
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On the Feasibility of Simple Transformer
for Dynamic Graph Modeling

Anonymous Author(s)
Submission Id: 1847

ABSTRACT
Dynamic graph modeling is crucial for understanding complex
structures in web graphs, spanning applications in social networks,
recommender systems, and more. Most existing methods primarily
emphasize structural dependencies and their temporal changes.
However, these approaches often overlook detailed temporal as-
pects or struggle with long-term dependencies. Furthermore, many
solutions overly complicate the process by emphasizing intricate
module designs to capture dynamic evolutions. In this work, we
harness the strength of the Transformer’s self-attention mechanism,
known for adeptly handling long-range dependencies in sequence
modeling. Our approach offers a simple Transformer model tailored
for dynamic graph modeling without complex modifications. We
re-conceptualize dynamic graphs as a sequence modeling challenge
and introduce an innovative temporal alignment technique. This
technique not only captures the inherent temporal evolution pat-
terns within dynamic graphs but also streamlines the modeling
process of their evolution. As a result, our method becomes versa-
tile, catering to an array of applications. Our model’s effectiveness
is underscored through rigorous experiments on four real-world
datasets from various sectors, solidifying its potential in dynamic
graph modeling. The datasets and codes are available1.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; • Information systems → Data mining; World Wide
Web.

KEYWORDS
Dynamic graphs, Transformer, graph representation learning
ACM Reference Format:
Anonymous Author(s). 2024. On the Feasibility of Simple Transformer for
Dynamic Graph Modeling. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph-structured data are prevalent on the World Wide Web, such
as social networks [9, 32], recommender systems [38, 42], article
1https://anonymous.4open.science/r/SimpleDyG/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

citation graphs [15, 47], dialogue systems [21, 23], and so on. Thus,
graph-based mining and learning have become fundamental tools
in manyWeb applications, ranging from analyzing users’ behaviors
ranging from the message-exchanging within social friendships,
ratings/reviews on recommender platforms, publication/citation
trends in the academic community, to multi-turn task-oriented
dialogue. Traditionally, many works focus on static graphs char-
acterized by fixed nodes and edges. However, many real-world
graphs on the Web are intrinsically dynamic in nature, which con-
tinuously evolve over time [36]. That is, the nodes and their edges
in such graphs are undergoing constant addition or reorganization
based on some underlying patterns of evolution. For example, in
a social network like UCI [30], where nodes represent users and
edges represent friend connections, users frequently exchange mes-
sages with their friends, and the social graph structure is constantly
changing as new friendships are formed. To study this important
class of graphs and their applications on the Web, we focus on dy-
namic graph modeling in this paper, aiming to capture the evolving
patterns in a dynamic graph.

Existing works for dynamic graph modeling mainly fall into
two categories: discrete-time approaches [31, 36] and continuous-
time approaches [6, 40, 45, 48] as shown in Figure 1(a) and 1(b),
respectively. The former regards dynamic graphs as a sequence of
snapshots over a discrete set of time steps. This kind of approach
usually leverages structural modules such as graph neural networks
(GNN) [46] to capture the topological information of graphs, and
temporal modules such as recurrent neural networks (RNN) [37] to
learn the sequential evolution of dynamic graphs [36]. Meanwhile,
the latter focuses on modeling continuous temporal patterns via
specific temporal modules such as temporal random walk [29] or
temporal kernel [7], illustrated by Figure 1(b). Despite the achieve-
ments of previous works in dynamic graphs, there still exist some
key limitations. First, the modeling of temporal dynamics on graphs
is still coarse-grained or short-termed. On one hand, discrete-time
approaches discard the fine-grained temporal information within
the snapshot, which inevitably results in partial loss of temporal pat-
terns. On the other hand, while continuous-time approaches retain
full temporal details by mapping each interaction to a continuous
temporal space, capturing long-term dependency within historical
graph data still remains a difficult problem [35, 50]. Second, the
majority of the existing works rely extensively on the message-
passing GNNs to encode the structural patterns in dynamic graphs.
Although powerful in graph modeling, the message-passing mech-
anism shows inherent limitations such as over-smoothing [5] and
over-squashing [1] that become more pronounced as model depth
increases, preventing deeper and more expressive architectures.

In pursuit of addressing these limitations, we have witnessed
the successful application of Transformer [41] and its variants in
natural language processing (NLP) [3, 16] and computer vision (CV)

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1847

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

t

t1 t2 … t tt1 t2 …

Self attention for i Self attention for j

i

j

G1 G2 G3

Temporal
Graph Learner

[𝑋!"; 𝑡]

[𝑋#"; 𝑡]

[𝑋"]… … …

…

…
… …

f(t) Time Kernel

…
t

…

t1 t2

t1 t2

t

Dynamic graph

(a) Discrete-time approaches

t

t1 t2 … t tt1 t2 …

Self attention for i Self attention for j

i

j

G1 G2 G3

Temporal
Graph Learner

[𝑋!"; 𝑡]

[𝑋#"; 𝑡]

[𝑋"]… … …

…

…
… …

f(t) Time Kernel

…
t

…

t1 t2

t1 t2

t

(b) Continuous-time approaches

t

t1 t2 … t tt1 t2 …

Self attention for i Self attention for j

i

j

G1 G2 G3

Temporal
Graph Learner

[𝑋!"; 𝑡]

[𝑋#"; 𝑡]

[𝑋"]… … …

…

…
… …

f(t) Time Kernel

…
t

…

t1 t2

t1 t2

t

(c) Self-attention in Transformer

Figure 1: Dynamic graph modeling in various ways. (a) The discrete-time approaches represent the dynamic graph into a
sequence of snapshots without considering the temporal informationwithin each snapshot. (b) The continuous-time approaches
map time information of each interaction by time encoder such as time kernel. The dynamic representation of each node 𝑋 𝑡

𝑖
at time 𝑡 is harvest by the integration of the temporal graph learner (such as GNNs) and time feature. (c) The Transformer
captures the continuous sequence of each node and the self-attention mechanism alleviates the long-term dependency issues.

[8, 24]. The success is underpinned by two distinct advantages in-
herent to the Transformer architecture: as shown in Figure 1(c), it
can naturally support a continuous sequence of data without the
need for discrete snapshots, and its self-attention mechanism can
capture long-term dependency [41], which are important factors
for dynamic graph modeling. Transformers also presents a poten-
tially better alternative to capturing topological information, as it
is less or not affected by the over-smoothing and over-squashing
issues associated with message-passing GNNs. Hence, in this work,
we explore the feasibility of the Transformer architecture for dy-
namic graph modeling. In fact, we have observed a growing body
of research trying to modify the Transformer for static graphs
[17, 33, 49]. Nonetheless, these studies primarily focus on integrat-
ing graph structural knowledge into the vanilla Transformer model,
which generally still leverage message-passing GNNs as auxiliary
modules to refine positional encoding and attention matrices based
on graph-derived information [27]. More recently, Ying et al. [49]
indicated that the pure Transformer architecture holds promise for
graphs. However, all these previous Transformer-based approaches
only focus on static graphs, leaving unanswered questions about
the feasibility for dynamic graphs, as we elaborate below.

The first challenge lies in the need to preserve the historical
evolution throughout the entire timeline. However, due to the cal-
culation of pairwise attention scores, existing Transformer-based
graph models can only deal with a small receptive field, and would
face serious scalability issues on even a moderately large graph.
Notably, their primary application is limited to small-size graphs
such as molecular graphs [33]. However, many dynamic graphs on
the Web such as social networks or citation graphs are generally
much larger for the vanilla Transformer to handle. To this end, we
adopt a novel strategy wherein we treat the history of each node as
a temporal ego-graph, serving as the receptive field of the ego-node.
The temporal ego-graph is much smaller than the entire graph, yet
it retains the full interaction history of the ego-node in the dynamic
graph. Thus, we are able to preserve the temporal dynamics of ev-
ery user across the entire timeline, while simultaneously ensuring
scalability. Subsequently, this temporal ego-graph can be tokenized
into a sequential input tailored for the Transformer. Remarkably,
through this simple tokenization process, no modification to the
original Transformer architecture is required.

The second challenge lies in the need to align temporal infor-
mation across input sequences. Specifically, on dynamic graphs

different input sequences converge on a common time domain—
whether absolute points in time (e.g., 10am on 12 October 2023) or
relative time intervals (e.g., a one-hour time window) convey the
same across all sequences generated from different nodes’ history.
In contrast, sequences for language modeling or static graphs lack
such a universal time domain, and can be regarded as largely inde-
pendent of each other. Thus, vanilla sequences without temporal
alignment lack a way to differentiate variable time intervals and
frequency information. For example, a bursty stream of interactions,
happening over a short one-hour interval, has a distinct evolution
pattern from a steady stream containing the same number of in-
teractions, but happening over a period of one day. Therefore, it
becomes imperative to introduce a mechanism that infuses tem-
poral alignment among distinct input sequences generated from
the ego-graphs. To address this challenge, we carefully design spe-
cial temporal tokens to align different input sequences in the time
domain. The temporal tokens serve as indicators of distinct time
steps that are globally recognized across all nodes, and integrate
them into the input sequences. While achieving the global align-
ment, local sequences from each node still retains the chronological
order of the interactions in-between the temporal tokens, unlike
traditional discrete-time approaches where temporal information
within each snapshot is lost.

Based on the above insights, we propose a Simple Transformer
architecture for Dynamic Graph modeling, named SimpleDyG.
The word “simple” is a reference to the use of the original Trans-
former architecture without any modification, where the capability
of dynamic graph modeling is simply and solely derived from con-
structing and modifying the input sequences. In summary, the
contribution of our work is threefold.
• We explore the potential of the Transformer architecture for

modeling dynamic graphs. We propose a simple yet surprisingly
effective Transformer-based approach for dynamic graphs, called
SimpleDyG, without complex modifications.

• We introduce a novel strategy to map a dynamic graph into a
set of sequences, by considering the history of each node as a
temporal ego-graph. Furthermore, we design special temporal
tokens to achieve global temporal alignment across nodes, yet
preserving the chronological order of interactions at a local level.

• We conduct extensive experiments and analysis across four real-
world Web graphs, spanning diverse applications domains on the
Web. The empirical results demonstrate not only the feasibility,
but also the superiority of SimpleDyG.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

On the Feasibility of Simple Transformer
for Dynamic Graph Modeling Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 RELATEDWORK
2.1 Dynamic Graph Learning
Current dynamic graph learning methods can be categorized into
two primary paradigms: discrete-time approaches and continuous-
time approaches. In discrete-time methods, dynamic graphs are
treated as a series of static graph snapshots taken at regular time
intervals. To model both structural and temporal aspects, these
approaches integrate the GNNs with sequence models (RNNs or
self-attention mechanisms) [10, 31, 36, 39]. For instance, DySAT
Sankar et al. [36] leverages Graph Attention Network (GAT) and
self-attention as fundamental components for both structural and
temporal modules. In contrast, EvolveGCN [31] employed an RNN
to evolve the Graph Convolutional Network (GCN) parameters.
Nevertheless, they often fall short of capturing the granular tem-
poral information. Consequently, the continuous-time approaches
treat the dynamic graphs as sequences of interaction events at a
specific timestamp. Some approaches model dynamic graph evolu-
tion as temporal random walks or causal anonymous walks [29, 44].
Another avenue of research focuses on time window encoding tech-
niques integrated with graph structure modeling such as temporal
graph attention used in TGAT [48] and TGN [35] or MLP-Mixer lay-
ers applied in GraphMixer [6]. Additionally, researchers also lever-
age temporal point processes treating the arrival of nodes/edges as
discrete events [14, 40, 45]. Despite the promise demonstrated by
continuous-time approaches, it’s important to note that they come
with limitations in capturing long-term dependencies originating
from historical data.

The differences between our work and the previous dynamic
graph learning methods lie in two points. First, our method effec-
tively mitigates long-term dependency challenges, leveraging the
inherent advantages of the Transformer architecture. Second, our
method preserves the chronological history of each ego node within
the input sequences. The temporal alignment mechanisms among
various ego networks empower our model to capture both global
and local information within the dynamic graphs.

2.2 Transformers for Graphs
Transformer architectures for graphs have emerged as a compelling
alternative to conventional GNNs, aiming to mitigate issues like
over-smoothing and over-squashing. Prior research focused on inte-
grating graph information into the vanilla Transformer through di-
verse strategies. Some methods integrate GNNs as auxiliary compo-
nents to bolster structural comprehension within the Transformer
architecture [18, 34]. Others focus on enriching positional embed-
dings by spatial information derived from the graph. For instance,
Graphormer [49] integrates the centrality, spatial and edge encod-
ing into Transformer. Cai and Lam [4] adopted distance embedding
for tree-structured abstract meaning representation graph. Kreuzer
et al. [19] utilized the full Laplacian spectrum to learn the positional
encoding for graph. There are also studies focus on refining atten-
tion mechanisms in Transformer for graph analysis. For instance,
Min et al. [28] employed a graph masking attention mechanism to
seamlessly inject graph-related priors into the Transformer archi-
tecture. Excepted for the complicated design, more recently, Kim
et al. [17] shed light on the effectiveness of pure Transformers in

graph learning. Their approach treats all nodes and edges as inde-
pendent tokens, severing as inputs for Transformer. Recently, Mao
et al. [25] proposed a Transformer based model for heterogeneous
information networks. Node-level structure and heterogeneous
relation are integrated into the attention mechanism.

It’s worth noting that most of the previous works based on Trans-
formers mainly focused on static graphs. Recently, Yu et al. [50]
introduced a Transformer based model designed for dynamic graph
learning, which belongs to a contemporary work with ours. The
difference lies in that they rely on complex designs for handling
co-occurrence neighbors of different nodes and temporal inter-
val encoding. In contrast, we explore the feasibility of a simple
Transformer for dynamic graphs without the need for complex
modifications.

3 PRELIMINARIES
In this section, we first illustrate the problem of dynamic graph
modeling. Then we briefly introduce the main components of Trans-
former architecture.

3.1 Dynamic Graph Modeling
We define a dynamic graph as G = (V, E,T ,X) with a set of
nodes V , edges E, a time domain T and an input feature ma-
trix X. It can be characterized by a sequence of interacted links
G = {(𝑣𝑖 , 𝑣 𝑗 , 𝜏)𝑛 : 𝑛 = 1, 2, . . . , |E |}. Here, each tuple (𝑣𝑖 , 𝑣 𝑗 , 𝜏) de-
notes a distinct interaction between nodes 𝑣𝑖 and 𝑣 𝑗 at time 𝜏 ∈ T ,
with |E | representing the number of interactions within the tem-
poral graph. Given the dynamic graph G, we learn a model with
parameter 𝜃 to capture the temporal evolution of the graph. The
learned temporal representations can be used for different tasks
such as node classification, link prediction and graph classification.

3.2 Transformer Architecture
The standard Transformer architecture comprises two main compo-
nents: the multi-head self-attention layers (MHA) and the position-
wise feed-forward network (FFN). In the following part, we will
briefly introduce these blocks.

We represent an input sequence as H = ⟨h1, . . . ,h𝑁 ⟩ ∈ R𝑁×𝑑 ,
where 𝑑 is the dimension of node features and h𝑖 is the hidden
representation for token 𝑖 . The MHA module projects H to H sub-
spaces denoted as:

Q = HW𝑄 ,K = HW𝐾 ,V = HW𝑉 , (1)

whereW𝑄 ∈ R𝑑×𝑑𝐾 ,W𝐾 ∈ R𝑑×𝑑𝐾 ,W𝑉 ∈ R𝑑×𝑑𝑉 re the learnable
parameter matrices, and their dimensions are set as 𝑑𝐾 = 𝑑𝑉 = 𝑑/𝐻 .

The self-attention operation is performed using a scaled dot-
product on the corresponding (𝑄ℎ, 𝐾ℎ,𝑉ℎ) for each head:

𝑀𝐻𝐴(H) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝐻)W𝑂 ,

ℎ𝑒𝑎𝑑ℎ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
QℎK

𝑇
ℎ√︁

𝑑𝐾

)Vℎ,
(2)

whereW𝑂 ∈ R𝑑×𝑑 is learnable parameter matrix.
The output of the MHA module is then passed through a Feed-

Forward Network (FFN) layer followed by residual connection [12]
and layer normalization (LN) [2]. Finally, the output of the l𝑡ℎ layer

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1847

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

T1 T2 T3

(b) Temporal ego-graph(a) Toy dynamic graph (c) Temporal alignment

0.35

0.27

0.22
0.1

0.37

0.35

0.2 0.12
0.15

0.37

0.14

0.22

0.11

0.3 0.1

0.26

0.2

(d) Transformer architecture

Multi-head attention

Add & Norm

FFN

Add & Norm0.35

0.27

0.22
0.1

0.37

0.35

0.2 0.12

0.15

: ego nodes : historical nodes : Timeline : Temporal token

0.3

0.1 0.22 0.27 0.35

0.12 0.15 0.2 0.35 0.37

0.1 0.22 0.27 0.35

0.12 0.15 0.2 0.35 0.37

Figure 2: Overall framework of SimpleDyG. (Best viewed in color. The numerical values adjacent to the links in (a) and (b), as
well as beneath the nodes in (c), represent the time elapsed from the beginning, indicating the moments at which the links
emerge (ranging from 0 to 1). The color intensity of nodes in the historical sequence represents the time span, where darker
colors signify a longer-term duration, while lighter colors indicate a shorter-term duration.)

H𝑙 is computed as follows:

Ĥ𝑙 = 𝐿𝑁 (H𝑙−1 +𝑀𝐻𝐴(H𝑙−1)),

H𝑙 = 𝐿𝑁 (Ĥ𝑙 + 𝐹𝐹𝑁 (Ĥ𝑙)) .
(3)

4 PROPOSED APPROACH
The overall framework of SimpleDyG is illustrated in Figure 3.1.
Generally speaking, our framework is applied to a dynamic graph
G (Figure 3.1(a)) , where multiple temporal links emerge at various
time points. In order to capture the dynamic evolution, we begin by
extracting temporal ego-graph for ego-node which contains the en-
tire historical interactions as shown in Figure 3.1(b). These temporal
graphs are subsequently transformed into sequences while preserv-
ing their chronological order. To incorporate temporal alignment
among different ego-graphs, we segment the timeline into various
time spans with the same temporal interval as in Figure 3.1(c). Then
we add temporal tokens into the ego-sequence to make our model
identify different time spans. Finally, these sequences are fed into a
Transformer architecture to facilitate various downstream tasks.

4.1 Temporal Ego-graph
Asmentioned earlier, the sequencemodeling capability of the Trans-
former architecture is well-suited for dynamic graph modeling. The
strategy of mapping dynamic graphs into a sequence of tokens is
crucial for the supported features and computational complexity. In
this paper, we regard nodes in the dynamic graphs as input tokens
which is a common approach in Transformer models for graphs.
Besides, to preserve more historical interactions of all the nodes
and ensure the scalability of dealing with large receptive fields, we
extract the temporal ego-graph for each node in the dynamic graph.
These temporal graphs are mapped into sequences to capture the
structural and temporal evolution.

Specifically, we denote 𝑣𝑖 ∈ V as an ego-node in the tempo-
ral graph G. We extract the historically interacted nodes for 𝑣𝑖
and concatenate them into a sequence as input for Transformer
architecture. Formally, we denote the temporal ego-graph for the
ego-node 𝑣𝑖 as 𝑤𝑖 = ⟨𝑣1

𝑖
, 𝑣2
𝑖
. . . 𝑣

|𝑤𝑖 |
𝑖

⟩, where |𝑤𝑖 | is the length of
the historical interactions for node 𝑣𝑖 . To better model the patterns
within the input sequence, we follow similar practices as in NLP
sequence modeling tasks and include some special tokens designed
for our task. Finally, the input sequence and output sequence are
constructed as follows 2:

𝑥𝑖 = ⟨|hist|⟩, 𝑣𝑖 , 𝑣1𝑖 , . . . 𝑣
|𝑤𝑖 |
𝑖

, ⟨|endofhist|⟩,

𝑦𝑖 = ⟨|pred|⟩, 𝑣 |𝑤𝑖 |+1
𝑖

, . . . , 𝑣
|𝑤𝑖 |+𝑧
𝑖

⟨|endofpred|⟩,
(4)

where the “⟨|hist|⟩” and “⟨|endofhist|⟩” are special tokens indicating
the start and end of the input historical sequence. The “⟨|pred|⟩”
and “⟨|endofpred|⟩” are reserved for predicting the next nodes at a
future time. Specifically, the model will halt its predictions once
the end special token is generated, enabling automatic decisions on
the number of future interactions.

4.2 Temporal Alignment
In the original Transformer architecture, the input sequence is
treated as a sequence of tokens, and the model captures the rela-
tionships between these tokens based on their relative positions in
the sequence, representing temporal order information. However,
it inherently lacks the capability to account for the universal time
domain and the time interval and frequency information. In pur-
suit of this objective, we segment the time domain T into discrete,
coarse-grained time steps, with each time step representing the
same time interval, such as one week or one month, determined

2Special tokens in the beginning and at the end such as “⟨|endoftext|⟩” are omitted for
easy illustration.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

On the Feasibility of Simple Transformer
for Dynamic Graph Modeling Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

by dataset characteristics. It’s important to note that our approach
differs from discrete-time graph modeling, as within each time step,
we consider the precise temporal order of each link. We introduce
a straightforward yet effective strategy to incorporate temporal
alignment within dynamic graphs into the input sequence of the
Transformer architecture. This strategy entails the use of special
temporal tokens explicitly denoting different time steps that are
globally recognized across all nodes. Suppose we split the time
domain T into 𝑇 time steps, the sequence of ego-node 𝑖 in time
step 𝑡 ∈ 𝑇 is denoted as follows:

𝑥 ′𝑖 = ⟨|hist|⟩, 𝑣𝑖 , ⟨|time1|⟩, 𝑆1𝑖 , . . . ⟨|timeT-1|⟩, 𝑆𝑇−1𝑖 , ⟨|endofhist|⟩,

𝑦′𝑖 = ⟨|pred|⟩, ⟨|timeT |⟩, 𝑆𝑇𝑖 ⟨|endofpred|⟩,

𝑆𝑡𝑖 = ⟨𝑣1𝑖 , 𝑣
2
𝑖 . . . 𝑣

|𝑆𝑡
𝑖
|

𝑖
⟩,

(5)

where 𝑆𝑡
𝑖
represents the historical sequence of node 𝑖 as time step

𝑡 whith length of |𝑆𝑡
𝑖
|. (⟨|time1|⟩ . . . ⟨|timeT |⟩) are temporal tokens

that serve as indicators of temporal alignment, allowing the model
to recognize and capture temporal patterns in the data. By doing
so, our approach enhances the Transformer’s ability to understand
the dynamics of the dynamic graph, making it more effective in
tasks like predicting future interactions in social networks or other
dynamic systems where temporal patterns are crucial.

4.3 Training objective
A training sample is formed by concatenating the input 𝑥 and
output 𝑦 as [𝑥 ;𝑦]. We denote it as 𝑟 = ⟨𝑟1, 𝑟2, · · · , 𝑟 |𝑟 | ⟩ with |𝑟 |
tokens. For a given training instance in this format, we follow the
original masking strategy, where, during the prediction of the 𝑖-th
token, only the input sequence up to position 𝑟<𝑖 is taken into
account, while the subsequent tokens are subject to masking. The
joint probability of the next token is calculated as follows:

𝑝 (𝑟) =
|𝑟 |∏
𝑖=1

𝑝 (𝑟𝑖 |𝑟<𝑖), (6)

where 𝑟<𝑖 is the generated sequence before step 𝑖 . 𝑝 (𝑟𝑖 |𝑟<𝑖) denotes
the probability distribution of the token to be predicted at step 𝑖
conditioned with the tokens 𝑟<𝑖 . It is computed as:

𝑝 (𝑟𝑖 |𝑟<𝑖) = 𝐿𝑁 (R𝑙<𝑖)W 𝑣𝑜𝑐𝑎𝑏 , (7)

where LN means layer normalization. R𝐿
<𝑖

denotes the hidden rep-
resentation of the historically generated tokens before step 𝑖 , which
is obtained by the last layer of Transformer.W𝑣𝑜𝑐𝑎𝑏 is the learned
parameter aiming to compute the probability distribution across
the vocabulary of nodes in the graph.

Given a dataset containingM training instances, the loss func-
tion for training the model with parameters 𝜃 is defined as the
negative log-likelihood over the entire training dataset as follows:

L = −
|M |∑︁
𝑚=1

𝑛𝑚∑︁
𝑖=1

𝑙𝑜𝑔𝑝𝜃 (𝑟𝑚𝑖 |𝑟𝑚<𝑖), (8)

where 𝑛𝑚 is the length of the instance 𝑟𝑚 .
We outline the training procedure of SimpleDyG in Algorithm 1.

For each prediction step 𝑖 of one training instance, the hidden rep-
resentations of the generated sequence R<𝑖 are used for predicting

Algorithm 1: Training Procedure of SimpleDyG
Input: Dynamic graph G = (V, E,T ,X), training

instancesM
Output:Well-trained model with parameter 𝜃 for dynamic

graph modeling
Initialization: model parameter 𝜃
while not converged do

sample a batch of instances B fromM
for each instance 𝑟 = ⟨𝑟1, 𝑟2, · · · , 𝑟 |𝑟 | ⟩ in batch B do

while step 𝑖 < |𝑟 | do
/* prediction steps for one instance */

Calculate the representation R<𝑖 for 𝑟<𝑖
Compute the joint probability by Equations 6
and 7
Calculate the loss by Equation 8

return 𝜃 , dynamic representation of G

the next token. The joint probability of the next token is computed
using Equations 6 and 7. Our model is trained using the Adam
optimizer with a loss function based on negative log-likelihood, as
presented in Equation 8.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets. To evaluate the performance of our proposed method,
we conducted experiments on four datasets from various domains,
including the communication network UCI [30], the rating network
ML-10M [11], the citation network Hepth [22], and the multi-turn
conversation dataset MMConv [23]. The detailed statistics of all
datasets after preprocessing are presented in Table 1.

Table 1: Dataset statistics

Dataset UCI ML-10M Hepth MMConv

Domain Social Rating Citation Conversation
Nodes 1,781 15,841 4,737 7,415
Edges 16,743 48,561 14,831 91,986

UCI [30]: it represents a social network in which links represent
messages exchanged among users. For temporal alignment, we and
divide the dataset into 13 time steps following [36].

ML-10M [11]: we utilized the ML-10M dataset from MovieLens
dataset comprising user-tag interactions, where the links connect
users to the tags they have assigned to specific movies. For temporal
alignment, the dataset is split into 13 time steps following [36].

Hepth [22]: it is a citation network related to high-energy physics
theory. We extract 24 months of data from this dataset and split
them into 12 time steps for temporal alignment. Note that this
dataset contains new emerging nodes as time goes on. We use the
extra word2vec [26] model to extract the raw feature for each paper
based on the abstract.

MMConv [23]: this dataset contains a multi-turn task-oriented
dialogue system that assists users in discovering places of interest
across five domains. Leveraging this rich annotation, we represent

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1847

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the dialogue as a dynamic graph which is also a widely studied
approach in task-oriented dialogue systems. For temporal align-
ment, we empirically divided the dataset into 16 time steps, each
corresponding to a distinct turn in the conversation.
Baselines. We compare our method with baselines in two cate-
gories: (1) discrete-time approaches: DySAT [36] and EvolveGCN
[31] (2) continuous-time approaches: DyRep [40], JODIE [20], TGAT
[48], TGN [35] and GraphMixer [6].
• DySAT [36] leverages joint structural and temporal self-attention

to learn the node representations at each timestep.
• EvolveGCN [31] adapts to evolving graph structures by employ-

ing RNN to evolve graph convolutional network parameters.
• DyRep [40] utilizes a two-time scale deep temporal point process

model to capture temporal graph topology and node activities.
• JODIE [20] focuses on modeling the binary interaction among

users/items by two coupled RNNs. A projection operator is de-
signed to predict the future representation of a node at any time.

• TGAT [48] employs temporal graph attention layers and time
encoding techniques to aggregate temporal-topological features.

• TGN [35] combines the memory modules and message-passing
to maintain the dynamic representations. This model also adopts
time encoding and temporal graph attention layers.

• GraphMixer [6] relies onMLP layers and neighbormean-pooling
to learn the link and node encoders. An offline time encoding
function is adopted to capture the temporal information.

Implementation Details. In this paper, we evaluate the per-
formance of SimpleDyG on the link prediction task. Given the
ego-nodes, the objective of the link prediction task is to predict the
possible linked nodes at time step 𝑇 . For all the datasets, we follow
the setting in [6] by treating the temporal graphs as undirected
graphs. We split each dataset into training/validation/testing based
on the predefined time steps. We choose the data at the last time
step 𝑇 as the testing set, while the data at time step 𝑇 − 1 serves as
the validation set, with the remaining data for training. We tune the
parameters for all methods on the validation set. All experiments
are repeated ten times, and we report the averaged results with
standard deviation. We provide further implementation details and
hyper-parameter settings for the baselines in Appendix A and B.
Evaluation Metrics. In our evaluation, we carefully selected met-
rics that are well-suited to our specific task. The goal of the link
prediction task is to predict a set of nodes linked to each ego-node.
Notably, our SimpleDyG model predicts a node sequence, with
each prediction influenced by the prior ones until the generation of
an end token. In contrast, the baseline models make simultaneous
predictions of entire ranking sequences for each ego-node. To eval-
uate ranking performance and set similarity between predicted and
ground truth node sets, we employ two key metrics: NDCG@5 and
Jaccard similarity. NDCG@5 is a well-established metric commonly
used in information retrieval and ranking tasks [43], aligning with
our objective of ranking nodes and predicting the top nodes linked
to an ego-node. On the other hand, Jaccard similarity is valuable for
quantifying the degree of overlap between two sets [13], measuring
the similarity between predicted nodes and the ground truth nodes
associated with the ego-node. Specifically, for the baseline models,

we choose the top k nodes (𝑘 = 1, 5, 10, 20) as the predicted set,
as they are not generation models and cannot determine the end
of the prediction. We then select the maximum Jaccard similarity
value across different k as the final Jaccard similarity score. This
comprehensive evaluation strategy ensures a thorough assessment
of our models and baselines in predicting linked nodes.

5.2 Main Performance Comparison
We report the results of all methods under NDCG@5 and Jaccard
across four diverse datasets in Table 2. Generally speaking, our
method outperforms all the baselines on all datasets, and we make
the following key observations.

Firstly, we find that continuous-time approaches generally per-
form better than discrete ones across a wide range of scenarios,
indicating the important role of time-related information in dy-
namic graph analysis. Notably, continuous-time baselines such as
GraphMixer exhibit superior performance. This superiority can
be mainly attributed to the simple MLP-Mixer architecture, which
makes it easier to capture long-term historical sequences with lower
complexity. In contrast, other models like DyRep, TGAT, and TGN,
which rely on complex designs such as GNNs and GATs, display
subpar performance. This phenomenon stems from the inherent
limitations of GNNs and GATs in capturing distant relationships or
broader historical contexts within predefined time windows.

Secondly, for the inductive scenarios such as the Hepth dataset,
the models deployed by GNNs, GATs, and Transformer show ad-
vanced performance. Their effectiveness lies in their ability to cap-
ture intricate patterns and relationships within dynamic graphs,
especially when faced with inductive scenarios. In contrast, sim-
pler models may struggle to adapt to these situations, resulting in
suboptimal performance.

In summary, while continuous-time approaches have generally
been shown effective, it is essential to consider the specific char-
acteristics of the application scenario and strike a delicate balance
between model complexity and the necessity to capture long-range
dependencies in dynamic graph modeling.

5.3 Effect of Extra Tokens
We design extra tokens to make the vanilla Transformer architec-
ture more suitable for dynamic graph modeling. To assess their
effectiveness, we conduct an in-depth analysis of these token de-
signs including special tokens indicating the input and output, and
the temporal tokens for aligning among temporal ego-graphs.
Impact of the special tokens. The special tokens include the start
and end of the historical sequence (“⟨|hist|⟩” and “⟨|endofhist|⟩”), as
well as the predicted sequence (“⟨|pred|⟩”and “⟨|endofpred|⟩”). To
comprehensively evaluate their effect across diverse scenarios, we
examine two degenerate variants: (1) same special, where we use
the same special tokens for input and output. (2) no special, where
we entirely removed all special tokens from each sample. We show
the results in Table 3 and make the following observations.

In general, special tokens enhance the link prediction perfor-
mance across different datasets. Furthermore, the differences be-
tween the same special and original SimpleDyG tend to be minimal.
However, an interesting finding emerges in the case of the Hepth
dataset, where the no special scenario yields the best performance.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

On the Feasibility of Simple Transformer
for Dynamic Graph Modeling Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Performance of dynamic link prediction by SimpleDyG and the baselines on four datasets.(In each column, the best
result is bolded and the runner-up is underlined. “-” indicates the method is not suitable for inductive scenario.)

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

DySAT [36] 0.010±0.003 0.010±0.001 0.058±0.073 0.050±0.068 - - 0.102±0.085 0.095±0.080
EvolveGCN [31] 0.064±0.045 0.032±0.026 0.097±0.071 0.092±0.067 0.009±0.004 0.007±0.002 0.051±0.021 0.032±0.017

DyRep [40] 0.011±0.018 0.010±0.005 0.064±0.036 0.038±0.001 0.031±0.024 0.010±0.006 0.140±0.057 0.067±0.025
JODIE [20] 0.022±0.023 0.012±0.009 0.059±0.016 0.020±0.004 0.031±0.021 0.011±0.008 0.041±0.016 0.032±0.022
TGAT [48] 0.061±0.007 0.020±0.002 0.066±0.035 0.021±0.007 0.034±0.023 0.011±0.006 0.089±0.033 0.058±0.021
TGN [35] 0.041±0.017 0.011±0.003 0.071±0.029 0.023±0.001 0.030±0.012 0.008±0.001 0.096 ±0.068 0.066±0.038

GraphMixer [6] 0.104±0.013 0.042±0.005 0.081±0.033 0.043±0.022 0.011±0.008 0.010±0.003 0.172±0.029 0.085±0.016

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010

Table 3: Impact of special tokens in SimpleDyG across four datasets.

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
same special 0.113±0.007 0.095±0.010 0.085±0.046 0.079±0.043 0.027±0.014 0.009±0.005 0.179±0.013 0.170±0.010
no special 0.041±0.025 0.020±0.011 0.006±0.009 0.006±0.009 0.096±0.016 0.025±0.006 0.01±0.008 0.008±0.007

Table 4: Impact of different temporal alignment designs on the four datasets.

UCI ML-10M Hepth MMConv

𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑁𝐷𝐶𝐺@5 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
same time 0.09±0.013 0.083±0.012 0.147±0.001 0.139±0.001 0.046±0.009 0.017±0.004 0.24±0.031 0.212±0.025
no time 0.111±0.015 0.091±0.014 0.117±0.062 0.111±0.059 0.045±0.007 0.018±0.003 0.26±0.019 0.237±0.016

It can be explained by the specific character of the citation dataset.
In the testing data of Hepth, the ego-nodes are all newly emerged
nodes indicating the newly published papers. Consequently, the in-
put samples lack any historical information, leaving the distinction
between history and the future meaningless.
Impact of temporal tokens. To comprehensively evaluate the
impact of temporal tokens, we compare the performance with two
degenerate variants: (1) same time, where we do not distinguish
specific time steps and employ the same temporal tokens for each
time step. (2) no time, in which we entirely removed all temporal
tokens from each sample. The results are presented in Table 4 and
we have the following observations.

It is surprising and interesting to observe performance improve-
ment with a simpler design for temporal alignment. This phenome-
non is most noticeable in the MMConv and Hepth datasets due to
the characteristics of these datasets. The citation relationship and
the conversation among different ego-nodes do not strictly follow
temporal segmentation. Using the same temporal tokens or none
at all allows the model to adapt more naturally to this temporal
order.The temporal alignment plays an important role for UCI and

ML-10M datasets. However, they show different trends with the
same time version. The reason is that the communication habits of
different users are more related to temporal information, while the
rating habits of users are more subjective in ML-10M dataset.

5.4 The Performance of Multi-step Prediction
We evaluate the ability of SimpleDyG for multi-step prediction
with the time steps range from 𝑡 to 𝑡 + △𝑡 , utilizing a model that
has been trained on data up to time 𝑡 . Here, the time step means
the coarse segment of the time domain as did in the temporal
alignment. In our experiment, we set △𝑡 as three and achieve multi-
step prediction step by step constrained by the results of previous
steps. The performance trends of SimpleDyG with two baselines
TGAT and GraphMixer are illustrated in Figure 3.

We observe a natural decay in performance over time for all
methods, as anticipated. However, what stands out is SimpleDyG’s
ability to consistently outperform the baselines as time progresses.
This observed trend underscores the effectiveness of our proposed
Transformer architecture in modeling dynamic graph data. Notably,
different datasets exhibit varying patterns of performance decay

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1847

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0

0.05

0.1

0.15

0.2

0.25

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

UCI

SimpleDyG GraphMixer

TGAT

0

0.05

0.1

0.15

0.2

0.25

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

UCI

SimpleDyG GraphMixer

TGAT

(a) UCI

0

0.05

0.1

0.15

0.2

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

ML-10M

SimpleDyG GraphMixer

TGAT

0

0.05

0.1

0.15

0.2

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

ML-10M

SimpleDyG GraphMixer

TGAT

(b) ML-10M
0

0.025

0.05

0.075

0.1

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

Hepth

SimpleDyG GraphMixer

TGAT

0

0.025

0.05

0.075

0.1

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

Hepth

SimpleDyG GraphMixer

TGAT

(c) Hepth
0

0.1

0.2

0.3

0.4

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

MMConv

SimpleDyG GraphMixer

TGAT

0

0.1

0.2

0.3

0.4

t+1 t+2 t+3

N
D

C
G

@
5

Time steps

MMConv

SimpleDyG GraphMixer

TGAT

(d) MMConv

Figure 3: The performance of multi-step prediction.

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

N
D

C
G

@
5

of layers

UCI ML-10M

Hepth MMConv

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

N
D

C
G

@
5

of layers

UCI ML-10M

Hepth MMConv

(a) Number of layers

0

0.1

0.2

0.3

0.4

0.5

2 4 8

N
D

C
G

@
5

of heads

UCI ML-10M

Hepth MMConv

0

0.1

0.2

0.3

0.4

0.5

2 4 8

N
D

C
G

@
5

of heads

UCI ML-10M

Hepth MMConv

(b) Number of heads0

0.1

0.2

0.3

0.4

0.5

128 256 512 768

N
D

C
G

@
5

of hidden dimension

UCI ML-10M

Hepth MMConv
0

0.1

0.2

0.3

0.4

0.5

128 256 512 768

N
D

C
G

@
5

of hidden dimension

UCI ML-10M

Hepth MMConv

(c) Hidden dimention

Figure 4: Impact of hyper-parameters.

over time, highlighting the importance of dataset-specific considera-
tions in dynamic graph analysis. For instance, in the case of the ML-
10M and Hepth datasets, we notice a relatively slight performance
drop over time. This phenomenon can be attributed to specific char-
acteristics inherent to these datasets. In the ML-10M dataset, the
presence of numerous historical interactions contributes to a rela-
tively stable performance trend. The dataset’s richness in historical
data allows the model to absorb small noise or fluctuations without
a significant impact on overall performance. On the other hand, the
Hepth dataset introduces a unique challenge due to the presence
of new nodes at each time step. Despite this inherent complexity,
SimpleDyG still demonstrates its adaptability by maintaining com-
petitive performance, reflecting its capability to adapt to dynamic
scenarios and evolving graph structures.

5.5 Hyper-parameter Analysis
Weundertake an examination of the critical hyper-parameter choices,
taking into account the variations observed across different datasets.
Specifically, we systematically explore the impact of several cru-
cial hyper-parameters, namely the number of layers, the number
of heads, and the hidden dimension size. These hyper-parameters
play a pivotal role in shaping the model’s capacity and its ability
to capture intricate patterns within dynamic graphs. We fine-tune
the hyper-parameters while keeping all other parameters constant.
From Figure 4, we draw some highlights as follows:

• Number of layers: The variance of performance under differ-
ent numbers of layers is relatively small. This suggests that the
choice of the number of layers in SimpleDyG has a more con-
sistent impact across different datasets and scenarios. Generally
speaking, two layers are typically sufficient for most cases. For in-
ductive scenarios such as the Hepth dataset, it is advisable to use
more layers to effectively capture the evolving graph structure.

• Number of heads: For the number of attention heads, we find
that using either 2 or 4 heads is generally suitable for a wide range
of scenarios. These settings provide a good balance between
performance and computational efficiency.

• Hidden dimension size: The choice of hidden dimension size
depends on the complexity of the dataset. For datasets like movie
ratings (e.g., ML-10M), a hidden dimension size of 128 is often
adequate. However, for datasets involving more intricate interac-
tions, such as communication networks or conversation datasets,
it becomes necessary to use larger hidden dimension sizes like
256 or 512. Notably, the UCI dataset requires a hidden dimension
of 768, which can be explained by the complexity and richness
of the interactions among users within the dataset.

6 CONCLUSION
In this work, we’ve delved into the intricate realm of dynamic graph
modeling, recognizing its profound significance across a range of
applications. Drawing from the strengths of the Transformer’s self-
attention mechanism, we tailored a solution that sidesteps the often
convoluted designs prevalent in existing methods. Our novel ap-
proach re-envisions dynamic graphs from a sequence modeling
perspective, leading to the development of an innovative temporal
alignment technique. This strategic design not only adeptly cap-
tures the temporal dynamics inherent in evolving graphs but also
simplifies their modeling process. Our empirical investigations, car-
ried out across four real-world datasets spanning diverse sectors,
serve as a testament to our model’s efficacy. In the future, we will
delve deeper into the nuances of the temporal alignment technique
for further optimizations. Additionally, the potential for integrating
more advanced attention mechanisms can be explored to further
elevate the model’s capabilities in capturing dynamic evolutions.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On the Feasibility of Simple Transformer
for Dynamic Graph Modeling Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Uri Alon and Eran Yahav. 2020. On the Bottleneck of Graph Neural Networks and

its Practical Implications. In International Conference on Learning Representations.
[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Deng Cai and Wai Lam. 2020. Graph transformer for graph-to-sequence learning.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 7464–7471.

[5] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 34. 3438–3445.

[6] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, HaoWu, Xin Zhou, Hanghang
Tong, and Mehrdad Mahdavi. 2022. Do We Really Need Complicated Model
Architectures For Temporal Networks?. In The Eleventh International Conference
on Learning Representations.

[7] Bert De Vries and Jose C Principe. 1992. The gamma model—A new neural model
for temporal processing. Neural networks 5, 4 (1992), 565–576.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning
Representations.

[9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[10] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems 187 (2020), 104816.

[11] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Paul Jaccard. 1901. Étude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37 (1901), 547–579.

[14] Yugang Ji, Tianrui Jia, Yuan Fang, and Chuan Shi. 2021. Dynamic heterogeneous
graph embedding via heterogeneous hawkes process. In Machine Learning and
Knowledge Discovery in Databases. Research Track: European Conference, ECML
PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I 21. Springer,
388–403.

[15] Anshul Kanakia, Zhihong Shen, Darrin Eide, and KuansanWang. 2019. A scalable
hybrid research paper recommender system for microsoft academic. In The world
wide web conference. 2893–2899.

[16] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of NAACL-HLT. 4171–4186.

[17] Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak
Lee, and Seunghoon Hong. 2022. Pure transformers are powerful graph learners.
Advances in Neural Information Processing Systems 35 (2022), 14582–14595.

[18] Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. 2021. Transformers generalize
deepsets and can be extended to graphs & hypergraphs. Advances in Neural
Information Processing Systems 34 (2021), 28016–28028.

[19] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and
Prudencio Tossou. 2021. Rethinking graph transformers with spectral attention.
Advances in Neural Information Processing Systems 34 (2021), 21618–21629.

[20] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269–1278.

[21] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-
Yen Kan, and Tat-Seng Chua. 2020. Estimation-action-reflection: Towards deep
interaction between conversational and recommender systems. In Proceedings of
the 13th International Conference on Web Search and Data Mining. 304–312.

[22] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. 177–187.

[23] Lizi Liao, Le Hong Long, Zheng Zhang, Minlie Huang, and Tat-Seng Chua. 2021.
MMConv: an environment for multimodal conversational search across multiple
domains. In Proceedings of the 44th international ACM SIGIR conference on research
and development in information retrieval. 675–684.

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF international conference
on computer vision. 10012–10022.

[25] Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. 2023. Hinormer:
Representation learning on heterogeneous information networks with graph
transformer. In Proceedings of the ACM Web Conference 2023. 599–610.

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[27] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing
Huang, Peilin Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. 2022.
Transformer for graphs: An overview from architecture perspective. arXiv
preprint arXiv:2202.08455 (2022).

[28] Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Da Luo, Kangyi Lin, Junzhou
Huang, Sophia Ananiadou, and Peilin Zhao. 2022. Neighbour interaction based
click-through rate prediction via graph-masked transformer. In Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 353–362.

[29] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion proceedings of the the web conference 2018. 969–976.

[30] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and dynam-
ics of users’ behavior and interaction: Network analysis of an online community.
Journal of the American Society for Information Science and Technology 60, 5
(2009), 911–932.

[31] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, TimKaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 34. 5363–5370.

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[33] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems 35 (2022),
14501–14515.

[34] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. Advances in Neural Information Processing Systems 33 (2020),
12559–12571.

[35] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal graph networks for deep learning
on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[36] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
Dysat: Deep neural representation learning on dynamic graphs via self-attention
networks. In Proceedings of the 13th international conference on web search and
data mining. 519–527.

[37] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[38] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian
Tang. 2019. Session-based social recommendation via dynamic graph attention
networks. In Proceedings of the Twelfth ACM international conference on web
search and data mining. 555–563.

[39] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. 2019. Learning to rep-
resent the evolution of dynamic graphs with recurrent models. In Companion
proceedings of the 2019 world wide web conference. 301–307.

[40] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. Dyrep: Learning representations over dynamic graphs. In International
conference on learning representations.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[42] Jianyu Wang, Rui Wen, Chunming Wu, Yu Huang, and Jian Xiong. 2019. Fdgars:
Fraudster detection via graph convolutional networks in online app review
system. In Companion proceedings of the 2019 World Wide Web conference. 310–
316.

[43] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[44] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In International Conference on Learning Representations (ICLR).

[45] Zhihao Wen and Yuan Fang. 2022. Trend: Temporal event and node dynamics
for graph representation learning. In Proceedings of the ACM Web Conference
2022. 1159–1169.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1847

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

transactions on neural networks and learning systems 32, 1 (2020), 4–24.
[47] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking

for academic search via knowledge graph embedding. In Proceedings of the 26th
international conference on world wide web. 1271–1279.

[48] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. (2020).

[49] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in Neural Information Processing Systems 34
(2021), 28877–28888.

[50] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. 2023. Towards Better Dynamic
Graph Learning: New Architecture and Unified Library. In NeurIPs.

A ADDITIONAL IMPLEMENT DETAILS
Note that the implementation details of baseline approaches in
their publicly released code are quite different. For instance, most
of them regard the link prediction task as binary classification,
where the objective is to determine the presence or absence of links
between the positive pairs of nodes and randomly selected negative
pairs. They either employ a binary cross-entropy loss to facilitate
classifier learning or utilize logistic regression to train an additional
classifier. To tailor these baselines to our specific task for a fair
comparison, we adapt them into a ranking task and substitute the
classifier loss with a pair-wise Bayesian personalized ranking (BPR)
loss for all baselines.

B HYPER-PARAMETERS SETTINGS OF
BASELINES

Considering that we refine the loss of the baselines as BPR loss, we
tune the important parameters of all baselines for all the datasets.
For all baselines, we tune the parameter of hidden dimension with
{16, 32, 64, 128, 256, 512} for each dataset. For a fair comparison
with our model, we don’t set a historical window for discrete-time
approaches and use all the historical data.

Some important parameters for each baseline are listed as follows:
For DySAT [36], We set the self-attention layers and head to be 2
and 8, respectively. For EvolveGCN [31], the number of GCN layers
is 1. For DyRep [40], the message aggregation layer is 2, and the
number of neighbor nodes is 20. For TGAT [48] and TGN [35], the
number of graph attention heads is 2 and the attention layers are 1
and 2, respectively. For GraphMixer [6], the number of MLP layers
for UCI is 1 and 2 for other datasets. For a fair comparison, we set
the historical length of each node to 1024, which is the same as our
model.

10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dynamic Graph Learning
	2.2 Transformers for Graphs

	3 PRELIMINARIES
	3.1 Dynamic Graph Modeling
	3.2 Transformer Architecture

	4 Proposed Approach
	4.1 Temporal Ego-graph
	4.2 Temporal Alignment
	4.3 Training objective

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Performance Comparison
	5.3 Effect of Extra Tokens
	5.4 The Performance of Multi-step Prediction
	5.5 Hyper-parameter Analysis

	6 Conclusion
	References
	A Additional Implement Details
	B Hyper-parameters Settings of Baselines

