem for slot i, only requires the candidate items
in X i

t and the perturbed vectors θ̃it, and thus, can be solved
independently and in parallel for all slots.

In Step 12, we select the slate xt = (x1
t , . . . ,x

N
t ), yield-

ing a reward yt. At this point, Slate-GLM-OFU calls a
sub-routine described in Algorithm 2 which performs up-
dates to θt, Wt, (W1

t , . . . ,W
N
t ), Θt,Ht. We make a few

additional remarks about Slate-GLM-TS below.

Algorithm 3 Slate-GLM-TS

1: Inputs: T, δ, S,DTS

2: Initialize W1
1 = . . . = WN

1 = Id, W1 = IdN , Θ1 =
{∥θ∥2 ≤ S}, θ1 ∈ Θ1, ηt(δ) = O(S2Nd log(t/δ)),
andH1 = ∅

3: for each round t ∈ [T ] do
4: Obtain the set of items X i

t , ∀i ∈ [N ]
5: Set reject = True
6: while reject do
7: Sample η1, . . . , ηN

iid∼ DTS

8: Define θ̃it = θit + ηt(δ)(W
i
t)

−1/2ηi, ∀i ∈ [N ]
9: If θ̃t = (θ̃1t , . . . , θ̃

N
t ) ∈ Θt, reject = False

10: end while
11: For each i ∈ [N ], find item xi

t = argmax
x∈X i

t

x⊺θ̃it

12: Select slate xt = (x1
t , . . . ,x

N
t ) and get reward yt

13: Obtain θt+1, Wt+1, (W1
t+1, . . . ,W

N
t+1), Θt+1,

Ht+1 by calling Algorithm 2 with inputs xt, yt, θt,
Wt, (W1

t , . . . ,W
N
t ), Θt,Ht

14: end for

Remark: It’s easy to see that the per round time complex-
ity of Slate-GLM-TS is N(d log T )O(1). This is signifi-
cantly lower than that of TS-ECOLog which runs in time
exponential in N . The improvement comes as a result of the
slot-level selection in Slate-GLM-TS. This along with
the efficient estimation of θt in Algorithm 2, ensures that
the algorithm has low per-round time complexity making it
useful in practical scenarios. This is validated by our Syn-
thetic and Real-World experiments in Section 5. We also
observe that in almost all experiments we performed, the
regret of Slate-GLM-TS was quite competitive and bet-
ter than most baselines. Even though we do not provide a
theoretical guarantee for the regret of Slate-GLM-TS,
in Appendix C.1, we provide a fixed-arms version of
Slate-GLM-TS called Slate-GLM-TS-Fixed which
operates in the non-contextual setting, like TS-ECOLog
i.e., the action (slate) features do not change over time. It



uses the short warm-up procedure from TS-ECOLog and
the slot-level selection technique from Slate-GLM-TS
resulting in a per round time complexity linear in N .
By utilizing the multiplicative equivalence of Wt and
diag(W 1

t , . . . ,W
N
t ) that we showed in the proof of Theo-

rem 3.1 (using the diversity assumption (Assumption 2.1)),
and adapting the proof of TS-ECOLog (Theorem 5, Faury
et al. [2022]), we prove an optimal (O(

√
T )) dependence

on the number of rounds T . For brevity, we discuss details
of Slate-GLM-TS-Fixed (Algorithm 4) and its regret
guarantee (Theorem C.1) in Appendix C.1.

5 EXPERIMENTS

In this section, we perform a wide range of syn-
thetic (Experiments 1,2,3) and real-world experiments
(Experiment 4) to demonstrate the empirical performance
of our algorithms Slate-GLM-OFU, Slate-GLM-TS
and Slate-GLM-TS-Fixed. Details of each experiment
are in the respective paragraphs.5

Experiment 1 (R(T ) vs. T , Contextual Setting):
In this experiment, we compare our algorithms
Slate-GLM-OFU and Slate-GLM-TS to their
counterparts ada-OFU-ECOLog (Algorithm 2, Faury et al.
[2022]) and TS-ECOLog (Section D.2, Faury et al. [2022]).
These are the only logistic bandit algorithms that achieve
optimal (κ−free) regret and are also computationally
efficient (O((log T )2) per round time complexity). We
perform experiments for the following two settings.

Finite Contexts: We assume the contexts come from the
set C = {1, . . . , C}. For each c ∈ C and i ∈ [N ], a set of
itemsX i,c is constructed before hand by randomly sampling
K vectors from the d−dimensional ball with radius 1/

√
N .

At each round t, a context c is sampled uniformly at random
from C and the sets X 1,c, . . . ,XN,c are presented to the
learner.

Infinite Contexts: At each round t ∈ [T ], and for each
slot i ∈ [N ], set X i

t is constructed by sampling K vectors
randomly from the d−dimensional ball with radius 1/

√
N .

The learner is then presented with X i
t .

For the finite context setting, we fix C = 5. For both settings,
we fix the number of slots N = 3, the number of items
per slot K = 5, and the dimension of item features to
d = 5. To simulate the reward, we select θ⋆ by randomly
sampling from [−1, 1]15. We run our algorithms by varying
the time horizon T in {1000, 5000, 10000, 15000, 20000}.
For each T , we average the regret obtained at the end of T
rounds over 20 diferent seeds used to sample the rewards.

5The codes for the experiments can be found at
https://github.com/tanmaygoyal258/Logistic_
Slate_Bandits.git and https://github.com/
tanmaygoyal258/Prompt_Optimization_Slate_
Bandits.git

The results for the Finite and Infinite context settings are
shown in Figures 1a and 1b respectively. We can see that
in both instances, Slate-GLM-OFU performs the best,
while Slate-GLM-TS performs on par with TS-ECOLog.
Further, in Section F of the appendix, we report the average
results along with two standard deviations.

Experiment 2 (Per-Round Time vs. N ): In this ex-
periment, we compare the average and maximum time
taken (per round) by our algorithms Slate-GLM-OFU
and Slate-GLM-TS, with respect to their counterparts
ada-OFU-ECOLog and TS-ECOLog [Faury et al., 2022]
respectively6. While doing this comparison, we vary the
number of slots N in the set {3, . . . , 6}. The number of
items (K = |X i

t |) per slot is fixed to 7 and the dimen-
sion d of each item is fixed to 5. The item features are
selected by randomly sampling from [−1, 1]5 and normal-
ized to have norm 1/

√
N . For each N ∈ {3, 4, 5, 6}, we

select a different reward parameter vector θ⋆ by randomly
sampling from [−1, 1]5N . Note that the number of possi-
ble slates is KN and thus, varying N in {3, 4, 5, 6} results
in 343, 2401, 16807, and 117649 slates respectively. We
perform this experiment in the infinite context setting (See
Experiment 1 for details). We run all the algorithms for
T = 1000 rounds and average the results over 10 different
seeds for sampling rewards. We the average per round run-
ning time in Figure 1d and maximum per round running
time in Figure 1e. As expected, we observe much lower run-
ning times for Slate-GLM-OFU and Slate-GLM-TS
compared to their counterparts. Moreover, the plots also in-
dicate exponential growth in the per-round running time for
both ada-OFU-ECOLog and TS-ECOLog. Further, there
is a significant gap between the maximum and average per-
round time of Slate-GLM-OFU and Slate-GLM-TS,
implying that the actual per-round time for these algorithms
is generally much lower than their maximum values. In
Section F of the appendix, we report the results with two
standard deviations, along with each algorithm’s average
time for choosing an arm to pull and updating its parameters
speerately.

Experiment 3 (R(T ) vs. T , Non-Contextual Set-
ting): In this experiment, we compare our algo-
rithms Slate-GLM-OFU, Slate-GLM-TS, and
Slate-GLM-TS-Fixed (Algorithm 4, Appendix C) to a
number of state-of-the-art baseline algorithms, in the non-
contextual setting, i.e., the set of candidate slates remains
fixed throughout the course of the algorithm. Like previous
experiments, our baselines include ada-OFU-ECOLog
and TS-ECOLog from Faury et al. [2022]. However, for
the non-contextual setting, we also include other state-of-
the-art baselines such as the MPS algorithm (Algorithm 3,
Dimakopoulou et al. [2019]) and the Ordered Slate
Bandit algorithm (Figure 3, Kale et al. [2010]). The

6The per-round time is calculated as the sum of the per-round
pull and per-round update times.

https://github.com/tanmaygoyal258/Logistic_Slate_Bandits.git
https://github.com/tanmaygoyal258/Logistic_Slate_Bandits.git
https://github.com/tanmaygoyal258/Prompt_Optimization_Slate_Bandits.git
https://github.com/tanmaygoyal258/Prompt_Optimization_Slate_Bandits.git
https://github.com/tanmaygoyal258/Prompt_Optimization_Slate_Bandits.git
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Figure 1

latter is designed for semi-bandit feedback, and hence,
we adapt it to the bandit feedback setting as explained in
Appendix F. We fix the number of slots N to 3 and the
number of items in each slot K = |X i

t | to 5. The dimension
d of items for each slot is fixed to 5. The items for each
slot are randomly sampled from [−1, 1]5 and normalized
to have norm 1/

√
3, while θ⋆ is randomly sampled from

[−1, 1]15 and normalized. We run all the algorithms for
T ∈ {1000, 5000, 10000, 20000, 30000, 40000, 50000}
rounds and average the results over 50 different seeds for
sampling rewards. The rewards are shown in Figure 1c.
We see that Slate-GLM-OFU has the best performance,
with the only algorithm having comparable performance
being MPS. Also, Slate-GLM-TS performs worse than
ada-OFU-ECOLog and MPS while being on par with
TS-ECOLog. In Section F, we showcase the average results
with two standard deviations, which also demonstrates that
MPS showcases a high variance in results, hence, being less
reliable in practice.

Experiment 4 (Prompt Tuning): In this experi-
ment, we apply our contextual slate bandit algorithm
Slate-GLM-OFU to select in-context examples for tuning
prompts of Language Models, applied to binary classifica-
tion tasks. Typically, for such applications, a labeled training
set of (input query, output label) pairs is used to learn poli-
cies of editing different parts of the prompt (instruction,
in-context examples, verbalizers) [Zhang et al., 2022] de-
pending on a provided test input query. To simplify our task,

we fix the instruction and the verbalizer and only select N
in-context examples from an available pool of K examples.
There are N available positions (slots) in the prompt. Given
a test input query (context), we create context-dependent
features for the K pool examples and independently select
one (with repetition) per slot. This matches the contextual
slate bandit problem setting (See Section 2) and therefore
Slate-GLM-OFU can be applied. We experiment on a
sampled subset of size 5000 from two popular sentiment
analysis datasets, SST2 and Yelp Review. We randomly or-
der the set and use about ∼ 80% (4128 for SST2, 4000
for Yelp Review) of them for “warm-up” training and the
remaining 20% for testing. Like most prompt tuning ex-
periments [Zhang et al., 2022], we report our results only
on the test set, however, our algorithm continues to learn
throughout the 5000 rounds. The warm-up rounds help us
to start with a good estimate of the hidden reward parameter
vector. We fix N = 4 and vary K in the set {8, 16, 32}.
All the slots choose an example from the same K-sized
example pool. At each round, given an input query q that
needs to be solved for, item features for each in-context
example e = (x, y), is constructed by embedding each of
q, x, and y into 64 dimensions [Nussbaum et al., 2024] and
concatenating them, thereby resulting in a 192-dimensional
item feature vector. After selecting the 4 items (slate), the re-
sulting prompt (also containing the input query q) is passed
through the RoBERTa [Zhuang et al., 2021] model and a
possible answer for q is generated. Hence, we are learning



to choose best the in-context examples for RoBERTa. At
each round, we use GPT-3.5-Turbo to provide feedback (bi-
nary, 0 or 1) for the generated answer. This is treated as the
reward for the chosen slate and utilized by the rest of the
Slate-GLM-OFU algorithm. Figure 1f shows the increase
in cumulative accuracy as we sequentially proceed through
the 5000 data points in the Yelp Review dataset. The data
points to the left of the dotted blue line are the warm-up
points and those to the right are the test points. We can see
that the cumulative accuracy increases consistently as we
sequentially proceed through the points. Also, on the test
set, the accuracy stays well above 80%. We vary K in the
set {8, 16, 32} and report test accuracy for both datasets in
Table 1. It can be seen that the cumulative test accuracies
for Slate-GLM-OFU are much higher compared to the
Random Allocation baseline where each in-context example
is chosen randomly and no learning is performed. Also, we
see that the accuracy generally increases when the pool size
increases since better examples can be available. We do see
a small dip for the Yelp Review dataset when K increases
from 16 to 32 and hypothesize that this may be happening
due to more exploration.

Pool
Size

SST2 Yelp Review
Random Slate-GLM-OFU Random Slate-GLM-OFU

8 54.22 69.15 62.90 74.00
16 54.46 80.96 63.30 82.50
32 53.82 81.42 62.00 79.50

Table 1: Prompt Tuning Test Accuracy

6 CONCLUSIONS

We proposed three algorithms Slate-GLM-OFU,
Slate-GLM-TS, Slate-GLM-TS-Fixed for the
slate bandit problem with logistic rewards. While the
first two work in both the contextual and non-contextual
settings, the third is designed for the non-contextual setting.
All our algorithms perform explore-exploit at the slot
level, making their average per round time complexity
logarithmic in the number of candidate slates. By building
on algorithms from Faury et al. [2022], the average time
per round is also logarithmic in the number of rounds
T . As a result, our algorithms run much faster than
state of the art logistic bandit algorithms (having 2Ω(N)

per round time complexity). We also show that under a
popular diversity assumption (Assumption 2.1), which
we also empirically validate, Slate-GLM-OFU and
Slate-GLM-TS-Fixed achieve κ independent Õ(

√
T )

regret, making them both optimal and computationally
efficient.
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A GENERAL NOTATIONS AND RESULTS

This section presents some general notations and results for the logistic function that would be used throughout the Appendix.
For a matrix A, let λmax (A) and λmin (A) denote the maximum and minimum eigenvalue of A respectively. Similarly, we
define σmax (A) and σmin (A) to be the maximum and minimum singular values respectively. We also define the following
functions, borrowed from Faury et al. [2022]:

1. γt(δ) = O(S2Nd log(t/δ))

2. βt(δ) = O(S6Nd log(t/δ))

3. ηt(δ) = O(S2Nd log(t/δ))

Claim A.1. Let µ : R → R be the logistic function, i.e., µ(x) = 1/(1 + exp(−x)) and µ̇, µ̈ be the first and second
derivative of µ. The following are true.

1. |µ̈(x)| ≤ µ̇(x), ∀x ∈ R
2. µ̇(x) ≤ µ̇(y) exp(|x− y|), ∀x, y ∈ R

Definition A.1. Let µ̇ be the derivative of the logistic function. Define functions α : R× R→ R and α̃ : R× R→ R as
follows.

1. α(x, y) =
1∫
0

µ̇(x+ v(y − x)) dv

2. α̃(x, y) =
1∫
0

(1− v)µ̇(x+ v(y − x)) dv

Definition A.2. (Exact Taylor Expansion for the Logistic Function) The logistic function µ(x) can be expanded using an
Exact Taylor Expansion as follows:

µ(x) = µ(y) + µ̇(y)(x− y) +

1∫
0

(1− v)µ̈(x+ v(y − x)) dv(x− y)2

Definition A.3. (Mean Value Theorem for the Logistic Function) The logistic function µ can be expanded using the Mean
Value theorem as follows:

µ(x) = µ(y) + α(x, y)(x− y)

Recall the following notations from Section 3:
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1. Wt = I +
t−1∑
s=1

µ̇(x⊤
s θs+1)xsx

⊤
s

2. W i
t = I +

t−1∑
s=1

µ̇(x⊤
s θs+1)x

i
sx

i
s
⊤

3. V H
t = γt(δ)I +

∑
x∈Ht

xx⊤/κ

We define the following additional matrices.

1. Ut = diag(W 1
t , . . . ,W

N
t )

2. W i,j
t =

t−1∑
s=1

µ̇(x⊤
s θs+1)x

i
sx

j
s
⊤

3. V H,i
t = γt(δ)I +

∑
x∈Ht

xixi⊤/κ

4. V H,i,j
t = γt(δ)I +

∑
x∈Ht

xixj⊤/κ

5. UH
t = diag(V H,1

t , . . . ,V H,N
t )

B SLATE-GLM-OFU

Let xi ∈ Rd, we define the “lift“ x̃i ∈ RdN , of xi as follows,

x̃i(j) =

{
0 if j /∈ [(i− 1)d, id− 1]

x(j − (i− 1)d) otherwise

In other words, consider x̃i to be a vector with N slots of dimension d, such that the ith slot is xi while the rest of the
slots are assigned the zero vector. Then, for any vector z = (z1, . . . ,zN ) ∈ RdN , with zi ∈ Rd, ∀i ∈ [N ], we get that
z = z̃1 + . . .+ z̃N .

Let T0 ∈ N be a constant (depending on N and ρ) such that ∀t ≥ T0, t ≥ 3+2ρN
3ρ2 (N − 1)2 log

(
2dNT

δ

)
. We assume that the

total rounds T satisfies T ≥ T0.

We now prove that the regret for Slate-GLM-OFU can be bounded above by the quantity mentioned in Theorem 3.1
(restated and expanded below). Define the following events:

E1 =

{
∀i, j ∈ [N ], i ̸= j,∀t ∈ [T ] :

∥∥∥W i,j
t

∥∥∥ ≤√ t

2N2
log

(
dN(N − 1)

δ

)
and

∥∥∥V H,i,j
t

∥∥∥ ≤√ 8t

κ2N2
log

(
dN(N − 1)

δ

)}

E2 =

{
∀i ∈ [N ],∀t ∈ [T0, T ] : λmin

(
V i
t

)
≥ 1 +

ρt

2
and λmin

(
V H,i
t

)
≥ γt(δ) +

ρt

2

}

E3 =
{
∀t ∈ [T ], ∥θ⋆ − θt+1∥2Wt+1

≤ CS2d log(t/δ) and θ⋆ ∈ Θ
}

E = E1 ∩ E2 ∩ E3
Theorem B.1 (Regret of Slate-GLM-OFU). At the end of T (≥ T0) rounds and assuming event E holds, the regret of
Slate-GLM-OFU is bounded by

Regret(T ) ≤ T0 + CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)

+ (1 + κ)CS2N2d log(T/δ)κ

(
d log(T/4N) +

1

ρ
log(T )

)
+ CS6N2d2κ log(T/δ) log(T/κN)



Proof. Recall from Section 3 that T is the set of all rounds in [T ], where the inequality condition in Step 2 of Algorithm 2
does not hold. Using the bound on |T | provided in Lemma B.15, we get that,

Regret(T ) ≤ |T |+
∑
t/∈T

µ(x⋆
t
⊤θ⋆)− µ(x⊤

t θ
⋆) ≤ CS6d2κ log(T/δ) log(T/κN) +R(T )

where x⋆
t = argmaxx∈Xt

µ(x⊤θ⋆) and R(T ) =
∑

t/∈T µ(x⋆
t
⊤θ⋆)− µ(x⊤

t θ
⋆).

Now, recall from event E that all our good events are defined for t ∈ [T0, T ] (where T0 is some constant in N and ρ) . Hence,
for rounds t ≤ T0, we can trivially bound the regret as T0.

Now, we shift our attention to t ∈ [T0, T ]. From here on, we assume that t ∈ [T0,T].

Now, expanding R(T ) using an exact Taylor expansion (Definition A.2) along with the fact that |µ̈(.)| ≤ µ̇(.) gives us,

R(T ) ≤
∑
t/∈T

µ̇(x⊤
t θ

⋆)(x⋆
t − xt)

⊤θ⋆ +
∑
t/∈T

α̃(x⋆
t
⊤θ⋆,x⊤

t θ
⋆)((x⋆

t − xt)
⊤θ⋆)2

So we bound R(T ) by bounding the two quantities R1(T ) =
∑

t/∈T µ̇(x⊤
t θ

⋆)(x⋆
t − xt)

⊤θ⋆ and R2(T ) =∑
t/∈T α̃(x⋆

t
⊤θ⋆,x⊤

t θ
⋆)((x⋆

t − xt)
⊤θ⋆)2 separately.

Bounding R1(T ): To bound R1(T ), we define T1 = {t ∈ [T0, T ] : t /∈ T and µ̇ (x⊺
t θ

⋆) ≥ µ̇ (x⊺
t θt+1)} and T2 = {t ∈

[T0, T ] : t /∈ T and µ̇ (x⊺
t θ

⋆) ≤ µ̇ (x⊺
t θt+1)}. Note that, T1 ∩T2 = ϕ, and [T0, T ] \ T = T1 ∪T2. Bu summing over rounds

in T1 we obtain,

∑
t∈T1

µ̇ (x⊺
t θ

⋆) (x⋆
t − xt)

⊺
θ⋆ (i)

=
∑
t∈T1

[µ̇ (x⊺
t θt+1) + µ̈ (zt) (x

⊺
t θ

⋆ − x⊺
t θt+1)] (x

⋆
t − xt)

⊺
θ⋆

for some zt between x⊤
t θ

⋆ and x⊤
t θt+1. Here, (i) follows from the mean value theorem. Let R1(T )1 =∑

t∈T1

µ̇ (x⊺
t θt+1) [(x

⋆
t − xt)

⊺
θ⋆] and R1(T )2 =

∑
t∈T1

µ̈(z) (x⊺
t θ

⋆ − x⊺
t θt+1) (x

⋆
t − xt)

⊺
θ⋆. We bound these separately.



R1(T )1 =
∑
t∈T1

µ̇(x⊤
t θt+1)

[
(x⋆

t − xt)
⊤
θ⋆
]
≤
∑
t∈T1

µ̇(x⊤
t θt+1)µ̇(zt)(x

⋆
t
⊤θ⋆ − x⊤

t θ
⋆)

(i)

≤
∑
t∈T1

µ̇(x⊤
t θt+1)

{
|x⋆

t
⊤θ⋆ − x⋆

t
⊤θt|+ |x⊤

t θ
⋆ − x⊤

t θt|+ x⋆
t
⊤θt − x⊤

t θt

}
(ii)

≤
∑
t∈T1

µ̇(x⊤
t θt+1)

{
∥x⋆

t ∥W−1
t

√
ηt(δ) + ∥xt∥W−1

t

√
ηt(δ) +

N∑
i=1

(
x̃⋆,i
t − x̃i

t

)⊤
θt

}
(iii)

≤
∑
t∈T1

µ̇(x⊤
t θt+1)

{
N∑
i=1

√
ηt(δ)

(
∥x⋆,i

t ∥(W i
t )

−1 + ∥xi
t∥(W i

t )
−1

)
+

N∑
i=1

(
x̃⋆,i
t − x̃i

t

)⊤
θi
t

}
(iv)

≤
∑
t∈T1

µ̇(x⊤
t θt+1)

{
N∑
i=1

√
ηt(δ)

(
∥x⋆,i

t ∥(W i
t )

−1 + ∥xi
t∥(W i

t )
−1

)
+

N∑
i=1

(√
ηt(δ)∥xi

t∥(W i
t )

−1 −
√
ηt(δ)∥x⋆,i

t ∥(W i
t )

−1

)}

≤ C
√

ηT (δ)
∑
t∈T1

µ̇(x⊤
t θt+1)

N∑
i=1

2∥xi
t∥(W i

t )
−1 ≤ C

√
ηT (δ)

√∑
t∈T1

µ̇ (x⊺
t θt+1)

√√√√√∑
t∈T1

(
N∑
i=1

√
µ̇ (x⊺

t θt+1)
∥∥xi

t

∥∥
(W i

t )
−1

)2

(v)

≤ C
√

ηT (δ)

√∑
t∈T1

µ̇ (x⊺
t θt+1)

√
Nd log(T/4N) +M(T )

(vi)

≤ C
√

ηT (δ)
√

Nd log(T/4N) +M(T )

√∑
t∈T1

µ̇ (x⊺
t θ

⋆)

(vii)

≤ C
√
ηT (δ)

√
Nd log(T/4N) +M(T )

√R(T ) +

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)


(viii)

≤ CSN1/2d1/2
√

Nd log(T/4N) +M(T )
√

log(T/δ)

√R(T ) +

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)



where M(T ) =
∑
t∈T1

N∑
i=1

N∑
j=1;j ̸=i

µ̇ (x⊺
t θt+1)

∥∥xi
t

∥∥
(W i

t )
−1

∥∥∥xj
t

∥∥∥
(W j

t )
−1

.

Here, (i) follows from the fact that µ̇(.) ≤ 1, (ii) follows from an application of the Cauchy-Schwarz inequality and the fact
that θt and θ⋆ ∈ Ct(δ), (iii) follows from a direct application of Lemma B.10 and the definition of x̃i, (iv) follows from the

UCB rule, i.e since in slot i, xi
t was chosen, we have xi

t
⊤
θi
t +

√
ηt(δ)

∥∥xi
t

∥∥
(W i

t )
−1 ≥ x⋆,i

t

⊤
θi
t +

√
ηt(δ)

∥∥∥x⋆,i
t

∥∥∥
(W i

t )
−1

,

(v) is a direct application of Lemma E.4 on
√
µ̇ (x⊺

t θt+1)x
i
t and the fact that

∥∥∥√µ̇ (x⊺
t θt+1)x

i
t

∥∥∥
2
≤ 1

2
√
N

, (vi) holds due

to the definition of T1, (vii) follows from Lemma B.14, and (viii) follows from ηt(δ) ≤ CS2Nd log(T/δ).

Turning to M(T ), we can bound the term using Rayleigh′s quotient and Lemma B.6 (since event E0 holds) as follows:

M(T ) =
∑
t∈T1

N∑
i=1

N∑
j=1;j ̸=i

µ̇ (x⊺
t θt+1)

∥∥xi
t

∥∥
(W i

t )
−1

∥∥∥xj
t

∥∥∥
(W j

t )
−1

(i)

≤
∑
t∈T1

N∑
i=1

N∑
j=1;j ̸=i

µ̇ (x⊺
t θt+1)

∥∥xi
t

∥∥
2

∥∥∥xj
t

∥∥∥
2

√
λmax

(
W i

t

)−1
λmax

(
W j

t

)−1

(ii)

≤
∑
t∈T1

N∑
i=1

N∑
j=1;j ̸=i

1

4N

1√
λmin

(
W i

t

)
λmin

(
W j

t

) (iii)

≤ N2

4N

∑
t∈T1

1

1 + ρt
2

(iv)

≤ N

2ρ
log(T )

Here, (i) follows from Rayleigh′s Quotient, (ii) follows from µ̇ (x⊺
t θt+1) ≤ 1

4 and
∥∥xi

t

∥∥
2
≤ 1√

N
, (iii) follows from a

direct application of Lemma B.6, and (iv) follows from the sum of Harmonic Series.



Thus, we get

R1(T )1 ≤ CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√R(T ) +

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)



The bound on R1(T )2 is as follows:

R1(T )2 =
∑
t∈T1

µ̈(zt) (x
⊺
t θ

⋆ − x⊺
t θt+1) (x

⋆
t − xt)

⊺
θ⋆

(i)

≤ C
√

ηt(δ)
∑
t∈T1

|(x⊺
t θ

⋆ − x⊺
t θt+1)|

N∑
i=1

2
∥∥xi

t

∥∥
(W i

t )
−1

(ii)

≤ C
√
ηt(δ)

∑
t∈T1

(
N∑
i=1

∥∥x̃i
t

∥∥
W−1

t
∥θ⋆ − θt+1∥Wt

)
N∑
i=1

2
∥∥xi

t

∥∥
(W i

t )
−1

(iii)

≤ C
√

ηt(δ)
∑
t∈T1

(
N∑
i=1

∥∥x̃i
t

∥∥
W−1

t
∥θ⋆ − θt+1∥Wt+1

)
N∑
i=1

∥∥xi
t

∥∥
(W i

t )
−1

(iv)

≤ Cηt(δ)
∑
t∈T1

(
N∑
i=1

∥∥xi
t

∥∥
(W i

t )
−1

)2

(v)

≤ Cηt(δ)κ
∑
t∈T1

(
N∑
i=1

∥∥∥∥√µ̇ (x⊺
t θt+1)x

i
t

∥∥∥∥
(W i

t )
−1

)2
(vi)

≤ Cηt(δ)κ

(
Nd log(T/4N) +

N

2ρ
log T

)
(vii)

≤ CS2Ndκ log(T/δ)

(
Nd log(T/4N) +

N

2ρ
log T

)

Here, (i) follows in the same manner as the regret bound for rounds t ≤ T0, and uses the fact that |µ̈(.)| ≤ 1, (ii) is obtained
by an application of Cauchy-Schwarz followed by triangle inequality, (iii) follows using the fact that θ̃i

t,θ
⋆ ∈ Ct(δ) and

Wt ≼ Wt+1, (iv) follows since θt+1,θ
⋆ ∈ Ct+1(δ) and from Lemma B.10, (v) follows from the definition of κ, i.e κ ≥

1
µ̇(x⊺θ) , (vi) follows similar to the technique used in bounding R1(T )1, and (vii) follows from ηt(δ) ≤ CS2Nd log(T/δ).

Similarly, summing over all indices in T2, we get:

∑
t∈T2

µ̇ (x⊺
t θ

⋆) (x⋆
t − xt)

⊺
θ⋆

(i)

≤
∑
t∈T2

√
µ̇ (x⊺

t θ
⋆)
√
µ̇ (x⊺

t θt+1) (x
⋆
t − xt)

⊺
θ⋆

(ii)

≤ CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√R(T ) +

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)



Here, (i) follows from the definition of T2, (ii) follows using the same steps as followed for R1(T )1.

Combining all the bounds on R1(T ), we get,

R1(T ) ≤ CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√R(T ) +

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)


+ CS2N2dκ log(T/δ)

(
d log(T/4N) +

1

ρ
log(T )

)



We now bound R2(T ).

R2(T ) =
∑
t/∈T

∫ 1

0

(1− v)µ̇ (vx⊺
t θ

⋆ + (1− v)x⋆
t
⊺θ⋆) dv ((x⋆

t − xt)
⊺
θ⋆)

2

(i)

≤ ηt(δ)
∑
t/∈T

∫ 1

0

(1− v) |µ̇ (vx⊺
t θ

⋆ + (1− v)x⋆
t
⊺θ⋆)|dv

(
N∑
i=1

2
∥∥xi

t

∥∥
(W i

t )
−1

)2

(ii)

≤ ηt(δ)
∑
t/∈T

∫ 1

0

(1− v) dv

(
N∑
i=1

2
∥∥xi

t

∥∥
(W i

t )
−1

)2

≤ 2ηt(δ)
∑
t/∈T

(
N∑
i=1

∥∥xi
t

∥∥
(W i

t )
−1

)2

(iii)

≤ CS2N2dκ log(T/δ)

(
d log(T/4N) +

1

ρ
log T

)
Here, (i) follows in a manner similar to the one used in bounding the regret for rounds t ≤ T0, |ab| ≤
|a| |b| and

∣∣∫ f(x) dx
∣∣ ≤ ∫

|f(x)|dx, (ii) follows from the fact that |µ̇ (.)| ≤ 1, and (iii) follows in the same man-
ner as steps (i), (ii), and (iii) follows in a similar manner as the bound for R1(T )2.

Combining all the bounds, we get

R(T ) ≤ CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√R(T ) +

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)


+ CS2N2dκ log(T/δ)

(
d log(T/4N) +

1

ρ
log T

)

Applying Lemma E.5 for R(T ), we get that

R(T ) ≤ CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)

+ (1 + κ)CS2N2d log(T/δ)κ

(
d log(T/4N) +

1

ρ
log(T )

)
Thus, our overall Regret is

Regret(T ) ≤ T0 + CSNd1/2

√(
d log(T/4N) +

1

2ρ
log T

)
log(T/δ)

√∑
t/∈T

µ̇ (x⋆
t
⊺θ⋆)

+ (1 + κ)CS2N2d log(T/δ)κ

(
d log(T/4N) +

1

ρ
log(T )

)
+ CS6N2d2κ log(T/δ) log(T/κN)

B.1 SUPPORTING LEMMAS FOR THEOREM B.1

Lemma B.1. U
− 1

2
t WtU

− 1
2

t = Id +At

where At =



0d (W 1
t )

− 1
2W 1,2

t (W 2
t )

− 1
2 . . . (W 1

t )
− 1

2W 1,N
t (WN

t )−
1
2

(W 2
t )

− 1
2W 2,1

t (W 1
t )

− 1
2 0d . . . (W 2

t )
− 1

2W 2,N
t (WN

t )−
1
2

...
... . . .

...

(WN
t )−

1
2WN,1

t (W 1
t )

− 1
2 (WN

t )−
1
2WN,2

t (W 2
t )

− 1
2 . . . 0d





Proof. It is enough to show Wt = Ut +U
1
2
t AtU

1
2
t to prove the claim. We can decompose Wt as follows:

Wt = INd +

t−1∑
s=1

µ̇ (x⊺
sθs+1)xsx

⊤
s

(i)
= INd +

t−1∑
s=1

µ̇ (x⊺
sθs+1)

(
N∑
i=1

x̃i
s

)(
N∑
i=1

x̃i⊤

s

)

(ii)
= INd +

t−1∑
s=1

µ̇ (x⊺
sθs+1)



x1
sx

1⊤

s x1
sx

2⊤

s . . . x1
sx

N⊤

s

x2
sx

1⊤

s x2
sx

2⊤

s . . . x2
sx

N⊤

s

...
... . . .

...

xN
s x1⊤

s xN
s x2⊤

s . . . xN
s xN⊤

s



(iii)
=



W 1
t W 1,2

t . . . W 1,N
t

W 2,1
t W 2

t . . . W 2,N
t

...
... . . .

...

WN,1
t WN,2

t . . . WN
t


(iv)
= Ut +Bt

Here, (i) follows using the fact xs =
N∑
i=1

x̃i
s, (ii) follows from the definition of x̃i

s, (iii) follows from the definitions of W i
t

and W i,j
t and the fact that INd = diag(Id, . . . Id), and (iv) follows from the definition of Ut.

We finish the claim by showing Bt =



0d W 1,2
t . . . W 1,N

t

W 2,1
t 0d . . . W 2,N

t

...
... . . .

...

WN,1
t WN,2

t . . . 0d


= U

1
2
t AtU

1
2
t , i.e , At = U

− 1
2

t BtU
− 1

2
t .

Note that since Ut is a diagonal block matrix, U− 1
2

t = diag
(
(W 1

t )
− 1

2 , . . . , (WN
t )−

1
2

)
. We can write the (i, j)th element

(in this case, d× d block) of U− 1
2

t BtU
− 1

2
t as:

[
U

− 1
2

t BtU
− 1

2
t

]
i,j

=

N∑
k=1

N∑
l=1

[
U

− 1
2

t

]
i,k

[Bt]k,l

[
U

− 1
2

t

]
l,j

= δi,k δ̄k,lδl,j

[
U

− 1
2

t

]
i,k

[Bt]k,l

[
U

− 1
2

t

]
l,j

=

{
(W j

t )
− 1

2W i,j
t (W j

t )
− 1

2 i ̸= j

0d×d i = j

= [At]i,j

where δi,j denotes the Kronecker Delta, which takes a value of 1 if i = j and 0 otherwise. Likewise, δ̄(i, j) denotes the

complement of the Kronecker Delta. The second equality follows from the fact that the off-diag entries in U
−1
2

t are zero
matrices and likewise, the diagonal entries in Bt are zero matrices. This completes the proof.



Proposition B.1. Let Λ (A) denote the set of eigenvalues of A. Then,

Λ (A) = Λ

([
0 0
0 A

])

Proposition B.2. Let A and B be two symmetric matrices. Then,

λmax (A+B) ≤ λmax (A) + λmax (B) and λmin (A+B) ≥ λmin (A) + λmin (B)

Lemma B.2. Define the matrix recurrence relation as follows:

A(k) =

[
0 Zk

Zk
⊤ A(k−1)

]
and A(1) =

[
0 Z1

Z1
⊤ 0

]

Then, λmax

(
A(k)

)
≤

k∑
i=1

σmax (Zi) and λmin

(
A(k)

)
≥ −

k∑
i=1

σmax (Zi).

Proof. The proof follows by induction. For k = 1, we see that the statement indeed holds from Lemma E.1.

Assume that the statement holds for k = n, i.e λmax

(
A(n)

)
≤

n∑
i=1

σmax (Zi) and λmin

(
A(n)

)
≥ −

n∑
i=1

σmin (Zi)

Consider A(n+1) =

[
0 Zn+1

Zn+1
⊤ A(n)

]
=

[
0 Zn+1

Zn+1
⊤ 0

]
+

[
0 0
0 A(n)

]
We have that,

λmax

(
A(n+1)

) (i)

≤ λmax

([
0 Zn+1

Zn+1
⊤ 0

])
+ λmax

([
0 0
0 A(n)

])
(ii)
= σmax (Zn+1) + λmax

(
A(n)

)
(iii)

≤ σmax (Zn+1) +

n∑
i=1

σmax (Zi) =

n+1∑
i=1

σmax (Zi)

where (i) follows from Proposition B.2, (ii) follows from Lemma E.1 and Proposition B.1, and (iii) follows from the
induction hypothesis.

Similarly,

λmin

(
A(n+1)

) (i)

≥ λmin

([
0 Zn+1

Zn+1
⊤ 0

])
+ λmin

([
0 0
0 A(n)

])
(ii)
= −σmax (Zn+1) + λmin

(
A(n)

)
(iii)

≥ −σmax (Zn+1)−
n∑

i=1

σmax (Zi) = −
n+1∑
i=1

σmax (Zi)

where (i) follows from Proposition B.2, (ii) follows from Lemma E.1 and Proposition B.1, and (iii) follows from the
induction hypothesis.

Lemma B.3. The items chosen at round t in two different slots, say i and j, where i, j ∈ [N ] and i ̸= j are independent of
one another, conditioned on Ft. In other words,

E
[
xi
tx

j
t

⊤
|Ft

]
= 0d



Proof. It is easy to see that the item chosen in slot i during round t only depends on {xs}t−1
s=1 , {θs+1}t−1

s=1, and
{
xi
s

}t
s=1

.
Since, Ft accounts for all of these terms, conditioned on Ft, the items being chosen in two different slots are independent of
one another.

Because of the independence, we can say that

E
[
xi
tx

j⊤

t |Ft

]
= E

[
xi
t|Ft

]
E
[
xj
t |Ft

]
= 0d

where the last equality follows from Assumption 2.1.

Lemma B.4. The diversity assumptions in Assumption 2.1 can be extended to the set of vectors
{√

µ̇ (x⊺
t θt+1)x

i
t

}N

i=1
, i.e,

we can show the following:

1. E
[√

µ̇ (x⊺
t θt+1)x

i
t|Ft

]
= 0d

2. E
[
µ̇ (x⊺

t θt+1)x
i
tx

j
t

⊤
|Ft

]
= 0d where i ̸= j

3. E
[
µ̇ (x⊺

t θt+1)x
i
tx

i
t
⊤|Ft

]
≽ ρκId

Proof. We attempt to bound µ̇ (x⊺
t θt+1).

Using the Cauchy-Schwarz inequality, it is easy to see that −S ≤ x⊺
t θt+1 ≤ S. Since µ̇ (.) is an increasing function on

(−∞, 0] and a decreasing function on [0,∞), we have that

µ̇ (x⊺
t θt+1) ∈

{[
µ̇ (S) , 1

4

]
if x⊺

t θt+1 ∈ [0, S][
µ̇ (−S) , 1

4

]
if x⊺

t θt+1 ∈ [−S, 0]

Since µ̇ (−S) = µ̇ (S), we have that µ̇ (x⊺
t θt+1) ∈

[
µ̇ (S) , 1

4

]
.

Now, we have that

√
µ̇ (S)E

[
xi
t|Ft

]
≤ E

[√
µ̇ (x⊺

t θt+1)x
i
t|Ft

]
≤
√

1

4
E
[
xi
t|Ft

]
=⇒ 0d ≤ E

[√
µ̇ (x⊺

t θt+1)x
i
t|Ft

]
≤ 0d

=⇒ E
[√

µ̇ (x⊺
t θt+1)x

i
t|Ft

]
= 0d

Similarly, from Lemma B.3,

µ̇ (S)E
[
xi
tx

j
t

⊤
|Ft

]
≤ E

[
µ̇ (x⊺

t θt+1)x
i
tx

j
t

⊤
|Ft

]
≤ 1

4
E
[
xi
tx

j
t

⊤
|Ft

]
=⇒ 0d ≤ E

[
µ̇ (x⊺

t θt+1)x
i
tx

j
t

⊤
|Ft

]
≤ 0d

=⇒ E
[
µ̇ (x⊺

t θt+1)x
i
tx

j
t

⊤]
= 0d

Finally, since κ = max
x

max
θ

1
µ̇(x⊺θ) , we have that κ ≥ 1

µ̇(x⊺
t θt+1)

. Hence,

E
[
µ̇ (x⊺

t θt+1)x
i
tx

i
t

⊤|Ft

]
≼

1

κ
E
[
xi
tx

i
t

⊤|Ft

]
≼ ρId

where the last inequality follows from Assumption 2.1.

Lemma B.5. For all i ∈ [N ] , j ∈ [i+1, N ], and t ≥ 0,
∥∥∥W i,j

t

∥∥∥ ≤√ t
2N2 log

(
dN(N−1)

δ

)
with probability at least 1− δ.



Proof. To prove this lemma, we would invoke Lemma D.2. We have already shown in Lemma B.4 that
E
[
µ̇ (x⊺

t θt+1)x
i
tx

i
t
⊤|Ft

]
= 0d. Thus, invoking Lemma D.2 with xs =

√
µ̇ (x⊺

t θt+1)x
i
t, zs =

√
µ̇ (x⊺

t θt+1)x
j
t ,

m1 = m2 =

√
µ̇(x⊺

t θt+1)
N ≤ 1

2
√
N

, d1 = d2 = d, and δ = 2δ
N(N−1) , we get that

P

{
∃t ≥ 1 :

∥∥∥W i,j
t

∥∥∥ ≥√ t

2N2
log

(
2dN(N − 1)

2δ

)}
≤ 2δ

N(N − 1)

Performing a union bound over all i ∈ [N ] and j ∈ [i+ 1, N ] results in the following:

P

{
∀t :

∥∥∥W i,j
t

∥∥∥ ≤√ t

2N2
log

(
dN(N − 1)

δ

)}
≥ 1− δ

This finishes the proof.

Lemma B.6. For all i ∈ [N ], P
{
∀t ≥ T0 : λmin

(
W i

t

)
≤ 1 + ρt

2

}
≤ δ.

Proof. To prove this claim, we invoke Lemma D.1. We have already shown in Lemma B.4 that E
[√

µ̇ (x⊺
t θt+1)x

i
t|Ft

]
= 0d

and E
[
µ̇ (x⊺

t θt+1)x
i
tx

i
t
⊤|Ft

]
≽ ρId. Thus, invoking Lemma D.1 with xt =

√
µ̇ (x⊺

t θt+1)x
i
t, m = 1

2
√
N

, d = d, γ = 1,

c = 1
2 , and δ = δ

N , we get that with probability atleast 1− δ
N ,

λmin

(
W i

t

)
≥ 1 +

ρt

2
,∀t ≥ 3 + 2Nρ

3ρ2N2
log

(
2dNT

δ

)
Performing a union bound over all i ∈ [N ] and using the fact that (N − 1)2 ≥ 1/N2 gives us:

P
{
∀t ≥ 3 + 2ρN

3ρ2
(N − 1)2 log

(
2dNT

δ

)
,∀i ∈ [N ] : λmin

(
W i

t

)
≥ 1 +

ρt

2

}
≥ 1− δ

Since T0 ≥ 3+2ρN
3ρ2 (N − 1)2 log

(
2dNT

δ

)
, we can say the same for t ≥ T0. This finishes the claim.

Let us define the following events: E1 =

{
∀i ∈ [N ],∀j ∈ [i+ 1, N ],∀t ≥ 0 :

∥∥∥W i,j
t

∥∥∥ ≤√ t
2N2 log

(
dN(N−1)

δ

)}
, E2 ={

∀i ∈ [N ],∀t ≥ T0 : λmin

(
W i

t

)
≥ 1 + ρt

2

}
, and E0 = E1 ∩ E2

Lemma B.7. P {E0} ≥ 1− 2δ

Proof. P
{
E0
}
= P

{
E1 ∪ E2

}
≤ P

{
E1
}
+ P

{
E2
}
≤ 2δ using a union bound.

Lemma B.8. Define the matrix Z
(i)
t =

[
(W i

t )
− 1

2W i,i+1
t (W i+1

t )−
1
2 , . . . (W i

t )
− 1

2W i,N
t (WN

t )−
1
2

]
Then, under event E0,

for t ≥ T0 and ρ ≥ 12
N , we have that ∥∥∥Z(i)

t

∥∥∥ ≤ N − i

2N(N − 1)



Proof. The idea of the proof is borrowed from Das and Sinha [2024]. We know that ∥Z∥ = sup
∥b∥2≤1

∥Zb∥2. Thus,

∥∥∥Z(i)
t

∥∥∥ = sup
∥b∥2≤1

∥∥∥Z(i)
t b
∥∥∥
2
= sup

N−i∑
j=1

∥bj∥2≤1

∥∥∥∥∥∥
N−i∑
j=1

(W i
t )

− 1
2W i,i+j

t (W i+j
t )−

1
2 bj

∥∥∥∥∥∥
2

(i)

≤ sup
N−i∑
j=1

∥bj∥2≤1

N−i∑
j=1

∥∥∥(W i
t )

− 1
2W i,i+j

t (W i+j
t )−

1
2 bj

∥∥∥
2
≤

N−i∑
j=1

sup
∥bj∥2≤1

∥∥∥(W i
t )

− 1
2W i,i+j

t (W i+j
t )−

1
2 bj

∥∥∥
2

(ii)

≤
N−i∑
j=1

∥∥∥(W i
t )

− 1
2

∥∥∥∥∥∥W i,i+j
t

∥∥∥ ∥∥∥(W i+j
t )−

1
2

∥∥∥ (iii)

≤
N−i∑
j=1

∥∥∥W i,i+j
t

∥∥∥√
λmin

(
W i

t

)
λmin

(
W i+j

t

) (iv)

≤
N−i∑
j=1

√
t

2N2 log
(

dN(N−1)
δ

)
1 + ρt

2

(v)

≤
N−i∑
j=1

√√√√ 1
2N2 log

(
dN(N−1)

δ

)
3+2ρN

12 (N − 1)2 log
(
2dNT

δ

) =
1

N(N − 1)

N−i∑
j=1

√
6

3 + 2ρN
×

√√√√ log
(

dN(N−1)
δ

)
log
(
2dNT

δ

)
≤ N − i

N(N − 1)

√
6

3 + 2ρN
≤ N − i

N(N − 1)

√
3

ρN

(vi)

≤ N − i

2N(N − 1)

where (i) follows from triangle inequality, (ii) follows from the sub-multiplicativity of the norm, (iii) follows from the fact
that ∥A∥ = λmax (A) and λmax

(
A−1

)
= 1

λmin(A) , (iv) follows from Lemma D.2, (v) follows from 1
1+ ρt

2

≤ 1
ρt
2

and t ≥
T0, and (vi) follows from the fact that ρN ≥ 12.

Lemma B.9. Under event E0, for all t ≥ T0, we have

3

4
Ut ≼ Wt ≼

5

4
Ut

Proof. Define the matrix recurrence relation:

A
(i)
t =

[
0d×d Z

(i)
t

Z
(i)
t

⊤
A

(i−1)
t

]

where Z
(i)
t =

[
(W i

t )
− 1

2W i,i+1
t (W i+1

t )−
1
2 , . . . (W i

t )
− 1

2W i,N
t (WN

t )−
1
2

]
. Then, it is easy to see that At from Lemma

B.1 is the same as A(1)
t . From Lemma B.2, we have that

λmax (At) ≤
N∑
i=1

σmax

(
Z

(i)
t

)
=

N∑
i=1

∥∥∥Z(i)
t

∥∥∥ ≤ N∑
i=1

N − i

2N(N − 1)
=

1

4

Similarly,

λmin (At) ≥ −
N∑
i=1

σmax

(
Z

(i)
t

)
= −

N∑
i=1

∥∥∥Z(i)
t

∥∥∥ ≥ − N∑
i=1

N − i

2N(N − 1)
= −1

4

Thus, we can write

−1

4
Id ≼ At ≼

1

4
Id =⇒ −1

4
Id ≼ U

− 1
2

t WtU
− 1

2
t − Id ≼

1

4
Id =⇒ 3

4
Ut ≼ Wt ≼

5

4
Ut



Lemma B.10. Let x̃i be the lift of xi. Then, ∥∥x̃i
∥∥
W−1 ≤

4

3

∥∥xi
∥∥
(W i)−1

Proof. From Lemma B.9, we have ∥∥x̃i
∥∥
W−1 ≤

4

3

∥∥x̃i
∥∥
U−1 =

4

3

∥∥xi
∥∥
(W i)−1

where the last inequality follows from the definition of the lift of x and the structure of U .

Lemma B.11. With probability at least 1− 2δ, for all t ≥ T0 and ρ ≥ 12
N , we have

3

4
UH

t ≼ V H
t ≼

5

4
UH

t

Proof. First, notice the similarity in structures between V H
t and Wt, as well as between UH

t and Ut. Thus, we can perform
a decomposition similar to the one in Lemma B.1. We first show that the diversity conditions hold. It is enough to obtain a
bound on the norm of the matrices V H,i,j

t and V H,i
t to prove the claim.

We first show that the diversity assumptions also hold for the set of vectors
{

1√
κ
xi
t

}N

i=1
. For this, we show that 1√

κ
is

bounded.

From the proof of Lemma B.4, we have shown that µ̇ (x⊺θ) ∈
[
µ̇ (S) , 1

4

]
. Since, κ = max

x
max
θ

1
µ̇(x⊺θ) , κ ∈

[
4, 1

µ̇(S)

]
.

Hence, 1
κ ∈

[
µ̇ (S) , 1

4

]
and we can show:

√
µ̇ (S)E

[
xi
s|Fs

]
≤ E

[
1√
κ
xi
t|Fs

]
≤ 1

2
E
[
xi
s|Fs

]
=⇒ 0d ≤ E

[
1√
κ
xi
t|Fs

]
≤ 0d =⇒ E

[
1√
κ
xi
t|Fs

]
= 0d

Similarly, from Lemma B.3,

µ̇ (S)E
[
xi
sx

j
s

⊤|Fs

]
≤ E

[
1

κ
xi
sx

j
s

⊤|Fs

]
≤ 1

4
E
[
xi
sx

j
s

⊤|Fs

]
=⇒ 0d ≤ E

[
1

κ
xi
sx

j
s

⊤|Fs

]
≤ 0d =⇒ E

[
1

κ
xi
sx

j
s

⊤|Fs

]
= 0d

Finally,

E
[
xi
sx

i
s

⊤|Fs

]
≽ ρκId =⇒ E

[
1

κ
xi
sx

i
s

⊤|Fs

]
≽ ρId

Using an idea similar to Lemma B.5, we can define the event

E ′1 =

{
∀i ∈ [N ],∀j ∈ [i+ 1, N ],∀t ≥ T0 :

∥∥∥V H,i,j
t

∥∥∥ ≤√ 8t

κ2N2
log

(
dN(N − 1)

δ

)}

Similarly, using an idea similar to Lemma B.6, we can define the event

E ′2 =

{
∀i ≥ 0,∀t ≥ 48 + 8κNρ

3ρ2κ2
(N − 1)2 log

(
2dNT

δ

)
: λmin

(
V H,i
t

)
≥ γt(δ) +

ρt

2

}
Since, κ ≥ 4, we have that T0 ≥ 3+2Nρ

3ρ2 (N − 1)2 log
(
2dNT

δ

)
≥ 48+8κNρ

3ρ2κ2 (N − 1)2 log
(
2dNT

δ

)
, and hence, we have

E ′2 =

{
∀i ≥ 0,∀t ≥ T0 : λmin

(
V H,i
t

)
≥ γt(δ) +

ρt

2

}



Define E ′0 = E ′1 ∩ E ′2. Then, it is easy to see P {E ′0} ≥ 1− 2δ.

Finally, following the same line of thought as Lemma B.8 and Lemma B.9, and using the fact that 1
κ ≤

1
4 , we obtain

3

4
UH

t ≼ V H
t ≼

5

4
UH

t

Lemma B.12. (Faury et al. [2022], Proposition 7) Let δ ∈ (0, 1) and {(θt,Wt,θt)}r be maintained by the ada-OFU-
ECOLog algorithm. Then,

P
{
∀t ≥ 1 : θ⋆ ∈ θt and ∥θ⋆ − θt+1∥Wt+1

≤ CS2d log(t/δ)
}
≥ 1− 2δ

Lemma B.13. Define the following events:

E ′ =
{
∀t ≥ 1, ∥θ⋆ − θt+1∥2Wt+1

≤ CS2d log(t/δ) and θ⋆ ∈ Θ
}

E = E0 ∩ E ′0 ∩ E ′

Then, we have that P {E} ≤ 6δ.

Proof.

P
{
E
}
= P

{
E0 ∩ E ′0 ∩ E ′

}
= P

{
E0 ∪ E ′0 ∪ E ′

}
≤ P

{
E0
}
+ P

{
E ′0
}
+ P

{
E ′
}
≤ 2δ + 2δ + 2δ = 6δ

where the last inequality follows from Lemma B.7 , B.11, and B.12 respectively.

Lemma B.14. (Abeille et al. [2021], Theorem 1)
T∑

t=1
µ̇ (x⊺

t θ
⋆) ≤ R(T ) +

T∑
t=1

µ̇ (x⋆
t
⊺θ⋆) where RT =

T∑
t=1

µ (x⋆
t
⊺θ⋆)−

µ (x⊺
t θ

⋆)

Proof. We provide a brief proof for the sake of completeness

T∑
t=1

µ̇ (x⊺
t θ

⋆) =

T∑
t=1

µ̇ (x⋆
t
⊺θ⋆) +

T∑
t=1

∫ 1

0

µ̈ (x⊺
t θ

⋆ + v(x⋆
t − xt)

⊺θ⋆) dv (xt − x⋆
t )

⊺
θ⋆

≤
T∑

t=1

µ̇ (x⋆
t
⊺θ⋆) +

T∑
t=1

∣∣∣∣∫ 1

0

µ̈ (x⊺
t θ

⋆ + v(x⋆
t − xt)

⊺θ⋆) dv (xt − x⋆
t )

⊺
θ⋆

∣∣∣∣
(i)

≤
T∑

t=1

µ̇ (x⋆
t
⊺θ⋆) +

T∑
t=1

∫ 1

0

|µ̈ (x⊺
t θ

⋆ + v(x⋆
t − xt)

⊺θ⋆)| dv |(xt − x⋆
t )

⊺
θ⋆|

(ii)

≤
T∑

t=1

µ̇ (x⋆
t
⊺θ⋆) +

T∑
t=1

∫ 1

0

|µ̈ (x⊺
t θ

⋆ + v(x⋆
t − xt)

⊺θ⋆)| dv (x⋆
t − xt)

⊺
θ⋆

(iii)

≤
T∑

t=1

µ̇ (x⋆
t
⊺θ⋆) +

T∑
t=1

∫ 1

0

µ̇ (x⊺
t θ

⋆ + v(x⋆
t − xt)

⊺θ⋆) dv (x⋆
t − xt)

⊺
θ⋆

(iv)
=

T∑
t=1

µ̇ (x⋆
t
⊺θ⋆) +

T∑
t=1

µ (x⋆
t
⊺θ⋆)− µ (x⊺

t θ
⋆)

=

T∑
t=1

µ̇ (x⋆
t
⊺θ⋆) +R(T )



Here, (i) follows from
∣∣∫ f(x) dx

∣∣ ≤ ∫ |f(x)| dx, (ii) follows from x⋆
t
⊺θ⋆ ≥ x⊺

t θ
⋆, (iii) follows since |µ̈(.)| ≤ µ̇ (.),

and (iv) follows from applying the Mean-Value Theorem on the expression for R(T ).

Lemma B.15. Let T represent the set of all time instances where the data-dependent condition fails, i.e ∀t ∈ T , µ̇
(
x⊺
t θ̄t
)
≥

2µ̇ (x⊺
t θ

u
t ) for all u ∈ {0, 1}. Then,

|T | ≤ CS6N2d2κ log(T/δ) log(T/κN)

Proof. The proof follows along the lines of Faury et al. [2022].

By the self-concordance property of the logistic function, we know that

µ̇
(
x⊺
t θ̄t
)
≤ µ̇ (x⊺

t θ
u
t ) exp

(∣∣x⊺
t (θ̄t − θu

t )
∣∣)

Thus, if t ∈ T , we have that
∣∣x⊺

t (θ̄t − θu
t )
∣∣ ≥ log 2.

Summing this over all indices in T , we get that

∑
t∈T

log2 2 = |T | log2 2 ≤
∑
t∈T

∣∣x⊺
t (θ̄t − θu

t )
∣∣2 (i)

≤
∑
t∈T
∥xt∥2(V H

t )−1

∥∥θ̄t − θu
t

∥∥2
V H

t

(ii)

≤ 4βT (δ)
∑
t∈T
∥xt∥2(V H

t )−1

(iii)

≤ CβT (δ)
∑
t∈T
∥xt∥2(UH

t )−1

(iv)

≤ CβT (δ)
∑
t∈T

∥∥∥∥∥
N∑
i=1

x̃i
t

∥∥∥∥∥
2

(UH
t−1)

−1

(v)

≤ CβT (δ)

N∑
i=1

∑
t∈T

∥∥x̃i
t

∥∥2
(UH

t )−1

≤ CβT (δ)

N∑
i=1

∑
t∈T

∥∥xi
t

∥∥2
(V H,i

t )−1

(vi)

≤ CNdβT (δ)κ log (t/κN)
(vii)

≤ CS6N2d2κ log(T/δ) log(T/κN)

Here (i) follows from the Cauchy-Schwarz Inequality, (ii) follows from the fact that θu
t , θ̄t ∈ Θt, (a+ b)2 ≤ 2a2 + 2b2,

(iii) follows due to event E ′0, (iv) follows from the definition of the lift of xi
s, i.e xs =

N∑
i=1

x̃i
s, (v) follows from the triangle

inequality, (vi) follows from a direct application of Lemma E.4 on 1√
κ
xi
t and the fact that

∥∥∥ 1√
κ
xi
t

∥∥∥
2
≤ 1√

Nκ
, and (vii)

follows from the definition βT (δ) ≤ CS6Nd log(T/δ).

C SLATE-GLM-TS AND SLATE-GLM-TS-FIXED

C.1 ALGORITHM IN A FIXED-ARM SETTING

We present a Thompson Sampling based algorithm Slate-GLM-TS-Fixed in the non-contextual (fixed-arm) setting in
Algorithm 4. Following this, we analyze the regret of this algorithm in Theorem C.1. Since we are in the non-contextual
setting, we directly use the minimum eigenvalue bound in Assumption C.1. (See Remarks on Assumption 2.1 in Section 2).



Algorithm 4 Slate-GLM-TS-Fixed

1: Inputs: Number of rounds T , Failure probability δ , Distribution DTS , warm-up length τ
2: Initialize V H,i

0 = λId ∀i ∈ [N ] and V H
0 = λINd

3: Obtain the set of items X i,∀i ∈ [N ]
4: for each round t in [1, τ ] do
5: For each slot i ∈ [N ], choose xi

t = argmaxx∈X i ∥x∥(V H,i
t )−1 , select slate xt = (x1

t , . . . ,x
N
t ), and get reward yt.

6: Update V H
t ← V H

t−1 +
1
κxtx

⊤
t and V H,i

t ← V H,i
t−1 + 1

κx
i
tx

i
t
⊤, ∀i ∈ [N ]

7: end for
8: Compute θ̂τ = argmin

τ∑
s=1

ls+1(θ) +
λ
2 ∥θ∥

2
2 and set Θ =

{∥∥∥θ − θ̂τ

∥∥∥
V H

τ

≤ βτ (δ)

}
9: Initialize Wτ = IdN ,W i

τ = Id,∀i ∈ [N ] and θτ+1 ∈ Θ
10: for each round t ∈ [τ + 1, T ] do
11: Set reject = True
12: while reject do
13: For each slot i ∈ [N ], sample ηi iid∼ DTS , and set θ̃i

t = θi
t + ηt(δ)(W

i
t )

−1/2ηi

14: If θ̃t = (θ̃1
t , . . . , θ̃

N
t ) ∈ Θt, set reject = False

15: end while
16: For each slot i ∈ [N ], choose xi

t = argmaxx∈X i x⊺θ̃i
t, select slate xt = (x1

t , . . . ,x
N
t ), and get reward yt

17: Let θt+1 be solution of 5 up to precision 1/t.
18: Update Wt+1 = Wt + µ̇(xT

t θt+1)xtx
T
t , and W i

t+1 = W i
t + µ̇(xt

⊤θt+1)x
i
tx

i
t
⊤, ∀i ∈ [N ]

19: end for

Assumption C.1. The minimum eigenvalue of the design matrices grows linearly, i.e

λmin

(
V

(i)
t

)
= λmin

(
W

(i)
t

)
≥ ρt and λmin

(
V

W (i)
t

)
≥ ρt

Define T0 = max
{

(N−1)2

2ρ2 log dN(N−1)
δ , 8(N−1)2

κ2ρ2 log dN(N−1)
δ

}
= (N−1)2

2ρ2 log dN(N−1)
δ since κ > 4.

Theorem C.1. (Regret of Slate-GLM-TS-Fixed) At the end of T ≥ T0 rounds, the regret of Slate-GLM-TS-Fixed
is bounded by

Regret(T ) ≤ max{CS6N2d2κ log(T/δ)2, T0}+CSN3/2d3/2
√

log(T/δ) log(T/2)
√
T µ̇ (x⊺

⋆θ⋆)+CN3d3S2 log(T/δ) log(T/2)

Proof. We have that the good events are defined for t ∈ [T0, T ]. Since the first |T | = τ rounds constitute a warm-up (Steps
4-7 in Algorithm 4), we can trivially bound the regret of these rounds (warm-up as well as first T0 ) by 1 ·max{τ, T0}.
Going forward, let max{τ, T0} = T ′ Hence, we have

Regret(T ) ≤ max{τ, T0}+
T∑

t=T ′+1

µ (x⊺
⋆θ⋆)− µ (x⊺

t θ⋆)

≤ max{CS6N2d2κ log(T/δ)2, T0}+
T∑

t=T ′+1

{
µ (x⊺

⋆θ⋆)− µ
(
x⊺
t θ̃t

)}
+

T∑
t=T ′+1

{
µ
(
x⊺
t θ̃t

)
− µ (x⊺

t θ⋆)
}

= max{CS6N2d2κ log(T/δ)2, T0}+RTS(T ) +RPRED(T ) = max{CS6N2d2κ log(T/δ)2, T0}+R(T )

where R(T ) = RTS(T )+RPRED(T ), RTS(T ) =
T∑

t=T ′+1

µ (x⊺
⋆θ⋆)−µ

(
x⊺
t θ̃t

)
, and RPRED(T ) =

T∑
t=T ′+1

µ
(
x⊺
t θ̃t

)
−

µ (x⊺
t θ⋆). The first inequality follows from Lemma C.1.



We first bound RPRED(T ) as follows:

RPRED(T ) =

T∑
t=T ′+1

µ
(
x⊺
t θ̃t

)
− µ (x⊺

t θ⋆) ≤
T∑

t=T ′+1

µ̇ (x⊺
t θ⋆)

∣∣∣x⊺
t

(
θ̃t − θ⋆

)∣∣∣
(i)

≤
T∑

t=T ′+1

√
µ̇ (x⊺

t θ⋆)
√
µ̇ (x⊺

t θt+1) exp (|x⊺
t (θ⋆ − θt+1)|) ∥xt∥W−1

t

∥∥∥θ⋆ − θ̃t

∥∥∥
Wt

(ii)

≤ C
√
e
√

σt(δ)
√
Nd

T∑
t=T ′+1

√
µ̇ (x⊺

t θ⋆)
√
µ̇ (x⊺

t θt+1) ∥xt∥W−1
t

(iii)

≤ C
√
σt(δ)

√
Nd

√√√√ T∑
t=T ′+1

µ̇ (x⊺
t θ⋆)

√√√√ T∑
t=T ′+1

µ̇ (x⊺
t θt+1) ∥xt∥2W−1

t

(iv)

≤ C
√
σt(δ)Nd

√
log(T/2)

(√
R(T ) +

√
T µ̇ (x⊺

⋆θ⋆)

)
(v)

≤ CSN3/2d3/2
√
log(T/δ) log(T/2)

(√
R(T ) +

√
T µ̇ (x⊺

⋆θ⋆)

)

where (i) follows from the Self-Concordance result and uses Cauchy-Schwarz, (ii) follows from the fact that∣∣x⊤
t (θ⋆ − θt+1)

∣∣ ≤ diamX (Θ) ≤ 1 (Lemma C.1) and Lemma C.5, (iii) follows from Cauchy-Schwarz, (iv) follows from
Lemma E.4 on

√
µ̇ (x⊺

t θt+1)xt and Lemma B.14, and (v) follows from the fact that σt(δ) ≤ CS2Nd log(T/δ).

We now turn to bounding RTS(T ). Define J(θ) = max
x∈X

x⊺θ. Then, it is easy to see that J(θ⋆) = x⊤
⋆ θ⋆. Also, note that

J(θ̃t) = max
x∈X

N∑
i=1

xi⊤θ̃i
t =

N∑
i=1

max
x∈X i

x⊤θ̃i
t =

N∑
i=1

x⊤
t θ̃

i
t = x⊤

t θ̃t

which uses the fact that the selection of the item in each slot is independent of the rest of the slots.

Hence, we have

RTS(T ) =

T∑
t=T ′+1

µ (x⊺
⋆θ⋆)− µ

(
x⊺
t θ̃t

)
= α

(
x⊺
⋆θ⋆,x

⊺
t θ̃t

)(
x⊺
⋆θ⋆ − x⊺

t θ̃t

)
= α(J(θ⋆), J(θ̃t))

(
J(θ⋆)− J(θ̃t)

)

Similar to Section D.2 of the Appendix in Faury et al. [2022] and Section C of Abeille and Lazaric [2017], using the
convexity of J gives us:∣∣∣J(θ⋆)− J(θ̃t+1)

∣∣∣ ≤ max
{∣∣∣∇J(θ⋆)⊺ (θ⋆ − θ̃t

)∣∣∣ , ∣∣∣∇J(θ̃t+1)
⊺
(
θ⋆ − θ̃t

)∣∣∣} (i)

≤ max
{∣∣∣x⊺

⋆

(
θ⋆ − θ̃t

)∣∣∣ , ∣∣∣x⊺
t

(
θ⋆ − θ̃t

)∣∣∣}
≤ diamX (Θ)

(ii)

≤ 1

where (i) follows from the fact that ∇J(θ) = argmax
x∈X

x⊤θ (Abeille and Lazaric [2017]), and (ii) follows from Lemma

C.1. Thus, we have that

α(J(θ⋆), J(θ̃t)) =

1∫
0

µ̇
(
J(θ⋆) + v

(
J(θ⋆)− J(θ̃t)

))
dv ≤ µ̇ (J(θ⋆))

1∫
0

exp
(
v
∣∣∣J(θ⋆)− J(θ̃t)

∣∣∣)dv
≤ µ̇ (J(θ⋆))

1∫
0

exp (v) dv ≤ 2µ̇ (J(θ⋆)) = 2µ̇ (x⊺
⋆θ⋆)



where the first inequality follows from self-concordance. Substituting this into the original bound, we get

RTS(T ) ≤ 2µ̇ (x⊺
⋆θ⋆)

T∑
t=T ′+1

J(θ⋆)− J(θ̃t)

Following the same steps as the proof in Abeille and Lazaric [2017] and referring to Section D.2 in Faury et al. [2022], we
get that

T∑
t=T ′+1

J(θ⋆)− J(θ̃t) ≲ C
√
Nd
√
σt(δ)

T∑
t=T ′+1

∥xt∥W−1
t

+
√
T

Substituting this into the original equation, we get that:

RTS(T ) ≤ 2µ̇ (x⊺
⋆θ⋆)

(
C
√
Nd
√
σt(δ)

T∑
t=T ′+1

∥xt∥W−1
t

+
√
T

)
(i)

≤ C
√
Nd
√
σt(δ)

T∑
t=T ′+1

√
µ̇ (x⊺

⋆θ⋆)
√
µ̇ (x⊺

t θt+1) exp (|x⊺
t θt+1 − x⊺

⋆θ⋆|) ∥xt∥W−1
t

+ 2µ̇ (x⊺
⋆θ⋆)

√
T

(ii)

≤ C
√
Nd
√
σt(δ)

T∑
t=T ′+1

√
µ̇ (x⊺

⋆θ⋆)
√
µ̇ (x⊺

t θt+1) ∥xt∥W−1
t

+ 2µ̇ (x⊺
⋆θ⋆)

√
T

(iii)

≤ C
√
Nd
√
σt(δ)

√√√√ T∑
t=T ′+1

µ̇ (x⊺
⋆θ⋆)

√√√√ T∑
t=T ′+1

µ̇ (x⊺
t θt+1) ∥xt∥2W−1

t
+ 2µ̇ (x⊺

⋆θ⋆)
√
T

(iv)

≤ CNd
√
σt(δ)

√
T µ̇ (x⊺

⋆θ⋆)
√
log(T/2) + 2µ̇ (x⊺

⋆θ⋆)
√
T

(v)

≤ CN3/2d3/2S
√

log(T/2) log(T/δ)
√
T µ̇ (x⊺

⋆θ⋆) + 2µ̇ (x⊺
⋆θ⋆)

√
T

where (i) follows from self-concordance, (ii) follows from the fact that |x⊺
t θt+1 − x⊺

⋆θ⋆| ≤ 2diamX (Θ), (iii) follows
from Cauchy-Schwarz, (iv) follows from Lemma E.4 on

√
µ̇ (x⊺

t θt+1)x
i
t, and (v) follows from the fact that σt(δ) ≤

CS2Nd log(T/δ)

Combining the bounds on R(T ), we get

R(T ) ≤ CSN3/2d3/2
√
log(T/δ) log(T/2)

(√
R(T ) +

√
T µ̇ (x⊺

⋆θ⋆)

)

Using Lemma E.5, we get

R(T ) ≤ CSN3/2d3/2
√
log(T/δ) log(T/2)

√
T µ̇ (x⊺

⋆θ⋆) + CN3d3S2 log(T/δ) log(T/2)

Finally, combining the bound for Regret(T ) gives us:

Regret(T ) ≤ max{CS6N2d2κ log(T/δ)2, T0}+CSN3/2d3/2
√

log(T/δ) log(T/2)
√
T µ̇ (x⊺

⋆θ⋆)+CN3d3S2 log(T/δ) log(T/2)

C.2 SUPPORTING LEMMAS FOR THEOREM C.1

Lemma C.1. Let δ ∈ (0, 1), then, setting τ = CS6N2d2κ log(T/δ)2 ensures that Θ returned after the warm-up phase
satisfies the following:



1. P {θ⋆ ∈ Θ} ≥ 1− δ

2. diamX (Θ) ≤ 1

Proof. The proof for the first part is the same as the proof for the first part in Proposition 5 in Faury et al. [2022] since the
proof does not depend on the manner in which the arm is selected.

For the second part notice that:

diamX (Θ) = max
x∈X

max
θ1,θ2∈Θ

|x⊺ (θ1 − θ2)|
(i)
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√
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≤
√
βt(δ)

1√
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τ∑
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N∑
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√
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1√
τ

√
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≤
√
βt(δ)

1√
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√√√√2

N∑
i=1

d log(T/κN) ≤ C

√
Ndβt(δ)κ log(T/κN)

τ

where (i) follows from an application of Cauchy-Schwarz, (ii) follows from the definition of Θ, (iii) follows from Lemma
C.3, (iv) follows from how items in each slot are selected, (v) follows from Lemma E.4 on 1√

κ
xi
t.

Thus, setting τ ≤ Ndβt(δ)κ log(T/κN) ≤ CS6N2d2κ log(T/κN) log(T/δ) ensures diamX (Θ) ≤ 1.

Lemma C.2. For t ≥ (N−1)2

2ρ2 log dN(N−1)
δ , we have

1

2
Ut ≼ Wt ≼

3

2
Ut

Proof. Following the same line of thought as Lemma B.3, Lemma B.4, and Lemma B.5, we have that

∥∥∥W i,j
t

∥∥∥ ≤√ t

2N2
log

dN(N − 1)

δ

Following the same line of thought as Lemma B.8 and making use of Assumption C.1, we can derive

∥∥∥Z(i)
t

∥∥∥ ≤ N−i∑
j=1

∥∥∥W i,j
t

∥∥∥√
λmin

(
W i

t

)
λmin

(
W j

t

) ≤ N−i∑
j=1

√
t

2N2 log
dN(N−1)

δ

ρt
≤ (N − i)

N(N − 1)

where the last inequality follows from the fact that t ≥ (N−1)2

2ρ2 log dN(N−1)
2δ

Finally, using the same line of thought as Lemma B.9, we get

1

2
Ut ≼ Wt ≼

3

2
Ut



Lemma C.3. For t ≥ 8(N−1)2

κ2ρ2 log dN(N−1)
δ .

1

2
UH

t ≼ V H
t ≼

3

2
UH

t

Proof. Following the same line of thought as Lemma B.11 and making use of Assumption C.1, we get

∥∥∥Z(i)
t

∥∥∥ ≤ N−i∑
j=1

√
8t

κ2N2 log
(

dN(N−1)
δ

)
ρt

≤ (N − i)
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where the last inequality follows from the fact that t ≥ 8(N−1)2

κ2ρ2 log dN(N−1)
δ

Finally, we can show that
1

2
UH

t ≼ V H
t ≼

3

2
UH

t

Lemma C.4. Define the distribution D =
N

×
i=1

DTS where DTS is a multivariate distribution that satisfies the properties

given in Definition E.2. Then, D also satisfies the properties given in Definition E.2, making it a suitable distribution for
Thompson Sampling.

Proof. Define η =
(
η1, . . . ,ηN

)
∈ RNd where ηi ∼ DTS . Then, it is easy to see that sampling ηi, i ∈ [N ] in an iid

fashion from DTS is the same as sampling η from D.

We begin by showing the Concentration property, i.e ∃C,C ′ such that

Pη∼D

{
∥η∥2 ≤

√
C(Nd) log

C ′(Nd)

δ′

}
≥ 1− δ′

Since DTS satisfies the concentration property, we know that
∥∥ηi
∥∥
2
≥
√
cd log c′d

δ with probability at most δ. Hence, it is
easy to see that

∥η∥2 =

√√√√ N∑
i=1

∥ηi∥22 ≥
√

cNd log
c′d

δ

with probability at most δN . Setting C = c
N , C ′ = (c′)NdN−1

N and δ′ = δN , we get that

∥η∥2 ≤

√
CN2d log
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C ′Nd

δ′

)1/N

=

√
C(Nd) log

C ′(Nd)

δ′

with probability at least 1− δ′. This proves that D satisfies the concentration property.

We now show that D satisfies the Anti-Concentration property, i.e ∃P ∈ (0, 1) such that ∀u ∈ RNd:

Pη∈D
{
u⊤η ≥ ∥u∥2

}
≥ P

Assume u =
(
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)
such that ∥u∥2 = 1. This implies that
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2
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Since,
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Hence, we have that

P
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Thus, we have that P
{
u⊤η ≥ ∥u∥2

}
≥ 1− (1− p)N , and setting P = 1− (1− p)N finishes the claim.

Lemma C.5. At round t ≥ T0, let θ̃i = θi
t +
√
σt(δ)(W

i
t )

− 1
2ηi for all i ∈ [N ], where ηi ∼ DTS , as given in Steps 7-8 of

Algorithm 4. Define θ̃t =
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θ̃1
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N
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)
. Assuming event E holds, we have that,∥∥∥θ̃ − θt
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where η =
(
η1, . . . ,ηN

)
.
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where (i) follows from Lemma C.2 and (ii) follows from the concentration property shown in Lemma C.4.

D CONCENTRATION RESULTS FOR RANDOM MATRICES AND VECTORS

Lemma D.1. (Chatterji et al. [2020], Generalization of Lemma 7) Let {xs}⊤s=1 be a stochastic process in Rd such that
for filtration Ft, we have that E [xs|Fs−1] = 0d and E

[
xsx

⊤
s |Fs−1

]
≽ ρId. Further, let ∥xs∥2 ≤ m for all s ≥ 1. Also,

define the matrix

Qt = γId +

t∑
s=1

xsx
⊤
s

Then, with probability atleast 1− δ, we have that

λmin (Qt) ≥ γ + cρt

for 0 ≤ c ≤ 1 and for all t such that 12m4+4m2ρ(1−c)
3(1−c)2ρ2 log

(
2dT
δ

)
≤ t ≤ T

Proof. The proof follows on the same lines as that of Chatterji et al. [2020].

Assume E
[
xsx

⊤
s |Fs−1

]
= Σc ≽ ρId. Define the matrix martingale Zs =

t∑
s=1

[
xsx

⊤
s −Σc

]
with Z0 = 0 and the

corresponding martingale difference sequence Xs = Zs −Zs−1 for all s ≥ 1.



We have that ∥xs∥2 ≤ m. Also, ∥Σc∥ =
∥∥E [xsx

⊤
s |Ft−1

]∥∥ ≤ ∥xs∥22 ≤ m2

Therefore, using triangle inequality, ∥Xs∥ =
∥∥xsx

⊤
s −Σc

∥∥ ≤ ∥∥xsx
⊤
s

∥∥+ ∥Σc∥ ≤ 2m2

Finally, we have that

t∑
s=1

∥∥E [XsX
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s Xs|Fs−1

]∥∥
=

t∑
s=1

∥∥E [xsx
⊤
s xsx

⊤
s − xsx

⊤
s Σ

⊤
c −Σcxsx

⊤
s +ΣcΣ

⊤
c |Fs−1

]∥∥
≤

t∑
s=1
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)
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⊤
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⊤
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]∥∥
≤ 2m4t

Thus, applying the Matrix Freedman Inequality (Lemma E.2) with R = 2m2, ω2 = 2m4t,d1 = d2 = d and u = (1− c)ρt,
we get

P
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⊤
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Choosing t ≥ 12m4+4m2ρ(1−c)
3(1−c)2ρ2 log
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)
, we get that with probability at least 1− δ

T ,

(1− c)ρt ≥
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Now, recall the definition of the norm: ∥A∥ = sup

∥y∥2≤1

Ay. Substituting this definition results in:

(1− c)ρt ≥ sup
∥y∥2≤1

[(
t∑

s=1

xsx
⊤
s

)
y − tΣcy

]
≥

∣∣∣∣∣ inf
∥y∥2≤1

(
t∑

s=1

xsx
⊤
s

)
y − t · inf

∥y∥2≤1
Σcy

∣∣∣∣∣
which uses the inequality sup

A
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g
∣∣∣. Now, using Rayleigh’s quotient, we also know that inf
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λmin (A). Thus,
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)
≥ cρt

using the fact that Σc ≽ ρI . This holds with probability 1− δ
T . Performing a union bound over all time indices finishes the

claim.

Lemma D.2. (Das and Sinha [2024], Lemma 17) Let δ ∈ (0, 1), xs ∈ Rd1 and zs ∈ Rd2 such that E
[
xsz

⊤
s |Fs−1

]
=

0d1×d2
. Define Mt =

t∑
s=1

xsz
⊤
s . Further, assume that ∥xs∥2 ≤ m1 and ∥zs∥2 ≤ m2. Then, with probability at least 1− δ

∥Mt∥ ≤ 2(m1 ∧m2)
2

√
2t log
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Proof. Denote Xs = xsz
⊤
s . Since E [Xs|Fs−1] = 0d1×d2

, Xs is a Martingale Difference sequence. Further, Mt =
t∑

s=1
Xs

is the sum of Martingale Difference Sequences.

Consider the square of the Hermitian Dilation (see Definition E.1) of Xs

H(Xs)
2 =

[
0d1×d1

Xs

X⊤
s 0d2×d2

]2
=

[
XsX

⊤
s 0d1×d2

0d2×d1
X⊤

s Xs

]
=

[
∥zs∥22 xsx

⊤
s 0d1×d2

0d2×d1
∥xs∥22 zsz⊤

s

]
≼ (m1 ∧m2)

2

[
xsx

⊤
s 0d1×d2

0d2×d1
zsz

⊤
s

]
≼ (m1 ∧m2)

4Id1+d2

Applying the Matrix Azuma inequality (Lemma E.3) with As = (m1 ∧m2)
2Id1+d2 , we have that σ2

t = (m1 ∧m2)
4t and

thus,

P {∃t ≥ 1 : σmax (Mt) ≥ ϵ} ≤ (d1 + d2) exp

(
− ϵ2

8(m1 ∧m2)4t

)

Choosing ϵ =
√

8(m1 ∧m2)4t log
(
d1+d2

δ

)
finishes the proof.

E OTHER USEFUL RESULTS AND DEFINITIONS

Definition E.1. (Hermitian Dilation) The Hermitian matrix for a matrix A is defined as

H(A) =

[
0 A
A⊤ 0

]

Lemma E.1. (Das and Sinha [2024], Lemma 16) Let H(Z) =

[
0 Z
Z⊤ 0

]
where Z has positive singular values. Then, it

holds almost surely, λmax (H(Z)) = −λmin (H(Z)) = σmax (Z)

Lemma E.2. (Matrix Freedman Inequality Tropp [2011a] Corollary 1.3) Define a matrix martingale Zs ∈ Rd1×d2 with
respect to the filtration Fs and a martingale difference sequence Xs = Zs −Zs−1. Assume that the difference sequence is
almost surely uniformly bounded, i.e ∥Xs∥ ≤ R. Define the quantities

Wrow,t =

t∑
s=1

E
[
XsX

⊤
s |Fs−1

]

Wcol,t =

t∑
s=1

E
[
X⊤

s Xs|Fs−1

]
Then, for all u ≥ 0 and ω2 > 0, we have

P
{
∃t ≥ 0 : ∥Zt∥ ≥ u and max {∥Wrow,t∥ , ∥Wrow,t∥} ≤ ω2

}
≤ (d1 + d2) exp

(
− u2/2

ω2 +Ru/3

)

Lemma E.3. (Matrix Azuma Inequality, Tropp [2011b], Theorem 7.1) Let {Xs}∞s=1 be a matrix martingale difference
sequence in Rd1×d2 and letH(Xs) represent the Hermitian Dilation (see def. E.1) of Xs. Let {As}∞s=1 be a sequence of



matrices in R(d1+d2)×(d1+d2) such that E [Xs|Fs−1] = 0 andH(Xs)
2 ≼ A2

s. Let σ2
t = λmax

t∑
s=1

A2
k for t ≥ 1. Then, for

all ϵ ≥ 0:

P

{
∃t ≥ 1 : σmax

(
t∑

s=1

Xs

)
≥ ϵ

}
≤ (d1 + d2) exp

(
− ϵ2

8σ2
t

)

Lemma E.4. (Elliptical Potential Lemma, Abbasi-yadkori et al. [2011], Lemma 11) Let {xs}⊤s=1 represent a set of vectors

in Rd and let ∥xs∥2 ≤ L. Let Vs = λId +
s−1∑
m=1

xmx⊤
m. Then, for λ ≥ 1

t∑
s=1

∥xs∥2V −1
s
≤ 2d log

(
1 +

tL2

λd

)
≤ 4d log(tL2)

Lemma E.5. (Abeille et al. [2021], Proposition 7) Let b, c ≥ 0 and x2 − bx− c ≤ 0. Then, x2 ≤ 2b2 + 2c.

Proof. Since the coefficient of the quadratic term is 1, the quadratic expression can attain non-positive values only if it has
two distinct or equal real roots. We denote the roots by α1 and α2. Without loss of generality, assume α1 = b−

√
b2+4c
2 and

α2 = b+
√
b2+4c
2 . Then, the set of x for which x2 − bx− c ≤ 0 is true is x ∈ [α1, α2]. Thus, we can say

x ≤ α2 =
b+
√
b2 + 4c

2
≤ b+

√
c

using the fact that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0. Finally,

x2 ≤ b2 + c+ 2b
√
c ≤ 2b2 + 2c

using the fact that (b−
√
c)2 ≥ 0 =⇒ 2b

√
c ≤ b2 + c

Definition E.2. (Multivariate distribution for Thompson Sampling, Abeille and Lazaric [2017], Definition 1) DTS is a
suitable multivariate distribution on Rd for Thompson Sampling if it is absolutely continuous with respect to the Lebesgue
measure and satisfies the following properties:

1. Concentration: There exist constants c and c
′

such that ∀δ ∈ (0, 1)

Pη∼DTS

{
∥η∥2 ≤

√
cd log

c′d

δ

}
≥ 1− δ

2. Anti-Concentration: There exists a strictly positive probability p such that for any u ∈ Rd

Pη∼DTS

{
u⊤η ≥ ∥u∥2

}
≥ p

F ADDITIONAL EXPERIMENTS AND EXPERIMENTAL DETAILS

In this section, we provide additional plots to back the experiments shown in Section 5. Also, we provide additional details
about our experimental setup.

In all of the figures, the shaded regions represent two standard deviations. Figures 2a and 2b depict the graphs from Exper-
iment 1 (Section 5) wherein we compare our algorithms Slate-GLM-OFU and Slate-GLM-TS to their counterparts
ada-OFU-ECOLog and TS-ECOLog in the finite and infinite context settings.

Figures 2c and 2d depict the graphs from Experiment 3(Section 5), wherein we compare our algorithms Slate-GLM-OFU,
Slate-GLM-TS, and Slate-GLM-TS-Fixed to several state-of-the-art non-contextual logistic bandit algorithms.
In Figure 2c, we only show the uncertainity involved in Slate-GLM-OFU and Slate-GLM-TS. We see that
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(a) Regret vs. T : Finite Context Setting
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(b) Regret vs. T : Infinite Context Setting
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(c) Regret vs. T : Fixed-Arm Setting
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(d) Regret vs. T : Fixed-Arm Setting
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(e) Average running time (per-round)
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(f) Maximum running time (per-round)
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(g) Average time taken to pull an arm
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(h) Maximum time taken to pull an arm
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(i) Average time taken to update parameters

Figure 2



Slate-GLM-OFU has the best performance, with the only algorithm having comparable performance being MPS. On the
other hand, Slate-GLM-TS performs worse than ada-OFU-ECOLog and MPS, while being on par with TS-ECOLog.
However, in Figure 2d, we showcase that the variance of MPS is very high, hence, making the algorithm less reliable in
practice.

Figures 2e and 2f showcase two standard deviations in the average and maximum (per-round) running time of the algorithms.
We see that both ada-OFU-ECOLog and TS-ECOLog show an exponential increase in their running times. Further, the
significant gap between the average and maximum (per-round) running times of Slate-GLM-OFU and Slate-GLM-TS
(as highlighted in the table below) indicates that the true per-round time is much lower than the maximum. As we have
mentioned in the main paper, we calculate the per-round running time for an algorithm as the sum of the per-round pull and
update times. Figures 2g and 2h show the average and maximum pull times (per round), while Figure 2i display the average
per-round update times. We see that the pull time for ada-OFU-ECOLog and TS-ECOLog increases exponentially with
the number of slots, whereas the update times remain similar for all algorithms. Hence, the differences in per-round running
times can be majorly attributed to the pulling times for each algorithm, which is in line with our theoretical claims. We also
tabulate the average and maximum per-round pulling times for each algorithm in Table 2 for more clarity.

Slots ada-OFU-ECOLog Slate-GLM-OFU TS-ECOLog Slate-GLM-TS
Average (ms) Maximum (ms) Average (ms) Maximum (ms) Average (ms) Maximum (ms) Average (ms) Maximum (ms)

3 4.3± 0.2 23.0± 24.5 0.3± 0.0 9.5± 12.5 3.1± 0.1 36.6± 47.7 0.6± 0.1 19.2± 33.4
4 47.5± 36.4 341.8± 154.8 0.8± 0.9 10.5± 7.3 30.3± 15.6 316.7± 57.1 2.2± 1.1 22.8± 5.4
5 221.4± 30.1 1075.7± 57.8 0.6± 0.2 12.0± 9.7 184.1± 121.8 905.3± 126.5 1.2± 0.5 13.8± 11.5
6 1655.6± 36.3 3335.5± 494.6 0.9± 0.2 35.8± 28.9 1309.4± 55.3 2528.3± 278.2 1.9± 0.2 68.3± 71.1

Table 2: Average and Maximum per-round running times (in milliseconds), averaged over 10 different seeds for sampling
rewards, with 2 standard deviations

Now, we provide additional details about our experimental setup. In Experiment 3, we implement Ordered Slate
Bandit and ETC-Slate from Kale et al. [2010] and Rhuggenaath et al. [2020] respectively. Since these algorithms are
designed for semi-bandit feedback, we make modifications to implement these algorithms in our setting. These modifications
are detailed below:

Ordered Slate Bandit: The original algorithm in Kale et al. [2010] assumes that there exists a base set X such that
|X | = K and the learner picks a slate of N items from X . Hence, their algorithm assumes that each base item is equally
likely to be placed in any slot. Thus, they start with the initial distribution P such that Pi,j = 1 ∀i ∈ [N ] ∀j ∈ [K]. On the
other hand, we cannot make the same assumption since we get a different set of items X i

t for each slot i ∈ [N ]. Thus, we
change the initial distribution to P such that Pi,j = 1 if and only if j ∈ [K(i− 1) + 1,K(i)]. This modification restricts the
items that can be selected for a particular slot. A similar modification is made for the exploratory distribution in each round.
There is a significant difference in the manner in which the loss matrix is constructed. Since the algorithm is designed for
semi-bandit feedback, the algorithm propagates the loss for the item chosen in each slot at each round. We make use of the
fact that the loss is the additive inverse of the reward, and hence, we have two choices for the loss we wish to propagate.
Since we operate in the logistic setting, the obvious choice is to propagate the non-linear losses to the algorithm. However,
since the total loss for a slate is assumed to be the sum of the loss obtained for each slot, the linear loss seems more suitable.
We experiment with both these choices, and find that the algorithm with non-linear losses incurs very high regret. Hence, we
only compare our algorithms to the Ordered Slate Bandit algorithm with linear losses, referred to as Ordered Slate
Bandit.

ETC-Slate: The original algorithm in Rhuggenaath et al. [2020] is also designed for semi-bandit feedback, wherein, it is
assumed that the reward for each slot is sampled from a distribution such as the uniform distribution (see Example 1 in
Rhuggenaath et al. [2020]). However, in our case, we do not have a notion of a reward distribution at the slot level. Hence,
to create a reward distribution at the slot level, we assume that the reward for slot i is sampled from N (xi

s
⊤
θi
⋆, 0.0001).

This ensures that, in expectation, the reward attributed to a particular slot is the linear reward for the item played. We set
the slate-level reward function f to simply be the sigmoid function applied to the sum of the rewards obtained at the slot
levels and then proceed with the algorithm. We find that ETC-Slate incurs very high regret, and hence, do not include the
algorithm in our comparisions.
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Figure 3: Demonstration of the algorithm-dependent assumption for Slate-GLM-OFU and Slate-GLM-TS wherein we
plot the minimum eigenvalues of W i

t as a function of the time round for 100 independent runs

G EMPERICAL VALIDATION OF THE DIVERSITY ASSUMPTION (ASSUMPTION 2.1)

In this section, we show that our (instance and algorithm dependent) diversity assumption we make indeed holds for a lot of
instances. We choose the number of slots N to be 3 and the number of items in each slot

∣∣X i
t

∣∣ is fixed to 5. The dimension
of items for each slot is fixed to 5, resulting in the slate having a dimension d = 15. The items for each slot are randomly
sampled from [−1, 1]5 and normalized to have norm 1/

√
3, while θ⋆ is randomly sampled from [−1, 1]15. We operate in the

Infinite context setting, wherein the items in each slot change every time round (check Experiment 1 in Section 5 for more
details). We run both Slate-GLM-OFU and Slate-GLM-TS 100 times with different seeds for a horizon of T = 10000
rounds. For each run of the algorithm, we plot the minimum eigenvalue of W i

t for i ∈ [3] as a function of the time round t
and show our results in Figure 3. The figures clearly depict a (near) linear growth in the eigenvalues of the matrices W i

t for
all the slots i ∈ [3] and all rounds t ∈ [T ].
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