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ABSTRACT

In the context of the mineral fertilizer industry, a crucial sector for global food
production, which faces challenges in production efficiency and fast quality con-
trol, this work introduces the Mineral Fertilizer Dataset (MFD), a novel annotated
segmentation dataset comprising 1,608 images and 125,648 instances of various
fertilizer granules with different colors. Addressing the lack of datasets in this
field, the MFD supports both semantic and instance segmentation tasks, with seg-
mentation masks that facilitate the computation of the equivalent area diameter of
granules. Periodic checks of the area equivalent diameter based on customer spec-
ifications are essential to prevent potential defects, such as caking and dustiness, in
the produced fertilizer granules. Baseline models based on Feature Pyramid Net-
work (FPN), UNet, and MANet were trained for semantic segmentation, while
baseline models based on Mask R-CNN, YOLOv8, YOLOv9, and Mask2Former
were trained for instance segmentation. Our experiments demonstrate the efficacy
of these models, as well as the robustness of the trained models in identifying fer-
tilizer granules of different colors not included in our dataset, fertilizer granules
under 365 nm ultraviolet light, as well as other granular objects such as Polyethy-
lene Terephthalate (PET) pellets, corn, beans, and even pharmaceutical tablets.
This dataset, along with its benchmark results on existing semantic and instance
segmentation algorithms, aims to facilitate further advancements in computer vi-
sion applications for quality control in the fertilizer industry and related sectors.

1 INTRODUCTION

In the current era of big data and advanced data analysis, many industrial production lines, includ-
ing those in the mineral fertilizer production, have yet to fully leverage the potential of machine
learning methods due to a lack of specialized datasets and hard to get data from those type of
production (Yunovidov et al., 2020). Despite being a crucial and rapidly growing sector, mineral
fertilizer production faces significant challenges in meeting the rising global demand driven by pop-
ulation growth. As production and consumption levels increase, so do the quality requirements for
these products (Ulrich, 2019). Consequently, large-scale facilities are under pressure to enhance
production efficiency and control mechanisms to optimize resource utilization and meet consumer
expectations.

Various methods are employed to control particle size in the mineral fertilizer industry, including
sieve analysis (Besler, 2008; Kimura et al., 2013), laser scattering (Low-Angle Laser Light Scatter-
ing (LALLS)) (ISO, 2009; Lilkov et al., 1999), and opto-electronic control methods (Standardiza-
tion, 2006; Bjørk et al., 2009; Chávez et al., 2015; Wang et al., 2022). However, each method has
its own limitations that restrict its optimal application.

Sieve analysis, while providing high accuracy, does not support continuous monitoring of particle
size distribution and is significantly influenced by particle shape Besler (2008). LALLS, despite
being fundamentally accurate, is limited by the maximum analyzable particle size (up to 3 mm) and
cannot assess shape and color parameters Lilkov et al. (1999); ISO (2009).

Opto-electronic control methods are notable for their versatility, utilizing image analysis to estimate
a broad spectrum of parameters, including size, shape, and color (Standardization, 2006; Chávez
et al., 2015). Furthermore, this method is currently extensively used in the manufacture of mineral
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fertilizers. However, the widespread adoption of these methods is hindered by the lack of readily
available datasets and the need for specialized equipment.

In response to the rising trend of optical quality control in manufacturing processes, we constructed
and evaluated a dataset comprised of images of mineral fertilizer granules. In this work, we pro-
vided an overview of existing semantic and instance segmentation techniques, reviewed existing
literature on image-based analysis of fertilizer granules, proposed a novel annotated dataset of min-
eral fertilizer granules designed for segmentation tasks called the Mineral Fertilizer Dataset (MFD),
and trained semantic segmentation models (FPN (Lin et al., 2017b), UNet (Ronneberger et al.,
2015), MANet (He et al., 2022)) and instance segmentation models (Mask R-CNN (He et al., 2017),
Mask2Former (Cheng et al., 2022), YOLOv8 (Jocher et al., 2023), YOLOv9 (Wang et al., 2024)) on
the proposed dataset to serve as baseline benchmarks.

2 RELATED WORKS

Pixel classification and image segmentation form the foundation of machine vision. Over the years,
image segmentation algorithms have evolved from traditional methods such as thresholding (Otsu,
1979), conditional random fields and global classification (Plath et al., 2009), and k-means clustering
(Dhanachandra et al., 2015), to more recent deep learning-based methods, which have proven to be
significantly more effective for semantic and instance segmentation. Predicted segmentation masks
enable the computation of the area equivalent diameter of granules, following the principles of par-
ticle size analysis outlined in ISO 13322-1 (International Organization for Standardization, 2014).
Periodic checks of the area equivalent diameter based on customer specifications are crucial for pre-
venting potential defects, such as caking and dustiness, in the produced fertilizer granules. Below,
we provide an overview of some existing deep learning-based methods for performing semantic and
instance segmentation.

Semantic segmentation Semantic segmentation may be described as a process of classifying pix-
els with semantic labels. A typical advantage semantic segmentation has over instance segmentation
is that, it is less computationally expensive, and can be more readily applied in industrial settings
especially when the computers are only equipped with a central processing unit (CPU). Semantic
segmentation finds application in various sectors including in to inspect belt conveyor idlers (Siami
et al., 2024), concrete surface engineering (Hao & Qi, 2022), pedestrian segmentation (Ullah et al.,
2018), recognition of navigable areas (Kim et al., 2023), analyzing medical images (Hatamizadeh
et al., 2021; Dhamija et al., 2023), and document scanning and optical character recognition (OCR)
(Patil et al., 2022) to mention but a few. Deep learning-based semantic segmentation methods maybe
grouped into convolutional neural network (CNN) based methods (U-net (Ronneberger et al., 2015),
Unet++ (Zhou et al., 2018), FPN (Lin et al., 2017b)), vision transformer based methods (SegFormer
(Xie et al., 2021), Swin-Unet (Cao et al., 2021), SegViT (Zhang et al., 2022)), and methods that
utilize both transformers and CNNs (Transunet (Chen et al., 2021), MedT (Valanarasu et al., 2021),
Transfuse (Zhang et al., 2021b)). In this work, we have performed experiments using three CNN
based models: FPN (Lin et al., 2017b), UNet (Ronneberger et al., 2015), and MANet (He et al.,
2022). However, to make this method more applicable to the mineral fertilizer industry and bulk
material analysis, we isolated individual granules from the overall mask. To achieve this, the con-
tours of the granules in the predicted binary masks were estimated using topological analysis (Suzuki
& be, 1985), allowing the instances of each granule to be obtained from the trained semantic seg-
mentation models.

Instance segmentation Instance segmentation involves detecting and drawing masks on each in-
stance of an object of interest in an image. Instance segmentation methods can be classified into
three main categories namely: single-stage, dual-stage, and multi-stage. A single-stage instance
segmentation method predicts both object masks and class labels without a separate region proposal
neural network. Examples of single-stage instance segmentation methods include: Fully convolu-
tional instance segmentation (FCIS) (Li et al., 2017), Instance-sensitive fully convolutional network
(InstanceFCN) (Dai et al., 2016), PolarMask (Xie et al., 2020) and You only look at Coefficients
(YOLACT) (Bolya et al., 2019; 2022). The dual-stage instance segmentation method involves first
proposing regions of interest, followed by predicting the object masks and class labels using differ-
ent neural networks. A typical example of the dual-stage method is Mask-RCNN (He et al., 2017).
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As the name implies, the multi-stage instance segmentation method involves multiple sequential
stages of processing, where each stage refines the instance segmentation results iteratively. Typ-
ical examples of multi-stage instance segmentation models include: Cascade Mask R-CNN (Cai
& Vasconcelos, 2019), and Recurrent neural networks for semantic instance segmentation (RSIS)
(Salvador et al., 2017). Besides the aforementioned models, transformer-based models have been
utilized for instance segmentation tasks as well such as: SOLQ (Dong et al., 2021), K-Net (Zhang
et al., 2021a), Mask2Former (Cheng et al., 2022), OneFormer (Jain et al., 2023), and Mask DINO
(Li et al., 2023). Recently, there has been an increase in zero-shot object detection and instance seg-
mentation methods. Some notable models that have been developed include: the segment anything
model (SAM) (Kirillov et al., 2023), and fast segment anything model (FastSAM) (Zhao et al., 2023)
which is reported as being fifty times faster than the SAM model. However, these zero-shot models
are not yet suitable for deployment in industrial tasks because, they are too slow and hard to main-
tain. In this work, we performed experiments using Mask R-CNN (He et al., 2017), Mask2Former
(Cheng et al., 2022), YOLOv8 (Jocher et al., 2023), and YOLOv9 (Wang et al., 2024) for instance
segmentation.

Image-based analysis of fertilizer granules To increase production efficiency, the fertilizer in-
dustry is leaning more towards using optical control to assess the quality of produced goods (Wang
et al., 2022). Quality control in mineral fertilizer production relies on assessing individual granule
characteristics like size, area, and color (UNIDO and International Fertilizer Development Center,
1998). This ensures adherence to customer specifications and identifies anomalies in the production
process. By inspecting the quality of produced fertilizer granules, possible environmental pollution
is also tackled. Yunovidov et al. (2020) explored a robotic system utilizing classical computer vi-
sion for online monitoring of granule size. This system captured images using a high-speed camera
and employed image processing techniques to estimate size via ellipses. While color analysis was
not implemented, its potential was acknowledged. The system’s performance was comparable to
the industry-standard Camsizer P4 machine. Building upon their previous work (Yunovidov et al.,
2020), Yunovidov et al. (2021) expanded the system’s capabilities to encompass granule area, color,
and sphericity estimation. Software improvements like adaptive equalization and distance separa-
tion enhanced image processing. Additionally, a data recording system documented quality analysis
results, enabling both process control and data collection. The upgraded system again demonstrated
comparable performance to the Camsizer P4 machine.

Based on our research, there are no similar publicly available datasets. Hence, MFD is the first
such dataset to be made publicly available to the research community. The closest datasets we
found, which are commonly used in related fields, include the Rice Image Dataset (Koklu et al.,
2021), the Corn Grain Dataset (Ribeiro, 2015), and a dataset consisting of 409 images of well-
sorted and poorly sorted sediment, terrigenous, carbonate, and volcaniclastic sands and gravels, and
their mixtures, used to develop the SediNet model (Buscombe, 2020). All three datasets are suitable
for image classification tasks but are not designed for semantic or instance segmentation, which are
critical for our intended application. These segmentation tasks enable the computation of the area
equivalent diameter of produced fertilizer granules, in accordance with the ISO 13322-1 standard
(International Organization for Standardization, 2014).

3 MINERAL FERTILIZER DATASET

The MFD dataset comprises 1,608 annotated real images of various types of mineral fertilizer gran-
ules captured in different fertilizer production plants, encompassing 125,648 instances of fertilizer
granules. Figure 1 displays sample images of these mineral fertilizer granules, including Potas-
sium ore (KCl), Ammonium Nitrate (NH4NO3), and mineral fertilizers containing phosphorus
(Diammonium Phosphate (DAPh) and NPK). Static images of sampled 100g of DAPh, and NPK
granules were captured using a camera with a rolling shutter at a resolution of 1920 x 1080 pix-
els. On the other hand, images of the other fertilizer granule types were captured using a camera
with a global shutter at a resolution of 1280 x 1024 pixels. Images of NH4NO3 were captured
dynamically on the conveyor belt.

The Computer Vision Annotation Tool (CVAT) (CVAT.ai Corporation, 2023) was used to annotate
the images of the fertilizer granules. Figure 2 shows an annotated image within the CVAT plat-
form. Three different individuals annotated the dataset. Initially, a test dataset (educational dataset)
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(a) NH4NO3 (b) NPK (c) DAPh (d) KCl

Figure 1: Mineral fertilizer granules

Figure 2: Annotated KCl fertilizer granule in CVAT

consisting of 20 images of fertilizer granules was annotated by these individuals separately. The
Intersection over Union (IoU) was calculated among the three sets of annotations for the educa-
tional dataset. Only when the IoU exceeded 80% were the annotators permitted to annotate the main
dataset. The IoU was calculated using Equation 1, where A and B represent the annotation masks of
the annotators.

IoU =
n(A ∩B)

n(A ∪B)
(1)

After annotating the images, we filtered the annotation of images with overlapping granules, and
several layers to preserve only the first layer of totally visible granules. The images were then split
into smaller tiles of 480 x 480 pixels while preserving the annotations and ensuring that each tile
was unique using a self developed algorithm. Geometric transformations such as random rotation,
random scaling, and cropping were also applied to make our dataset balanced. Additionally, we
used multiple iterations of erosion and dilation with a 3x3 pixel elliptical kernel to smooth the
masks obtained after manual annotation and dataset balancing. Table 1 provides an overview of the
MFD dataset, Figure 3 shows the distribution of granules in the images that make up the dataset, and
Figure 4 shows a typical annotated image with the segmentation masks displayed after geometric
transformations and before 480 x 480 tiles splitting.
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Figure 3: Violin plot showing the mineral fertilizer granule distributions

Figure 4: KCl with displayed masks after geometric transformations

4 BENCHMARK EXPERIMENTS

The MFD dataset is the first of its kind and would be very valuable for either semantic or instance
segmentation to the mineral fertilizer industry as well as industries that work with objects of similar
morphology such as pellets, grains, and even pharmaceutical tablets. The models were trained on
images of 480 x 480 pixels, for 100 epochs on an NVIDIA RTX A2000 12GB Graphics Processing
Unit (GPU). We used 80% of the dataset for training, and 20% for validation.
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Table 1: Overview of the MFD Dataset

Granule Type Image Count Instances

DAPh 402 17063
KCl 403 39165
NH4NO3 402 50240
NPK 401 19180
Total 1608 125648

Table 2: Performance of semantic segmentation models on the MFD Dataset

Model Backbone mIoU

FPN mobilenetv3 large 100 0.859
UNet mobilenetv3 large 100 0.869
MANet mobilenetv3 large 100 0.875

4.1 SEMANTIC SEGMENTATION USING FPN, UNET AND MANET

We explored the performance of three semantic segmentation models (FPN (Lin et al., 2017a), UNet
(Ronneberger et al., 2015), and MANet (He et al., 2022)) on the mineral fertilizer dataset. For
these three models, mobilenet v3 large (Howard et al., 2019) was used as the backbone for feature
extraction.

The semantic segmentation experiments were conducted in three stages. First, the binary masks of
the fertilizer granules were preprocessed using three iterations of erosion with a 3×3 elliptical kernel
to separate granules in the masks that appeared to be joined. Second, the segmentation models were
trained using a combination of binary cross-entropy (BCE) (Yi-de et al., 2004), dice (Sudre et al.,
2017), and boundary difference over union (Sun et al., 2023) loss functions as shown in Equation 2.
Third, based on the predicted binary masks from the trained models, the contours of each granule
instance were estimated using topological analysis (Suzuki & be, 1985).

L = 0.2 · BCE + 0.4 · Dice Loss + 0.4 · Boundary DoU (2)

Using the predicted binary masks from the trained semantic segmentation models, the contours
of the granules were estimated through topological analysis (Suzuki & be, 1985), implemented in
OpenCV (Bradski, 2000), allowing the instances of each granule to be obtained. The trained models
can operate on a CPU and are suitable for fast assessments. The results obtained using these three
semantic segmentation models are summarized in Table 2. Among them, MANet outperformed FPN
and UNet.

4.2 INSTANCE SEGMENTATION USING MASK R-CNN, YOLOV8, YOLOV9, AND
MASK2FORMER

Instance segmentation is a crucial step in analyzing mineral fertilizer granules, as it allows us to
identify and isolate individual granules within an image. In this section, we explore the application
of Mask R-CNN (He et al., 2017), YOLOv8 (Jocher et al., 2023), YOLOv9 (Wang et al., 2024), and
Mask2Former (Cheng et al., 2022) for instance segmentation of mineral fertilizer granules.

The YOLOv8 models were trained on images of 480 x 480 pixels, except the YOLOv8l-seg and the
YOLOv9 models which were trained on images of 320 x 320 pixels to accommodate our computing
resources.

Table 3 provides a summary of the performance of the trained models. The results show that the
YOLOv8 and YOLOv9 models performed better than the Mask R-CNN and Mask2Former models.
It is possible to tweak the hyperparameters of these models but we used the default parameters to
estimate the baseline performance of these models. The ResNet-50 backbone with Feature Pyramid
Network (FPN) was used to train the Mask R-CNN and Mask2Former models. Another keen ob-
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Table 3: Performance of models on the MFD Dataset. Models with * where trained using 320 x 320
pixels images.

Model mAP box50 mAP box50− 95 mAPmask50 mAPmask50− 95

Mask R-CNN 0.747 0.597 0.747 0.600
YOLOv8n-seg 0.939 0.759 0.927 0.675
YOLOv8s-seg 0.950 0.786 0.937 0.698
YOLOv8m-seg 0.952 0.796 0.945 0.727
Mask R-CNN* 0.659 0.527 0.659 0.529
YOLOv8n-seg* 0.926 0.726 0.898 0.559
YOLOv8s-seg* 0.940 0.763 0.913 0.588
YOLOv8m-seg* 0.946 0.778 0.918 0.604
YOLOv8l-seg* 0.948 0.789 0.925 0.618
YOLOv9c-seg* 0.947 0.778 0.918 0.602
YOLOv9e-seg* 0.948 0.782 0.924 0.615
Mask2Former* 0.723 0.564 0.724 0.550
Mask2Former 0.723 0.569 0.731 0.576

Table 4: Inference speed of trained models on different devices

Frames per Second (FPS)

Model RTX A2000 RTX 4050 Max-Q Intel Core™ Ultra 7

MANet 71.74 69.06 8.50
Mask R-CNN 64.90 41.98 3.19
Mask2Former 49.21 25.75 4.56
YOLOv8m-seg 66.82 57.03 4.84

servation is that the YOLO models that were trained on 480 x 480 pixels images performed better
than those trained on 320 x 320 pixels images. Factors such as increased input data, augmented data
variety, or the 640-pixel input size for YOLO could contribute to this.

Figures 5, 6, 7, and 8 illustrate the inferences made by the trained models on our test images with
a confidence threshold of 0.70. Figures 9, 10, and 11 demonstrate the robustness of the trained
models in segmenting fertilizer granules of various colors not included in our dataset, while Figure
12 highlights the models’ performance under ultraviolet light. Additionally, Figures 13, 14, 15, and
16 showcase the models’ ability to segment objects with similar morphology.

4.3 INFERENCE SPEED ON DIFFERENT DEVICES

The inference speed of the trained models was measured on three devices: one with an NVIDIA
RTX A2000 12GB graphics processing unit (GPU), another with an NVIDIA GeForce RTX 4050
Max-Q 6GB GPU, and a third with an Intel Core™ Ultra 7 155H Meteor Lake-P central processing
unit (CPU) without a GPU. The inference speed was determined by computing the average of the
total time required for pre-processing, inference, and post-processing for each image in the test
dataset. The results of our experiment are summarized in Table 4. From the table, it is evident that
selected models can be used in real-time applications with GPU unit and can be used for periodical
control in CPU devices.

5 CONCLUSION

We have presented a robust annotated instance segmentation dataset of mineral fertilizer granules
with different colors, consisting of 1,608 images and 125,648 instances. This dataset bridges the
existing gap of a lack of datasets for instance segmentation in the fertilizer industry and can serve
as a baseline for further analysis of the quality of produced fertilizer granules. Additionally, it can
be used to develop industrial optical control systems for bulk materials, even in compliance with
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(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 5: Inferences on Ammonium Nitrate (NH4NO3) test data

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 6: Inferences on KCl test data

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 7: Inferences on NPK test data

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 8: Inferences on DAPh test data

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 9: Inferences on purple NPK test data
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(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 10: Inferences on Amino Acid fertilizer test data

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 11: Inferences on blue NPK test data

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 12: Inferences on NPS+B 20-20-14+0.2 oiled fertilizer test data under 365 nm ultraviolet
light

ISO 13322-1. We have created a benchmark of established instance segmentation models, including
Mask R-CNN, YOLOv8, and YOLOv9. Furthermore, our experiments with fast semantic segmen-
tation models capable of rapid CPU inference show promising results. Combining these models
with classical computer vision (CV) post-processing techniques can achieve quality comparable to
instance segmentation models for calculating the mask of each granule in an image. We hope that
this dataset will pave the way for further advancements in the use of computer vision for quality
control purposes in the mineral fertilizer industry.

Limitations We considered only the primary fertilizers produced in large-scale continuous pro-
cesses, which are subsequently used as bases for more complex fertilizers. Additionally, there are
many specialized fertilizer blends used in various geographic regions, which we had not test yet.
The fertilizer types we have described represent only a small portion of the existing brands and
types of such products. We will include more annotated data of DAPh, KCl, NH4NO3, NPK, and
other fertilizer granule types in the MFD dataset to increase its size and variety, which will also
enhance the capability of models trained on it. Furthermore, the YOLOv8l-seg, YOLOv9c-seg,
and YOLOv9e-seg models were trained on 320 x 320 pixel images due to our currently available
computing resources. However, with 640 x 640 pixel images—the default size used to train these
models—better performance metrics can be achieved.
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(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 13: Inferences on brown beans

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 14: Inferences on corn seeds

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 15: Inferences on pharmaceutical tablets

(a) Test image (b) MANet (c) Mask R-CNN (d) Mask2Former (e) YOLOv8m-seg

Figure 16: Inferences on Polyethylene Terephthalate (PET) pellets
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A APPENDIX

A.1 DATASET USAGE GUIDE

A.1.1 EXPERIMENTS WITH YOLO MODELS

The provided dataset is in COCO format. To train the YOLO Models on our dataset, free open
source software such as Roboflow platform (Dwyer et al., 2024) can be used to convert the dataset
to the required YOLO format, and to split the dataset into training and validation set.

A.1.2 EXPERIMENTS WITH MASK R-CNN

Mask R-CNN requires data in COCO format; therefore, the dataset can be used as is for experiments
with Mask R-CNN. Users may split the dataset into training and validation sets as needed. We used
the MMDetection framework (MMDetection Contributors, 2018) to train the Mask R-CNN model.

A.1.3 EXPERIMENTS WITH MASK2FORMER

Mask2Former requires data in COCO format; therefore, the dataset can be used as is for experiments
with Mask2Former. Users may split the dataset into training and validation sets as needed. We used
the MMDetection framework (MMDetection Contributors, 2018) to train the Mask2Former model.

A.1.4 EXPERIMENTS WITH THE SEMANTIC SEGMENTATION MODELS

To use the dataset for experiments with semantic segmentation models, convert the data from COCO
format into binary masks using the code below. The segmentation models were trained using Py-
Torch Lightning (Falcon & The PyTorch Lightning team, 2019) and the Segmentation Models Py-
Torch package (Iakubovskii, 2019).

# Import necessary libraries
import json
import cv2
from tqdm import tqdm
import numpy as np
import os
import matplotlib.pyplot as plt

# Process annotations data
d_path_annot = ’../MFD_datasets_coco/annotations/MFD-

balanced_instances_default.json’
d_path_images = ’../MFD_datasets_coco/images’
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processed_data = {
’Id’: [],
’image_path’: [],
’semantic_masks’: [],

}

with open(d_path_annot, ’r’, encoding="utf-8") as json_file:
json_data_dir = json.load(json_file)
# Process image data
for image_inf in tqdm(json_data_dir[’images’], desc="Process images:

"):
real_img_id = image_inf[’id’]
for k in processed_data:

processed_data[k].append([])
processed_data[’Id’][-1] = real_img_id
img_path = os.path.join(

d_path_images, image_inf[’file_name’]
)
processed_data[’image_path’][-1] = str(img_path)
SIZE = (image_inf[’height’], image_inf[’width’], 3)
processed_data[’semantic_masks’][-1] = np.zeros(SIZE[:2], dtype=

np.uint8)

with open(d_path_annot, ’r’) as json_file:
json_data_dir = json.load(json_file)
image_id_old = ’’
skipped_counter = 1
morph_kernel = cv2.getStructuringElement(

cv2.MORPH_ELLIPSE, (3, 3)
)

for annotation_data in tqdm(
json_data_dir[’annotations’], desc="Process annotations: "

):
# Data may be numerated to image of have through numeration
process_image_id = annotation_data[’image_id’]

image_data_indx = processed_data[’Id’].index(process_image_id)
label = annotation_data[’category_id’]
# Process each granule
for point_i, point in enumerate(annotation_data[’segmentation’]):

if isinstance(point, list):
point_xy = [

[point[j], point[j + 1]] for j in
range(0, len(point), 2)

]
cnt = np.array(point_xy).reshape((-1, 1, 2)).astype(

np.int32
)
if len(cnt) < 3: # bad contour

print(’Cnt is bad’)
continue

single_mask = np.zeros((480, 480), dtype=np.uint8)
_ = cv2.drawContours(

single_mask,
[cnt], -1, label, cv2.FILLED

)
single_mask = cv2.morphologyEx(

single_mask, cv2.MORPH_ERODE, morph_kernel,
iterations=3

)
processed_data[’semantic_masks’][image_data_indx][

single_mask != 0] = label
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x, y, w, h = annotation_data["bbox"]
else:

continue

# Visualize Processed Data
image_indx = 0
test_image = cv2.imread(processed_data[’image_path’][image_indx])
test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB)

plt.rcParams[’figure.figsize’] = [10, 10]
f, axarr = plt.subplots(1,2)
_ = axarr[0].imshow(test_image, cmap=’gray’, vmin=0, vmax=255)
_ = axarr[1].imshow(processed_data[’semantic_masks’][image_indx], cmap=’

gray’, vmin=0, vmax=1)
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