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Abstract

Transductive inference is widely used in few-shot learning, as it leverages the statis-
tics of the unlabeled query set of a few-shot task, typically yielding substantially bet-
ter performances than its inductive counterpart. The current few-shot benchmarks
use perfectly class-balanced tasks at inference. We argue that such an artificial reg-
ularity is unrealistic, as it assumes that the marginal label probability of the testing
samples is known and fixed to the uniform distribution. In fact, in realistic scenar-
ios, the unlabeled query sets come with arbitrary and unknown label marginals. We
introduce and study the effect of arbitrary class distributions within the query sets
of few-shot tasks at inference, removing the class-balance artefact. Specifically,
we model the marginal probabilities of the classes as Dirichlet-distributed random
variables, which yields a principled and realistic sampling within the simplex. This
leverages the current few-shot benchmarks, building testing tasks with arbitrary
class distributions. We evaluate experimentally state-of-the-art transductive meth-
ods over 3 widely used data sets, and observe, surprisingly, substantial performance
drops, even below inductive methods in some cases. Furthermore, we propose
a generalization of the mutual-information loss, based on α-divergences, which
can handle effectively class-distribution variations. Empirically, we show that our
transductive α-divergence optimization outperforms state-of-the-art methods across
several data sets, models and few-shot settings. Our code is publicly available at
https://github.com/oveilleux/Realistic_Transductive_Few_Shot.

1 Introduction

Deep learning models are widely dominating the field. However, their outstanding performances are
often built upon training on large-scale labeled data sets, and the models are seriously challenged
when dealing with novel classes that were not seen during training. Few-shot learning [1, 2, 3] tackles
this challenge, and has recently triggered substantial interest within the community. In standard
few-shot settings, a model is initially trained on large-scale data containing labeled examples from a
set of base classes. Then, supervision for a new set of classes, which are different from those seen in
the base training, is restricted to just one or a few labeled samples per class. Model generalization
is evaluated over few-shot tasks. Each task includes a query set containing unlabeled samples for
evaluation, and is supervised by a support set containing a few labeled samples per new class.

The recent few-shot classification literature is abundant and widely dominated by convoluted meta-
learning and episodic-training strategies. To simulate generalization challenges at test times, such
strategies build sequences of artificially balanced few-shot tasks (or episodes) during base training,
each containing both query and support samples. Widely adopted methods within this paradigm
include: Prototypical networks [4], which optimizes the log-posteriors of the query points within
each base-training episode; Matching networks [3], which expresses the predictions of query points
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as linear functions of the support labels, while deploying episodic training and memory architectures;
MAML (Model-Agnostic Meta-Learning) [5], which encourages a model to be “easy” to fine-tune;
and the meta-learner in [6], which prescribes optimization as a model for few-shot learning. These
popular methods have recently triggered a large body of few-shot learning literature, for instance,
[7, 8, 9, 10, 11, 12, 13], to list a few.

Recently, a large body of works investigated transductive inference for few-shot tasks, e.g., [11, 14,
12, 15, 16, 17, 18, 19, 20, 21, 22, 23], among many others, showing substantial improvements in
performances over inductive inference2. Also, as discussed in [24], most meta-learning approches
rely critically on transductive batch normalization (TBN) to achieve competitive performances, for
instance, the methods in [5, 25, 26], among others. Adopted initially in the widely used MAML
[5], TBN performs normalization using the statistics of the query set of a given few-shot task, and
yields significant increases in performances [24]. Therefore, due to the popularity of MAML, several
meta-learning techniques have used TBN. The transductive setting is appealing for few-shot learning,
and the outstanding performances observed recently resonate well with a well-known fact in classical
transductive inference [27, 28, 29]: On small labeled data sets, transductive inference outperforms its
inductive counterpart. In few-shot learning, transductive inference has access to exactly the same
training and testing data as its inductive counterpart3. The difference is that it classifies all the
unlabeled query samples of each single few-shot task jointly, rather than one sample at a time.

The current few-shot benchmarks use perfectly class-balanced tasks at inference: For each task used
at testing, all the classes have exactly the same number of samples, i.e., the marginal probability of
the classes is assumed to be known and fixed to the uniform distribution across all tasks. This may
not reflect realistic scenarios, in which testing tasks might come with arbitrary class proportions.
For instance, the unlabeled query set of a task could be highly imbalanced. In fact, using perfectly
balanced query sets for benchmarking the models assumes exact knowledge of the marginal distri-
butions of the true labels of the testing points, but such labels are unknown. This is, undeniably, an
unrealistic assumption and an important limitation of the current few-shot classification benchmarks
and datasets. Furthermore, this suggests that the recent progress in performances might be, in part,
due to class-balancing priors (or biases) that are encoded in state-of-the-art transductive models. Such
priors might be implicit, e.g., through carefully designed episodic-training schemes and specialized
architectures, or explicit, e.g., in the design of transductive loss functions and constraints. For
instance, the best performing methods in [23, 31] use explicit label-marginal terms or constraints,
which strongly enforce perfect class balance within the query set of each task. In practice, those
class-balance priors and assumptions may limit the applicability of the existing few-shot benchmarks
and methods. In fact, our experiments show that, over few-shot tasks with random class balance, the
performances of state-of-the-art methods may decrease by margins. This motivates re-considering the
existing benchmarks and re-thinking the relevance of class-balance biases in state-of-the-art methods.

Contributions We introduce and study the effect of arbitrary class distributions within the query
sets of few-shot tasks at inference. Specifically, we relax the assumption of perfectly balanced query
sets and model the marginal probabilities of the classes as Dirichlet-distributed random variables. We
devise a principled procedure for sampling simplex vectors from the Dirichlet distribution, which is
widely used in Bayesian statistics for modeling categorical events. This leverages the current few-shot
benchmarks by generating testing tasks with arbitrary class distributions, thereby reflecting realistic
scenarios. We evaluate experimentally state-of-the-art transductive few-shot methods over 3 widely
used datasets, and observe that the performances decrease by important margins, albeit at various
degrees, when dealing with arbitrary class distributions. In some cases, the performances drop even
below the inductive baselines, which are not affected by class-distribution variations (as they do not
use the query-set statistics). Furthermore, we propose a generalization of the transductive mutual-
information loss, based on α-divergences, which can handle effectively class-distribution variations.
Empirically, we show that our transductive α-divergence optimization outperforms state-of-the-art
few-shot methods across different data sets, models and few-shot settings.

2The best-performing state-of-the-art few-shot methods in the transductive-inference setting have achieved
performances that are up to 10% higher than their inductive counterparts; see [23], for instance.

3Each single few-shot task is treated independently of the other tasks in the transductive-inference setting.
Hence, the setting does not use additional unlabeled data, unlike semi-supervised few-shot learning [30].
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2 Standard few-shot settings

Base training Assume that we have access to a fully labelled base dataset Dbase = {xi,yi}Nbase
i=1 ,

where xi ∈ Xbase are data points in an input space Xbase, yi ∈ {0, 1}|Ybase| the one-hot labels, and
Ybase the set of base classes. Base training learns a feature extractor fφ : X → Z , withφ its learnable
parameters and Z a (lower-dimensional) feature space. The vast majority of the literature adopts
episodic training at this stage, which consists in formatting Dbase as a series of tasks (=episodes)
in order to mimic the testing stage, and train a meta-learner to produce, through a differentiable
process, predictions for the query set. However, it has been repeatedly demonstrated over the last
couple years that a standard supervised training followed by standard transfer learning strategies
actually outperforms most meta-learning based approaches [32, 33, 34, 20, 23]. Therefore, we adopt
a standard cross-entropy training in this work.

Testing The model is evaluated on a set of few-shot tasks, each formed with samples from
Dtest = {xi,yi}Ntest

i=1 , where yi ∈ {0, 1}|Ytest| such that Ybase ∩ Ytest = ∅. Each task is composed
of a labelled support set S = {xi, yi}i∈IS and an unlabelled query setQ = {xi}i∈IQ , both containing
instances only from K distinct classes randomly sampled from Ytest, with K < |Ytest|. Leveraging
a feature extractor fφ pre-trained on the base data, the objective is to learn, for each few-shot task, a
classifier fW : Z → ∆K , withW the learnable parameters and ∆K = {y ∈ [0, 1]K /

∑
k yk = 1}

the (K − 1)-simplex. To simplify the equations for the rest of the paper, we use the following
notations for the posterior predictions of each i ∈ IS ∪ IQ and for the class marginals within Q:

pik = fW (fφ(xi))k = P(Y = k|X = xi;W ,φ) and p̂k =
1

|IQ|
∑
i∈IQ

pik = P(YQ = k;W ,φ),

where X and Y are the random variables associated with the raw features and labels, respectively;
XQ and YQ means restriction of the random variable to setQ. The end goal is to predict the classes of
the unlabeled samples in Q for each few-shot task, independently of the other tasks. A large body of
works followed a transductive-prediction setting, e.g., [11, 14, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23],
among many others. Transductive inference performs a joint prediction for all the unlabeled query
samples of each single few-shot task, thereby leveraging the query-set statistics. On the current
benchmarks, tranductive inference often outperforms substantially its inductive counterpart (i.e.,
classifying one sample at a time for a given task). Note that our method is agnostic to the specific
choice of classifierfW , whose parameters are learned at inference. In the experimental evaluations
of our method, similarly to [23], we used pik ∝ exp(− τ2 ‖wk − zi‖

2
), with W := (w1, . . . ,wK),

zi =
fφ(xi)
‖fφ(xi)‖2

, τ is a temperature parameter and base-training parameters φ are fixed4.

Perfectly balanced vs imbalanced tasks In standard K-way few-shot settings, the support and
query sets of each task T are formed using the following procedure: (i) Randomly sample K
classes YT ⊂ Ytest; (ii) For each class k ∈ YT , randomly sample nSk support examples, such that
nSk = |S|/K; and (iii) For each class k ∈ YT , randomly sample nQk query examples, such that
nQk = |Q|/K. Such a setting is undeniably artificial as we assume S and Q have the same perfectly
balanced class distribution. Several recent works [35, 36, 37, 38] studied class imbalance exclusively
on the support set S. This makes sense as, in realistic scenarios, some classes might have more
labelled samples than others. However, even these works rely on the assumption that query set Q is
perfectly balanced. We argue that such an assumption is not realistic, as one typically has even less
control over the class distribution of Q than it has over that of S . For the labeled support S , the class
distribution is at least fully known and standard strategies from imbalanced supervised learning could
be applied [38]. This does not hold forQ, for which we need to make class predictions at testing time
and whose class distribution is unknown. In fact, generating perfectly balanced tasks at test times for
benchmarking the models assumes that one has access to the unknown class distributions of the query
points, which requires access to their unknown labels. More importantly, artificial balancing of Q is
implicitly or explicitly encoded in several transductive methods, which use the query set statistics to
make class predictions, as will be discussed in section 4.

4φ is either fixed, e.g., [23], or fine-tuned during inference, e.g., [15]. There is, however, evidence in the
literature that freezing φ yields better performances [23, 32, 34, 33], while reducing the inference time.
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Figure 1: Dirichlet density function for K = 3, with different choices of parameter vector a.

3 Dirichlet-distributed class marginals for few-shot query sets

Standard few-shot settings assume that pk, the proportion of the query samples belonging to a class
k within a few-shot task, is deterministic (fixed) and known priori: pk = nQk /|Q| = 1/K, for all
k and all few-shot tasks. We propose to relax this unrealistic assumption, and to use the Dirichlet
distribution to model the proportions (or marginal probabilities) of the classes in few-shot query sets
as random variables. Dirichlet distributions are widely used in Bayesian statistics to model K-way
categorical events5. The domain of the Dirichlet distribution is the set of K-dimensional discrete
distributions, i.e., the set of vectors in (K − 1)-simplex ∆K = {p ∈ [0, 1]K |

∑
k pk = 1}. Let Pk

denotes a random variable associated with class probability pk, and P the random simplex vector
given by P = (P1, . . . , PK). We assume that P follows a Dirichlet distribution with parameter vector
a = (a1, . . . , aK) ∈ RK : P ∼ Dir(a). The Dirichlet distribution has the following density function:
fDir(p;a) = 1

B(a)

∏K
k=1 p

ak−1
k for p = (p1, . . . , pK) ∈ ∆K , with B denoting the multivariate Beta

function, which could be expressed with the Gamma function6: B(a) =
∏K

k=1 Γ(ak)

Γ(
∑K

k=1 αk)
.

Figure 1 illustrates the Dirichlet density for K = 3, with a 2-simplex support represented with an
equilateral triangle, whose vertices are probability vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). We show
the density for a = a1K , with 1K the K-dimensional vector whose all components are equal to
1 and concentration parameter a equal to 0.5, 2, 5 and 50. Note that the limiting case a → +∞
corresponds to the standard settings with perfectly balanced tasks, where only uniform distribution,
i.e., the point in the middle of the simplex, could occur as marginal distribution of the classes.

The following result, well-known in the literature of random variate generation [39], suggests that one
could generate samples from the multivariate Dirichlet distribution via simple and standard univariate
Gamma generators.

Theorem 3.1. ([39, p. 594]) Let N1, . . . , NK be K independent Gamma-distributed random vari-
ables with parameters ak: Nk ∼ Gamma(ak), i.e., the probability density ofNk is univariate Gamma7,
with shape parameter ak. Let Pk = Nk∑K

k=1Nk
, k = 1, . . . ,K. Then, P = (P1, . . . , PK) is Dirichlet

distributed: P ∼ Dir(a), with a = (a1, . . . , aK).

A proof based on the Jacobian of random-variable transformations Pk = Nk∑K
k=1Nk

, k = 1, . . . ,K,
could be found in [39], p. 594. This result prescribes the following simple procedure for sampling
random simplex vectors (p1, . . . , pK) from the multivariate Dirichlet distribution with parameters
a = (a1, . . . , aK): First, we draw K independent random samples (n1, . . . , nK) from Gamma
distributions, with each nk drawn from univariate density fGamma(n; ak); To do so, one could use
standard random generators for the univariate Gamma density; see Chapter 9 in [39]. Then, we set
pk = nk∑K

k=1 nk
. This enables to generate randomly nQk , the number of samples of class k within query

set Q, as follows: nQk is the closest integer to pk|Q| such that
∑
k n
Q
k = |Q|.

5Note that the Dirichlet distribution is the conjugate prior of the categorical and multinomial distributions.
6The Gamma function is given by: Γ(a) =

∫∞
0
ta−1 exp(−t)dt for a > 0. Note that Γ(a) = (a − 1)!

when a is a strictly positive integer.
7Univariate Gamma density is given by: fGamma(n; ak) = nak−1 exp(−n)

Γ(ak)
, n ∈ R.
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4 On the class-balance bias of the best-performing few-shot methods

As briefly evoked in section 2, the strict balancing of the classes in both S and Q represents a
strong inductive bias, which few-shot methods can either meta-learn during training or leverage at
inference. In this section, we explicitly show how such a class-balance prior is encoded in the two
best-performing transductive methods in the literature [23, 31], one based on mutual-information
maximization [23] and the other on optimal transport [31].

Class-balance bias of optimal transport Recently, the transductive method in [31], referred to as
PT-MAP, achieved the best performances reported in the literature on several popular benchmarks, to
the best of our knowledge. However, the method explicitly embeds a class-balance prior. Formally,
the objective is to find, for each few-shot task, an optimal mapping matrix M ∈ R|Q|×K+ , which
could be viewed as a joint probability distribution over XQ × YQ. At inference, a hard constraint
M ∈ {M : M1K = r,1|Q|M = c} for some r and c is enforced through the use of the
Sinkhorn-Knopp algorithm. In other words, the columns and rows of M are constrained to sum
to pre-defined vectors r ∈ R|Q| and c ∈ RK . Setting c = 1

K1K as done in [31] ensures that M
defines a valid joint distribution, but also crucially encodes the strong prior that all the classes within
the query sets are equally likely. Such a hard constraint is detrimental to the performance in more
realistic scenarios where the class distributions of the query sets could be arbitrary, and not necessarily
uniform. Unsurprisingly, PT-MAP undergoes a substantial performance drop in the realistic scenario
with Dirichlet-distributed class proportions, with a consistent decrease in accuracy between 18 and
20 % on all benchmarks, in the 5-ways case.

Class-balance bias of transductive mutual-information maximization Let us now have a closer
look at the mutual-information maximization in [23]. Following the notations introduced in section 2,
the transductive loss minimized in [23] for a given few-shot task reads:

LTIM = CE− I(XQ;YQ) = CE− 1

|IQ|
∑
i∈Q

K∑
k=1

pik log(pik)︸ ︷︷ ︸
H(YQ|XQ)

+λ

K∑
k=1

p̂k log p̂k︸ ︷︷ ︸
−H(YQ)

, (1)

where I(XQ;YQ) = −H(YQ|XQ) + λH(YQ) is a weighted mutual information between the
query samples and their unknown labels (the mutual information corresponds to λ = 1), and
CE := − 1

|IS |
∑
i∈S
∑K
k=1 yik log(pik) is a supervised cross-entropy term defined over the support

samples. Let us now focus our attention on the label-marginal entropy term,H(YQ). As mentioned in
[23], this term is of significant importance as it prevents trivial, single-class solutions stemming from
minimizing only conditional entropyH(YQ|XQ). However, we argue that this term also encourages
class-balanced solutions. In fact, we can write it as an explicit KL divergence, which penalizes
deviation of the label marginals within a query set from the uniform distribution:

H(YQ) = −
K∑
k=1

p̂k log (p̂k) = log(K)−DKL(p̂‖uK). (2)

Therefore, minimizing marginal entropy H(YQ) is equivalent to minimizing the KL divergence
between the predicted marginal distribution p̂ = (p̂1, . . . , p̂K) and uniform distribution uK = 1

K1K .
This KL penalty could harm the performances whenever the class distribution of the few-shot task
is no longer uniform. In line with this analysis, and unsurprisingly, we observe in section 6 that
the original model in [23] also undergoes a dramatic performance drop, up to 20%. While naively
removing this marginal-entropy term leads to even worse performances, we observe that simply
down-weighting it, i.e., decreasing λ in Eq. (1), can drastically alleviate the problem, in contrast to
the case of optimal transport where the class-balance constraint is enforced in a hard manner.

5 Generalizing mutual information with α-divergences

In this section, we propose a non-trivial, but simple generalization of the mutual-information loss in
(1), based on α-divergences, which can tolerate more effectively class-distribution variations. We
identified in section 4 a class-balance bias encoded in the marginal Shannon entropy term. Ideally,
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Figure 2: (Left) α-entropy as a function of p = σ(l). (Right) Gradient of α-entropy w.r.t to the logit
l ∈ R as a function of p = σ(l). Best viewed in color.

we would like to extend this Shannon-entropy term in a way that allows for more flexibility: Our
purpose is to control how far the predicted label-marginal distribution, p̂, could depart from the
uniform distribution without being heavily penalized.

5.1 Background

We argue that such a flexibility could be controlled through the use of α-divergences [40, 41, 42,
43, 44], which generalize the well-known and widely used KL divergence. α-divergences form a
whole family of divergences, which encompasses Tsallis and Renyi α-divergences, among others.
In this work, we focus on Tsallis’s [40, 43] formulation of α-divergence. Let us first introduce
the generalized logarithm [44]: logα(x) = 1

1−α
(
x1−α − 1

)
. Using the latter, Tsallis α-divergence

naturally extends KL. For two discrete distributions p = (pk)Kk=1 and q = (qk)Kk=1, we have:

Dα(p‖q) = −
K∑
k=1

pk logα

(
qk
pk

)
=

1

1− α

(
1−

K∑
k=1

pαk q
1−α
k

)
. (3)

Note that the Shannon entropy in Eq. (2) elegantly generalizes to Tsallis α-entropy:

Hα(p) = logα(K)−K1−α Dα(p‖uK) =
1

α− 1

(
1−

∑
k

pαk

)
. (4)

The derivation of Eq. (4) is provided in appendix. Also, limα→1 logα(x) = log(x), which implies:

lim
α→1
Dα(p‖q) = DKL(p‖q) and lim

α→1
Hα(p) = H(p) = −

K∑
k=1

p̂k log (p̂k) .

Note that α-divergence Dα(p‖q) inherits the nice properties of the KL divergence, including but not
limited to convexity with respect to both p and q and strict positivity Dα(p‖q) ≥ 0 with equality if
p = q. Furthermore, beyond its link to the forward KL divergenceDKL(p‖q), α-divergence smoothly
connects several well-known divergences, including the reverse KL divergence DKL(q‖p) (α→ 0),
the Hellinger (α = 0.5) and the Pearson Chi-square (α = 2) distances [44].

5.2 Analysis of the gradients

As observed from Eq. (4), α-entropy is, just like Shannon Entropy, intrinsically biased toward
the uniform distribution. Therefore, we still have not properly answered the question: why would
α-entropy be better suited to imbalanced situations? We argue the that learning dynamics subtly
but crucially differ. To illustrate this point, let us consider a simple toy logistic-regression example.
Let l ∈ R denotes a logit, and p = σ(l) the corresponding probability, where σ stands for the usual
sigmoid function. The resulting probability distribution simply reads p = {p, 1− p}. In Figure 2, we
plot both the α-entropyHα (left) and its gradients ∂Hα/∂l (right) as functions of p. The advantage
of α-divergence now becomes clearer: as α increases,Hα(p) accepts more and more deviation from
the uniform distribution (p = 0.5 on Figure 2), while still providing a barrier preventing trivial
solutions (i.e., p = 0 or p = 1, which corresponds to all the samples predicted as 0 or 1). Intuitively,
such a behavior makes α-entropy with α > 1 better suited to class imbalance than Shannon entropy.
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5.3 Proposed formulation

In light of the previous discussions, we advocate a new α-mutual information loss, a simple but very
effective extension of the Shannon mutual information in Eq. (1):

Iα(XQ;YQ) = Hα(YQ)−Hα(YQ|XQ) =
1

α− 1

 1

|IQ|
∑
i∈IQ

K∑
k=1

pαik −
K∑
k=1

p̂ αk

 (5)

withHα the α-entropy as defined in Eq. (4). Note that our generalization in Eq. (5) has no link to the
α-mutual information derived in [45]. Finally, our loss for transductive few-shot inference reads:

Lα-TIM = CE− Iα(XQ;YQ). (6)

6 Experiments

In this section, we thoroughly evaluate the most recent few-shot transductive methods using our
imbalanced setting. Except for SIB [16] and LR-ICI [17] all the methods have been reproduced in
our common framework. All the experiments have been executed on a single GTX 1080 Ti GPU.

Datasets We use three standard benchmarks for few-shot classification: mini-Imagenet [46], tiered-
Imagenet [30] and Caltech-UCSD Birds 200 (CUB) [47]. The mini-Imagenet benchmark is a subset
of the ILSVRC-12 dataset [46], composed of 60,000 color images of size 84 x 84 pixels [3]. It
includes 100 classes, each having 600 images. In all experiments, we used the standard split of 64
base-training, 16 validation and 20 test classes [6, 33]. The tiered-Imagenet benchmark is a larger
subset of ILSVRC-12, with 608 classes and 779,165 color images of size 84× 84 pixels. We used a
standard split of 351 base-training, 97 validation and 160 test classes. The Caltech-UCSD Birds 200
(CUB) benchmark also contains images of size 84× 84 pixels, with 200 classes. For CUB, we used a
standard split of 100 base-training, 50 validation and 50 test classes, as in [32]. It is important to note
that for all the splits and data-sets, the base-training, validation and test classes are all different.

Task sampling We evaluate all the methods in the 1-shot 5-way, 5-shot 5-way, 10-shot 5-way and
20-shot 5-way scenarios, with the classes of the query sets randomly distributed following Dirichlet’s
distribution, as described in section 3. Note that the total amount of query samples |Q| remains fixed
to 75. All the methods are evaluated by the average accuracy over 10,000 tasks, following [33]. We
used different Dirichlet’s concentration parameter a for validation and testing. The validation-task
generation is based on a random sampling within the simplex (i.e Dirichlet with a = 1K). Testing-
task generation uses a = 2 ·1K to reflect the fact that extremely imbalanced tasks (i.e., only one class
is present in the task) are unlikely to happen in practical scenarios; see Figure 1 for visualization.

Hyper-parameters Unless identified as directly linked to a class-balance bias, all the hyper-
parameters are kept similar to the ones prescribed in the original papers of the reproduced methods.
For instance, the marginal entropy in TIM [23] was identified in section 4 as a penalty that encourages
class balance. Therefore, the weight controlling the relative importance of this term is tuned. For
all methods, hyper-parameter tuning is performed on the validation set of each dataset, using the
validation sampling described in the previous paragraph.

Base-training procedure All non-episodic methods use the same feature extractors, which are
trained using the same procedure as in [23, 20], via a standard cross-entropy minimization on the base
classes with label smoothing. The feature extractors are trained for 90 epochs, using a learning rate
initialized to 0.1 and divided by 10 at epochs 45 and 66. We use a batch size of 256 for ResNet-18
and of 128 for WRN28-10. During training, color jitter, random croping and random horizontal
flipping augmentations are applied. For episodic/meta-learning methods, given that each requires a
specific training, we use the pre-trained models provided with the GitHub repository of each method.

6.1 Main results

The main results are reported in Table 1. As baselines, we also report the performances of state-of-
the-art inductive methods that do not use the statistics of the query set at adaptation and are, therefore,
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Table 1: Comparisons of state-of-the-art methods in our realistic setting on mini-ImageNet, tiered-
ImageNet and CUB. Query sets are sampled following a Dirichlet distribution with a = 2 · 1K .
Accuracy is averaged over 10,000 tasks. A red arrow (↓) indicates a performance drop between the
artificially-balanced setting and our testing procedure, and a blue arrow (↑) an improvement. Arrows
are not displayed for the inductive methods as, for these, there is no significant change in performance
between both settings (expected). ‘–’ signifies the result was computationally intractable to obtain.

mini-ImageNet
Method Network 1-shot 5-shot 10-shot 20-shot

In
du

ct
. Protonet (NEURIPS’17 [4])

RN-18

53.4 74.2 79.2 82.4
Baseline (ICLR’19 [32]) 56.0 78.9 83.2 85.9
Baseline++ (ICLR’19 [32]) 60.4 79.7 83.8 86.3
Simpleshot (ARXIV [33]) 63.0 80.1 84.0 86.1

Tr
an

sd
uc

t.

MAML (ICML’17 [5])

RN-18

47.6 (↓ 3.8) 64.5 (↓ 5.0) 66.2 (↓ 5.7) 67.2 (↓ 3.6)
Versa (ICLR’19 [25]) 47.8 (↓ 2.2) 61.9 (↓ 3.7) 65.6 (↓ 3.6) 67.3 (↓ 4.0)
Entropy-min (ICLR’20 [15]) 58.5 (↓ 5.1) 74.8 (↓ 7.3) 77.2 (↓ 8.0) 79.3 (↓ 7.9)
LR+ICI (CVPR’2020 [17]) 58.7 (↓ 8.1) 73.5 (↓ 5.7) 78.4 (↓ 2.7) 82.1 (↓ 1.7)
PT-MAP (ARXIV [31]) 60.1 (↓ 16.8) 67.1 (↓ 18.2) 68.8 (↓ 18.0) 70.4 (↓ 17.4)
LaplacianShot (ICML’20 [20]) 65.4 (↓ 4.7) 81.6 (↓ 0.5) 84.1 (↓ 0.2) 86.0 (↑ 0.5)
BD-CSPN (ECCV’20 [21]) 67.0 (↓ 2.4) 80.2(↓ 1.8) 82.9 (↓ 1.4) 84.6 (↓ 1.1)
TIM (NEURIPS’20 [23]) 67.3 (↓ 4.5) 79.8 (↓ 4.1) 82.3 (↓ 3.8) 84.2 (↓ 3.7)
α-TIM (ours) 67.4 82.5 85.9 87.9

In
du

ct
. Baseline (ICLR’19 [32])

WRN
62.2 81.9 85.5 87.9

Baseline++ (ICLR’19 [32]) 64.5 82.1 85.7 87.9
Simpleshot (ARXIV [33]) 66.2 82.4 85.6 87.4

Tr
an

sd
uc

t.

Entropy-min (ICLR’20 [15])

WRN

60.4 (↓ 5.7) 76.2 (↓ 8.0) – –
PT-MAP (ARXIV [31]) 60.6 (↓ 18.3) 66.8 (↓ 19.8) 68.5 (↓ 19.3) 69.9 (↓ 19.0)
SIB (ICLR’20 [16]) 64.7 (↓ 5.3) 72.5 (↓ 6.7) 73.6 (↓ 8.4) 74.2 (↓ 8.7)
LaplacianShot (ICML’20 [20]) 68.1 (↓ 4.8) 83.2 (↓ 0.6) 85.9 (↑ 0.4) 87.2 (↑ 0.6)
TIM (NEURIPS’20 [23]) 69.8 (↓ 4.8) 81.6 (↓ 4.3) 84.2 (↓ 3.9) 85.9 (↓ 3.7)
BD-CSPN (ECCV’20 [21]) 70.4 (↓ 2.1) 82.3(↓ 1.4) 84.5 (↓ 1.4) 85.7 (↓ 1.1)
α-TIM (ours) 69.8 84.8 87.9 89.7

tiered-ImageNet
1-shot 5-shot 10-shot 20-shot

In
du

ct
. Baseline (ICLR’19 [32])

RN-18
63.5 83.8 87.3 89.0

Baseline++ (ICLR’19 [32]) 68.0 84.2 87.4 89.2
Simpleshot (ARXIV [33]) 69.6 84.7 87.5 89.1

Tr
an

sd
uc

t.

Entropy-min (ICLR’20 [15])

RN-18

61.2 (↓ 5.8) 75.5 (↓ 7.6) 78.0 (↓ 7.9) 79.8 (↓ 7.9)
PT-MAP (ARXIV [31]) 64.1 (↓ 18.8) 70.0 (↓ 18.8) 71.9 (↓ 17.8) 73.4 (↓ 17.1)
LaplacianShot (ICML’20 [20]) 72.3 (↓ 4.8) 85.7 (↓ 0.5) 87.9 (↓ 0.1) 89.0 (↑ 0.3)
BD-CSPN (ECCV’20 [21]) 74.1 (↓ 2.2) 84.8 (↓ 1.4) 86.7 (↓ 1.1) 87.9 (↓ 0.8)
TIM (NEURIPS’20 [23]) 74.1 (↓ 4.5) 84.1 (↓ 3.6) 86.0 (↓ 3.3) 87.4 (↓ 3.1)
LR+ICI (CVPR’20 [17]) 74.6 (↓ 6.2) 85.1 (↓ 2.8) 88.0 (↓ 2.1) 90.2 (↓ 1.2)
α-TIM (ours) 74.4 86.6 89.3 90.9

In
du

ct
. Baseline (ICLR’19 [32])

WRN
64.6 84.9 88.2 89.9

Baseline++ (ICLR’19 [32]) 68.7 85.4 88.4 90.1
Simpleshot (ARXIV [33]) 70.7 85.9 88.7 90.1

Tr
an

sd
uc

t.

Entropy-min (ICLR’20 [15])

WRN

62.9 (↓ 6.0) 77.3 (↓ 7.5) – –
PT-MAP (ARXIV [31]) 65.1 (↓ 19.5) 71.0 (↓ 19.0) 72.5 (↓ 18.3) 74.0 (↓ 17.7)
LaplacianShot (ICML’20 [20]) 73.5 (↓ 5.3) 86.8 (↓ 0.5) 88.6 (↓ 0.4) 89.6 (↓ 0.2)
BD-CSPN (ECCV’20 [21]) 75.4 (↓ 2.3) 85.9 (↓ 1.5) 87.8 (↓ 1.0) 89.1 (↓ 0.6)
TIM (NEURIPS’20 [23]) 75.8 (↓ 4.5) 85.4 (↓ 3.5) 87.3 (↓ 3.2) 88.7 (↓ 2.9)
α-TIM (ours) 76.0 87.8 90.4 91.9
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Table 2: Comparaisons of state-of-the-art methods in our realistic setting on CUB. Query sets are
sampled following a Dirichlet distribution with a = 2 · 1K . Accuracy is averaged over 10,000 tasks.
A red arrow (↓) indicates a performance drop between the artificially-balanced setting and our testing
procedure, and a blue arrow (↑) an improvement. Arrows are not displayed for the inductive methods
as, for these, there is no significant change in performance between both settings (expected). ‘–’
signifies the result was computationally intractable to obtain.

CUB
1-shot 5-shot 10-shot 20-shot

In
du

ct
. Baseline (ICLR’19 [32])

RN-18
64.6 86.9 90.6 92.7

Baseline++ (ICLR’19 [32]) 69.4 87.5 91.0 93.2
Simpleshot (ARXIV [33]) 70.6 87.5 90.6 92.2

Tr
an

sd
uc

t.

PT-MAP (ARXIV [31])

RN-18

65.1 (↓ 20.4) 71.3 (↓ 20.0) 73.0 (↓ 19.2) 72.2 (↓ 18.9)
Entropy-min (ICLR’20 [15]) 67.5 (↓ 5.3) 82.9 (↓ 6.0) 85.5 (↓ 5.6) 86.8 (↓ 5.7)
LaplacianShot (ICML’20 [20]) 73.7 (↓ 5.2) 87.7 (↓ 1.1) 89.8 (↓ 0.7) 90.6 (↓ 0.5)
BD-CSPN (ECCV’20 [21]) 74.5 (↓ 3.4) 87.1 (↓ 1.8) 89.3 (↓ 1.3) 90.3 (↓ 1.1)
TIM (NEURIPS’20 [23]) 74.8 (↓ 5.5) 86.9 (↓ 3.6) 89.5 (↓ 2.9) 91.7 (↓ 2.8)
α-TIM (ours) 75.7 89.8 92.3 94.6

unaffected by class imbalance. In the 1-shot scenario, all the transductive methods, without exception,
undergo a significant drop in performances as compared to the balanced setting. Even though the
best-performing transductive methods still outperforms the inductive ones, we observe that more
than half of the transductive methods evaluated perform overall worse than inductive baselines in our
realistic setting. Such a surprising finding highlights that the standard benchmarks, initially developed
for the inductive setting, are not well suited to evaluate transductive methods. In particular, when
evaluated with our protocol, the current state-of-the-art holder PT-MAP averages more than 18%
performance drop across datasets and backbones, Entropy-Min around 7%, and TIM around 4%. Our
proposed α-TIM method outperforms transductive methods across almost all task formats, datasets
and backbones, and is the only method that consistently inductive baselines in fair setting. While
stronger inductive baselines have been proposed in the literature [48], we show in the supplementary
material that α-TIM keeps a consistent relative improvement when evaluated under the same setting.

6.2 Ablation studies

In-depth comparison of TIM and α-TIM While not included in the main Table 1, keeping the
same hyper-parameters for TIM as prescribed in the original paper [23] would result in a drastic
drop of about 18% across the benchmarks. As briefly mentioned in section 4 and implemented for
tuning [23] in Table 1, adjusting marginal-entropy weight λ in Eq. (1) strongly helps in imbalanced
scenarios, reducing the drop from 18% to only 4%. However, we argue that such a strategy is
sub-optimal in comparison to using α-divergences, where the only hyper-parameter controlling the
flexibility of the marginal-distribution term becomes α. First, as seen from Table 1, our α-TIM
achieves consistently better performances with the same budget of hyper-parameter optimization as
the standard TIM. In fact, in higher-shots scenarios (5 or higher), the performances of α-TIM are
substantially better that the standard mutual information (i.e. TIM). Even more crucially, we show
in Figure 3 that α-TIM does not fail drastically when α is chosen sub-optimally, as opposed to the
case of weighting parameter λ for the TIM formulation. We argue that such a robustness makes of
α-divergences a particularly interesting choice for more practical applications, where such a tuning
might be intractable. Our results points to the high potential of α-divergences as loss functions for
leveraging unlabelled data, beyond the few-shot scenario, e.g., in semi-supervised or unsupervised
domain adaptation problems.

Varying imbalance severity While our main experiments used a fixed value a = 2·1K , we wonder
whether our conclusions generalize to different levels of imbalance. Controlling for Dirichlet’s
parameter a naturally allows us to vary the imbalance severity. In Figure 4, we display the results
obtained by varying a, while keeping the same hyper-parameters obtained through our validation
protocol. Generally, most methods follow the expected trend: as a decreases and tasks become more
severely imbalanced, performances decrease, with sharpest losses for TIM [23] and PT-MAP [31]. In
fact, past a certain imbalance severity, the inductive baseline in [33] becomes more competitive than
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Figure 3: Validation and Test accuracy versus λ for TIM [23] and α for our proposed α-TIM, using
our protocol. Results are obtained with a RN-18. Best viewed in color.

most transductive methods. Interestingly, both LaplacianShot [20] and our proposed α-TIM are able
to cope with extreme imbalance, while still conserving good performances on balanced tasks.
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Figure 4: 5-shot test accuracy of transductive methods versus imbalance level (lower a corresponds
to more severe imbalance, as depicted in Figure 1).

On the use of transductive BN In the case of imbalanced query sets, we note that transductive
batch normalization (e.g as done in the popular MAML [49]) hurts the performances. This aligns with
recent observations from the concurrent work in [50], where a shift in the marginal label distribution
is clearly identified as a failure case of statistic alignment via batch normalization.

Conclusion

We make the unfortunate observation that recent transductive few-shot methods claiming large gains
over inductive ones may perform worse when evaluated with our realistic setting. The artificial
balance of the query sets in the vanilla setting makes it easy for transductive methods to implicitly
encode this strong prior at meta-training stage, or even explicitly at inference. When rendering such a
property obsolete at test-time, the current top-performing method becomes noncompetitive, and all
the transductive methods undergo performance drops. Future works could study the mixed effect of
imbalance on both support and query sets. We hope that our observations encourage the community
to rethink the current transductive literature, and build upon our work to provide fairer grounds of
comparison between inductive and transductive methods.
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