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ABSTRACT
Dynamic graph modeling is crucial for understanding complex
structures in web graphs, spanning applications in social networks,
recommender systems, and more. Most existing methods primarily
emphasize structural dependencies and their temporal changes.
However, these approaches often overlook detailed temporal as-
pects or struggle with long-term dependencies. Furthermore, many
solutions overly complicate the process by emphasizing intricate
module designs to capture dynamic evolutions. In this work, we
harness the strength of the Transformer’s self-attention mechanism,
known for adeptly handling long-range dependencies in sequence
modeling. Our approach offers a simple Transformer model tailored
for dynamic graph modeling without complex modifications. We
re-conceptualize dynamic graphs as a sequence modeling challenge
and introduce an innovative temporal alignment technique. This
technique not only captures the inherent temporal evolution pat-
terns within dynamic graphs but also streamlines the modeling
process of their evolution. As a result, our method becomes versa-
tile, catering to an array of applications. Our model’s effectiveness
is underscored through rigorous experiments on four real-world
datasets from various sectors, solidifying its potential in dynamic
graph modeling. The datasets and codes are available1.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; • Information systems → Data mining; World Wide
Web.
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1 INTRODUCTION
Graph-structured data are prevalent on the World Wide Web, such
as social networks [9, 32], recommender systems [38, 42], article
1https://anonymous.4open.science/r/SimpleDyG/
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citation graphs [15, 47], dialogue systems [21, 23], and so on. Thus,
graph-based mining and learning have become fundamental tools
in manyWeb applications, ranging from analyzing users’ behaviors
ranging from the message-exchanging within social friendships,
ratings/reviews on recommender platforms, publication/citation
trends in the academic community, to multi-turn task-oriented
dialogue. Traditionally, many works focus on static graphs char-
acterized by fixed nodes and edges. However, many real-world
graphs on the Web are intrinsically dynamic in nature, which con-
tinuously evolve over time [36]. That is, the nodes and their edges
in such graphs are undergoing constant addition or reorganization
based on some underlying patterns of evolution. For example, in
a social network like UCI [30], where nodes represent users and
edges represent friend connections, users frequently exchange mes-
sages with their friends, and the social graph structure is constantly
changing as new friendships are formed. To study this important
class of graphs and their applications on the Web, we focus on dy-
namic graph modeling in this paper, aiming to capture the evolving
patterns in a dynamic graph.

Existing works for dynamic graph modeling mainly fall into
two categories: discrete-time approaches [31, 36] and continuous-
time approaches [6, 40, 45, 48] as shown in Figure 1(a) and 1(b),
respectively. The former regards dynamic graphs as a sequence of
snapshots over a discrete set of time steps. This kind of approach
usually leverages structural modules such as graph neural networks
(GNN) [46] to capture the topological information of graphs, and
temporal modules such as recurrent neural networks (RNN) [37] to
learn the sequential evolution of dynamic graphs [36]. Meanwhile,
the latter focuses on modeling continuous temporal patterns via
specific temporal modules such as temporal random walk [29] or
temporal kernel [7], illustrated by Figure 1(b). Despite the achieve-
ments of previous works in dynamic graphs, there still exist some
key limitations. First, the modeling of temporal dynamics on graphs
is still coarse-grained or short-termed. On one hand, discrete-time
approaches discard the fine-grained temporal information within
the snapshot, which inevitably results in partial loss of temporal pat-
terns. On the other hand, while continuous-time approaches retain
full temporal details by mapping each interaction to a continuous
temporal space, capturing long-term dependency within historical
graph data still remains a difficult problem [35, 50]. Second, the
majority of the existing works rely extensively on the message-
passing GNNs to encode the structural patterns in dynamic graphs.
Although powerful in graph modeling, the message-passing mech-
anism shows inherent limitations such as over-smoothing [5] and
over-squashing [1] that become more pronounced as model depth
increases, preventing deeper and more expressive architectures.

In pursuit of addressing these limitations, we have witnessed
the successful application of Transformer [41] and its variants in
natural language processing (NLP) [3, 16] and computer vision (CV)
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(c) Self-attention in Transformer

Figure 1: Dynamic graph modeling in various ways. (a) The discrete-time approaches represent the dynamic graph into a
sequence of snapshots without considering the temporal informationwithin each snapshot. (b) The continuous-time approaches
map time information of each interaction by time encoder such as time kernel. The dynamic representation of each node 𝑋 𝑡

𝑖
at time 𝑡 is harvest by the integration of the temporal graph learner (such as GNNs) and time feature. (c) The Transformer
captures the continuous sequence of each node and the self-attention mechanism alleviates the long-term dependency issues.

[8, 24]. The success is underpinned by two distinct advantages in-
herent to the Transformer architecture: as shown in Figure 1(c), it
can naturally support a continuous sequence of data without the
need for discrete snapshots, and its self-attention mechanism can
capture long-term dependency [41], which are important factors
for dynamic graph modeling. Transformers also presents a poten-
tially better alternative to capturing topological information, as it
is less or not affected by the over-smoothing and over-squashing
issues associated with message-passing GNNs. Hence, in this work,
we explore the feasibility of the Transformer architecture for dy-
namic graph modeling. In fact, we have observed a growing body
of research trying to modify the Transformer for static graphs
[17, 33, 49]. Nonetheless, these studies primarily focus on integrat-
ing graph structural knowledge into the vanilla Transformer model,
which generally still leverage message-passing GNNs as auxiliary
modules to refine positional encoding and attention matrices based
on graph-derived information [27]. More recently, Ying et al. [49]
indicated that the pure Transformer architecture holds promise for
graphs. However, all these previous Transformer-based approaches
only focus on static graphs, leaving unanswered questions about
the feasibility for dynamic graphs, as we elaborate below.

The first challenge lies in the need to preserve the historical
evolution throughout the entire timeline. However, due to the cal-
culation of pairwise attention scores, existing Transformer-based
graph models can only deal with a small receptive field, and would
face serious scalability issues on even a moderately large graph.
Notably, their primary application is limited to small-size graphs
such as molecular graphs [33]. However, many dynamic graphs on
the Web such as social networks or citation graphs are generally
much larger for the vanilla Transformer to handle. To this end, we
adopt a novel strategy wherein we treat the history of each node as
a temporal ego-graph, serving as the receptive field of the ego-node.
The temporal ego-graph is much smaller than the entire graph, yet
it retains the full interaction history of the ego-node in the dynamic
graph. Thus, we are able to preserve the temporal dynamics of ev-
ery user across the entire timeline, while simultaneously ensuring
scalability. Subsequently, this temporal ego-graph can be tokenized
into a sequential input tailored for the Transformer. Remarkably,
through this simple tokenization process, no modification to the
original Transformer architecture is required.

The second challenge lies in the need to align temporal infor-
mation across input sequences. Specifically, on dynamic graphs

different input sequences converge on a common time domain—
whether absolute points in time (e.g., 10am on 12 October 2023) or
relative time intervals (e.g., a one-hour time window) convey the
same across all sequences generated from different nodes’ history.
In contrast, sequences for language modeling or static graphs lack
such a universal time domain, and can be regarded as largely inde-
pendent of each other. Thus, vanilla sequences without temporal
alignment lack a way to differentiate variable time intervals and
frequency information. For example, a bursty stream of interactions,
happening over a short one-hour interval, has a distinct evolution
pattern from a steady stream containing the same number of in-
teractions, but happening over a period of one day. Therefore, it
becomes imperative to introduce a mechanism that infuses tem-
poral alignment among distinct input sequences generated from
the ego-graphs. To address this challenge, we carefully design spe-
cial temporal tokens to align different input sequences in the time
domain. The temporal tokens serve as indicators of distinct time
steps that are globally recognized across all nodes, and integrate
them into the input sequences. While achieving the global align-
ment, local sequences from each node still retains the chronological
order of the interactions in-between the temporal tokens, unlike
traditional discrete-time approaches where temporal information
within each snapshot is lost.

Based on the above insights, we propose a Simple Transformer
architecture for Dynamic Graph modeling, named SimpleDyG.
The word “simple” is a reference to the use of the original Trans-
former architecture without any modification, where the capability
of dynamic graph modeling is simply and solely derived from con-
structing and modifying the input sequences. In summary, the
contribution of our work is threefold.
• We explore the potential of the Transformer architecture for

modeling dynamic graphs. We propose a simple yet surprisingly
effective Transformer-based approach for dynamic graphs, called
SimpleDyG, without complex modifications.

• We introduce a novel strategy to map a dynamic graph into a
set of sequences, by considering the history of each node as a
temporal ego-graph. Furthermore, we design special temporal
tokens to achieve global temporal alignment across nodes, yet
preserving the chronological order of interactions at a local level.

• We conduct extensive experiments and analysis across four real-
world Web graphs, spanning diverse applications domains on the
Web. The empirical results demonstrate not only the feasibility,
but also the superiority of SimpleDyG.

2
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2 RELATEDWORK
2.1 Dynamic Graph Learning
Current dynamic graph learning methods can be categorized into
two primary paradigms: discrete-time approaches and continuous-
time approaches. In discrete-time methods, dynamic graphs are
treated as a series of static graph snapshots taken at regular time
intervals. To model both structural and temporal aspects, these
approaches integrate the GNNs with sequence models (RNNs or
self-attention mechanisms) [10, 31, 36, 39]. For instance, DySAT
Sankar et al. [36] leverages Graph Attention Network (GAT) and
self-attention as fundamental components for both structural and
temporal modules. In contrast, EvolveGCN [31] employed an RNN
to evolve the Graph Convolutional Network (GCN) parameters.
Nevertheless, they often fall short of capturing the granular tem-
poral information. Consequently, the continuous-time approaches
treat the dynamic graphs as sequences of interaction events at a
specific timestamp. Some approaches model dynamic graph evolu-
tion as temporal random walks or causal anonymous walks [29, 44].
Another avenue of research focuses on time window encoding tech-
niques integrated with graph structure modeling such as temporal
graph attention used in TGAT [48] and TGN [35] or MLP-Mixer lay-
ers applied in GraphMixer [6]. Additionally, researchers also lever-
age temporal point processes treating the arrival of nodes/edges as
discrete events [14, 40, 45]. Despite the promise demonstrated by
continuous-time approaches, it’s important to note that they come
with limitations in capturing long-term dependencies originating
from historical data.

The differences between our work and the previous dynamic
graph learning methods lie in two points. First, our method effec-
tively mitigates long-term dependency challenges, leveraging the
inherent advantages of the Transformer architecture. Second, our
method preserves the chronological history of each ego node within
the input sequences. The temporal alignment mechanisms among
various ego networks empower our model to capture both global
and local information within the dynamic graphs.

2.2 Transformers for Graphs
Transformer architectures for graphs have emerged as a compelling
alternative to conventional GNNs, aiming to mitigate issues like
over-smoothing and over-squashing. Prior research focused on inte-
grating graph information into the vanilla Transformer through di-
verse strategies. Some methods integrate GNNs as auxiliary compo-
nents to bolster structural comprehension within the Transformer
architecture [18, 34]. Others focus on enriching positional embed-
dings by spatial information derived from the graph. For instance,
Graphormer [49] integrates the centrality, spatial and edge encod-
ing into Transformer. Cai and Lam [4] adopted distance embedding
for tree-structured abstract meaning representation graph. Kreuzer
et al. [19] utilized the full Laplacian spectrum to learn the positional
encoding for graph. There are also studies focus on refining atten-
tion mechanisms in Transformer for graph analysis. For instance,
Min et al. [28] employed a graph masking attention mechanism to
seamlessly inject graph-related priors into the Transformer archi-
tecture. Excepted for the complicated design, more recently, Kim
et al. [17] shed light on the effectiveness of pure Transformers in

graph learning. Their approach treats all nodes and edges as inde-
pendent tokens, severing as inputs for Transformer. Recently, Mao
et al. [25] proposed a Transformer based model for heterogeneous
information networks. Node-level structure and heterogeneous
relation are integrated into the attention mechanism.

It’s worth noting that most of the previous works based on Trans-
formers mainly focused on static graphs. Recently, Yu et al. [50]
introduced a Transformer based model designed for dynamic graph
learning, which belongs to a contemporary work with ours. The
difference lies in that they rely on complex designs for handling
co-occurrence neighbors of different nodes and temporal inter-
val encoding. In contrast, we explore the feasibility of a simple
Transformer for dynamic graphs without the need for complex
modifications.

3 PRELIMINARIES
In this section, we first illustrate the problem of dynamic graph
modeling. Then we briefly introduce the main components of Trans-
former architecture.

3.1 Dynamic Graph Modeling
We define a dynamic graph as G = (V, E,T ,X) with a set of
nodes V , edges E, a time domain T and an input feature ma-
trix X. It can be characterized by a sequence of interacted links
G = {(𝑣𝑖 , 𝑣 𝑗 , 𝜏)𝑛 : 𝑛 = 1, 2, . . . , |E |}. Here, each tuple (𝑣𝑖 , 𝑣 𝑗 , 𝜏) de-
notes a distinct interaction between nodes 𝑣𝑖 and 𝑣 𝑗 at time 𝜏 ∈ T ,
with |E | representing the number of interactions within the tem-
poral graph. Given the dynamic graph G, we learn a model with
parameter 𝜃 to capture the temporal evolution of the graph. The
learned temporal representations can be used for different tasks
such as node classification, link prediction and graph classification.

3.2 Transformer Architecture
The standard Transformer architecture comprises two main compo-
nents: the multi-head self-attention layers (MHA) and the position-
wise feed-forward network (FFN). In the following part, we will
briefly introduce these blocks.

We represent an input sequence as H = ⟨h1, . . . ,h𝑁 ⟩ ∈ R𝑁×𝑑 ,
where 𝑑 is the dimension of node features and h𝑖 is the hidden
representation for token 𝑖 . The MHA module projects H to H sub-
spaces denoted as:

Q = HW𝑄 ,K = HW𝐾 ,V = HW𝑉 , (1)

whereW𝑄 ∈ R𝑑×𝑑𝐾 ,W𝐾 ∈ R𝑑×𝑑𝐾 ,W𝑉 ∈ R𝑑×𝑑𝑉 re the learnable
parameter matrices, and their dimensions are set as 𝑑𝐾 = 𝑑𝑉 = 𝑑/𝐻 .

The self-attention operation is performed using a scaled dot-
product on the corresponding (𝑄ℎ, 𝐾ℎ,𝑉ℎ) for each head:

𝑀𝐻𝐴(H ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝐻 )W𝑂 ,

ℎ𝑒𝑎𝑑ℎ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
QℎK

𝑇
ℎ√︁

𝑑𝐾

)Vℎ,
(2)

whereW𝑂 ∈ R𝑑×𝑑 is learnable parameter matrix.
The output of the MHA module is then passed through a Feed-

Forward Network (FFN) layer followed by residual connection [12]
and layer normalization (LN) [2]. Finally, the output of the l𝑡ℎ layer

3
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Figure 2: Overall framework of SimpleDyG. (Best viewed in color. The numerical values adjacent to the links in (a) and (b), as
well as beneath the nodes in (c), represent the time elapsed from the beginning, indicating the moments at which the links
emerge (ranging from 0 to 1). The color intensity of nodes in the historical sequence represents the time span, where darker
colors signify a longer-term duration, while lighter colors indicate a shorter-term duration.)

H𝑙 is computed as follows:

Ĥ𝑙 = 𝐿𝑁 (H𝑙−1 +𝑀𝐻𝐴(H𝑙−1)),

H𝑙 = 𝐿𝑁 (Ĥ𝑙 + 𝐹𝐹𝑁 (Ĥ𝑙 )) .
(3)

4 PROPOSED APPROACH
The overall framework of SimpleDyG is illustrated in Figure 3.1.
Generally speaking, our framework is applied to a dynamic graph
G (Figure 3.1(a)) , where multiple temporal links emerge at various
time points. In order to capture the dynamic evolution, we begin by
extracting temporal ego-graph for ego-node which contains the en-
tire historical interactions as shown in Figure 3.1(b). These temporal
graphs are subsequently transformed into sequences while preserv-
ing their chronological order. To incorporate temporal alignment
among different ego-graphs, we segment the timeline into various
time spans with the same temporal interval as in Figure 3.1(c). Then
we add temporal tokens into the ego-sequence to make our model
identify different time spans. Finally, these sequences are fed into a
Transformer architecture to facilitate various downstream tasks.

4.1 Temporal Ego-graph
Asmentioned earlier, the sequencemodeling capability of the Trans-
former architecture is well-suited for dynamic graph modeling. The
strategy of mapping dynamic graphs into a sequence of tokens is
crucial for the supported features and computational complexity. In
this paper, we regard nodes in the dynamic graphs as input tokens
which is a common approach in Transformer models for graphs.
Besides, to preserve more historical interactions of all the nodes
and ensure the scalability of dealing with large receptive fields, we
extract the temporal ego-graph for each node in the dynamic graph.
These temporal graphs are mapped into sequences to capture the
structural and temporal evolution.

Specifically, we denote 𝑣𝑖 ∈ V as an ego-node in the tempo-
ral graph G. We extract the historically interacted nodes for 𝑣𝑖
and concatenate them into a sequence as input for Transformer
architecture. Formally, we denote the temporal ego-graph for the
ego-node 𝑣𝑖 as 𝑤𝑖 = ⟨𝑣1

𝑖
, 𝑣2
𝑖
. . . 𝑣

|𝑤𝑖 |
𝑖

⟩, where |𝑤𝑖 | is the length of
the historical interactions for node 𝑣𝑖 . To better model the patterns
within the input sequence, we follow similar practices as in NLP
sequence modeling tasks and include some special tokens designed
for our task. Finally, the input sequence and output sequence are
constructed as follows 2:

𝑥𝑖 = ⟨|hist|⟩, 𝑣𝑖 , 𝑣1𝑖 , . . . 𝑣
|𝑤𝑖 |
𝑖

, ⟨|endofhist|⟩,

𝑦𝑖 = ⟨|pred|⟩, 𝑣 |𝑤𝑖 |+1
𝑖

, . . . , 𝑣
|𝑤𝑖 |+𝑧
𝑖

⟨|endofpred|⟩,
(4)

where the “⟨|hist|⟩” and “⟨|endofhist|⟩” are special tokens indicating
the start and end of the input historical sequence. The “⟨|pred|⟩”
and “⟨|endofpred|⟩” are reserved for predicting the next nodes at a
future time. Specifically, the model will halt its predictions once
the end special token is generated, enabling automatic decisions on
the number of future interactions.

4.2 Temporal Alignment
In the original Transformer architecture, the input sequence is
treated as a sequence of tokens, and the model captures the rela-
tionships between these tokens based on their relative positions in
the sequence, representing temporal order information. However,
it inherently lacks the capability to account for the universal time
domain and the time interval and frequency information. In pur-
suit of this objective, we segment the time domain T into discrete,
coarse-grained time steps, with each time step representing the
same time interval, such as one week or one month, determined

2Special tokens in the beginning and at the end such as “⟨|endoftext|⟩” are omitted for
easy illustration.
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by dataset characteristics. It’s important to note that our approach
differs from discrete-time graph modeling, as within each time step,
we consider the precise temporal order of each link. We introduce
a straightforward yet effective strategy to incorporate temporal
alignment within dynamic graphs into the input sequence of the
Transformer architecture. This strategy entails the use of special
temporal tokens explicitly denoting different time steps that are
globally recognized across all nodes. Suppose we split the time
domain T into 𝑇 time steps, the sequence of ego-node 𝑖 in time
step 𝑡 ∈ 𝑇 is denoted as follows:

𝑥 ′𝑖 = ⟨|hist|⟩, 𝑣𝑖 , ⟨|time1|⟩, 𝑆1𝑖 , . . . ⟨|timeT-1|⟩, 𝑆𝑇−1𝑖 , ⟨|endofhist|⟩,

𝑦′𝑖 = ⟨|pred|⟩, ⟨|timeT |⟩, 𝑆𝑇𝑖 ⟨|endofpred|⟩,

𝑆𝑡𝑖 = ⟨𝑣1𝑖 , 𝑣
2
𝑖 . . . 𝑣

|𝑆𝑡
𝑖
|

𝑖
⟩,

(5)

where 𝑆𝑡
𝑖
represents the historical sequence of node 𝑖 as time step

𝑡 whith length of |𝑆𝑡
𝑖
|. (⟨|time1|⟩ . . . ⟨|timeT |⟩) are temporal tokens

that serve as indicators of temporal alignment, allowing the model
to recognize and capture temporal patterns in the data. By doing
so, our approach enhances the Transformer’s ability to understand
the dynamics of the dynamic graph, making it more effective in
tasks like predicting future interactions in social networks or other
dynamic systems where temporal patterns are crucial.

4.3 Training objective
A training sample is formed by concatenating the input 𝑥 and
output 𝑦 as [𝑥 ;𝑦]. We denote it as 𝑟 = ⟨𝑟1, 𝑟2, · · · , 𝑟 |𝑟 | ⟩ with |𝑟 |
tokens. For a given training instance in this format, we follow the
original masking strategy, where, during the prediction of the 𝑖-th
token, only the input sequence up to position 𝑟<𝑖 is taken into
account, while the subsequent tokens are subject to masking. The
joint probability of the next token is calculated as follows:

𝑝 (𝑟 ) =
|𝑟 |∏
𝑖=1

𝑝 (𝑟𝑖 |𝑟<𝑖 ), (6)

where 𝑟<𝑖 is the generated sequence before step 𝑖 . 𝑝 (𝑟𝑖 |𝑟<𝑖 ) denotes
the probability distribution of the token to be predicted at step 𝑖
conditioned with the tokens 𝑟<𝑖 . It is computed as:

𝑝 (𝑟𝑖 |𝑟<𝑖 ) = 𝐿𝑁 (R𝑙<𝑖 )W 𝑣𝑜𝑐𝑎𝑏 , (7)

where LN means layer normalization. R𝐿
<𝑖

denotes the hidden rep-
resentation of the historically generated tokens before step 𝑖 , which
is obtained by the last layer of Transformer.W𝑣𝑜𝑐𝑎𝑏 is the learned
parameter aiming to compute the probability distribution across
the vocabulary of nodes in the graph.

Given a dataset containingM training instances, the loss func-
tion for training the model with parameters 𝜃 is defined as the
negative log-likelihood over the entire training dataset as follows:

L = −
|M |∑︁
𝑚=1

𝑛𝑚∑︁
𝑖=1

𝑙𝑜𝑔𝑝𝜃 (𝑟𝑚𝑖 |𝑟𝑚<𝑖 ), (8)

where 𝑛𝑚 is the length of the instance 𝑟𝑚 .
We outline the training procedure of SimpleDyG in Algorithm 1.

For each prediction step 𝑖 of one training instance, the hidden rep-
resentations of the generated sequence R<𝑖 are used for predicting

Algorithm 1: Training Procedure of SimpleDyG
Input: Dynamic graph G = (V, E,T ,X), training

instancesM
Output:Well-trained model with parameter 𝜃 for dynamic

graph modeling
Initialization: model parameter 𝜃
while not converged do

sample a batch of instances B fromM
for each instance 𝑟 = ⟨𝑟1, 𝑟2, · · · , 𝑟 |𝑟 | ⟩ in batch B do

while step 𝑖 < |𝑟 | do
/* prediction steps for one instance */

Calculate the representation R<𝑖 for 𝑟<𝑖
Compute the joint probability by Equations 6
and 7
Calculate the loss by Equation 8

return 𝜃 , dynamic representation of G

the next token. The joint probability of the next token is computed
using Equations 6 and 7. Our model is trained using the Adam
optimizer with a loss function based on negative log-likelihood, as
presented in Equation 8.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets. To evaluate the performance of our proposed method,
we conducted experiments on four datasets from various domains,
including the communication network UCI [30], the rating network
ML-10M [11], the citation network Hepth [22], and the multi-turn
conversation dataset MMConv [23]. The detailed statistics of all
datasets after preprocessing are presented in Table 1.

Table 1: Dataset statistics

Dataset UCI ML-10M Hepth MMConv

Domain Social Rating Citation Conversation
# Nodes 1,781 15,841 4,737 7,415
# Edges 16,743 48,561 14,831 91,986

UCI [30]: it represents a social network in which links represent
messages exchanged among users. For temporal alignment, we and
divide the dataset into 13 time steps following [36].

ML-10M [11]: we utilized the ML-10M dataset from MovieLens
dataset comprising user-tag interactions, where the links connect
users to the tags they have assigned to specific movies. For temporal
alignment, the dataset is split into 13 time steps following [36].

Hepth [22]: it is a citation network related to high-energy physics
theory. We extract 24 months of data from this dataset and split
them into 12 time steps for temporal alignment. Note that this
dataset contains new emerging nodes as time goes on. We use the
extra word2vec [26] model to extract the raw feature for each paper
based on the abstract.

MMConv [23]: this dataset contains a multi-turn task-oriented
dialogue system that assists users in discovering places of interest
across five domains. Leveraging this rich annotation, we represent
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the dialogue as a dynamic graph which is also a widely studied
approach in task-oriented dialogue systems. For temporal align-
ment, we empirically divided the dataset into 16 time steps, each
corresponding to a distinct turn in the conversation.
Baselines. We compare our method with baselines in two cate-
gories: (1) discrete-time approaches: DySAT [36] and EvolveGCN
[31] (2) continuous-time approaches: DyRep [40], JODIE [20], TGAT
[48], TGN [35] and GraphMixer [6].
• DySAT [36] leverages joint structural and temporal self-attention

to learn the node representations at each timestep.
• EvolveGCN [31] adapts to evolving graph structures by employ-

ing RNN to evolve graph convolutional network parameters.
• DyRep [40] utilizes a two-time scale deep temporal point process

model to capture temporal graph topology and node activities.
• JODIE [20] focuses on modeling the binary interaction among

users/items by two coupled RNNs. A projection operator is de-
signed to predict the future representation of a node at any time.

• TGAT [48] employs temporal graph attention layers and time
encoding techniques to aggregate temporal-topological features.

• TGN [35] combines the memory modules and message-passing
to maintain the dynamic representations. This model also adopts
time encoding and temporal graph attention layers.

• GraphMixer [6] relies onMLP layers and neighbormean-pooling
to learn the link and node encoders. An offline time encoding
function is adopted to capture the temporal information.

Implementation Details. In this paper, we evaluate the per-
formance of SimpleDyG on the link prediction task. Given the
ego-nodes, the objective of the link prediction task is to predict the
possible linked nodes at time step 𝑇 . For all the datasets, we follow
the setting in [6] by treating the temporal graphs as undirected
graphs. We split each dataset into training/validation/testing based
on the predefined time steps. We choose the data at the last time
step 𝑇 as the testing set, while the data at time step 𝑇 − 1 serves as
the validation set, with the remaining data for training. We tune the
parameters for all methods on the validation set. All experiments
are repeated ten times, and we report the averaged results with
standard deviation. We provide further implementation details and
hyper-parameter settings for the baselines in Appendix A and B.
Evaluation Metrics. In our evaluation, we carefully selected met-
rics that are well-suited to our specific task. The goal of the link
prediction task is to predict a set of nodes linked to each ego-node.
Notably, our SimpleDyG model predicts a node sequence, with
each prediction influenced by the prior ones until the generation of
an end token. In contrast, the baseline models make simultaneous
predictions of entire ranking sequences for each ego-node. To eval-
uate ranking performance and set similarity between predicted and
ground truth node sets, we employ two key metrics: NDCG@5 and
Jaccard similarity. NDCG@5 is a well-established metric commonly
used in information retrieval and ranking tasks [43], aligning with
our objective of ranking nodes and predicting the top nodes linked
to an ego-node. On the other hand, Jaccard similarity is valuable for
quantifying the degree of overlap between two sets [13], measuring
the similarity between predicted nodes and the ground truth nodes
associated with the ego-node. Specifically, for the baseline models,

we choose the top k nodes (𝑘 = 1, 5, 10, 20) as the predicted set,
as they are not generation models and cannot determine the end
of the prediction. We then select the maximum Jaccard similarity
value across different k as the final Jaccard similarity score. This
comprehensive evaluation strategy ensures a thorough assessment
of our models and baselines in predicting linked nodes.

5.2 Main Performance Comparison
We report the results of all methods under NDCG@5 and Jaccard
across four diverse datasets in Table 2. Generally speaking, our
method outperforms all the baselines on all datasets, and we make
the following key observations.

Firstly, we find that continuous-time approaches generally per-
form better than discrete ones across a wide range of scenarios,
indicating the important role of time-related information in dy-
namic graph analysis. Notably, continuous-time baselines such as
GraphMixer exhibit superior performance. This superiority can
be mainly attributed to the simple MLP-Mixer architecture, which
makes it easier to capture long-term historical sequences with lower
complexity. In contrast, other models like DyRep, TGAT, and TGN,
which rely on complex designs such as GNNs and GATs, display
subpar performance. This phenomenon stems from the inherent
limitations of GNNs and GATs in capturing distant relationships or
broader historical contexts within predefined time windows.

Secondly, for the inductive scenarios such as the Hepth dataset,
the models deployed by GNNs, GATs, and Transformer show ad-
vanced performance. Their effectiveness lies in their ability to cap-
ture intricate patterns and relationships within dynamic graphs,
especially when faced with inductive scenarios. In contrast, sim-
pler models may struggle to adapt to these situations, resulting in
suboptimal performance.

In summary, while continuous-time approaches have generally
been shown effective, it is essential to consider the specific char-
acteristics of the application scenario and strike a delicate balance
between model complexity and the necessity to capture long-range
dependencies in dynamic graph modeling.

5.3 Effect of Extra Tokens
We design extra tokens to make the vanilla Transformer architec-
ture more suitable for dynamic graph modeling. To assess their
effectiveness, we conduct an in-depth analysis of these token de-
signs including special tokens indicating the input and output, and
the temporal tokens for aligning among temporal ego-graphs.
Impact of the special tokens. The special tokens include the start
and end of the historical sequence (“⟨|hist|⟩” and “⟨|endofhist|⟩”), as
well as the predicted sequence (“⟨|pred|⟩”and “⟨|endofpred|⟩”). To
comprehensively evaluate their effect across diverse scenarios, we
examine two degenerate variants: (1) same special, where we use
the same special tokens for input and output. (2) no special, where
we entirely removed all special tokens from each sample. We show
the results in Table 3 and make the following observations.

In general, special tokens enhance the link prediction perfor-
mance across different datasets. Furthermore, the differences be-
tween the same special and original SimpleDyG tend to be minimal.
However, an interesting finding emerges in the case of the Hepth
dataset, where the no special scenario yields the best performance.
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Table 2: Performance of dynamic link prediction by SimpleDyG and the baselines on four datasets.(In each column, the best
result is bolded and the runner-up is underlined. “-” indicates the method is not suitable for inductive scenario.)

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

DySAT [36] 0.010±0.003 0.010±0.001 0.058±0.073 0.050±0.068 - - 0.102±0.085 0.095±0.080
EvolveGCN [31] 0.064±0.045 0.032±0.026 0.097±0.071 0.092±0.067 0.009±0.004 0.007±0.002 0.051±0.021 0.032±0.017

DyRep [40] 0.011±0.018 0.010±0.005 0.064±0.036 0.038±0.001 0.031±0.024 0.010±0.006 0.140±0.057 0.067±0.025
JODIE [20] 0.022±0.023 0.012±0.009 0.059±0.016 0.020±0.004 0.031±0.021 0.011±0.008 0.041±0.016 0.032±0.022
TGAT [48] 0.061±0.007 0.020±0.002 0.066±0.035 0.021±0.007 0.034±0.023 0.011±0.006 0.089±0.033 0.058±0.021
TGN [35] 0.041±0.017 0.011±0.003 0.071±0.029 0.023±0.001 0.030±0.012 0.008±0.001 0.096 ±0.068 0.066±0.038

GraphMixer [6] 0.104±0.013 0.042±0.005 0.081±0.033 0.043±0.022 0.011±0.008 0.010±0.003 0.172±0.029 0.085±0.016

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010

Table 3: Impact of special tokens in SimpleDyG across four datasets.

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
same special 0.113±0.007 0.095±0.010 0.085±0.046 0.079±0.043 0.027±0.014 0.009±0.005 0.179±0.013 0.170±0.010
no special 0.041±0.025 0.020±0.011 0.006±0.009 0.006±0.009 0.096±0.016 0.025±0.006 0.01±0.008 0.008±0.007

Table 4: Impact of different temporal alignment designs on the four datasets.

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
same time 0.09±0.013 0.083±0.012 0.147±0.001 0.139±0.001 0.046±0.009 0.017±0.004 0.24±0.031 0.212±0.025
no time 0.111±0.015 0.091±0.014 0.117±0.062 0.111±0.059 0.045±0.007 0.018±0.003 0.26±0.019 0.237±0.016

It can be explained by the specific character of the citation dataset.
In the testing data of Hepth, the ego-nodes are all newly emerged
nodes indicating the newly published papers. Consequently, the in-
put samples lack any historical information, leaving the distinction
between history and the future meaningless.
Impact of temporal tokens. To comprehensively evaluate the
impact of temporal tokens, we compare the performance with two
degenerate variants: (1) same time, where we do not distinguish
specific time steps and employ the same temporal tokens for each
time step. (2) no time, in which we entirely removed all temporal
tokens from each sample. The results are presented in Table 4 and
we have the following observations.

It is surprising and interesting to observe performance improve-
ment with a simpler design for temporal alignment. This phenome-
non is most noticeable in the MMConv and Hepth datasets due to
the characteristics of these datasets. The citation relationship and
the conversation among different ego-nodes do not strictly follow
temporal segmentation. Using the same temporal tokens or none
at all allows the model to adapt more naturally to this temporal
order.The temporal alignment plays an important role for UCI and

ML-10M datasets. However, they show different trends with the
same time version. The reason is that the communication habits of
different users are more related to temporal information, while the
rating habits of users are more subjective in ML-10M dataset.

5.4 The Performance of Multi-step Prediction
We evaluate the ability of SimpleDyG for multi-step prediction
with the time steps range from 𝑡 to 𝑡 + △𝑡 , utilizing a model that
has been trained on data up to time 𝑡 . Here, the time step means
the coarse segment of the time domain as did in the temporal
alignment. In our experiment, we set △𝑡 as three and achieve multi-
step prediction step by step constrained by the results of previous
steps. The performance trends of SimpleDyG with two baselines
TGAT and GraphMixer are illustrated in Figure 3.

We observe a natural decay in performance over time for all
methods, as anticipated. However, what stands out is SimpleDyG’s
ability to consistently outperform the baselines as time progresses.
This observed trend underscores the effectiveness of our proposed
Transformer architecture in modeling dynamic graph data. Notably,
different datasets exhibit varying patterns of performance decay
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Figure 3: The performance of multi-step prediction.

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

N
D

C
G

@
5

# of layers

UCI ML-10M

Hepth MMConv

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

N
D

C
G

@
5

# of layers

UCI ML-10M

Hepth MMConv

(a) Number of layers

0

0.1

0.2

0.3

0.4

0.5

2 4 8

N
D

C
G

@
5

# of heads

UCI ML-10M

Hepth MMConv

0

0.1

0.2

0.3

0.4

0.5

2 4 8

N
D

C
G

@
5

# of heads

UCI ML-10M

Hepth MMConv

(b) Number of heads0

0.1

0.2

0.3

0.4

0.5

128 256 512 768

N
D

C
G

@
5

# of hidden dimension

UCI ML-10M

Hepth MMConv
0

0.1

0.2

0.3

0.4

0.5

128 256 512 768

N
D

C
G

@
5

# of hidden dimension

UCI ML-10M

Hepth MMConv

(c) Hidden dimention

Figure 4: Impact of hyper-parameters.

over time, highlighting the importance of dataset-specific considera-
tions in dynamic graph analysis. For instance, in the case of the ML-
10M and Hepth datasets, we notice a relatively slight performance
drop over time. This phenomenon can be attributed to specific char-
acteristics inherent to these datasets. In the ML-10M dataset, the
presence of numerous historical interactions contributes to a rela-
tively stable performance trend. The dataset’s richness in historical
data allows the model to absorb small noise or fluctuations without
a significant impact on overall performance. On the other hand, the
Hepth dataset introduces a unique challenge due to the presence
of new nodes at each time step. Despite this inherent complexity,
SimpleDyG still demonstrates its adaptability by maintaining com-
petitive performance, reflecting its capability to adapt to dynamic
scenarios and evolving graph structures.

5.5 Hyper-parameter Analysis
Weundertake an examination of the critical hyper-parameter choices,
taking into account the variations observed across different datasets.
Specifically, we systematically explore the impact of several cru-
cial hyper-parameters, namely the number of layers, the number
of heads, and the hidden dimension size. These hyper-parameters
play a pivotal role in shaping the model’s capacity and its ability
to capture intricate patterns within dynamic graphs. We fine-tune
the hyper-parameters while keeping all other parameters constant.
From Figure 4, we draw some highlights as follows:

• Number of layers: The variance of performance under differ-
ent numbers of layers is relatively small. This suggests that the
choice of the number of layers in SimpleDyG has a more con-
sistent impact across different datasets and scenarios. Generally
speaking, two layers are typically sufficient for most cases. For in-
ductive scenarios such as the Hepth dataset, it is advisable to use
more layers to effectively capture the evolving graph structure.

• Number of heads: For the number of attention heads, we find
that using either 2 or 4 heads is generally suitable for a wide range
of scenarios. These settings provide a good balance between
performance and computational efficiency.

• Hidden dimension size: The choice of hidden dimension size
depends on the complexity of the dataset. For datasets like movie
ratings (e.g., ML-10M), a hidden dimension size of 128 is often
adequate. However, for datasets involving more intricate interac-
tions, such as communication networks or conversation datasets,
it becomes necessary to use larger hidden dimension sizes like
256 or 512. Notably, the UCI dataset requires a hidden dimension
of 768, which can be explained by the complexity and richness
of the interactions among users within the dataset.

6 CONCLUSION
In this work, we’ve delved into the intricate realm of dynamic graph
modeling, recognizing its profound significance across a range of
applications. Drawing from the strengths of the Transformer’s self-
attention mechanism, we tailored a solution that sidesteps the often
convoluted designs prevalent in existing methods. Our novel ap-
proach re-envisions dynamic graphs from a sequence modeling
perspective, leading to the development of an innovative temporal
alignment technique. This strategic design not only adeptly cap-
tures the temporal dynamics inherent in evolving graphs but also
simplifies their modeling process. Our empirical investigations, car-
ried out across four real-world datasets spanning diverse sectors,
serve as a testament to our model’s efficacy. In the future, we will
delve deeper into the nuances of the temporal alignment technique
for further optimizations. Additionally, the potential for integrating
more advanced attention mechanisms can be explored to further
elevate the model’s capabilities in capturing dynamic evolutions.
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A ADDITIONAL IMPLEMENT DETAILS
Note that the implementation details of baseline approaches in
their publicly released code are quite different. For instance, most
of them regard the link prediction task as binary classification,
where the objective is to determine the presence or absence of links
between the positive pairs of nodes and randomly selected negative
pairs. They either employ a binary cross-entropy loss to facilitate
classifier learning or utilize logistic regression to train an additional
classifier. To tailor these baselines to our specific task for a fair
comparison, we adapt them into a ranking task and substitute the
classifier loss with a pair-wise Bayesian personalized ranking (BPR)
loss for all baselines.

B HYPER-PARAMETERS SETTINGS OF
BASELINES

Considering that we refine the loss of the baselines as BPR loss, we
tune the important parameters of all baselines for all the datasets.
For all baselines, we tune the parameter of hidden dimension with
{16, 32, 64, 128, 256, 512} for each dataset. For a fair comparison
with our model, we don’t set a historical window for discrete-time
approaches and use all the historical data.

Some important parameters for each baseline are listed as follows:
For DySAT [36], We set the self-attention layers and head to be 2
and 8, respectively. For EvolveGCN [31], the number of GCN layers
is 1. For DyRep [40], the message aggregation layer is 2, and the
number of neighbor nodes is 20. For TGAT [48] and TGN [35], the
number of graph attention heads is 2 and the attention layers are 1
and 2, respectively. For GraphMixer [6], the number of MLP layers
for UCI is 1 and 2 for other datasets. For a fair comparison, we set
the historical length of each node to 1024, which is the same as our
model.
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